Publications

Some of these papers are available electronically - click on the pdf to download them. You can read them with acroread. Click the link below to get acroread.


  1. Ermentrout,-G.-B.; Cowan,-J.-D., Temporal oscillations in neuronal nets. J.-Math.-Biol. [Journal-of-Mathematical-Biology] 7 (1979), no. 3, 265-280. pdf

  2. Ermentrout,-G.-B.; Cowan,-J.-D., A mathematical theory of visual hallucination patterns. Biol.-Cybernet. [Biological-Cybernetics] 34 (1979), no. 3, 137-150. pdf

  3. Ermentrout,-G.-Bard; Rinzel,-John, One-dimensional $\lambda -\omega $ target patterns: empirical stability tests J.-Math.-Biol. [Journal-of-Mathematical-Biology] 10 (1980), no. 1, 97-100.

  4. Ermentrout,-G.-Bard, Small amplitude stable wavetrains in reaction-diffusion systems. Lecture Notes in Pure and Appl. Math., 54, Dekker, New York, 1980.

  5. Ermentrout,-G.-B.; Cowan,-J.-D., Large scale spatially organized activity in neural nets. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 38 (1980), no. 1, 1-21. pdf

  6. Ermentrout,-G.-B.; Cowan,-J.-D., Secondary bifurcation in neuronal nets. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 39 (1980), no. 2, 323-340. pdf

  7. Ermentrout,-G.-Bard; Rinzel,-John, Waves in a simple, excitable or oscillatory, reaction-diffusion model. J.-Math.-Biol. [Journal-of-Mathematical-Biology] 11 (1981), no. 3, 269-294.

  8. Ermentrout,-G.-Bard, n:m phase-locking of weakly coupled oscillators. J.-Math.-Biol. [Journal-of-Mathematical-Biology] 12 (1981), no. 3, 327-342.

  9. Ermentrout,-G.-B., Asymptotic behavior of stationary homogeneous neuronal nets. Lecture Notes in Biomath., 45, Springer, Berlin-New York, 1982.

  10. Kopell,-N., ; Ermentrout,-G.-B., Coupled oscillators and mammalian small intestines. Lecture Notes in Biomath., 51, Springer, Berlin-New York, 1983.

  11. Ermentrout,-George-Bard; Kopell,-Nancy, Frequency plateaus in a chain of weakly coupled oscillators. I. 1984 SIAM-J.-Math.-Anal. [SIAM-Journal-on-Mathematical-Analysis] 15 (1984), no. 2, 215-237.

  12. Ermentrout,-G.-Bard, Period doublings and possible chaos in neural models. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 44 (1984), no. 1, 80-95. pdf

  13. Ermentrout-GB; Rinzel-J, Beyond a pacemaker's entrainment limit: phase walk-through. Am-J-Physiol. 1984 Jan; 246(1 Pt 2): R102-6

  14. Ermentrout,-G.-B.; Hastings,-S.-P.; Troy,-W.-C., Large amplitude stationary waves in an excitable lateral-inhibitory medium. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 44 (1984), no. 6, 1133-1149. pdf

  15. Ermentrout-B, A model for premigrainous auras, The Neurobiology of Pain, ed AH. Holden and W. Winlow, Manchester University Press, Manchester, 1985

  16. Ermentrout-GB, The behavior of rings of coupled oscillators. J-Math-Biol. 1985; 23(1): 55-74 1985

  17. Ermentrout,-G.-Bard, Synchronization in a pool of mutually coupled oscillators with random frequencies. J.-Math.-Biol. [Journal-of-Mathematical-Biology] 22 (1985), no. 1, 1-9.

  18. Ermentrout,-G.-B.; Troy,-W.-C., Phaselocking in a reaction-diffusion system with a linear frequency gradient. 1986 SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 46 (1986), no. 3, 359-367. pdf

  19. Ermentrout,-Bard, Losing amplitude and saving phase. Lecture Notes in Biomath., 66, Springer, Berlin-New York, 1986.

  20. Kopell,-N.; Ermentrout,-G.-B., Symmetry and phaselocking in chains of weakly coupled oscillators. Comm.-Pure-Appl.-Math. [Communications-on-Pure-and-Applied-Mathematics] 39 (1986), no. 5, 623-660.

  21. Ermentrout,-G.-B.; Kopell,-N., Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 46 (1986), no. 2, 233-253. pdf

  22. Kopell,-N.; Ermentrout,-G.-B., Subcellular oscillations and bursting. Math.-Biosci. [Mathematical-Biosciences.-An-International-Journal] 78 (1986), no. 2, 265-291.

