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We begin with the definition of a k-parameter exponential family
of random graphs (standard model).
Probability space: The set Gn of all simple graphs Gn on n vertices.
Probability mass function:

Pβn (Gn) = exp
(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn)− ψβn )

)
.

• β1, ..., βk are real parameters and H1, ...,Hk are pre-chosen
finite simple graphs. Each Hi has vertex set [ki ] = {1, ..., ki}
and edge set E (Hi ). By convention, we take H1 to be a single
edge.

• Graph homomorphism hom(Hi ,Gn) is a random vertex map
V (Hi )→ V (Gn) that is edge-preserving. Homomorphism

density t(Hi ,Gn) = |hom(Hi ,Gn)|
|V (Gn)||V (Hi )|

.

• Normalization constant:

ψβn =
1

n2
log

∑
Gn∈Gn

exp
(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn))

)
.
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βi = 0 for i ≥ 2:

Pβn (Gn) = exp
(
n2(β1t(H1,Gn)− ψβn )

)
= exp

(
2β1|E (Gn)| − n2ψβn

)
.

Erdős-Rényi graph G (n, ρ),

Pρn(Gn) = ρ|E(Gn)|(1− ρ)

(n
2

)
−|E(Gn)|.

Include edges independently with parameter ρ = e2β1/(1 + e2β1).

exp(n2ψβn ) =
∑

Gn∈Gn

exp (2β1|E (Gn)|) =

(
1

1− ρ

)(n
2

)
.



What happens with general βi?
Problem: Graphs with different numbers of vertices belong to
different probability spaces!
Solution: Theory of graph limits (graphons)! (Lovász and
coauthors; earlier work of Aldous and Hoover)
Graphon space W is the space of all symmetric measurable
functions h(x , y) from [0, 1]2 into [0, 1]. The interval [0, 1]
represents a ‘continuum’ of vertices, and h(x , y) denotes the
probability of putting an edge between x and y .
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Example: Erdős-Rényi graph G (n, ρ), h(x , y) = ρ.
Example: Any Gn ∈ Gn,

h(x , y) =

{
1, if (dnx , nye) is an edge in Gn;
0, otherwise.



Why are we interested in exponential random graphs?
Dependence between the random edges is defined through certain
finite subgraphs Hi , in imitation of the use of potential energy to
provide dependence between particle states in a grand canonical
ensemble of statistical physics. By varying the activity parameters
βi , one could analyze the extent to which specific values of the
subgraph densities interfere with one another.
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The normalization constant encodes useful information about the
structure of the measure. By differentiating the normalization
constant with respect to appropriate parameters, averages of
various quantities of interest may be derived. Computation of the
normalization constant is also essential in statistics because it is
crucial for carrying out maximum likelihood estimates and
Bayesian inference of unknown parameters.
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Large deviation and Concentration of measure:

ψβ = lim
n→∞

ψβn = max
h∈W

(
β1t(H1, h) + ...+ βkt(Hk , h)−

∫
[0,1]2

I (h)dxdy

)
,

where:

t(Hi , h) =

∫
[0,1]ki

∏
(i ,j)∈E(Hi )

h(xi , xj)dx1...dxki
,

and I : [0, 1]→ R is the function

I (u) =
1

2
u log u +

1

2
(1− u) log(1− u).

Let F ∗ be the set of maximizers. Gn lies close to F ∗ with high
probability for large n. (Chatterjee and Varadhan; Chatterjee and
Diaconis)



Take H1 a single edge and H2 any finite simple graph. Then the
parameter space {(β1, β2) : β2 ≥ 0} consists of a single phase with
a first-order phase transition across the indicated curve and a
second-order phase transition at the critical point. (Radin and Y)

Graph drawn for H2 a triangle. Critical point is (1
2 log 2− 3

4 ,
9
16).





The standard exponential family of random graphs assumes no
prior knowledge of the graph before sampling, but in many
situations partial information of the graph is already known
beforehand. What would be a typical random graph drawn from an
exponential model subject to certain constraints?



