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This paper introduces the connection-graph-stability method and

uses it to establish a new lower bound on the algebraic connectivity

of graphs (the second smallest eigenvalue of the Laplacian matrix

of the graph) that is sharper than the previously published bounds.

The connection-graph-stability score for each edge is defined as the

sum of the lengths of the shortest pathsmaking use of that edge.We

prove that the algebraic connectivity of the graph is bounded below

by the size of the graph divided by themaximum connection-graph-

stability score assigned to the edges.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V, E) be a connected simple graph with n = |V | vertices and |E| edges. For vertices u and

v of G, a path of minimum length from u to v is called a shortest path from u to v. Such path is denoted

by Puv. The length of the longest path in the collection of shortest paths Puv when (u, v) varies over

all vertices is called diameter of the graph, denoted by dmax . The Laplacian matrix of G is defined as

L = D − A, where A is the binary adjacency matrix and D = diag(du; u ∈ V) is a diagonal matrix

that records the degrees of the vertices of G. The matrix L is a positive semidefinite, symmetric and

singularmatrixwhose eigenvalues are in the form ofλn(G) � λn−1(G) � · · · � λ2(G) � λ1(G) = 0.

These eigenvalues are important in graph theory and have close relations to numerous graph invari-

ants. Among them, the second smallest eigenvalue, λ2, called the algebraic connectivity, has attracted

more attention. There are several lower bounds on λ2 based on simple properties of the graph such
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as diameter, order, and number of edges (see [1] for a comprehensive review). For example, Mohar

[5] showed that λ2 � 4
ndmax

and recently Lu [4] proved that λ2 � 2n
2+(n−1)ndmax−2|E|dmax

. In this paper,

we present a new lower bound for λ2 based on the connection-graph-stability scores associated to

the edges, which are defined for each edge as the sum of the length of all the shortest paths making

use of that edge. We also prove that the proposed lower bound is always sharper than the previously

mentioned bounds of Mohar and Lu.

2. Lower bound based on connection-graph-stability method

The connection-graph-stability method was proposed by Belykh et al. [6] to establish a criterion

for the global stability of synchronization manifold of a network of coupled dynamical systems. Here,

we use the concept to obtain a lower bound for algebraic connectivity of a graph.

Definition 1 (Connection-graph-stability score). For each pair of vertices u and v, let us choose a path

Puv from u to v (not necessarily the shortest path). The Connection-graph-stability score for each edge

k of G with respect to this collection of paths is denoted by Ck and defined as the sum of the length of

the paths Puv that contains edge k, i.e.

Ck = 1

2

n∑
u=1

n∑
v=1

ϕuv(k)|Puv|, (1)

where

ϕuv(k) =
⎧⎨
⎩ 1 if k ∈ Puv

0 if otherwise.

The maximum connection-graph-stability score assigned to the edges of G is denoted by Cmax , i.e.

Cmax = maxk∈E Ck .

Theorem 1. Let G be a connected simple graph with n nodes. Then,

λ2 � n

Cmax

, (2)

Proof. Let G be a simple graph. Fiedler [3] showed that

λ2 = min
2n

∑
uv∈E(xu − xv)

2∑
u∈V

∑
v∈V (xu − xv)2

, (3)

where the minimum is taken over all non-constant vectors x = (xv)v∈V(G) with ‖x‖ = 1. Denoting

Xuv = xu − xv, Eq. (3) can be rewritten as

λ2 = min
2n

∑
uv∈E X

2
uv∑

u∈V

∑
v∈V X2

uv

. (4)

Let Puv be the path u−m1 −m2 − · · · −mk − vwithmi ∈ V being the path connecting u to v and

|Puv| its length, then Xuv can be expressed as

Xuv = Xum1
+ Xm1m2

+ · · · + Xmkv = ∑
e∈Puv

Xe.

