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In the United States, patients with end-stage liver disease must join a waiting list to be eligible for cadaveric liver trans-
plantation. Due to privacy concerns, the details of the composition of this waiting list are not publicly available. This
paper considers the benefits associated with creating a more transparent waiting list. We study these benefits by modeling
the organ accept/reject decision faced by these patients as a Markov decision process in which the state of the process is
described by patient health, quality of the offered liver, and a measure of the rank of the patient in the waiting list. We
prove conditions under which there exist structured optimal solutions, such as monotone value functions and control-limit
optimal policies. We define the concept of the patient’s price of privacy, namely, the number of expected life days lost
due to the lack of complete waiting list information. We conduct extensive numerical studies based on clinical data, which
indicate that this price of privacy is typically on the order of 5% of the optimal solution value.
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1. Introduction
End-stage liver disease (ESLD), which includes diseases
such as primary biliary cirrhosis and hepatitis, is the 12th
leading cause of death in the United States (National Cen-
ter for Health Statistics (NCHS) 2006) in large part because
transplantation is the only available therapy for ESLD
patients. The vast majority of ESLD patients join a wait-
ing list of patients who are eligible for transplantation
from cadaveric donors. As seen in Figure 1, the disparity
between the demand for and supply of cadaveric livers is
large and growing, which results in a significant number
of patient deaths while waiting. Indeed, there are currently
over 17,000 patients on the liver transplant waiting list and,
over the past 12 years, this list has grown by approximately
1,000 patients per year (United Network for Organ Sharing
(UNOS) 2006a). All of these facts motivate the need for
research on better management of this scarce resource.
When a cadaveric liver becomes available, UNOS, the

organization that administers the organ allocation activi-
ties in the United States, offers the liver to patients using
an allocation mechanism. For each cadaveric liver, this
mechanism assigns priorities to patients based on disease

severity of the patient, geography, and physiologic com-
patibility between the donor and the potential recipient
(e.g., blood type and size). UNOS uses a patient’s total
waiting time at her current level of health or worse as a
final tie breaker among otherwise identical patients (see
UNOS 2006b for more details on the matching mecha-
nism). Often multiple potential recipients are notified con-
currently because UNOS considers the final decision of
whether or not to use the offered liver to be “the prerogative
of the transplant surgeon and/or the physician responsible
for the care of the patient” (UNOS 2006b, p. 3-26). As
Howard (2002) reports, surgeons reject low-quality organs
for healthy patients in the hope that they may receive a bet-
ter organ offer in the future. Several characteristics of the
donor may affect the perceived quality of the donated organ
such as length of intensive care unit stay and antecedents of
hypertension (Cuende et al. 2005); existence and degree of
steatosis (Salizzoni et al. 2003); race, height, and involve-
ment in a cerebravascular accident (Feng et al. 2006); and
age, blood type, and gender (Roberts et al. 2004). Indeed,
despite the scarcity of donated organs, almost half of the
liver offers are rejected by the first surgeon to whom the
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Figure 1. Recent trends in U.S. liver transplantation
(1995–2004).
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offer is made (Howard 2002). The optimization of this
accept/reject decision, within the confines of the current
allocation system, is the focus of this paper. The decision-
making process is assumed to be joint between the patient
and an agent (such as the patient’s physician and/or sur-
geon) who acts in the patient’s best interest. However, for
expositional simplicity, we refer to the decision maker as
the patient throughout the rest of the paper.
Several researchers consider the organ accept/reject prob-

lem from an individual patient’s perspective (Ahn and
Hornberger 1996; Alagoz et al. 2004, 2007a, 2007b; David
and Yechiali 1985; Hornberger and Ahn 1997; Howard
2002), or from the society’s perspective (David and
Yechiali 1990, 1995; Righter 1989; Roth et al. 2004; Su and
Zenios 2005; Zenios 1999, 2002; Zenios et al. 1999, 2000),
or from a joint perspective (Su and Zenios 2004, 2005,
2006). Most of this literature makes unrealistic assump-
tions such as patient health does not change over time, each
organ may be offered to at most one patient, new patients
do not arrive, listed patients do not die, all patients are
homogeneous, organ quality does not deteriorate, offered
organs cannot be declined, and all patients have the same
pretransplant life expectancy. We refer the reader to Alagoz
(2004) for a detailed discussion of the organ transplan-
tation literature. Of this body of work, the most relevant
is Alagoz et al. (2007a). They present a Markov decision
process (MDP) model in which the state is described by
patient health and organ quality. For each possible state,
provided an offer is made, the patient chooses to either
accept or reject the offer so as to maximize her total
expected reward. Their approach captures the effects of the
waiting list implicitly through the organ arrival probabili-
ties, which are assumed to be a function of patient health.
Under the current liver allocation policy, however, the fre-
quency and the quality of liver offers made to an individual
patient are significantly affected by the physiology and the
geographic location of the other patients on the waiting list.