  23. Ermentrout-B; Campbell-J; Oster-G, A model for shell patterns based on neural activity. Veliger 28(4): 369-388 1986 pdf

  24. Troy,-William-C.; Overman,-Edward-A., II; Ermentrout,-G.-B.; Keener,-James-P., Uniqueness of flow of a second-order fluid past a stretching sheet. Quart.-Appl.-Math. [Quarterly-of-Applied-Mathematics] 44 (1987), no. 4, 753-755.

  25. Kopell,-N.; Ermentrout,-G.-B., Coupled oscillators and the design of central pattern generators. Math.-Biosci. [Mathematical-Biosciences.-An-International-Journal] 90 (1988), no. 1-2, 87-109.

  26. Ermentrout,-G.-B., Discrete and continuous media in the presence of a frequency gradient. Kluwer Acad. Publ., Dordrecht, 1988.

  27. Boland,-J.; Ermentrout,-G.-B.; Hall,-C.-A.; Layton,-W.; Melhem,-H., Numerical and analytical studies of natural convection problems. Ohio Univ. Press, Athens, OH, 1989.

  28. Rinzel-J; Ermentrout-B, Analysis of neural excitability and oscillations, In ``Methods in Neuronal Modelling: From synapses to Networks'', C. Koch and I. Segev, eds. 1989, MIT Press (revised 1998).

  29. Ermentrout,-G.-Bard; Troy,-William-C., The uniqueness and stability of the rest state for strongly coupled oscillators. SIAM-J.-Math.-Anal. [SIAM-Journal-on-Mathematical-Analysis] 20 (1989), no. 6, 1436-1446.

  30. Edelstein-Keshet,-Leah; Ermentrout,-Bard, Models for branching networks in two dimensions. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 49 (1989), no. 4, 1136-1157. pdf

  31. Ermentrout-B; Kopell-N, Some mathematical problems concerning a central pattern generator, in ``Theoretical models for Cell Signalling'', A. Goldbeter,ed. Academic Press, 1989

  32. Ermentrout,-G.-B., Oscillator death in populations of ``all to all'' coupled nonlinear oscillators. Phys.-D [Physica-D.-Nonlinear-Phenomena] 41 (1990), no. 2, 219-231.

  33. Edelstein-Keshet,-Leah; Ermentrout,-G.-Bard, Models for contact-mediated pattern formation: cells that form parallel arrays. J.-Math.-Biol. [Journal-of-Mathematical-Biology] 29 (1990), no. 1, 33-58.

  34. Williams-TL; Sigvardt-KA; Kopell-N; Ermentrout-GB; Remler-MP, Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator. J-Neurophysiol. 1990 Sep; 64(3): 862-71

  35. Edelstein-Keshet-L; Ermentrout-GB, Contact response of cells can mediate morphogenetic pattern formation. Differentiation. 1990 Dec; 45(3): 147-59

  36. Ermentrout,-G.-B.; Kopell,-N, Oscillator death in systems of coupled neural oscillators. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 50 (1990), no. 1, 125-146. pdf

  37. Kopell,-N.; Zhang,-W; Ermentrout,-G.-B., Multiple coupling in chains of oscillators. SIAM-J.-Math.-Anal. [SIAM-Journal-on-Mathematical-Analysis] 21 (1990), no. 4, 935-953.

  38. Kopell,-N.; Ermentrout,-G.-B., Phase transitions and other phenomena in chains of coupled oscillators. 1990 SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 50 (1990), no. 4, 1014-1052. pdf

  39. Aronson,-D.-G.; Ermentrout,-G.-B.; Kopell,-N, Amplitude response of coupled oscillators. Phys.-D [Physica-D.-Nonlinear-Phenomena] 41 (1990), no. 3, 403-449. pdf

  40. Koppel, N., Ermentrout, G.B. Williams, T., On chains of oscillators forced at one end, SIAM J. Appl Math 51(5):1397-1417 pdf

  41. Ermentrout-B, An adaptive model for synchrony in the firefly Pteroptyx malaccae. Journal of Mathematical Biology 29(6): 571-585 1991

  42. Caginalp,-G; Ermentrout,-G.-B., Numerical studies of differential equations related to theoretical financial markets. Appl.-Math.-Lett. [Applied-Mathematics-Letters.-An-International-Journal-of-Rapid-Publication] 4 (1991), no. 1, 35-38.