Applying the Cauchy–Schwartz inequality, one obtains

X2
uv =

⎛
⎝ ∑

e∈Puv

Xe

⎞
⎠2

� |Puv|
∑
e∈Puv

X2
e .
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Fig. 1. An example graph with 8 nodes and 8 edges. As it is mentioned in the text, the set of paths that include the shortest path

connecting vertices 1 and 8, i.e. adg, gives highermaximum connection-graph-stability comparing to the set that a longer path abheg

has been selected instead.

Then,

n∑
u=1

n∑
v=1

X2
uv �

n∑
u=1

n∑
v=1

⎛
⎝|Puv|

∑
e∈E

ϕuv(e)X
2
e

⎞
⎠ = ∑

e∈E

2CeX
2
e � 2Cmax

∑
e∈E

X2
e . (5)

Substituting (5) in (4)

λ2 = min
2n

∑
uv∈E(xu − xv)

2∑
u∈V

∑
v∈V (xu − xv)2

� min
2n

∑
uv∈E(xu − xv)

2

2Cmax

∑
uv∈E(xu − xv)2

,

and finally λ2 � n
Cmax

. �

The above result is valid for any set of paths, not necessarily shortest paths.While shortest paths are

well defined and intuitively good choices, in some cases replacing a shortest path with a longer path

gives a better, i.e. lower, maximum connection-graph-stability score. For example, in the graph shown

in Fig. 1, let us first choose a shortest path for each pair of vertices. Since for almost all of the pairs

there is exactly one shortest path, here, we just list the shortest paths that have an alternative choice

namely: P16 = abh, P25 = bd, P27 = bdf , P36 = de, and P46 = cde. According to this set of paths, the

connection-graph-stability scores become: Ca = 16, Cb = 13, Cc = 16, Cd = 31, Ce = 13, Cf = 16,

Cg = 16, and Ch = 7, where the maximum connection-graph-stability score is Cmax = Cd = 31. If

the shortest path connecting vertices 1 and 8, i.e. adg, is replaced by a longer path abheg, then the

connection-graph-stability scores change to: Ca = 18, Cb = 18, Cc = 16, Cd = 28, Ce = 18, Cf = 16,

Cg = 18, and Ch = 12. In this new configuration, the maximum connection-graph-stability score

decreases and becomes Cmax = 28.

Definition2 (Pathweighting strategy). For anypairu, v ∈ V let us consider anarbitrarynon-empty set of

paths connectingu and v denoted byPuv, i.e.Puv =
{
P
(1)
uv , P

(2)
uv , . . . , P

(nuv)
uv

}
withnuv � 1. Then, for any

pair u, v ∈ V and their corresponding set of pathsPuv, let us choose a vectorαuv =
(
α

(1)
uv , · · · , α

(nuv)
uv

)
,

wherenuv = |Puv|, such thatα
(q)
uv � 0 and

∑nuv
q=1 α

(q)
uv = 1. The corresponding pathweighting strategy

is denoted by α, the set of all these vectors. If just the shortest paths between pairs of vertices u and

v are considered and the corresponding weighting strategy is to set all α
(q)
uv equal, then this specific

weighting strategy is called the normal path weighting strategy and denoted by ᾱ.

Definition 3 (Extended connection-graph-stability score). The extended connection-graph-stability

score Ck(α) for edge k is defined as follows

Ck(α) = 1

2

n∑
u=1

n∑
v=1

nuv∑
q=1

ϕ(q)
uv (k)|P(q)

uv |α(q)
uv , (6)



A.A. Rad et al. / Linear Algebra and its Applications 435 (2011) 186–192 189

where

ϕ(q)
uv (k) =

⎧⎨
⎩ 1 if k ∈ P

(q)
uv

0 otherwise

andα is the correspondingpathweighting strategy.Using thepathweighting strategyα, themaximum

extended connection-graph-stability score assigned to the edges of G is denoted by Cmax(α).