Therefore, the model analyzed in this paper captures the
effects of the waiting list in a more explicit fashion and
lends insight into how the composition of the list impacts
optimal accept/reject decisions.
Historically, much of the relevant information about the

patients on the waiting list has been hidden due to pri-
vacy concerns. Although this practice ensures some level of
confidentiality, it also forces patients to make accept/reject
decisions with incomplete information. To alleviate this
problem, UNOS now publishes coarse (yet still incomplete)
descriptions of the waiting list on their website (UNOS
2006a). For example, one can learn the number of patients
in specific ranges of disease severity in a specific geo-
graphic area. Anything less than a complete description of
the waiting list, however, still results in some loss to the
patient because this lack of knowledge may result in sub-
optimal decisions. We call this loss due to incomplete rank
knowledge the patient’s price of privacy. This quantity may
also be interpreted as the value of obtaining rank informa-
tion. We leverage our model analysis to provide quantita-
tive estimates of this price of privacy in terms of overall
life expectancy. That is, we do not advocate any particular
change in the privacy policy; rather, we wish to quantify
the costs of this privacy to the patient.
We emphasize that revealing the ranks of the patients, in

general, is not equivalent to revealing their identities; and,
in this paper, we use the term “privacy” to refer to the for-
mer as opposed to its general association with the latter.
However, we realize that if there are very few patients reg-
istered in a particular geographic area, then rank revelation
may inadvertently reveal patient identities. One possible
remedy is to design a system that sends private signals to
potential recipients that includes their own rank information
only.
The patients registered at transplant centers that have

a large market share in a geographic location may know
(through their physicians) more than the revealed coarse
descriptions about the waiting list. They may even be able
to identify the precise ranks of the patients registered in the
same location. Our model provides an accurate representa-
tion of such situations.
The public revelation of the waiting list information nat-

urally gives rise to a gaming environment, where each
patient, when making their own decisions, has to consider
the possible decisions of other patients on the waiting list.
To the best of our knowledge, the only organ transplanta-
tion paper to consider such game-theoretic aspects is Su
and Zenios (2004). They model the kidney transplant wait-
ing system as an M/M/1 queue with exponential reneging
that represents patient death. They assume a homogeneous
patient population, which enables a detailed competitive
equilibrium analysis, and discuss the effects of differ-
ent queuing disciplines such as first-come-first-served and
last-come-first-served on the system performance. Unfor-
tunately, such a queuing model is inappropriate for liver
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transplantation because patient priorities evolve dynami-
cally with their health, and different livers may induce dif-
ferent priorities due to differences in geography and blood
type. Furthermore, acknowledging the heterogeneity of the
patients leads to an intractable asymmetric multiplayer
nonzero-sum stochastic game. We refer the interested
reader to Vieille (2002) and Neyman and Sorin (2003) for
a recent review of the state-of-the-art in stochastic games.
Although an analysis capturing the competition among

patients and clinical realism simultaneously is desirable, we
focus, in this paper, on modeling the patient’s perspective
by amplifying clinical realism and suppressing the competi-
tion among patients. This approach comes with some limi-
tations: (1) the estimates quantified in this paper refer to the
individual gain of a single patient who is provided with full
rank information; (2) the current analysis does not mod-
ify the decisions of other patients who are assumed to act
without rank information; and (3) our approach may under-
estimate or overestimate the true price of privacy, therefore
it may be viewed as a heuristic for quantifying the true
price of privacy.
Several researchers have approached various aspects of

the organ transplantation problem using queuing models
(e.g., Zenios 1999; Zenios et al. 2000; Su and Zenios 2004,
2006). Most of the queuing models are concerned with
kidney transplantation. We refer to Zenios (2004) for a
recent review of queuing-based models in kidney transplan-
tation. However, the liver transplant waiting list is much
more complex than a simple queue (UNOS 2006b, Howard
2001) because the priorities assigned to patients are a func-
tion of geography and health, and this fact renders queuing
approaches to liver transplantation inappropriate.
A related stream of research analyzes equilibria in queue-

