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First Section

Stress

An important idea in rigidity is the notion of a stress, which is a
scalar ωij = ωji assigned to each member {i , j} of the graph G .
(For non-members ωij = 0.) Denote the whole stress as a row
vector by ω = (. . . , ωij , . . . ). We say that ω is in equilibrium with
respect to a configuration p if for each vertex j ,∑

i

ωij(pi − pj) = 0.

With respect to the rigidity matrix R, this is equivalent to
ωR(p) = 0. In other words ω is in the cokernel of R when it is in
equilibrium. The matrix R(p) is of the form below:

R(p) =

(
0 . . . pi − pj 0 . . . 0 pj − pi . . .
0 . . . pk − pj 0 . . . 0 0 pj − pk

)
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Rigidity Matrix Calculations

The rows of the rigidity matrix correspond to the members of G ,
and the columns to the vertices of G .
The equilibrium condition for a stress is shown graphically. (This is
the basis of a method called ‘graphical statics’ that was promoted
by J. Clerk Maxwell in that 1800’s and used extensively to
calculate forces in various structures.)
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Reciprocal

This shows the reciprocal diagram, where the faces of the planar graph G

correspond to the vertices of the reciprocal, edges of the reciprocal correspond

to and are perpendicular to the edges of G , and faces of reciprocal correspond

to the edges of the reciprocal. The ratio of the oriented length of an edge in

the reciprocal to the corresponding oriented length in G is the equilibrium

stress in G .
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Maxwell-Cremona

One very nice way to create stresses in R3 (or the plane) is by the
following correspondence. Suppose that (G ,p) are vertices and
edges of a simply-connected 2-manifold in R3, whose faces are
regarded a rigid plates, and p′ is an infinitesimal flex such that
restricted to each of the facial plates, is trivial. Then there is a
bijection between such flexes and equilibrium stresses ω such that
ωij > 0 when the dihedral angle at edge {i , j} is increasing and
ωij < 0 when the angle at edge {i , j} is decreasing.
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Schläfli’s and Alexander’s Theorems

Theorem (Schläfli-Ralph Alexander)

Any infinitesimal flex of a closed polyhedral surface in R3 leaves
the total mean curvature invariant.

Theorem (I. Sabitov 1995)

Any continuous flex of a closed polyhedral surface in R3 leaves the
volume it bounds constant.
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Stresses in tensegrities

Stresses and (infinitesimal) motions are dual concepts, and stresses
can be thought of as “blocking” motions. For example, an
infinitesimal motion p′ of a tensegrity (G ,p) must satisfy:

(pi−pj)·(p′i−p′j) ≤ 0, (pi−pj)·(p′i−p′j) = 0, (pi−pj)·(p′i−p′j) ≥ 0,

for a cable, bar, strut respectively. A stress ω for p is proper if

ωij ≥ 0, ωij ≤ 0,

for a cable and strut respectively. (No condition for a bar.)

Proposition (Roth-Whiteley)

A tensegrity framework (G ,p) is infinitesimally rigid if and only if
there is a proper equilibrium stress ω such that every non-trivial
infinitesimal flex p′ is blocked by ω in the sense that

ωR(p)p′ =
∑
i<j

ωij(pi − pj) · (p′i − p′j) < 0.
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Global Rigidity

A (tensegrity) framework (G ,p) is globally rigid in Rd if when
(G ,q) satisfies the constraints of (G ,p), where q is a configuration
in Rd , then p is congruent to q. That is cables don’t get longer,
struts don’t get shorter, and bars stay the same length.

Problem: Where in the plane should a vertex, connected to each
vertex of a square, be placed to get a globally rigid bar farmework?

The Miura fold here can be used to fold the
framework flat in 3-space.

??
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Detection

Question (Saxe 1979)

How do you tell when a given framework (or tensegrity) is globally
rigid?