  43. Ermentrout,-G.-B.; Kopell,-N., Multiple pulse interactions and averaging in systems of coupled neural oscillators. J.-Math.-Biol. [Journal-of-Mathematical-Biology] 29 (1991), no. 3, 195-217.

  44. Ermentrout,-Bard, Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc.-Roy.-Soc.-London-Ser.-A 434 (1991), no. 1891, 413-417. PDF

  45. Cohen-AH; Ermentrout-GB; Kiemel-T; Kopell-N; Sigvardt-KA; Williams-TL, Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends-Neurosci. 1992 Nov; 15(11): 434-8

  46. Ermentrout,-G.-Bard, Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 52 (1992), no. 6, 1665-1687. pdf

  47. Ermentrout-B, Complex dynamics in winner-take-all neural nets with slow inhibition. NEURAL NETWORKS 5(3): 415-431 1992 pdf

  48. Ermentrout,-G.-Bard; McLeod,-J.-Bryce, Existence and uniqueness of travelling waves for a neural network. Proc.-Roy.-Soc.-Edinburgh-Sect.-A 123 (1993), no. 3, 461-478 PDF

  49. Cordova-NJ; Ermentrout-B; Oster-GF, Dynamics of single-motor molecules: the thermal ratchet model. Proc-Natl-Acad-Sci-U-S-A. 1992 Jan 1; 89(1): 339-43 pdf

  50. Ermentrout-GB; Edelstein-Keshet-L, Cellular automata approaches to biological modeling. J-Theor-Biol. 1993 Jan 7; 160(1): 97-133 PDF

  51. Van-Vreeswijk-C; Abbott-LF; Ermentrout-GB, When inhibition not excitation synchronizes neural firing. J-Comput-Neurosci. 1994 Dec; 1(4): 313-21 PDF

  52. Ermentrout-B, Reduction of conductance based models with slow synapses to neural nets, Neural Computation (1994)6:679-695 PDF

  53. Ermentrout-B; Kopell-N, Learning of phase lags in coupled neural oscillators, Neural Computation (1994)6:225-241

  54. Ermentrout-GB, The mathematics of biological oscillators. Methods-Enzymol. 1994; 240: 198-216

  55. Gonzalez-Fernandez-JM; Ermentrout-B, On the origin and dynamics of the vasomotion of small arteries. Math-Biosci. 1994 Feb; 119(2): 127-67

  56. Paullet,-Joseph; Ermentrout,-Bard; Troy,-William, The existence of spiral waves in an oscillatory reaction-diffusion system. SIAM-J.-Appl.-Math. 54 (1994), no. 5, 1386-1401. pdf

  57. Ermentrout,-G.-B.; Kopell,-N., Inhibition-produced patterning in chains of coupled nonlinear oscillators. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 54 (1994), no. 2, 478-507. pdf

  58. Paullet,-Joseph-E.; Ermentrout,-G.-Bard, Stable rotating waves in two-dimensional discrete active media. SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 54 (1994), no. 6, 1720-1744.

  59. Ermentrout,-G.-Bard; Troy,-W.-C., Phaselocking in a reaction-diffusion equation with twist. SIAM-J.-Math.-Anal. [SIAM-Journal-on-Mathematical-Analysis] 25 (1994), no. 6, 1504-1520.

  60. Ermentrout-B, Phaseplane analysis of neural nets, in (MA Arbib, ed) Handbook of Brain Theory and Neural Networks

  61. Doering-C; Ermentrout-B; Oster-G, Rotary DNA motors. Biophys-J. 1995 Dec; 69(6): 2256-67

  62. Ermentrout-B, A heuristic description of spiral wave instability in discrete media, Physica D, 82:154-164, 1995 pdf

  63. Bauer-AJ; Ermentrout-B, Origin of pacemaker activity in the stomach wall and small intestine. In: Pacemaker Activity and Intercellular Communication, J.D. Huizinga (ed) CRC press pp 237-251 1995

  64. Edelstein-Keshet-L; Watmouth-J; Ermentrout-G-B, Trail following in ants: Individual properties determine population behaviour. Behavioral Ecology and Sociobiology,1995 36(2): 119-133

  65. Peskin-C; Ermentrout-B; Oster-G, The correlation ratchet: a novel mechanism for generating directed motion by ATP hydrolysis,in Cell Mechanics and Cellular Engineering. V. C. Mow, F. Guilak, R. Tran-Son-Tay and R. Hochmuth. New York, Springer-Verlag: pp. 479-489.

