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SPECTRAL THEORY FOR DYNAMICS ON GRAPHS CONTAINING
ATTRACTIVE AND REPULSIVE INTERACTIONS∗
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Abstract. Many applied problems can be posed as a dynamical system defined on a network
with attractive and repulsive interactions. Examples include synchronization of nonlinear oscillator
networks; the behavior of groups, or cliques, in social networks; and the study of optimal convergence
for consensus algorithm. It is important to determine the index of a matrix, i.e., the number of
positive and negative eigenvalues, and the dimension of the kernel. In this paper we consider the
common examples where the matrix takes the form of a signed graph Laplacian. We show that the
there are topological constraints on the index of the Laplacian matrix related to the dimension of a
certain homology group. When the homology group is trivial, the index of the operator is determined
only by the topology of the network and is independent of the strengths of the interactions. In general,
these constraints give bounds on the number of positive and negative eigenvalues, with the dimension
of the homology group counting the number of eigenvalue crossings. The homology group also gives a
natural decomposition of the dynamics into “fixed” degrees of freedom, whose index does not depend
on the edge weights, and an orthogonal set of “free” degrees of freedom, whose index changes as the
edge weights change. We also explore the spectrum of the Laplacians of signed random matrices.
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1. Introduction. There are many applied problems that can ultimately be re-
duced to the question of understanding the evolution of a dynamical system living on
a network or graph. In these applications it is often important to understand the dy-
namics in terms of the topological properties of the graph. In this paper we consider a
simple, loop-free, connected, undirected edge-weighted graph Γ = (V (Γ), E(Γ)) with
vertex set V (Γ) and edge set E(Γ). For each edge in E(Γ) connecting vertex i with
vertex j we associate a weight γij , which is assumed to be nonzero but may take either
sign. If there is no edge connecting vertices i and j, the weight γij is understood to
be zero. For such a graph we define the signed Laplacian matrix L(Γ) by

(1.1) L(Γ)ij =
{
γij , i �= j,

−
∑

k �=i γik, i = j.

Note that L(Γ) is symmetric, so all eigenvalues of L(Γ) are real. If the weights are
all positive, γij > 0, then L is the (combinatorial) graph Laplacian: it is a negative
semidefinite matrix, with the dimension of the kernel equal to the number of connected
components of the graph Γ. In many applications the weights are not guaranteed to
be positive. In this case the matrix is no longer semidefinite, and we are interested
in determining the number of positive, zero, and negative eigenvalues of L(Γ), which
we denote as n+(Γ), n0(Γ), n−(Γ), respectively. We note that there are several other

∗Received by the editors March 22, 2013; accepted for publication (in revised form) October 11,
2013; published electronically January 28, 2014.

http://www.siam.org/journals/siap/74-1/91397.html
†Department of Mathematics, University of Illinois, Urbana, IL 61801 (bronski@illinois.edu,

rdeville@illinois.edu). The first author was supported in part by NSF grant DMS–1211364 and
by a Simons Foundation fellowship. The second author was supported in part by NSF grant CMG–
0934491.

83

D
ow

nl
oa

de
d 

10
/3

0/
14

 to
 1

30
.4

9.
19

8.
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

84 JARED C. BRONSKI AND LEE DEVILLE

definitions of the graph Laplacian in the literature, most of which can be related
to L above via a change of basis SᵀLS. Since (by the Sylvester theorem) such a
basis change for a nonsingular matrix S leaves n+/−/0(Γ) invariant, the present paper
applies to these other variants of the graph Laplacian as well.

We give the best possible bounds on n−(Γ), n0(Γ), n+(Γ) involving only topo-
logical information, i.e., connectivity of the graph and the sign information on the
edge weights. For a graph with N vertices, the difference between the upper and
lower bounds is an integer that can vary between 0 and N − 1, depending on the
topology of the graph. This integer represents the dimension of a certain homology
group and counts the number of possible eigenvalue crossings from the left to the
right half-plane. This homological construction gives a natural splitting of the vector
space into a “fixed” subspace, where there cannot be an eigenvalue crossing, and a
“free” subspace, where all of the eigenvalue crossings occur. We also show that these
bounds are strictly better than those implied by the Gershgorin theorem. Finally we
will conclude with some numerical experiments and examples.

1.1. Applications. Several applied problems motivate this question.
(1) Given a graph Γ = (V,E) and symmetric coupling functions ϕij(·) = ϕji(·),

define

(1.2)
d

dt
xi = Fi(x) := ωi +

∑
(i,j)∈E

ϕij(xj − xi).

A well-studied example of this type of dynamical system is the Kuramoto oscillator
network [1, 2, 3, 4], where ϕij(·) = γij sin(·). Assume x∗ is a fixed point for (1.2),
i.e., Fi(x

∗) = 0 for all i. The stability of this point is determined by the index of the
Jacobian J , where

Jij =

{
ϕ′
ij(x

∗
j − x∗

i ), i �= j,

−
∑

k ϕ
′
ik(x

∗
k − x∗

i ), i = j.

The Jacobian J is a graph Laplacian of the form (1.1); thus, determining the stability
indices for fixed points of (1.2) is equivalent to the problem studied here [5, 6, 7, 8,
9, 10]. When studying this dynamical system, the first object of study is always the
stable points. But, for example, if we consider such a system perturbed by small white
noise, then understanding the dynamics requires that we identify all of the 1-saddles,
i.e., those points which are unstable but with exactly one unstable direction (e.g., see,
[11] for the general theory, and [10] for a specific application to this problem). The
off-diagonal terms in J can be of either sign, so we need to consider both signs on the
weights. For a generic choice of ωi, ϕ

′
ij(x

∗
i −x∗

j ) is nonzero for all (i, j) ∈ E, implying
that the graph determining J and the graph defined by the original interactions in (1.2)
have the same underlying topology.

(2) Another example is the stability of a fixed point for a neuronal network. For
any network system with both “positive” and “negative” feedbacks, the linear stability
analysis reduces to the eigenvalue problem (1.1). In practice, synaptic strengths are
difficult to measure experimentally and change significantly due to neural plasticity;
however, the nature of the interaction (excitatory vs. inhibitory) is anatomical and
will not change. In short, we have reliable data on the signs, but not the magnitudes,
of synaptic connections. This leads naturally to considering topological bounds, i.e.,
bounds involving only the signs of the entries of the matrix.
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SPECTRAL THEORY OF SIGNED GRAPHS 85

(3) The optimal choice of weights for a consensus algorithm can sometimes have
negative weights, as was first pointed out in [12]. Specifically, given Γ = {γij}, the
linear discrete-time consensus algorithm is the iterated map xi(t+ 1) :=

∑
j γijxj(t).

It is natural to seek to optimize the choice of γij (given the underlying graph topology
and the constraint that 1 be a stable fixed point of the map) to obtain the most rapid
convergence to consensus (i.e., make the Lyapunov exponent of the dynamical system
as small as possible). If the weights are assumed positive, then this is equivalent to
finding the most rapidly mixing Markov chain [13], but it was discovered in [12] that
there are network topologies where the optimal choice involves negative weights, i.e.,
the system converges more rapidly than any Markov chain. This observation inspired
a deluge of work (examples include [14, 15, 16, 17]) on this fast convergence problem,
and it has been observed that the need for negative weights is typical in many contexts.
Of course, one obvious constraint on determining the optimal choice of weights is that
n+(Γ) = 0 so that we obtain convergence at all. In the work mentioned above, this
was always obtained by solving a semidefinite programming problem over the set of
all weights associated to a particular unweighted graph Γ. The results in the current
work give topological (i.e., weight-independent) bounds for n+(Γ).

(4) In the classic work of [18], matrices of the form (1.1) modeled the interaction
of tribal groups within an alliance in Papua New Guinea.1 In this work the underly-
ing graph has sixteen vertices, representing the different tribal units; edges represent
relations between different tribal groups. These relations can be friendly (“rova”) or
antagonistic (“hina”) corresponding to γij > 0 and γij < 0, respectively. Another an-
thropological example is the SlashDot Zoo, a social network associated with the web-
site SlashDot [19]. On this website participants can label each other as friend or foe,
leading to signed edges. In the context of social network models, the index n+(Γ) in-
dicates the tendency of the network to separate into mutually antagonistic subgroups.