This is known to be hard. For example, for a simple cone on a
cycle, the framework is globally rigid in the plane if and only if
there is an assignment of pluses and minuses to the central angles
such that the signed angles add to a multiple of 2π. This is
equivalent to the knapsack or subset-sum problem that is NP
complete.
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The Generic Option

A bar framework (G ,p) is a redundantly rigid if it is locally rigid
and it remains so after the removal of any bar. A graph G is
(d + 1)-connected, if it is connected and it remains so after the
removal of no more than d vertices.

Theorem (Hendrickson 1992)

If (G ,p) is a globally rigid bar framework in Rd , not a simplex,
where p is generic, then it is redundantly rigid and vertex
(d + 1)-connected.

Clearly (d + 1)-connectivity is needed since otherwise the
framework can be reflected about a hyperplane through the
separating vertices. If (G ,p) is not redundantly rigid, then remove
a bar and watch it flex. When the distance between the endpoints
returns to the original distance, it will be in a non-congruent
configuration.
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Characterizing Global Rigidity

Reinsert the former bar when
the red distance returns.

Flex the resulting
framework

Remove
the red bar

Conjecture (Hendrickson 1986)

For a generic configuration p in Rd , the graph G being
redundantly rigid and (d + 1)-connected is implies that (G ,p) is
globally rigid in Rd .
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The Bad News

Hendrickson’s Conjecture is false in Rd for d ≥ 3.
For a while, the only known example in R3 was the complete
bipartite graph K (5, 5).
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Another Counterexample

This example is due, very recently, to Tibor Jordan, coming from his study of body

and hinge structures. The framework on the left consists of 6 tetrahedra joined

cyclicly along opposite edges (bars). It has 12 vertices, and each vertex is adjacent to

5 other vertices, so it has the same vertex-edge count as the regular icosahedron and

thus m = 3n − 6, namely m = 5 · 12/2 = 30, and n = 12. It turns out this framework

is generically isostatic, and by Hendrickson’s Theorem is not globally rigid in R3. But

when one takes the cone over each of the tetrahedra as in the framework on the right,

it becomes redundantly rigid and vertex 4 connected, and another counterexample to

Hendrickson’s conjecture in R3.

Problem: Find a geometric configuration where the framework on the left is infinitesimally rigid.
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The Good News

Theorem (Jackson-Jordan 2005)

Hendrickson’s Conjecture is true in R2.

The pebble game algorithms for the Hendrickson conditions work
well and so they work in reasonable polynomial-time.

But there is still a problem. Can you tell when the configuration is
at one of the exceptional configurations? For local rigidity, the
generic condition can be replaced by the condition that rank of the
rigidity matrix be maximal. For global rigidity, it is not that easy.
A key concept is the notion of a stress matrix and stress-energy.
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The Stress Matrix

Suppose that ω = (. . . , ωij , . . . ) is an equilibrium stress for a
framework (G ,p) with n nodes. The corresponding stress matrix Ω
is an n-by-n symmetric matrix, with {i , j} entry −ωij , and diagonal
entries such that its row and column sums are 0. For example for
the square framework with diagonals, you get the following stress
matrix:

4 3

21

-1
-1

1

1

1

1 Ω =


1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1
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Matrix Formulation

For any configuration p = (p1, . . . ,pn) in Rd , define the following
(d + 1)-by-n configuration matrix

P̂ =

(
p1 p2 . . . pn
1 1 . . . 1

)
,

where each pi is an n-by-1 column vector/matrix. Then the
equilibrium equation for the stress ω becomes

P̂Ω = 0.

The rows of P̂ are in the (co-)kernel of Ω, and the rank of P̂ is the
dimension of the affine span of the configuration p. So if the rank
of Ω is n− d − 1, and p has a d-dimensional affine span in Rd , the
rows of P̂ form a basis for the cokernel of Ω.
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Universal Configurations

For a given equilibrium stress ω for a configuration p, with
corresponding stress matrix Ω, we say that p is universal with
respect to p if any other configuration q, that is in equilibrium
with respect to ω, is an affine image of p. The following is basic
linear algebra.