  66. Ermentrout-B, Type I membranes, phase resetting curves, and synchrony. Neural-Comput. 1996 Jul 1; 8(5): 979-1001 preprint

  67. Mogilner-A; Edelstein-Keshet-L; Ermentrout-GB, Selecting a common direction. II. Peak-like solutions representing total alignment of cell clusters. J-Math-Biol. 1996; 34(8): 811-42 pdf

  68. Ermentrout,-G.-Bard; Rinzel,-John, Reflected waves in an inhomogeneous excitable medium. 1996 SIAM-J.-Appl.-Math. [SIAM-Journal-on-Applied-Mathematics] 56 (1996), no. 4, 1107-1128. pdf

  69. Pinto-DJ; Brumberg-JC; Simons-DJ; Ermentrout-GB, A quantitative population model of whisker barrels: re-examining the Wilson-Cowan equations. J-Comput-Neurosci. 1996 Sep; 3(3): 247-64

  70. Efimov-IR; Ermentrout-B; Huang-DT; Salama-G, Activation and repolarization patterns are governed by different structural characteristics of ventricular myocardium: experimental study with voltage-sensitive dyes and numerical simulations. J-Cardiovasc-Electrophysiol. 1996 Jun; 7(6): 512-30

  71. Harris-AE; Ermentrout-GB; Small-SL, A model of ocular dominance column development by competition for trophic factor. Proc-Natl-Acad-Sci-U-S-A. 1997 Sep 2; 94(18): 9944-9 pdf

  72. Ermentrout-B; Lewis-M, Pattern formation in systems with one spatially distributed species. Bulletin of Mathematical Biology 59(3): 533-549,1997

  73. Crook-SM; Ermentrout-GB; Vanier-MC; Bower-JM, The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J-Comput-Neurosci. 1997 Apr; 4(2): 161-72

  74. Ermentrout,-Bard; Chen,-Xinfu; Chen,-Zhixiong, Transition fronts and localized structures in bistable reaction-diffusion equations. Phys.-D [Physica-D.-Nonlinear-Phenomena] 108 (1997), no. 1-2, 147-167. pdf

  75. Chen,-Zhixiong; Ermentrout; McLeod,-Bryce, Traveling fronts for a class of non-local convolution differential equations. Appl.-Anal. [Applicable-Analysis.-An-International-Journal] 64 (1997), no. 3-4, 235-253.

  76. Chen-Z; Ermentrout-B; Wang-XJ, Wave propagation mediated by GABAB synapse and rebound excitation in an inhibitory network: a reduced model approach. J-Comput-Neurosci. 1998 Mar; 5(1): 53-69

  77. Paullet-JE; Ermentrout-GB, Spiral waves in spatially discrete lambda-omega systems, Intl J. Bif. Chaos, 8:33-40 (1998)

  78. Ermentrout-B, Neural networks as spatio-temporal pattern-forming systems, Reports on Progress in Physics, 61:353-430, 1998. PDF

  79. Ermentrout-B, Linearization of F-I curves by adaptation. Neural-Comput. 1998 Oct 1; 10(7): 1721-9 pdf

  80. Crook-SM; Ermentrout-GB; Bower-JM, Dendritic and synaptic effects in systems of coupled cortical oscillators. J-Comput-Neurosci. 1998 Jul; 5(3): 315-29

  81. Ermentrout-B; Flores-J; Gelperin-A, Minimal model of oscillations and waves in the Limax olfactory lobe with tests of the model's predictive power. J-Neurophysiol. 1998 May; 79(5): 2677-89 pdf

  82. Ermentrout-B, The analysis of synaptically generated traveling waves. J-Comput-Neurosci. 1998 May; 5(2): 191-208

  83. Gutkin-BS; Ermentrout-GB, Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural-Comput. 1998 Jul 1; 10(5): 1047-65 pdf

  84. Edelstein-Keshet-L; Ermentrout-GB, Models for the length distributions of actin filaments: I. Simple polymerization and fragmentation. Bull-Math-Biol. 1998 May; 60(3): 449-75 pdf

  85. Ermentrout-GB; Edelstein-Keshet-L, Models for the length distributions of actin filaments: II. Polymerization and fragmentation by gelsolin acting together. Bull-Math-Biol. 1998 May; 60(3): 477-503 pdf

  86. Crook-SM; Ermentrout-GB; Bower-JM, Spike frequency adaptation affects the synchronization properties of networks of cortical oscillations. Neural-Comput. 1998 May 15; 10(4): 837-54 pdf