(5) Signed graphs and signed Laplacians arise very naturally in knot theory. There
is a classical procedure associating a quadratic form to a knot, originally due to
Goeritz (see [20, 21]). In Goeritz’s construction one considers a planar projection of
the knot, with regions of the plane alternately colored black and white. Two regions
of given color are connected by an edge if they share a crossing. The weight attached
to the edge is +1 if the crossing is left-handed and −1 if the crossing is right-handed.
The reduced determinant—the product over the nonzero eigenvalues of the associated
graph Laplacian—can be shown to be a knot invariant. Related results include a con-
struction by Kauffman of a Tutte polynomial for signed graphs [22] which specializes
to known invariants like the Jones [23] and Kauffman bracket polynomials [24]. This
construction was further generalized to matroids by Zaslavsky [25]. Signed graphs
and their Laplacians have also been studied in the graph theory community inde-
pendent of their connection to knot theory (see [26, 27, 28] and following also [29]),
but the reader should be aware that there are several different generalizations of the
Laplacian to the case where negatively weighted edges are allowed. In one variation
definition the diagonal entries are taken to be minus the sum of the absolute values
of the edge weights. In this case the matrix is typically not zero-sum, and is nega-
tive semidefinite. Clearly the spectral questions are different and there is no obvious
correspondence between the two. Other authors have also used statistical mechanics
models on signed networks for the purposes of community detection, ranking, and
social dynamics [30, 31, 32].

1It should be noted that Hage and Harary were concerned with the question of balance in signed
graphs, a very different question from the ones we consider here.
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Fig. 1.1. Two graphs on 15 nodes. Thick black lines represent positively weighted edges, and
thin red lines represent negatively weighted edges (color available online).

1.2. Example. To motivate our main questions, we begin with an example of
two networks, shown in Figure 1.1. Thin lines represent negative (excitatory) in-
teractions, and thick lines represent positive (inhibitory) interactions. Each of these
graphs has fifteen vertices, and fifteen positive and fifteen negative edges. The dynam-
ics, however, are typically very different. Our assertion is that these two examples
lay out the marked difference between the way mathematicians tend to view these
problems and the way other network scientists view them.

Since symmetry reduction is one of the most common and most powerful tech-
niques in applied mathematics, the mathematical view would be that the dynamics
of the first network should be easier to understand, since it has a large group of sym-
metries (the dihedral group D15). The network science view, however, would claim
that the second network is simpler and easier to understand, in that this network can
clearly be separated into four functional units.

We show that for the questions asked in this paper, the second point of view is
more natural. The first network has the property that a certain homology group has
maximal dimension. This implies that the spectrum of the Laplacian is maximally
arbitrary: it must have one zero eigenvalue, but the signs of the other fourteen eigen-
values can be chosen arbitrarily with an appropriate choice of weights. In the second
network, the analogous homology group is trivial. This implies that the spectrum is
rigid: the Laplacian always has eight negative eigenvalues, one zero eigenvalue, and
six positive eigenvalues regardless of the choice of weights on the edges.

2. Main theorem. The main theorem, Theorem 2.10, gives tight upper and
lower bounds on the number of positive, negative, and zero eigenvalues. In section 2.1
we present some preliminary definitions and lemmas; in section 2.2, we state and
prove the main result of the paper giving bounds on the index; in section 2.3 we give
a topological description of the main theorem.

2.1. Preliminaries. To state the main theorem of the paper, we first present a
few definitions.

Definition 2.1. Given a graph Γ, we define the subgraph Γ+ (resp., Γ−) to be
the subgraph with the same vertex set as Γ, together with the edges of positive (resp.,
negative) weights, i.e., (Γ+)ij = max(γij , 0), (Γ−)ij = min(γij , 0).
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SPECTRAL THEORY OF SIGNED GRAPHS 87

We also use L+ (resp., L−) as shorthand for L(Γ+) (resp., L(Γ−)) below when
the graph Γ is understood.

Definition 2.2. Given a graph Γ, ST (Γ) denotes the set of all spanning trees
of Γ. Also, ST k(Γ) denotes the set of all spanning trees of Γ having exactly k edges
in Γ−. Note that ∪N−1

k=0 ST k = ST and ST k ∩ ST k′ = ∅ if k �= k′.
Notation 2.3. We let c(Γ) denote the number of connected components of a

graph Γ. We let Γ
(i)
+ , i ∈ (1 . . . c(Γ+)), denote the ith component of Γ+, and similarly

for Γ
(i)
− . For any weighted graph Γ, we define the three indices n0(Γ), n−(Γ), n+(Γ)

as the number of zero, negative, and positive eigenvalues of L(Γ).
Definition 2.4. We define the flexibility of a weighted graph as the number

τ(Γ) := |V (Γ)| − c(Γ−)− c(Γ+) + 1.

If τ(Γ) = 0, then we say that Γ is rigid. We show below that the flexibility is always
a nonnegative number.

Remark 2.5. Any graph Laplacian has all row sums equal to zero, so that L(Γ)1 =
0, and one necessarily has n0(Γ) ≥ 1. It is well known [33, 34] that if all the weights
γij ≥ 0, then the graph Laplacian is negative semidefinite, with n0(Γ) = c(Γ) and
thus n−(Γ) = |V (Γ)| − c(Γ). In particular, if Γ is connected with positive weights,

n+(Γ) = 0, n0(Γ) = 1, n−(Γ) = |V (Γ)| − 1.

This is no longer true when the edge weights are allowed to be negative—the Laplacian
matrix of a connected graph can have multiple zero and positive eigenvalues.

The following fact will follow from the topological interpretation of the flexibility,
but it is convenient to have a self-contained graph-theoretic proof at this time.

Lemma 2.6. Every connected signed graph Γ satisfies the inequality

(2.1) c(Γ+) + c(Γ−) ≤ |V (Γ)|+ 1.

It follows that the flexibility τ(Γ) of any graph is a nonnegative integer.
Proof. First note that if Γ− contains, as a subgraph, a forest2 F with � edges,

then c(Γ−) ≤ |V | − �. Define a new graph Γ̃ = (Ṽ , Ẽ), where Ṽ are the connected

components of Γ+ and (a, b) ∈ Ẽ iff there is at least one edge in Γ− from a vertex

in component a to a vertex in component b. Since Γ is connected, so is Γ̃. Consider
any spanning tree T of Γ̃. By definition, this contains c(Γ+) − 1 edges, since it is
a tree on c(Γ+) vertices. Now consider this tree “lifted” into Γ, where, for every

edge in Γ̃ of the form a ↔ b, choose one edge in E that connects component a to
component b. This is a forest, since by construction it contains no cycles. Therefore
c(Γ−) ≤ |V (Γ)| − (c(Γ+)− 1).

The main machinery that we will use in this paper is the celebrated Kirchhoff
matrix tree theorem [35, 36]. To state it, we first present some notation, which
essentially follows that of Tutte [37].

Definition 2.7. If T is a tree, define π(T ) to be the product over the edge weights
in the tree

(2.2) π(T ) :=
∏

i<j,(i,j)∈E

γij .

2A forest is a graph with no loops, just as tree is a connected graph with no loops—thus a forest
is a disjoint collection of trees.
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88 JARED C. BRONSKI AND LEE DEVILLE

Let Γ be a weighted graph with |V (Γ)| = N , and let L(Γ) be its graph Laplacian.
We know that L(Γ) has a zero eigenvalue, and therefore det(L(Γ)) = 0. Order the n
eigenvalues of L(Γ) so that λ1 = 0; then define

(2.3) M(Γ) =
(−1)N−1

N

N∏
i=2

λi.

In other words M(Γ) is (up to the multiplicative prefactor) the linear term in the
characteristic polynomial of the Laplace matrix. Note that M(Γ) �= 0 iff 0 is a simple
eigenvalue of L(Γ).

With this notation the Kirchhoff matrix tree theorem can be stated as follows.
Lemma 2.8 (weighted matrix tree theorem). Let Γ be a connected, weighted

graph, and let ST (Γ) be the set of all spanning trees of Γ. Then

(2.4) M(Γ) =
∑

T∈ST (Γ)

π(T ).

Remark 2.9. This is Theorem VI.29 in the text of Tutte [37], where a proof is
provided. Notice that if all of the edge weights are nonnegative, then the sum in (2.4)
is a sum of positive terms. This is an alternate proof that the kernel of a graph
Laplacian with positive weights is simple for a connected graph. However, once we
allow negative weights, the sum on the right-hand side can have cancellations and
will not be sign-definite. This is the major difficulty in understanding the spectral
properties of graphs with negative weights.