ing models. We refer the interested reader to Hassin and
Haviv (2003) and Altman (2005) for recent surveys of this
literature. This stream of research focuses on questions like
when to join a queue, which queue to join when there are
multiple queues, and what priority level to purchase when
different priorities are allowed. All of these questions are
related to customers’ decisions at the time of their arrivals.
However, in our case, patients are prioritized at the time
of an organ arrival according to the liver allocation pol-
icy. Therefore, they do not have any choice at the time
of their arrival but rather a prerogative to refuse an organ
(service) offer. Furthermore, we also allow patient prior-
ities to change over time and we explicitly use the rank
information of the patient to make this decision. A method-
ologically similar paper that models the decision making
(although the customers are not the decision makers) using
rank information is Swani et al. (2001), which formulates
an MDP model to find optimal replacement policies for
a single motion picture exhibitor ignoring the competi-
tion between theater chains. They contend with providing
a numerical analysis of the model without attempting any
structural results. In their competitive equilibrium analysis
within the kidney allocation system, Su and Zenios (2004)

also use the rank information of the patients to character-
ize the rank-dependent threshold policies. However, these
characterizations are heavily influenced by the assumption
of homogeneous patients, which we cannot justify in the
context of this paper.
To summarize, we are concerned with three different sys-

tem scenarios: (a) the system in which every patient has
partial rank information as in the current allocation system
and behaves optimally using this information, (b) the system
analyzed in this paper, in which only one special patient has
full rank information and all other patients behave as they
do now, and (c) a proposed system, in which every patient
has full rank information and acts optimally. The analysis of
system (a) is still an open issue. The best available represen-
tation of system (a) is the model of Alagoz et al. (2007a).
We compare our model (system (b)) to the model of Alagoz
et al. (2007a) to obtain an estimate of the true price of pri-
vacy, which ideally would be computed by comparing sys-
tem (a) to the proposed system (c). If the waiting list infor-
mation is provided to everyone as in the proposed system,
then there may be a complete shift of equilibrium, but our
model falls short of identifying this new equilibrium.
The rest of this paper is organized as follows. Section 2

presents the Markov decision process model formulation,
which expands the state space of the Alagoz et al. (2007a)
model to include the patient’s rank. Section 3 establishes
analytical conditions that yield desirable structural results
for the optimal policy. Section 4 discusses the price of pri-
vacy in more detail and presents the results of clinically
driven numerical experiments. Finally, the paper concludes
in §5 by summarizing the contributions and pointing out
possible extensions.

2. The MDP Model
We start this section by assuming that patients are self-
interested agents and do not explicitly consider the possible
actions other candidates may take in making their own deci-
sions. Such an assumption is indispensable for analytical
and computational tractability of the resulting model. Con-
sider an ESLD patient who must decide (with her physician
and/or surgeon) whether to accept or reject a liver offered
for transplantation so as to maximize her total expected
discounted reward. We assume that the patient makes this
decision at discrete time periods. If a liver is not offered in
a particular period, then the patient is forced to “wait” until
the next period. The nontrivial decision to be optimized is
when there is a liver offered. If the patient chooses to wait,
then she accrues an intermediate reward which is a function
of her current health status, and faces the same problem at
the next time period, provided she lives. If, on the other
hand, the patient chooses to “accept” the offer, then she
receives a lump-sum terminal reward (e.g., the expected
discounted posttransplant survival or quality-adjusted sur-
vival). This terminal reward is a function of the patient’s
current health status as well as the quality of the accepted
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liver. By choosing to transplant an offered liver, the patient
terminates the process.
Among the organ acceptance models that consider the

effect of the waiting list, Alagoz et al. (2007a) implic-
itly models the waiting list through the organ arrival
probabilities. At the other extreme, a fully explicit model of
the waiting list would track the health, location, blood type,
and waiting time of all patients in the list. Our approach
balances the additional complexity associated with incor-
porating information about the waiting list with practical
considerations such as model calibration and solution time.
Furthermore, under the current liver allocation mecha-