  87. Rinzel-J; Terman-D; Wang-X; Ermentrout-B, Propagating activity patterns in large-scale inhibitory neuronal networks. Science. 1998 Feb 27; 279(5355): 1351-5

  88. Ermentrout-GB; Kopell-N, Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc-Natl-Acad-Sci-U-S-A. 1998 Feb 3; 95(3): 1259-64 pdf

  89. Ren,-Liwei; Ermentrout,-G.-Bard, Monotonicity of phaselocked solutions in chains and arrays of nearest-neighbor coupled oscillators. SIAM-J.-Math.-Anal. [SIAM-Journal-on-Mathematical-Analysis] 29 (1998), no. 1, 208-234 pdf

  90. Dilmore JG, Gutkin BS, Ermentrout GB Effects of dopaminergic modulation of persistent sodium currents on the excitability of prefrontal cortical neurons: A computational study NEUROCOMPUTING 26-7: 107-115 JUN 1999 pdf

  91. Golomb D, Ermentrout GB Continuous and lurching traveling pulses in neuronal networks with delay and spatially decaying connectivity P NATL ACAD SCI USA 96: (23) 13480-13485 NOV 9 1999 pdf

  92. Edelstein-Keshet L, Ermentrout GB Models for spatial polymerization dynamics of rod-like polymers J MATH BIOL 40: (1) 64-96 JAN 2000 pdf

  93. Kopell N, Ermentrout GB, Whittington MA, et al. Gamma rhythms and beta rhythms have different synchronization properties P NATL ACAD SCI USA 97: (4) 1867-1872 FEB 15 2000 pdf

  94. Harris AE, Ermentrout GB, Small SL A model of ocular dominance column development by competition for trophic factor: Effects of excess trophic factor with monocular deprivation and effects of antagonist of trophic factor J COMPUT NEUROSCI 8: (3) 227-250 MAY-JUN 2000

  95. Gutkin BS, Ermentrout GB, O'Sullivan J Layer 3 patchy recurrent excitatory connections may determine the spatial organization of sustained activity in the primate prefrontal cortex NEUROCOMPUTING 32: 391-400 JUN 2000 pdf

  96. Golomb D, Ermentrout GB Effects of delay on the type and velocity of travelling pulses in neuronal networks with spatially decaying connectivity NETWORK-COMP NEURAL 11: (3) 221-246 AUG 2000 pdf

  97. Ren LW, Ermentrout B Phase locking in chains of multiple-coupled oscillators PHYSICA D 143: (1-4) 56-73 SEP 1 2000 pdf

  98. Whittington MA, Traub RD, Kopell N, et al. Inhibition-based rhythms: experimental and mathematical observations on network dynamics INT J PSYCHOPHYSIOL 38: (3) 315-336 DEC 2000 pdf

  99. Ermentrout GB, Kleinfeld D Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role NEURON 29: (1) 33-44 JAN 2001 pdf

  100. Osan R, Ermentrout B Two dimensional synaptically generated traveling waves in a theta-neuron neural network NEUROCOMPUTING 38: 789-795 JUN 2001 pdf

  101. Ermentrout B, Pascal M, Gutkin B The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators NEURAL COMPUT 13 (6): 1285-1310 JUN 2001 pdf

  102. Golomb D, Ermentrout GB Bistability in pulse propagation in networks of excitatory and inhibitory populations PHYS REV LETT 86 (18): 4179-4182 APR 30 2001 pdf

  103. Terman DH, Ermentrout GB, Yew AC Propagating activity patterns in thalamic neuronal networks SIAM J APPL MATH 61 (5): 1578-1604 MAR 23 2001 pdf

  104. Ermentrout B, Wang JW, Flores J, and Gelperin, A. Model for olfactory discrimination and learning in Limax procerebrum incorporating oscillatory dynamics and wave propagation J NEUROPHYSIOL 85 (4): 1444-1452 APR 2001 pdf

  105. Curtu, R and Ermentrout, B, Oscillations in a refractory neural net J. Math Biol 43:81-100 2001 pdf

  106. David J. Pinto, G. Bard Ermentrout, 2001, Spatially Structured Activity in Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses SIAM J. Appl Math. 62(1):206--225 pdf

  107. David J. Pinto, G. Bard Ermentrout 2001, Spatially Structured Activity in Synaptically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses SIAM J. Appl Math. 62(1):226--243 pdf

  108. Gutkin BS, Laing CR, Colby CL, et al. Turning on and off with excitation: The role of spike-timing asynchrony and synchrony in sustained neural activity J COMPUT NEUROSCI 11 (2): 121-134 2001

