International Workshop "Advances in Nonlinear Analysis" University of Pittsburgh March 13 - 15, 2014

Hausdorff dimension and σ finiteness of some p harmonic measures

John L. Lewis

Recall that \hat{u} is said to be p harmonic in an open set G (p fixed, $1) if <math>\hat{u}$ is a weak solution to the p Laplace equation, $\nabla \cdot (|\nabla \hat{u}|^{p-2} \nabla \hat{u}) = 0$ in G. In this talk for fixed $p, 1 , we consider a measure, <math>\hat{\mu}$, associated with a positive p harmonic function \hat{u} in $G \subset \mathbb{R}^n$ with continuous boundary value 0 on a portion Γ of ∂G . We first outline results obtained by the presenter and coauthors when Γ is the boundary of a bounded simply connected domain $\subset \mathbb{R}^2$. Our results generalize a famous theorem of Makarov concerning the dimension of harmonic measure. During the second part of this talk we consider p harmonic measures in \mathbb{R}^n , $n \geq 3$. In this case we discuss recent work by the presenter and coauthors on the 'natural generalization' of a theorem of Jones and Wolff for harmonic measure to the p harmonic setting when $p \geq n$. Also, time permitting, we discuss open problems concerning p harmonic measure and related topics.