2.2. Main theorem.
Theorem 2.10. Let Γ be a connected signed graph, and let n−(Γ), n0(Γ), n+(Γ)

be the number of negative, zero, and positive eigenvalues, respectively. Then for any
choice of weights one has the following inequalities:

c(Γ+)− 1 ≤ n+(Γ) ≤ N − c(Γ−),

c(Γ−)− 1 ≤ n−(Γ) ≤ N − c(Γ+),

1 ≤ n0(Γ) ≤ N + 2− c(Γ−)− c(Γ+).

(2.5)

Further, these bounds are tight: for any given graph there exist open sets of weights
giving the maximal number of negative eigenvalues

n+(Γ) = c(Γ+)− 1, n−(Γ) = N − c(Γ+), n0(Γ) = 1,

as well as open sets of weights giving the maximal number of positive eigenvalues

n+(Γ) = N − c(Γ−), n−(Γ) = c(Γ−)− 1, n0(Γ) = 1.

Remarks 2.11. In each inequality in (2.5), the difference between the upper
and lower bounds is the flexibility of the graph τ(Γ). This shows that τ(Γ) counts
the number of eigenvalue crossings: there are c(Γ+)− 1 eigenvalues which are always
negative, c(Γ−)−1 eigenvalues which are always positive, and τ(Γ) = N+1−c(Γ−)−
c(Γ+) eigenvalues whose signs depend on the choice of weights. For rigid graphs there
are no eigenvalue crossings and the index is independent of the choice of weights.

For network models such as (1.2), the theorem implies that a necessary condition
for stability of a phase-locked state is the existence of a path in Γ between any two
oscillators with ϕ′

ij(xi − xj) > 0 on all edges in the path, and, moreover, that this
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SPECTRAL THEORY OF SIGNED GRAPHS 89

condition is sufficient when the negative edges are sufficiently weak. Stated this way,
this is precisely Theorem 3.1 of [38]; that theorem can be thought of as the “zero
index” case of Theorem 2.10.

The main idea of the proof is to consider a one-parameter family of weighted
Laplacian matrices and an associated polynomial, the zeros of which detect eigenvalue
crossings. We then show that this polynomial has exactly τ roots in the positive
half-line, counting multiplicities, which gives the theorem. We prove this below, but
present some definitions and lemmas first.

Definition 2.12. Given Γ, define a one-parameter family of weighted graphs
Γ(t) as follows: the weights of Γ(t) are related to those of Γ by

γij(t) :=

{
γij , γij > 0,

t · γij , γij < 0,

or, more compactly, Γ(t) = Γ++ tΓ−. Obviously Γ = Γ(1), and by linearity L(Γ(t)) =
L(Γ+) + tL(Γ−) = L+ + tL−.

Remark 2.13. We will use an unusual convention in numbering the eigenvalues
of L(Γ(t)): define λ1(t) = 0 for all t, then number the remaining eigenvalues in
decreasing fashion, i.e., λ2(t) ≥ λ3(t) ≥ · · · ≥ λn(t), so that λ2(t) is the largest
eigenvalue only if there is a positive eigenvalue, etc. (The λi(t) can of course be
chosen to be continuous.) This convention is a bit unusual in that eigenvalues 2
through n are ordered, but 1 can be anywhere in the sequence, though it has the
advantage for stating the generalization of (2.3):

(2.6) M(Γ(t)) =
(−1)N−1

N

N∏
i=2

λi(t).

Moreover, when we pair off eigenvalues and eigenvectors below, we will always use
the convention that λ1(t) always corresponds to the eigenvalue 1; if there are multiple
zero eigenvalues, then λi(t) with i > 1 correspond to eigenvectors orthogonal to 1.

Lemma 2.14. M(Γ(t)) is a polynomial in t which takes the form

(2.7) M(Γ(t)) =

N−c(Γ−)∑
k=c(Γ+)−1

ak(−t)k,

where the coefficients ak are given by

ak =
∑

T∈ST k(Γ)

|π(T )|.

All of the ak appearing in (2.7) are nonnegative; moreover, the first and last coeffi-
cients, ac(Γ+)−1 and aN−c(Γ−), are strictly positive.

Proof. ClearlyM(Γ(t)) is a polynomial in t, since it is given by sums and products
of terms, each affine in t. Since there is one power of t associated with each negatively
weighted edge and ST = ∪N−1

k=0 ST k, it follows that

M(Γ(t)) =

N−1∑
k=0

ak(−t)k,

with ak defined as above. Note that ST k is empty for k < c(Γ+) − 1 and nonempty
for k = c(Γ+) − 1. To see this, since Γ+ has c(Γ+) components, we need at least
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90 JARED C. BRONSKI AND LEE DEVILLE

c(Γ+) − 1 negative edges to connect them. Moreover, there is at least one way to
construct a spanning tree with c(Γ+) − 1 negative edges: construct a spanning tree
on each of the c(Γ+) components of Γ+ using only positive edges, and then connect
them with c(Γ+) − 1 negative edges. This can always be done since the graph is
assumed to be connected. Since ac(Γ+)−1 is a sum over a nonempty set of positive
terms, it is positive. The upper bounds follow from the dual argument: reversing
the roles of Γ+ and Γ− shows that any spanning tree must have at least c(Γ−) − 1
positive edges. Since any spanning tree has exactly N − 1 edges, there are at most
N − 1− (c(Γ−)− 1) = N − c(Γ−) negative edges.

Remark 2.15. M(Γ(t)) is strongly reminiscent of other graph polynomials such as
the chromatic, rank, and Tutte polynomials, which have definitions in terms of sums
over spanning trees [39, 40]. We will show below that M(Γ(t)) satisfies a contraction-
deletion relation similar to that satisfied by other graph polynomials.

Lemma 2.16. The roots of the polynomial M(Γ(t)) are real and nonnegative.
Proof. By definition, a root of the polynomialM(Γ(t)) corresponds to a solution of

L+v = −tL−v, where v can be assumed to be orthogonal to 1. A standard result [41]
in the theory of the generalized symmetric eigenvalue problem (GSEP) is that a
sufficient condition for the problem to have all real eigenvalues is that there exist a
linear combination of L+ and L− that is strictly positive definite. Since Γ is connected,
L−−L+ is strictly positive definite on 1⊥, as it is the negative of the graph Laplacian
for a connected graph with positive weights. Therefore L+v = −tL−v has only real
roots.3 Finally, since the coefficients alternate in sign, p(t) is obviously nonzero for
t < 0. Therefore all roots are nonnegative.

Remark 2.17. The fact that M(Γ(t)) has only real roots implies, via Newton’s
inequality, that the sequence {ak}Nk=0 is log-concave, i.e., ak+1ak−1 ≤ a2k. In the case
with edge weights all ±1, the coefficients ak are integers which count4 the number of
spanning trees of Γ having exactly k edges in Γ−.

Lemma 2.18. For i > 1, the eigenvalues λi(t) are nondecreasing functions of t
that cross zero transversely, i.e., if λi(t) = 0, then λ′

i(t) > 0.
Proof. Since L− is positive semidefinite, it follows from the Courant minimax

theorem [46, 47] that the λi(t) are nondecreasing, i.e., λ′
i(t) ≥ 0.

If λi(t) vanishes at t = t∗, then from degenerate perturbation theory [48], we have
that λ′

i(t
∗) is equal to one of the eigenvalues of the matrix L+|ker(L(t∗)). In order for

L+|ker(L(t∗)) to have a zero eigenvalue there is necessarily a vector in ker(L+)∩ker(L−).
Such a vector would be constant on components of Γ+ and Γ−, and thus, by the
connectedness assumption, on all of Γ. The only vectors in ker(L+) ∩ ker(L−) are
thus multiples of 1, and so any other zero eigenvalue must cross through the origin
transversely.

Lemma 2.19. The dimension of the kernel of L(Γ(t∗))|1⊥ is equal to the multi-
plicity of t∗ as a root of M(Γ(t)).

Proof. The polynomial M(Γ(t)) is proportional to
∏N

i=2 λi(t), where, from the
above, the λi(t) have only simple roots. Thus the multiplicity of a root of M(Γ(t)) is
equal to the number of λi(t) that vanish there.

3For more information on the GSEP, see the review paper of Parlett [41] or Theorem 1 in the
paper of Crawford [42].

4A large number of other combinatorial sequences share this property. See the review papers of
Stanley [43] or Brenti [44] for details. The analogous problem of the log-concavity of the coefficients
of the chromatic polynomial, a much more difficult problem, was a long-standing conjecture that has
recently been established by Huh [45].
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Remark 2.20. Lemma 2.14 shows that M(Γ(t)) is a polynomial. It follows
from (2.3) that any values of t for which λi(t) = 0 with i > 1 must be roots of this
polynomial. Lemmas 2.16 and 2.18 state that there is a one-to-one correspondence
between the roots of M(Γ(t)) and the values of t at which the eigenvalues λi(t) cross
the origin. Because of this, we refer to M(Γ(t)) as the crossing polynomial of Γ
below.