Proposition

A configuration p is universal with respect to an equilibrium stress
ω if and only if the rows of the configuration matrix P̂ are a basis
for the cokernel of the stress matrix Ω.

An affine map of the configuration p in Rd to a configuration q
can be regarded as a linear map of Rd+1 that takes P̂ to Q̂. Note
also that also that affine maps preserve equilibrium stresses.
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Generic Global Rigidity

Recall that an equilibrium stress ω, as a row vector, can be
regarded as an element of the cokernel of the rigidity matrix,
namely ωR(p) = 0. Suppose that the configuration p is generic in
Rd . Then the rigidity map fG = f : Rdn → Rm of a neighborhood
of p in Rdn to squared member-length space Rm is non-singular,
modulo congruences. If there is another configuration q in Rd with
the same member lengths, then f (p) = f (q). Let Up and Uq be
neighborhoods of p and q respectively in Rdn. If f (Up) ∩ f (Uq) is
not top dimensional in Rm, then f (p) lives in a lower-dimensional
subspace of Rm, contradicting the generic nature of the
configuration p. (Technically this uses a kind of Tarsky-Seidenberg
elimination theory.)

Up
f−→ Rm

↓ ↗
Uq
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The Transfer Map

The upshot of the previous argument is that there is a non-singular
diffeomorphism g : Up → Uq, and by taking differentials of the
previous diagram f = f ◦ g : Up → Rm, we get df = df ◦ dg . Thus
the cokernels of f at p and at q are the same, and so if the rank of
the stress matrix is maximal at n− d − 1, then the configuration q
has to be an affine image of p.

Notice how the “forbidden configurations,” those that are to be
avoided here, are hard to define explicitly.

Next: We determine when affine maps can preserve the member
lengths.

19 / 30



First Section

The Affine equivalences

Any affine map α : Rd → Rd is such that α(pi ) = Api + b, where
b is a constant vector in Rd . The translation given by b is a
congruence, so we will concentrate on the d-by-d matrix A. The
member length for the {i , j} member squared is

(Api − Apj) · (Api − Apj) = A(pi − pj) · A(pi − pj)

= [A(pi − pj)]TA(pi − pj)

= (pi − pj)
TATA(pi − pj)

So when there is an affine motion, not a congruence, that
preserves member lengths, there is a symmetric matrix Q where
(pi − pj)

TQ(pi − pj) = 0, where Q = ATA− I , since Q = 0
exactly when A an orthogonal matrix.
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Conic at Infinity

For a framework (G ,p) in Rd with affine span all of Rd , we say
that the member directions lie on a conic at infinity if there is a
non-zero d-by-d symmetric matrix Q such that
(pi − pj)

TQ(pi − pj) = 0 for all {i , j} members of G .

Theorem

For a bar framework (G ,p) in Rd , it has a non-trivial affine flex, if
and only if it has is a non-congruent affine image if and only if the
member directions do not lie on a conic at infinity.

Problem: Show the ”if” direction.

In the plane, conics at infinity have 2 points. The affine flex occurs since there are just

two member directions. (The curved bars are just to indicate overlapping bars.)
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The Stress Condition for Global Rigidity

Theorem

If p is a generic configuration in Rd with n vertices, and the
framework (G ,p) has an equilibrium stress with stress matrix Ω of
rank n − d − 1, then (G ,p) is globally rigid in Rd .

The argument above implies that any other framework (G ,q) with
corresponding bar lengths the same must have the same set of
equilibrium stresses. It is easy to show that the member directions
do not lie on a conic at infinity due to the generic condition. Thus
q must be congruent to p.
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Application: Edge Splitting

For a bar framework in Rd choose a point r along the line
connecting the endpoints of a bar {pi ,pj}, not at the vertices.
Remove the bar, and connect r to pi ,pj and d − 1 other points in
the framework such that all d + 1 of these points, not counting r,
are affine independent (i.e. no d of them lie in a hyperplane). This
is called an edge splitting along the edge {i , j}.