Theorem 2. Let G be a connected simple graph with n nodes. Then, for any path weighting strategy α we

have

λ2 = a(G) � n

Cmax(α)
, (7)

Proof. ConsiderPuv and nuv for two arbitrary vertices. Let P
(q)
uv = um1m2 · · ·mkv (withmi ∈ V(G)) be

the qth path that connects u to vwith length |P(q)
uv |. Using the qth shortest path,Xuv, can be expressed as

Xuv = xu − xv = Xum1
+ Xm1m2

+ · · · + Xmkv = ∑
e∈P

(q)
uv

Xe.

Using the Cauchy–Schwartz inequality

X2
uv =

⎛
⎜⎝ ∑

e∈P
(q)
uv

Xe

⎞
⎟⎠

2

� |P(q)
uv | ∑

e∈P
(q)
uv

X2
e = |P(q)

uv | ∑
e∈E

ϕ(q)
uv (e)X2

e . (8)

On the other hand, one can express Xuv as weighted average of its alternative expansions as follows

X2
uv =

nuv∑
q=1

α(q)
uv X2

uv �
nuv∑
q=1

α(q)
uv |P(q)

uv | ∑
e∈E

ϕ(q)
uv (e)X2

e , (9)

Hence,

n∑
u=1

n∑
v=1

X2
uv �

n∑
u=1

n∑
v=1

nuv∑
q=1

α(q)
uv |P(q)

uv | ∑
e∈E

ϕ(q)
uv (e)X2

e

= ∑
e∈E

2Ce(α)X2
e � 2Cmax(α)

∑
e∈E

X2
e . (10)

Substituting (10) in (4), we obtain

λ2 = min
2n

∑
uv∈E X

2
uv∑

u∈V

∑
v∈V X2

uv

� min
2n

∑
uv∈E X

2
uv

2Cmax(α)
∑

uv∈E X
2
uv

,

and finally λ2 � n
Cmax(α)

. �

3. Comparison with the other lower bounds

3.1. Mohar’s lower bound

Here, we show that the lower bound obtained in Theorem 1 is always stronger than the one previ-

ously proposed by Mohar.

Theorem 3. For any connected graph G with n vertices, diameter dmax, and maximum connection-graph-

stability number Cmax, we have

n

Cmax

� 4

ndmax

.
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Proof. Consider the set of all shortest paths passing through an edge v1v2. Define two subsets of

vertices as follows: v ∈ V1 if there is a shortest path from v2 to v containing v1 and v ∈ V2 if there is a

shortest path from v1 to v containing v2. Note that v1 ∈ V1 and v2 ∈ V2. Then, V1 ∩ V2 = ∅.
If this is not the case, there is a vertex v ∈ V1 ∩ V2. Then, there is shortest path vP1v2v1 from v to

v1 and a shortest path vP2v1v2 from v to v2. If |P1| � |P2|, then the path vP1v2 is a shorter path from v

to v2 than vP2v1v2, which is contradictory. If |P2| � |P1|, we come to the same contradiction.

Now let m1 = |V1| and m2 = |V2|, then there are at most m1m2 shortest paths between V1 and

V2 passing through e, hence Ce � m1m2dmax , where Ce denotes the connection-graph-stability score

of edge e. In addition, m2 � n − m1, thus Ce � m1(n − m1)dmax , which is maximized for m1 = n
2
.

Therefore, for any edge e of the graph, and hence for the edge that has the maximum connection-

graph-stability score, we have

Ce �
(
n

2

)2

dmax

and hence,

n

Ce
� n(

n
2

)2
dmax

= 4

ndmax

. �

3.2. Lu’s lower bound

Here, we show that the lower bound obtained in Theorem 1 is also always stronger than Lu’s lower

bound.

Theorem 4. For any connected graph G with n vertices, number of edges |E|, diameter dmax andmaximum

connection-graph-stability score Cmax, we have

n

Cmax

� 2n

2 + (n − 1)ndmax − 2|E|dmax

.

Proof. For each pair of distinct vertices u and v, consider a shortest path, i.e. Puv. Among these
n(n−1)

2
shortest paths, there are |E| of these of length one. Suppose that e is the edge corresponding to Cmax .