We are now in a position to prove Theorem 2.10.
Proof of Theorem 2.10. As shown above, λi(t) are nondecreasing functions of t.

For t = 0 the matrix L(t) is a graph Laplacian with c(Γ+) components, so it has a
c(Γ+)-dimensional kernel and an N − c(Γ+)-dimensional negative definite subspace.
By Lemma 2.18, c(Γ+)−1 of these zero eigenvalues cross transversely into the positive
half-line, so for t small and positive the index of L(Γ(t)) is (N − c(Γ+), 1, c(Γ+)− 1).
By Lemma 2.16, the crossing polynomial has exactly τ roots on the open positive
half-line, and each root of the crossing polynomial corresponds to an eigenvalue cross-
ing from the left half-line to the right, so one has exactly τ eigenvalue crossings. This
gives

c(Γ+)− 1 ≤ n+(Γ) ≤ N − c(Γ−),

c(Γ−)− 1 ≤ n−(Γ) ≤ N − c(Γ+).

When t is small and positive the lower holds for n+(Γ) and the upper bound for
n−(Γ), and vice versa when t is large.

2.3. Topological characterization of the flexibility. The quantity τ is a
measure of the flexibility of the network dynamics, as it measures the number of
eigenvalues that can cross the imaginary axis as the weights of the connections are
varied. In this section we give a topological interpretation of τ that allows one to
identify important structures in the network.

Definition 2.21. Let H1(Γ) be the space of cycles in the graph Γ, and consider
the map ∂ : H1(Γ) → R

N , defined as follows: to γ ∈ H1(Γ) we associate vγ = ∂(γ) ∈
R

N :
• Every time the cycle enters vertex i from a negatively weighted edge and exits
through a positively weighted edge, vγi increases by one.

• Every time the cycle enters vertex i from a positively weighted edge and exits
through a negatively weighted edge, vγi decreases by one.

• For vertices not on the cycle, or for vertices where the cycle enters and exits
through edges of like weights, vγi is zero.

It is clear that this map is linear, and that the image is an additive group. The
kernel of this map is given by (sums of) cycles supported entirely on edges of one
type; only cycles with both types of edges give rise to nonzero vγ—these are called
“cycles of mixed type.”

Lemma 2.22. The flexibility

τ = N + 1− c(Γ+)− c(Γ−)

is equal to the dimension of im(∂).
Proof. This is a straightforward application of the Mayer–Vietoris sequence [49,

section 25]. We have the exact sequence

H1(Γ)
∂→ H0(Γ+ ∩ Γ−)

α→ H0(Γ+)⊕H0(Γ−)
β→ H0(Γ).
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92 JARED C. BRONSKI AND LEE DEVILLE

Here ∂ is effectively the map defined in Definition 2.21 and the map β is a surjection.
Since Γ is connected, dim(H0(Γ)) = 1, dim(H0(Γ+)⊕H0(Γ−)) = c(Γ+)+ c(Γ−), and,
since Γ+ and Γ− have no common edges, dim(H0(Γ+ ∩ Γ−)) = N . The exactness
implies that dim(ker(β)) = dim(im(α)) = c(Γ+) + c(Γ−) − 1 and dim(im(∂)) =
dim(ker(α)) = N − (c(Γ+) + c(Γ−)− 1) = N + 1− c(Γ+)− c(Γ−) = τ .

Remark 2.23. There are two equivalent ways to characterize τ : it is the dimension
of im(∂) or, equivalently, it is the dimension ofH1(Γ)/ ker(∂), the quotient of the group
of cycles by the kernel of ∂. Since ker(∂) is the subgroup generated by cycles inH1(Γ+)
andH1(Γ−) (cycles of one color), what τ counts is the number of fundamentally mixed
cycles: cycles in Γ that cannot be decomposed into a sum of cycles, each of which is
in Γ+ and Γ−.

3

1

2

4

5

1 25

4 36

Fig. 2.1. The two graphs referenced in Example 2.24.

Example 2.24. The following illustrates the map ∂ for two different graphs. The
first graph in Figure 2.1 has two different cycles of mixed type. The first (γ1) is
3 → 1 → 2 → 3 and the second (γ2) is 3 → 5 → 4 → 3. Thus im(∂) consists of
all integer linear combinations of vγ1 = (−1, 1, 0, 0, 0) and vγ2 = (0, 0, 0, 1,−1): all
vectors of the form (−j, j, 0, k,−k).

The second graph, however, has effectively only one cycle of mixed type. The
equivalence class of mixed cycles consists of a path from vertex one to vertex four
through the thick edges plus a path from vertex four to vertex one through the
thin edges. The difference between any two cycles in the equivalence class is a sum
of cycles through one type of edge. Thus im(∂) consists of all integer multiples of
(1, 0, 0,−1, 0, 0).

It would be more satisfying to give an explicit bijection between mixed cycles in
the graph and the eigenspaces which cross over. This is too much to expect, since the
eigenspace depends on the edge weights, while the mixed cycles do not. Nevertheless,
we will see that there is a sort of topological stand-in for the eigenspace which nicely
characterizes the modes which do not cross over.

Definition 2.25. Let S be a subspace of RN (chosen independently of the weights
γij), and let PS be the orthogonal projection onto this subspace. S is said to be a
subspace of fixed index if the matrix PSL : S �→ S has the same index regardless of
the choice of weights, and is maximal if dim(S) = c(Γ+) + c(Γ−)− 1.

It follows from the Courant minimax principle that the projection of a symmetric
matrix onto a subspace cannot have more positive or more negative eigenvalues than
the original matrix. Theorem 2.10 implies that appropriate choices of the weights give
as few as c(Γ+)−1 negative eigenvalues and (for a different choice of weights) c(Γ−)−1
positive eigenvalues. It follows that the maximal dimension of any fixed subspace is
c(Γ+)+c(Γ−)−1 (since there is always one zero eigenvalue). We conclude this section
by showing that there is always a maximal subspace of fixed index that has a natural
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topological construction. Effectively, this subspace gives a natural decomposition into
modes which do not have an eigenvalue crossing, and modes which do. We now define
two complementary subspaces, one of which will be a maximal subspace of fixed
index.5

Definition 2.26. Let B be a basis for im ∂, and let Sfree be the subspace of RN

spanned by B. Let Γ+,i be the ith component of Γ+, and let vi,+ be the characteristic

vector of Γ+,i (i.e., v
i,+
j = 1 iff j ∈ Γ+,i). Similarly, let vi,− be the characteristic vec-

tor of Γ−i. Then

Sfixed = Span({vi,+}c(Γ+)
i=1 , {vi,−}c(Γ−)

i=1 ).

Lemma 2.27. The subspaces Sfree and Sfixed are orthogonal complements.
Proof. First we check that dim(Sfixed) = c(Γ+) + c(Γ−) − 1. Note that the set

of vectors {vi,+} is linearly independent, as is the set of vectors {vi,−}. However
{vi,+} ∪ {vi,−} is not a linearly independent set, since

(2.8)

c(Γ+)∑
i=1

vi,+ =

c(Γ−)∑
i=1

vi,− = (1, 1, 1, . . . , 1).

The space Span(vi,+) ∩ Span(vi,−) consists of those vectors that are constant on
components of Γ+ and constant on components of Γ−. Since Γ is connected this
means that these vectors must be constant on all of Γ, and are thus proportional to
(1, 1, 1, . . . , 1), and thus (2.8) is the only relation in {vi,+}∪{vi,−}, and dim(Sfixed) =
c(Γ+) + c(Γ−)− 1.

If γ is a mixed cycle, with vγ the corresponding vector, and v is constant on a
component Γ+,i, then 〈vγ , v〉 = 0. To see this, note that the number of times the cycle
γ enters Γ+,i equals the number of times it leaves Γ+,i. When it enters and leaves Γ+,i

it must do so through a negative edge, giving +1 in some entry of vγ on entering and
−1 on exiting. Thus 〈vγ , v〉 is the sum of an equal number of +1 and −1 entries and
is zero.

By Lemma 2.22, dim(Sfree) = τ . Since Sfixed and Sfree are orthogonal and have
complementary dimensions they are orthogonal complements of one another.