Theorem (Henneberg 1911)

If the framework (H,q) is obtained from the infinitesimally rigid
framework (G ,p) by edge splitting, then (H,q) is infinitesimally
rigid.
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Edge Splitting and Global Rigidity

Edge splitting preserves infinitesimal rigidity; passing to the generic case
it preserves generic rigidity as well. A consequence of Laman’s Theorem
is that any generic framework in the plane can be obtained from a
triangle by sequentially attaching a vertex to two other vertices and edge
splitting, collectively called Henneberg moves.

Proposition

If ω is an equilibrium stress for a bar framework (G ,p) in Rd with a
stress matrix Ω of rank n − d − 1, then the rank of Ω increases by one
after an edge-splitting.

In the plane, I conjectured the following result:

Theorem (Jackson-Jordan 2005)

Any vertex 3-connected generically redundantly graph G can be obtained
from K4, the complete graph on 4 vertices, by a sequence of edge
splittings and edge insertions, thus verifying Hendrickson’s conjecture in
the plane.
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Non-Generic Example

A priori, it is not clear that global rigidity is a generic property. For
example, the following framework (G ,p) has a sub framework
(H,q), in green, that is relatively globally rigid in the sense that
any other equivalent configuration of (G ,p) restricted to the
vertices of (H,q) is a congruence. Nevertheless, there are other
generic configurations of (G ,p) where this is not true.

On the other hand, the stress matrix rank property is a generic
property.
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Stress Matrix Necessity

Theorem (Gortler-Healy-Thurston 2010)

If a bar framework (G ,p) in Rd is globally rigid at a generic
configuration p, then either (G ,p) is a complete graph (with d + 1
or fewer vertices), or there exists a stress ω with stress matrix Ω of
rank n − d − 1, where n is the number of vertices of G.

So global rigidity is a generic property after all. Furthermore, there
is an algorithm to compute whether a given graph G with n
vertices is generically globally rigid in Rd :

Choose a “random” configuration p in Rd , and compute the rank of
its rigidity matrix R(p). If the rank is nd − d(d + 1), continue. If
not, G is probably not even locally rigid.

Compute a “random” equilibrium stress ω, and compute the rank of
the stress matrix Ω. If it is n − d − 1, you know with certainty that
G is globally rigid at generic configurations, but maybe not at the
configuration p. If it is not n − d − 1, then G is probably not
generically globally rigid. 26 / 30
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Vertex Splitting

At any vertex p0 of a framework (G ,p) in Rd , divide the vertices
p1,p2, . . . ,pk , for k ≥ d , adjacent to p0 into two subsets A and B
with exactly d − 1 vertices in common. Remove p0, replace it with
two other vertices, q1,q2 and join q1 to A, and q2 to B, as well as
q1 and q2 to each other. Call the resulting framework (H,q), the
vertex splitting of (G ,p).

Theorem (Whiteley 1990)

Vertex splitting preserves infinitesimal rigidity with proper
placement of q1,q2.

d=3
d=2
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2-Manifolds

For an integer p ≥ 2, an abstract simplicial complex X is called a
p-cycle complex if it is the support complex of a non-trivial
p-cycle. It is called a minimal p-cycle complex if it is the support
complex of a nontrivial minimal p-cycle.

Theorem (Fogelsanger 1988)

The 1-skeleton of a minimal (d − 1)-cycle complex, d ≥ 3, is
generically rigid in Rd .

The proof is a very insightful application of vertex splitting. Note
that minimal cycle complexes in dimension 3 include triangulated
2-manifolds. Those with genus greater than 1 were not known to
be generically rigid in R until this result.
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Conjectures

Conjecture

If G is generically globally rigid in Rd and H is obtained by a
vertex splitting such that each subset (A and B above) has at least
d + 1 vertices, then H is generically globally rigid as well.

Question

Is a vertex 3-connected triangulated surface of genus g ≥ 2
generically globally rigid in R3?
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