  109. Edelstein-Keshet L, Ermentrout GB A model for actin-filament length distribution in a lamellipod J MATH BIOL 43 (4): 325-355 OCT 2001 PDF

  110. Osan R, Ermentrout B Development of joint ocular dominance and orientation selectivity maps in a correlation-based neural network model NEUROCOMPUTING 44: 561-566 JUN 2002

  111. Laing CR, Troy WC, Gutkin B, et al. Multiple bumps in a neuronal model of working memory SIAM J APPL MATH 63 (1): 62-97 NOV 14 2002 pdf

  112. Ermentrout GB, Chow CC Modeling neural oscillations PHYSIOL BEHAV 77 (4-5): 629-633 DEC 2002 pdf

  113. Golomb D, Ermentrout GB Slow excitation supports propagation of slow pulses in networks of excitatory and inhibitory populations PHYS REV E 65 (6): art. no. 061911 Part 1 JUN 2002

  114. Osan R, Rubin J, Ermentrout B Regular traveling waves in a one-dimensional network of theta neurons SIAM J APPL MATH 62 (4): 1197-1221 APR 22 2002

  115. Karbowski J, Ermentrout GB Synchrony arising from a balanced synaptic plasticity in a network of heterogeneous neural oscillators PHYS REV E 65 (3): art. no. 031902 Part 1 MAR 2002

  116. Goel P, Ermentrout B Synchrony, stability, and firing patterns in pulse-coupled oscillators PHYSICA D 163 (3-4): 191-216 MAR 15 2002 PDF

  117. Osan R, Ermentrout B The evolution of synaptically generated waves in one- and two-dimensional domains PHYSICA D 163 (3-4): 217-235 MAR 15 2002 PDF

  118. Ermentrout, B. (2003) Dynamical Consequences of Fast-Rising, Slow-Decaying Synapses in Neuronal Networks Neural Computation 15:2483-2522 PDF

  119. Gutkin, B, Rudolph, M, Ermentrout, B. Spike generating dynamics and the conditions for spike-time precision in cortical neurons. J Comput Neurosci. 2003 Jul-Aug;15(1):91-103. PDF

  120. Ermentrout B, Wang JW, Flores J, Gelperin A. Model for transition from waves to synchrony in the olfactory lobe of Limax. J Comput Neurosci. 2004 Nov-Dec;17(3):365-83. PDF

  121. Karbowski J, Ermentrout GB. Model of the early development of thalamo-cortical connections and area patterning via signaling molecules. J Comput Neurosci. 2004 Nov-Dec;17(3):347-63. PDF

  122. Whitcomb DC, Ermentrout GB. A mathematical model of the pancreatic duct cell generating high bicarbonate concentrations in pancreatic juice. Pancreas. 2004 Aug;29(2):e30-40. PDF

  123. Kopell N, Ermentrout B. Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15482-7. Epub 2004 Oct 15.

  124. Gutkin B, Pinto D, Ermentrout B. Mathematical neuroscience: from neurons to circuits to systems. J Physiol Paris. 2003 Mar-May;97(2-3):209-19. Review. PDF

  125. Ermentrout, B and Saunders, D, Phase resetting and coupling of noisy neural oscillators, JCNS Feb 2006 PDF
  126. JD Drover, GB Ermentrout , Phase Boundaries as Electrically Induced Phosphenes , SIAM Journal on Applied Dynamical Systems 5, 529 (2006) PDF
  127. B Ermentrout, JD Drover, Nonlinear Coupling near a Degenerate Hopf (Bautin) Bifurcation SIAM Journal on Applied Mathematics, 2003 PDF
  128. J Drover, J Rubin, J Su, B Ermentrout Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at low firing frequencies SIAM Journal on Applied Mathematics, 2004 65:69-92 PDF
  129. FG Kazanci, B Ermentrout, Pattern Formation in an Array of Oscillators with Electrical and Chemical Coupling SIAM Journal on Applied Mathematics 67, 512 (2007) PDF
  130. Roberto F. Galan, G. Bard Ermentrout and Nathaniel N. Urban (2006). Predicting synchronized neural assemblies from experimentally estimated phase-resetting curves. Neurocomputing, 69(10-12), p.1112-1115.
  131. Chapter on coupled oscillators for MBI - long review PDF
  132. Draft chapter on recent work in noisy oscillators PDF
  133. Upperman et al, Mathematical modeling in necrotizing enterocolitis, a new look at an ongoing problem, J. Pediatric Surgery, 2007, PDF