Definition 2.28. We define the following subspaces of Sfixed:

• S+
fixed = {w|w ∈ {Span({vi,+}c(Γ+)

i=1 ) and 〈w, (1, 1, . . . , 1)〉 = 0};
• S−

fixed = {w|w ∈ {Span({vi,−}c(Γ−)
i=1 ) and 〈w, (1, 1, . . . , 1)〉 = 0};

• S0
fixed = Span((1, 1, 1, . . . , 1)).

Lemma 2.29. The subspaces S
+/−/0
fixed are L-orthogonal, i.e., if v and w are chosen

from two different subspaces of S+
fixed, S

−
fixed, S

0
fixed, then 〈v,Lw〉 = 〈Lv, w〉 = 0.

Proof. S0
fixed ⊂ ker(L), so if v or w ∈ S0

fixed, then we are done. Thus assume

v, w ∈ S±
fixed. By definition vi

′,− is constant on the component Γi′,− and zero off of
this component. Let ∂Γi′,− denote the set of vertices which are not in Γi′,− but which
are connected to it by a positive edge. By direct computation it is easy to see that

(Lvi′,−)j =
{
−
∑

k∈∂Γi′,−
γk,j , j ∈ Γi′,−,∑

k∈Γi′,−
γk,j , j ∈ ∂Γi′,−.

5The construction of these subspaces is similar in spirit to the construction of the cut-space and
cycle-space from algebraic graph theory, although the cut-space and cycle-space are usually defined
as subspaces of the vector space over the edge set, not the vector space over the vertices. For a nice
description of the cut- and cycle-spaces and some applications to the theory of electrical networks,
see the paper of Bryant [50].
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94 JARED C. BRONSKI AND LEE DEVILLE

Thus Lvi′,− is a linear combination of vectors that are 1 on some vertex in Γi′,− and
−1 on some vertex in ∂Γi′,−. Each of these vectors is necessarily orthogonal to vi,+

since vi,+ is constant on components of Γ+.
We need one more lemma, the well-known Sylvester theorem [51].
Lemma 2.30 (Sylvester’s law of inertia). If A is a square matrix and S a square

nonsingular matrix, then A and B = SᵀAS have the same index. The matrices A
and B are said to be Sylvester equivalent.

Proposition 2.31. The subspace Sfixed is a maximal subspace of fixed index:
The operator PSfixed

L (considered as an operator from Sfixed to Sfixed) has index

ind(PSfixed
L) = (c(Γ+)− 1, 1, c(Γ−)− 1),

independent of the choice of edge weights.
Proof. Using Lemma 2.29 it follows that PSfixed

L has the following block structure:

PSfixed
LPSfixed

= L− ⊕ L0 ⊕ L+,

where L+ = PS+
fixed

L, L− = PS−
fixed

L, and L0 = PS0
fixed

L = 0. Consider the block

L− ⊕ L0. This arises by orthogonal projection of L onto the set of vectors constant
on Γ−, and thus this matrix is Sylvester equivalent to the following graph Laplacian:
one contracts on the negative edges, giving a graph with vertices corresponding to the
components of Γ−. This is a standard graph Laplacian on a connected graph with
c(Γ−) vertices and thus has c(Γ−) − 1 negative eigenvalues and one zero eigenvalue.
Similarly L0⊕L+ is Sylvester equivalent to the negative of the graph Laplacian given
by contracting on the positive edges. This has, by the same argument, c(Γ+) − 1
positive eigenvalues and one zero eigenvalue. The zero eigenvalue is obviously counted
twice in this argument, giving the result.

3. Refinements. In this section, we present some refinements of Theorem 2.10.
In section 3.1 we remind the readers of the deletion–contraction theorem and specialize
its statement to this context. In section 3.2 we define the notion of bifurcation for
a signed graph and present a computation of the bifurcation value for a family of
graphs. In section 3.3 we discuss the asymptotics of the individual eigenvalues of
L(Γ(t)) in the limits t → 0,∞.

3.1. Deletion–contraction theorem.
Definition 3.1. Let Γ = (V,E) be a weighted multigraph (loops and multiple

edges allowed), and let e ∈ E(Γ) be an edge.
• We denote by Γ \ e the graph obtained by removing edge e.
• If e = (v1, v2) is an edge with v1 �= v2, we define Γ.e as follows: identify the
two vertices v1 and v2 as a single vertex v∗; for any vertex w connected to v1
or v2, we define the new edge weight γv∗,w = γv1,w + γv2,w.

Theorem 3.2 (deletion–contraction theorem). Let Γ be a weighted multigraph
with e ∈ E(Γ). Then M(Γ) can be computed by applying the following rules:

• If e is not a loop, then M(Γ) = M(Γ \ e) + γeM(Γ.e).
• If e is a loop, then M(Γ) = M(Γ \ e).
• If Γ is disconnected, then M(Γ) = 0.

Proof. The deletion-contraction recursion is well known; see Chapter 13.2 of the
text of Godsil and Royle [52] for one proof.

Example 3.3. As an example, let us consider the graphs given in Figure 3.1 (here,
think of the t as a symbol to separate out the terms containing the special edge).
First, notice that Γ has three spanning trees not containing e, of weights 8, 12, 24,
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1
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3

1

3

2 4

−5t

1

42

3

1

3

2 4 2 3

�

2

71

Γ Γ \ e Γ.e

Fig. 3.1. The graphs Γ, Γ \ e, and Γ.e, where e is chosen to be the edge with negative weight.

and five spanning trees containing e, of weights −10t,−15t,−20t,−30t,−40t. By
Lemma 2.8, M(Γ) = 44 − 115t. Every spanning tree of Γ that does not contain e
is also a spanning tree of Γ \ e, and thus M(Γ \ e) = 44. On the other hand, Γ.e
has three spanning trees of weights 2, 7, 14. Therefore M(Γ.e) = 23. We see that
M(Γ) = 44− 115t = 44 + (−5t)(23) = M(Γ \ e)− γeM(Γ.e).

3.2. Bifurcations and loss of stability. In the context of dynamical systems,
an important distinction to be made is that between graphs for which n+(L(Γ)) = 0
and those for which n+(L(Γ)) > 0; the former are called stable and the latter unstable.
This notion comes from the fact that if we consider the ordinary differential equation
ẋ = L(G)x, then the origin is stable to perturbations only if n+(L(G)) = 0; if not,
then perturbations move away from the origin at an exponential rate.

Lemma 3.4. Define t�(Γ) ∈ [0,∞] by

(3.1) t�(Γ) := sup
t≥0

n+(L(Γ(t))) = 0.

For t ≤ t�(Γ), the Laplacian is stable, and for t > t�(Γ), the Laplacian is unstable—in
short, it undergoes a dynamical bifurcation at t∗(Γ). Moreover, there is a nontrivial
bifurcation—i.e., t�(Γ) ∈ (0,∞)—iff Γ+ is connected and Γ− nonempty.

Proof. From Lemma 2.18, n+(L(Γ(t))) is a nondecreasing function of t, and this
establishes the bifurcation statement. Further, it follows from Theorem 2.10 that
t�(Γ) > 0 iff Γ+ is connected, and t∗(Γ) < ∞ iff Γ− �= ∅.

Theorem 3.5. t�(·) is a monotone function on graphs: if we add a positive edge
to Γ, or increase the weight on any positive edge of Γ, then t� increases or stays the
same. Conversely, if we add a negative edge to Γ, or increase the magnitude of the
weight of any negative edge of Γ, then t� decreases or stays the same.

Proof. This proof uses a relatively standard technique of spectral graph theory [34,
section 1.4], but retooled for the current context. If x is any vector defined on the

vertices of the graph, then 〈x,L(Γ)x〉 = − 1
2

∑
i,j γij(xi − xj)

2. Let Γ̃ be a graph
obtained from Γ by increasing one or more positive edges, or by adding a positive edge.
Then 〈x,L(Γ)x〉 ≥ 〈x,L(Γ̃)x〉, and thus by the Courant minimax theorem [46, 47],

the eigenvalues of L(Γ̃) are less than or equal to those of L(Γ). A similar statement

holds, mutatis mutandis, for L(Γ̃(t)) and L(Γ(t)) for any t ≥ 0. From this it follows

that t�(Γ̃) ≥ t�(Γ). The same argument holds, in reverse, if we make edges more
negative.
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In short, Theorem 3.5 says that the bifurcation value respects the canonical partial
ordering on graphs, i.e., is a monotone function of the graph in the standard sense used
in graph theory [53, 54]. As such we can obtain bounds in a straightforward manner.
In particular, we can easily get global bounds for all graphs with one negative edge
and with unit magnitude weights.