There is only one path of length one passing through this edge (the path connecting adjacent vertices

of e). At the same time, at most
n(n−1)

2
− |E| paths with length more than one can make use of e.

According to the definition of the Cmax , the connection-graph-stability score of e is equal to the sum

of the length of these paths plus the length of the path connecting adjacent vertices of e, which is one.

Recall the maximum path length, i.e. diameter dmax , thus,

Cmax � 1 +
(
n(n − 1)

2
− |E|

)
dmax

and therefore:

n

Cmax

� 2n

2 + (n − 1)ndmax − 2|E|dmax

. �

4. Applications

The dependence of the maximum connection-graph-stability score on the number of vertices of

some well-known families of graphs can be calculated analytically [6], and thus the proposed bound

can also be explicitly calculated as a function of the size of the graph. Table 1 summarizes the results

on Complete, Path, Cycle, Star, and Peterson graphs.

It should bementioned that in general, one should know the set of paths and theweighting strategy

used for calculating the connection-graph-stability scores. In the examples mentioned in Table 1, we

used only shortest paths. In addition, except for the Peterson graph, there is just one shortest path
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Table 1

Algebraic connectivity, λ2, in somewell-known graphs and different lower bounds, i.e. Mohar’s, Lu’s and

the proposed one.

Graph λ2 Mohar’s Lu’s The lower bound (2)

Complete graph n 4
n

n n

Path (n is even) 2
(
1 − cos

(
π
n

))
4

n(n−1)
2n

2+(n−2)(n−1)2
8

n2

Cycle (n is odd) 2
(
1 − cos

(
2π
n

))
8

n(n−1)
2n

2+n(n−1)( n−3
2

)

24

(n2−1)

Star 1 2
n

n
1+(n−2)(n−1)

n
2n−3

Peterson graph 2 0.2 0.164 1.11

Fig. 2. An example graph with 7 nodes and 11 edges. The algebraic connectivity of this graph is 1.58 and the calculated lower bounds

are 1.58, 0.19, 0.22, 0.87 and 1.04 for Lu’s, Mohar’s, lower bound (1) and (2), respectively.

between any two distinct pairs of vertices in these examples. Therefore, the problem of tuning the

weighting strategy does not exist. In the case of the Peterson graph, for the sake of simplicity, the scores

were calculated based on the normal path weighting strategy. As another example, let us consider the

graph shown in Fig. 2. The algebraic connectivity of this graph is 1.58. The calculated lower bounds

are 0.19, 0.22, 0.87 and 1.04 for Lu’s, Mohar’s, lower bound (1) and (2), respectively. It should be

mentioned that for calculation of the lower bound (2), the normal path weighting strategy is used. In

addition, for calculation of the lower bound (1), just shortest paths were used and if there were more

than one shortest path between two vertices the one which passes through the neighbor with lower

label was considered, e.g. P36 = v3 − v1 − v6.

5. Discussion and conclusion

In this paper a novel lower bound for algebraic connectivity of graphs based on the connection-

graph-stabilitymethodwasproposed. Furthermore, itwasproved that thenewlowerbounddominates

those given by Mohar [5] and Lu [4]. From complexity point of view, the connection-graph-stability

scores can be calculated in O(|V |2). The extended versions of the connection-graph-stability method

needs a path weighting strategy and finding the best weighting strategy is not trivial. To make it sim-

ple, the normal path weighting strategy, i.e. considering just shortest paths instead of any-path and

uniform α strategy, can be considered. In this case the extended connection-graph-stability score can

be interpreted as a weighted edge-betweenness-centrality measure, where each path is weighted by

its length divided by the number of shortest paths between the same vertices. By this simplifica-

tion, the extended connection-graph-stability scores can be calculated in polynomial time for each

edge using a slightly modified version of Brandes [2] algorithm which has O(|V ||E|) computational

complexity.
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