Let e ∈ [0, 1] be a real parameter that signifies an “ideal” edge
density. What happens if we only consider graphs whose edge
density is close to e, say |e(Gn)− e| < α?
(conditional) Probability mass function:

Pe,β
n,α(Gn) = exp

(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn)− ψe,β

n,α)
)
·

· 1|e(Gn)−e|<α.

(conditional) Normalization constant ψe,β
n,α:

ψe,β
n,α =

1

n2
log

∑
Gn∈Gn:|e(Gn)−e|<α

exp
(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn))

)
.



Large deviation and Concentration of measure:

ψe,β = lim
α→0

lim
n→∞

ψe,β
n,α = β1e+

max
h∈W:e(h)=e

(
β2t(H2, h) + ...+ βkt(Hk , h)−

∫
[0,1]2

I (h)dxdy

)
,

where:

e(h) =

∫
[0,1]2

h(x , y)dxdy ,

t(Hi , h) =

∫
[0,1]ki

∏
(i ,j)∈E(Hi )

h(xi , xj)dx1...dxki
,

and I : [0, 1]→ R is the function

I (u) =
1

2
u log u +

1

2
(1− u) log(1− u).

Let F ∗ be the set of maximizers. Gn lies close to F ∗ with high
(conditional) probability for large n. (Kenyon and Y)



Take H1 a single edge and H2 a triangle. Fix the “ideal” edge
density e. Let the edge parameter β1 = 0 and the triangle
parameter β2 vary from 0 to −∞. Then ψe,β2 loses its analyticity
at at least one value of β2. (Kenyon and Y)
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On the special strip e = 1
2 , as β2 decreases from 0 to −∞, a

typical graph Gn drawn from the constrained edge-triangle model
jumps from being Erdős-Rényi to almost complete bipartite,
skipping a large portion of the e = 1

2 line.



All previous investigations have been centered on dense graphs
(number of edges comparable to the square of number of vertices),
but most networks data are sparse in the real world. What would
be a typical random graph drawn from a sparse exponential model?



Let β
(n)
i = βiαn where αn →∞ as n→∞. For βi negative this

ensures that β
(n)
i → −∞ and translates to sparse graphs.

(sparse) Probability mass function:

Pβn (Gn) = exp
(
n2(β

(n)
1 t(H1,Gn) + ...+ β

(n)
k t(Hk ,Gn)− αnψ

β
n )
)
.

(sparse) Normalization constant ψβn :

ψβn =
1

n2αn
log

∑
Gn∈Gn

exp
(
n2(β

(n)
1 t(H1,Gn) + ...+ β

(n)
k t(Hk ,Gn))

)
.
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Let Xij = 1 when there is an edge between vertex i and vertex j of
Gn and let Xij = 0 otherwise. Assume that limn→∞ n2e2αnβ1 = 0
and limn→∞

αn
n = 0. Then

lim
n→∞

Pβn (X1i = 1)

e2αnβ1
= 1,

lim
n→∞

Pβn (X1i = 1,X1j = 1)

e4αnβ1
= 1, i 6= j .

(Y and Zhu)



Take H1 a single edge and H2 a triangle. Then ψβ undergoes
countably many first-order phase transitions. (Y and Zhu)

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Phase I

Phase II

Phase III
Phase

IV

Boundaries are given by {β1 + β2 = 0, β1 < 0}, {β1 = 0, β2 < 0},
{β1 = alβ2, β1 > 0}, ` = 1, 2, ..., and {β1 = −3β2, β1 > 0}.



Take H1 a single edge and H2 a p-star. Then ψβ exhibits both
first- and second-order phase transitions. (Y and Zhu)
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Graph drawn for H2 a 2-star. Boundaries are given by
{β1 = 0, β2 < 0}, {β1 + β2 = 0, β2 > 0}, and
{β1 + 2β2 = 0, β2 < 0}.



Thank You!:)
After this conference, I realized that...
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Pitt is AWESOME even without the burgh!!