Proposition 3.6. Let Γ be a graph with γij = ±1, a single negative edge, and
assume that Γ+ is connected. Then t�(Γ) ∈

[
1

N−1 ,
N−2
2

]
. These extremes are attained

by the ring graph and the complete graph, respectively.
Proof. Every graph with one negative edge is a subgraph of the complete graph

KN with one negative edge and contains a subgraph with N edges, one of which is
negative. From this and Theorem 3.5, we need consider only these extreme cases. We
will denote the negative edge by e. Since Γ+ is connected, and |Γ−| = 1, Theorem 3.2
implies that t� = M(Γ \ e)/M(Γ.e) = M(Γ+)/M(Γ.e).

We first consider a graph with N edges, one of which is negative. Thus Γ+ is
a tree and has exactly one spanning tree, so M(Γ \ e) = M(Γ+) = 1. Contracting
on e gives a graph with N − 1 vertices and either N − 1 or N − 2 edges (the latter
occurs if the negative edge connects two leaves with a common parent). It is not hard
to see that in the latter case we obtain a tree with one edge with weight 2, and in
this case M(Γ.e) = 2. In the former case, we obtain a graph with a cycle of length
3 ≤ m ≤ N − 1 and unit edge weights, and it is not hard to see that in this case
M(Γ.e) = m. In this case, t� = 1/m, and minimizing over all such graphs gives us
that t� ≥ 1/(N − 1).

Now consider KN with one negative edge. Deleting and contracting gives OGN ,
the complete graph minus one edge, and DRN−1, the complete graph on N − 1 nodes
with a single distinguished vertex, all of whose edges have weight two. Using standard
counting arguments, M(OGN ) = (N−2)NN−3 and M(DRN ) = 2(N+1)N−2, giving
t� = M(OGN )/M(DRN−1) = ((N − 2)NN−3)/(2NN−3) = N−2

2 . (This also follows

from a computation of the eigenvalues of KN(t): (0, {−N}(N−2), 2t− (N − 2)).)
One could perform a similar analysis of bounds on the bifurcation parameter

for graphs with more than one negative edge, or with various weights, using similar
techniques. One notes that the bifurcation parameter scales quite differently for sparse
and dense graphs, in a manner very similar to the way the spectral gap scales in the
standard theory [34].

3.3. Detailed eigenvalue asymptotics. We now consider the spectrum in the
limits where the strength of the negative edges is much weaker or much stronger than
the strength of the positive edges. Specifically we consider the one-parameter family
of graph Laplacians L(Γ(t)) in the limits t → 0+ and t → ∞. The spectrum splits
naturally into two parts, which correspond to the eigenvalues of graph Laplacians on
the deleted and contracted graphs. This is an analogue on the level of the spectrum
of the contraction-deletion algorithm for computing the crossing polynomial: the
crossing polynomial is given by the sum of the crossing polynomials for the contracted
and deleted graphs, while the spectrum is given (asymptotically!) by the union of the
deleted and contracted graphs.

Theorem 3.7. If t is sufficiently large, L(t) has exactly N − c(Γ−) positive
eigenvalues, c(Γ−)− 1 negative eigenvalues, and one zero eigenvalue. Numbering the
eigenvalues in decreasing order, the N − c(Γ−) positive eigenvalues are given by

λi(LΓ) = t · λi(LΓ·−) + O(1), i ∈ {1, . . . , N − c(Γ−)}.
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The N − c(Γ−) negative eigenvalues are given to leading order by

λi(LΓ) = λ̃i(LΓ·−) + o(1), i ∈ {N − c(Γ−) + 2, . . . , N},

where λ̃j(LΓ·−) are solutions to LΓ·−v = λSv, where LΓ·− is the graph Laplacian
formed by contracting on the negative edges and S the contracted inner product: the
diagonal matrix with entries Sii = |V (Γ−,i)|.

Proof. The full graph Laplacian can be written L(t) = t
(
L(Γ−) + t−1L(Γ+)

)
, so

it suffices to understand the eigenvalues of L(Γ−)+t−1L(Γ+) for t large. The spectrum
of L(Γ−) consists of c(Γ−) zero eigenvalues and N − c(Γ−) positive eigenvalues. The
positive eigenvalues give the linearly growing eigenvalues in the asymptotic above.

To understand how the c(Γ−)-dimensional kernel breaks under perturbation, we
must do a degenerate perturbation theory calculation. Following [48], to leading order
the eigenvalues are given by the eigenvalues of Pker(L−)LΓ+Pker(L−), where Pker(L−) is
the orthogonal projection onto the kernel of L−. ker(L−) consists of vectors that are
constant on components of L−. We identify a vector w ∈ ker(L−) with w̃ ∈ R

c(Γ−) by
the following rule: if wi = α for all vertices in component Γ−,j, then w̃j = α. Under
this identification the natural inner product on R

N maps to the inner product

〈ṽ, w̃〉 =
c(Γ−)∑
i=1

|V (Γ−,i)|ṽiw̃j .

There is one entry per component of Γ−, and the inner product is diagonal with
weights given by the number of vertices in the corresponding component of Γi. It is
straightforward to see that Pker(L−)LΓ+Pker(L−) is exactly the Laplace matrix obtained
by contracting on the negative edges of the graph, completing the proof.

Remark 3.8. The previous theorem can be written in the following compact way:

Spec�(L(t)) ≈
{
Spec�(Γ−) ∪ Spec�(Γ·−), t → +∞,

Spec�(Γ+) ∪ Spec�(Γ·+), t → 0+,

where Spec�(A) is defined to be the eigenvalues of the matrix A restricted to the
subspace (1, 1, 1, . . . , 1)⊥ of mean zero vectors, and with the understanding that the
eigenvalues for the contracted graph are taken with respect to the natural inner prod-
uct S. Thus there is an (approximate) contraction–deletion relation for the spectrum
analogous to the contraction–deletion relation satisfied by the crossing polynomial.

Example 3.9. We consider the graph in Figure 3.2, where all positive (thick)
edges are weighted +1 and all negative (thin) edges weighted −1.

The subgraph Γ− consisting of only the negative links has three components.
Component A consists of vertices 1, 2, 3; component B consists of vertices 4 and 5;
component C consists of vertices 6, 7, 8, 9. There are N − c(Γ−) = 9− 3 = 6 nonzero
eigenvalues corresponding to the graph Laplacian associated with the negative edges.
The nonzero eigenvalues associated with component A are 1 and 3, with component B
is 2, and with component C are 4, 2, and 2. This gives six eigenvalues that grow
linearly:

λ9 ≈ 4t+O(1), λ8 ≈ 3t+O(1), λ7 ≈ 2t+O(1),

λ6 ≈ 2t+O(1), λ5 ≈ 2t+O(1), λ4 ≈ 1t+O(1).

Contracting the thin edges gives the three cycle, with one vertex corresponding to
each component of Γ−. There are two edges between each component in the original
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Fig. 3.2. The graph Γ and the graph Γ·−. In Γ we are taking all weights to be ±1.

0 2 4 6 8

1

2

3

4

2 4 6 8

�2.5

�2.0

�1.5

Fig. 3.3. Eigenvalues of Γ(t) as a function of t, where Γ(t) is defined in Example 3.9.

graph, so these edges are reweighted accordingly. The norm is contracted as well, and
can be written as ‖v‖2 = vᵀSv, where S is the matrix

S =

⎛⎝ 3 0 0
0 2 0
0 0 4

⎞⎠ .

The diagonal entries reflect the fact that the components have three, two, and four
vertices, respectively. Thus the eigenvalue problem becomes⎛⎝ −3 2 1

2 −4 2
1 2 −3

⎞⎠v = λ

⎛⎝ 3 0 0
0 2 0
0 0 4

⎞⎠v,

giving the negative eigenvalues as

λ2(t) ≈
1

8

(√
33− 15

)
+ O(1/t), λ1(t) ≈

1

8

(
−
√
33− 15

)
+O(1/t).

The flexibility is equal to τ(Γ) = 10−3−4 = 3, so there are three eigenvalue crossings.
One can compute that the crossing polynomial is given by PΓ(t) = 171t3 − 702t4 +
828t5 − 288t6. The nonzero roots occur at t ≈ .43, t ≈ .90, t ≈ 1.55.

Numerical results are shown in Figure 3.3. The first plot shows a graph of λi(t)/t
for i = 3, . . . , 9 and t ∈ (0, 8). Clearly the scaled eigenvalues converge to the correct
values. The second plot shows λi(t) for i = 1, 2 and t ∈ (0, 8). Again it is clear that
they are converging to − 1

8 (
√
33 + 15) and − 1

8 (15−
√
33), respectively. One can also

see that there are three eigenvalue crossings at the correct t values.
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3.4. Comparison to the Gershgorin theorem. A widely used tool for esti-
mating the locations of the eigenvalues of a matrix is the Gershgorin circle theorem.

Theorem 3.10 (Gershgorin). Given a matrix M = {Mij}Ni,j=1, we define

Di =

⎧⎨⎩z : |z −Mii| ≤
∑
j �=i

|Mij |

⎫⎬⎭ , i = 1, . . . , N.

Then the eigenvalues of M lie in the union of the disks, Spec(M) ⊆ ∪N
i=1Di.

Since the disks are defined using edge weights, one might expect the Gershgorin
theorem to give more information on the signs of the eigenvalues than the purely
topological considerations. In fact, we will show that for a nontrivial signed Laplacian,
the Gershgorin theorem always gives results that are strictly worse than those given
by Theorem 2.10, in terms of counting signs. (Of course, the Gershgorin theorem
gives more than just sign information.) If all of the edges emanating from a vertex
are of the same sign, then the Gershgorin disc lies entirely in one closed half-plane; if
they are all positive, in the closed left half-plane; and if negative, the closed right half-
plane. The origin lies in the interior of the disk and the eigenvalue has undermined
sign iff a vertex has edges of both signs. The main observation in this section is that
the number of such discs is always strictly larger than τ.

Proposition 3.11. Suppose Γ is connected and contains edges of both signs. If
the origin lies in the interior of n Gershgorin discs, then n ≥ τ + 1.

Proof. By the construction of section 2.3, to each cycle we associate a vector that
has nonzero entries only on those vertices where the cycle enters a vertex on an edge
of one sign and leaves on an edge of a different sign. These vectors can only have
nonzero entries in vertices which have both types of edge, so they obviously lie in a
subspace isomorphic to R

n. These vectors are necessarily orthogonal to (1, 1, 1, . . . , 1),
so there can be at most n− 1 linearly independent ones and τ ≤ n− 1.

Example 3.12. Note that n = τ + 1 can be achieved—one example is when
c(Γ+) = 1 and c(Γ−) = 1, when τ = N − 1 and n = N . It can also happen that n
is much larger than τ . Consider, for example, a cyclic graph with an even number of
edges of alternating sign. In this case n = N , since all vertices have edges of both
type; τ = 1, since there is only one linearly independent loop.

The graph depicted in Figure 3.2 has a flexibility of τ = 9 + 1− 4− 3 = 3. This
graph has eight vertices which have edges of both signs, and thus eight Gershgorin
discs that contain the origin in the interior. In the second graph in Figure 1.1 there
are three vertices that have edges of both types, and thus three Gershgorin discs that
contain the origin as an interior point. The flexibility of this graph, however, is zero
so that the number of positive, negative, and zero eigenvalues is fixed and does not
vary with the edge weights.

4. Applications and numerical computations.

4.1. Random graphs and bifurcations. Recall the definition of t� from (3.1);
it is a map from the set of finite graphs to [0,∞]. For any ensemble G of graphs and
a probability measure P on G, this induces a random variable T : G → [0,∞]. We will
consider three signed generalizations of standard random graph models. The first two
are signed generalizations of the uniform graph models of Erdős and Rényi [55, 56],
and the third is a generalization of the small-world model of Watts and Strogatz [57].

1. GUP(N, p+, p−): Define Z ∼ GUP(N, p+, p−) as follows: choose two unweighted
random graphs X,Y with independent edges, and P(Xij = 1) = p+ and
P(Yij = 1) = p−. Then Z = X − Y .
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2. GFE(N,M, p+): Choose M edges uniformly in the set of possible edges (more
specifically, enumerate all of the edges in the list [N(N−1)/2] in some manner,
then choose a uniform random subset of length M inside this list). Each edge
is then given the weight +1 with probability p+ and −1 with probability
1− p+, independently.

3. GSW(N,K, p+, prewire): Start with a locally connected ring where (i, i+ j) ∈ E
for all i ∈ [N ], j ∈ [K], i.e., each vertex is connected to the next K vertices
in the enumeration. We then “rewire” each edge with probability prewire,
by which we mean with probability 1 − prewire we leave the edge where it
is, and with probability prewire we move the edge to (k, l) chosen uniformly
in [N ]2.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
10
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10
−1

10
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10
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p
+

t*
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Fig. 4.1. The left panel is a plot of the mean, standard deviation, and individual realizations of
t� for different random matrix ensembles for various parameters; the right panel contains rescaled
distributions for t� (see text for details).

Some properties of these models are apparent. In GUP(N, p+, p−), the number
of edges is random, whereas in GFE(N,M, p+) it is fixed at M . Moreover, the small-
world ensemble is chosen in such a way that GSW(N,K, p+, 1) is the same ensemble as
GFE(N,NK, p+). We performed a series of numerical experiments on these random
ensembles and plot the results in Figure 4.1. In the left frame, we plot the mean,
standard deviation, and the realizations for the three ensembles GUP(50, p+, 0.1) (i.e.,
we fixed p− = 0.1, line with triangles), GSW(50, 10, p+, 1/2) (i.e., fixed prewire = 1/2,
line with circles), and GFE(50, 500, p+) (line with stars), all as a function of p+. We
make several observations: first, the mean of t� has very close to exponential depen-
dence on p+ (note the linear-log scale); second, prewire does not seem crucial, since
the star and circle curves match quite well, in this parameter regime. In the right
frame, we plot the (mean zero, variance one) rescaled distributions for GUP(50, p+)
and GFE(50, p+) for all of the values plotted in the left frame with p+ ≥ 0.4 (i.e.,
we threw out the first two ensembles), and we see that these ensembles look quite
close to normal (the star curve is the actual normal distribution for comparison).
There is an interesting deviation, in that both ensembles seem to be slightly more
concentrated near zero than is to be expected from normality, and, moreover, GUP

has a small leftward skew, while GFE has a small rightward skew. The code used
to perform all of these computations was written in MATLAB and is available at
http://www.math.uiuc.edu/˜rdeville/code/paper-SpectralTheorySIAMJAM/.
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4.2. Feuds in social networks. We consider two datasets from social networks
and compute the flexibility of the graphs and, in one case, the bifurcations. Our
computations were facilitated by the matlab bgl library [58].

The first dataset we consider is from Read [59] and represents sympathetic and
antagonistic relationships among sixteen subtribes of the Gahuku–Gama people in the
highlands of New Guinea. This has become a somewhat popular dataset to analyze;
see the pioneering work of Hage and Harary [18] and the recent work of Kunegis
et al. [60]. Warfare was an important social interaction within this society, and the
edges in this graph represent traditional relationships between subtribes. The positive
(hina) edges represent closely allied subtribes. Warfare between these subtribes occurs
but is limited, and is often resolved by payment of blood money or other concessions.
The negative (rova) edges represent relations between subtribes that are traditionally
more antagonistic. The network of these interactions is plotted in the top frame of
Figure 4.2. The graph has c(Γ+) = 2 and c(Γ−) = 3, giving τ = 12. A symbolic
computation using Mathematica gives the crossing polynomial as

M(t) = −45432223t13 + 657635624t12 − 4187415940t11 + 15505043366t10

− 37159886129t9 + 60647687776t8− 68960526571t7+ 54844706645t6

− 30103762121t5 + 11015925656t4− 2508107376t3 + 308319872t2 − 14192640t.

As t → 0+, we have one positive eigenvalue, and as t increases we move up to 13. We
can compute numerically that the first two eigenvalue crossings occur at t ≈ 0.11 and
t ≈ 0.42. In the bottom frame of Figure 4.2, we plot three vectors: the solid line plots
the eigenvector corresponding to the positive eigenvalue at t = 0.01, and the dotted
(resp., dashed) line plots the eigenvector corresponding to the eigenvalue that crosses
at t ≈ 0.11 (resp., t ≈ 0.42). The eigenvectors are normalized to have unit �2 norm.

The first positive eigenvector (solid line) picks out the two connected components
of Γ+, namely, (A) a collection of four tribes (Gaveve, Kotuni, Gama, Nagamidzhuha),
all of whom have friendly relations, and (B) the remaining twelve tribes (Seu’ve,
Kohika, Notohana, Uheto, Nagamiza, Masilakidzuha, Asarodzuha, Gahuku, Gehamo,
Ove, Ukudzuha, and Alikadzuha), all of whom are connected by at least one chain of
sympathetic relationships. This is not surprising, and can be read off from the original
topology of the graph. The second unstable eigenvector (dotted line) is roughly zero
on (A), but separates (B) into two components. By reexamining the network, we see
that component (B) can be naturally separated by the removal of the Masilakidzuha
tribe, and this is exactly the fracture that the eigenvector predicts. Finally, the third
eigenvector (dashed line) shows significant fractures inside each of these three main
groups. The interpretation here is that t could serve as a global “uneasiness” index,
and we see that at all times we will have two main subgroups that are feuding, but
if there is a significant amount of uneasiness there is a natural splitting into three
mutually antagonistic subgroups. Moreover, this knowledge of these three groups
allow us to plot the interaction graph in such a way that one can read off these
relationships almost by eye, which is, in fact, what we have done in the left frame of
Figure 4.2.

The second dataset is from the Slashdot Zoo. Slashdot is a user-run website
where links are submitted and commented on by the userbase. Users can vote up or
down on the links and the comments by other users. A significant amount of discussion
occurs on this website, both friendly and fractious, with many relationships developing
between users. Users are able to tag other users in the database as “fan” or “foe.”
In the Slashdot Zoo [61] database, the edge (i, j) is given weight +1 (resp., −1) if
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Fig. 4.2. The PNG dataset from [59]. In the top frame we plot the interaction network among
the subtribes. In the bottom frame, we plot the first three unstable vectors as described in the text.

user i is a fan (resp., foe) of user j. This dataset contained connection data on 82,144
users, with 549,202 edges in the graph. This network is not a priori symmetric, since
the fan/foe operations have directionality, so we imposed symmetry. Given users i
and j, if i and j are both fans of each other, or i is a fan to j and j is neutral to
i, then we placed a +1 in edge (i, j)—and similarly for foes. In short, we simply
extended unidirectional relationships to be bidirectional as long as the other direction
was neutral. The only nonobvious choice is when the two directions are of opposite
sign, i.e., if i was a fan of j and j a foe of i; in this case we decided to assume that
the relationship canceled and placed a 0 on edge (i, j). As expected, this is relatively
rare, and this happened only 1,949 times in this dataset.

We consider the component of the Slashdot database that is friendly to CmdrTaco,
the founder of the site and user number 1. More specifically, we considered only those
users for which there existed a “friendly path” from that user to CmdrTaco. This
subset is the largest connected component of the full network and contains 23,514
users. This graph contains 415,118 positive edges and 117,024 negative edges, and
we computed components. By definition, c(Γ+) = 1, and we compute that c(Γ−) =
10,327, giving τ(Γ) = 13,187. We conjecture that data from social networks will show
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this pattern, that even amongst a group of “friends” or common “fans” of a particular
user, there will be a large number of instabilities in exactly this manner.

5. Conclusions. The signed Laplacian on a graph or network occurs in many
problems, including the evolution of a system of coupled oscillators, the analysis of
social networks, data mining, and many others. We have shown that the topology
of the network puts many constraints on the index of the associated Laplacian, and
in some cases determines it uniquely. The topological picture also defines certain
subspaces that give a nice splitting of the underlying vector space into the modes
which undergo an eigenvalue crossing and the modes which do not. We have applied
these ideas to analyze two social networks: the Slashdot zoo and relations among the
subtribes of the Gahuku–Gama people of New Guinea. We expect that these ideas
might be much more fruitful in the future in studying the potential for feud formation
in real and synthetic social network datasets.

We have also considered a family of random graph problems and presented some
statistical data from certain ensembles. There has been a large degree of interest in
the spectral distributions of various random graph ensembles (for just a sampling of
this literature, see [62, 63, 64, 65, 66, 67, 68]). The numerical experiments considered
above seem to be a nontrivial generalization of these ensemble models, and their
analysis could be as rich. One could imagine considering random graph models as
above where the weights are normally distributed as well as being signed, for example.
We also point out that we have only considered random graph models that have small
diameters (both Erdős–Rényi and small world have these properties, the latter by
construction), and this might have something to do with the normal statistics that
arise; a numerical study of random graph models with large diameters may very well
give nonnormal statistics, and this should be investigated.
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Garćıa, Susan Tolman, and Renato Mirollo for comments and suggestions that im-
proved this work. The authors are also indebted to two anonymous referees whose
suggestions were extremely insightful. The first author would also like to thank the
Mathematics Department at MIT and the Applied Mathematics Department at Brown
for their hospitality during the writing of this paper.

REFERENCES

[1] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in Interna-
tional Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto,
1975) Lecture Notes in Phys. 39, Springer, Berlin, 1975, pp. 420–422.

[2] Y. Kuramoto, Collective synchronization of pulse-coupled oscillators and excitable units,
Phys. D, 50 (1991), pp. 15–30.

[3] S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in
populations of coupled oscillators, Phys. D, 143 (2000), pp. 1–20.

[4] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, The Kuramoto
model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77 (2005),
137.

[5] R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators,
SIAM J. Appl. Math., 50 (1990), pp. 1645–1662.

[6] R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model
of coupled oscillators, Phys. D, 205 (2005), pp. 249–266.

[7] R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto
model, J. Nonlinear Sci., 17 (2007), pp. 309–347.

[8] M. Verwoerd and O. Mason, Global phase-locking in finite populations of phase-coupled
oscillators, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 134–160.

D
ow

nl
oa

de
d 

10
/3

0/
14

 to
 1

30
.4

9.
19

8.
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

104 JARED C. BRONSKI AND LEE DEVILLE

[9] J. C. Bronski, L. DeVille, and M. J. Park, Fully synchronous solutions and the synchro-
nization phase transition for the finite-N Kuramoto model, Chaos, 22 (2012), 033133.

[10] L. DeVille, Transitions amongst synchronous solutions in the stochastic Kuramoto model,
Nonlinearity, 25 (2012), pp. 1473–1494.

[11] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed.,
Springer-Verlag, New York, 1998.

[12] L. Xiao and S. Boyd, Fast linear iterations for distributed averaging, Systems Control Lett.,
53 (2004), pp. 65–78.

[13] S. Boyd, P. Diaconis, and L. Xiao, Fastest mixing Markov chain on a graph, SIAM Rev., 46
(2004), pp. 667–689.

[14] Y. Hatano and M. Mesbahi, Agreement over random networks, IEEE Trans. Automat. Con-
trol, 50 (2005), pp. 1867–1872.

[15] R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked
multi-agent systems, Proc. IEEE, 95 (2007), pp. 215–233.
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Birkhäuser Boston, 2011, pp. 257–292.

[41] B. N. Parlett, Symmetric matrix pencils, J. Comput. Appl. Math., 38 (1991), pp. 373–385.
[42] C. R. Crawford, A stable generalized eigenvalue problem, SIAM J. Numer. Anal., 13 (1976),

pp. 854–860; errata: SIAM J. Numer. Anal., 15 (1978), p. 1070.
[43] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry,

in Graph Theory and Its Applications: East and West (Jinan, 1986), Ann. New York Acad.
Sci. 576, New York Academy of Sciences, New York, 1989, pp. 500–535.

[44] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An
update, in Jerusalem Combinatorics ’93, Contemp. Math. Amer. Math. Soc. 178, AMS,
Providence, RI, 1994, pp. 71–89.

[45] J. Huh, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs,
J. Amer. Math. Soc., 25 (2012), pp. 907–927.

[46] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New
York, 1953.

[47] J. P. Keener, Principles of Applied Mathematics: Transformation and Approximation, revised
edition, Perseus Books, Advanced Book Program, Cambridge, MA, 2000.

[48] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132,
Springer-Verlag, Berlin, 1976.

[49] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Menlo Park, CA, 1984.
[50] P. R. Bryant, Graph theory applied to electrical networks, in Graph Theory and Theoretical

Physics 7, Academic Press, London, 1967, pp. 111–113.
[51] J. J. Sylvester, A demonstration of the theorem that every homogeneous quadratic polynomial

is reducible by real orthogonal substitutions to the form of a sum of positive and negative
squares, Philos. Mag., 4 (1852), pp. 138–142.

[52] C. Godsil and G. Royle, Algebraic Graph Theory, Grad. Texts in Math. 207, Springer-Verlag,
New York, 2001.

[53] J. Spencer, The Strange Logic of Random Graphs, Algorithms Combin. 22, Springer-Verlag,
Berlin, 2001.

[54] B. Bollobás, Random Graphs, 2nd ed., Cambridge Stud. Adv. Math. 73, Cambridge University
Press, Cambridge, UK, 2001.
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[56] P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató
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