nism, the priorities assigned to patients are not only deter-
mined by the characteristics of the patients in the waiting
list, but also by the characteristics of the donated liver.
Therefore, even in a hypothetical environment in which
all the patients’ characteristics are constant and no new
patients arrive, a currently listed patient may be assigned
different priorities for different livers. For example, the pri-
ority of a patient for a liver donated in the same geographic
service area as she is registered may be significantly dif-
ferent than her priority for an identical liver donated in a
different service area. Furthermore, even for two different
livers donated in the same geographic area, the patient may
be assigned different priorities depending on her blood type
compatibility with the donated livers. The current alloca-
tion mechanism partitions the United States into approx-
imately 60 geographic areas of varying sizes, population
densities, donation rates, and realized transplants, each of
which is served by a single Organ Procurement Organi-
zation (OPO), and assigns three blood type compatibility
levels to patients. Incorporating these two factors alone to
model the rank of a patient over all possible livers would
lead to a dramatic increase in the size of the state space.
As a compromise, we define a patient’s “rank” as a

scalar, namely, the rank of the patient among all patients’
expected priorities, where the expectation is taken over
all possible livers. To illustrate this definition, consider a
hypothetical example with four patients and two livers.
The characteristics of these patients are given in Table 1.
Assume that both livers are blood type A; however, Liver 1
is procured in OPO 1, whereas Liver 2 is procured in
OPO 2. All else held equal, the order of patient priorities
based on the current UNOS policy, from first to last, would
be a-b-c-d and c-a-b-d for Livers 1 and 2, respectively.
The expected priorities and the rank of expected priorities

Table 1. Patient characteristics for the hypothetical
example.

Geographic Blood Expected Rank of expected
Patient area type priority priorities

a 1 A 1�5 1
b 1 AB 2�5 3
c 2 A 2 2
d 3 O 4 4

of these patients are as shown in the respective columns
of Table 1. For the sake of exposition, from now on, we use
“rank” to mean the rank of the patient among all patients’
expected priorities.
We define a state, s, of the MDP model to be composed

of the triplet �h� �� k�, where h is the patient’s health status,
� is the quality of the liver being offered, and k is the rank
of the patient. We assume that the components of the state
can take on the following values: h ∈ � = �1�2� � � � �H	,
where the quality of health is decreasing as h increases;
� ∈ 
 = �1�2� � � � �L + 1	, where the quality of the liver
is decreasing as � increases, and L + 1 represents no liver
being offered; and k ∈ � = �1�2� � � �	, where the patient
moves further from the top of the waiting list as k increases.
For convenience, we add two absorbing states, � and  ,

to represent the dead and transplanted states, respectively.
Therefore, the state space of the model becomes

� =� ′ ∪ ��	 ∪ �	�

where

� ′ = ��h� �� k� � h ∈ ��� ∈ 
�k ∈ �	�

The set of possible actions in state s ∈� is

�s =

⎧⎪⎪⎨
⎪⎪⎩

�W	 if s = � or s = 

or s = ��h� �� k� � � = L + 1	�

�T �W	 otherwise,

where W stands for rejecting the offer and waiting for one
more period and T stands for accepting the offer and trans-
planting. The immediate rewards for each possible state-
action pair �s� a�, such that s ∈� and a ∈�s , is given by

r�s� a� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if s = � or s = �

rW �h� if s ∈� ′ and a = W�

rT �h� �� if a = T �

The patient does not accumulate any additional rewards
once she is dead or transplanted. Furthermore, a pretrans-
plant patient who chooses to wait for one more period
receives an intermediate reward of rW �h�, which is a func-
tion of the patient’s health status only. Finally, if the patient
chooses to transplant, she receives a lump-sum reward of
rT �h� ��, which is a function of both the patient’s health
status and the quality of the liver being offered.
The final component of the MDP model is the transi-

tion probabilities. When the patient chooses the transplant
action, she transitions to the transplanted state,  , with
probability one (i.e., P� � s� T 	 = 1 for all s ∈� such that
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T ∈�s). If, on the other hand, the patient chooses to wait,
then the transition probabilities are defined as

P�s′ � s = �h� �� k��W	

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p�h′� �′� k′ � h��� k� if s′ = �h′� �′� k′��

1− ∑
s′∈� ′

p�h′� �′� k′ � h��� k� if s′ = ��

0 if s′ = �

We assume that the transition probabilities and rewards
are stationary. We further assume that p�h′� �′� k′ �
h��� k� = ��h′ � h	 ·��k′ � k	 ·���′ � k′	 for all h�h′ ∈ ��
k�k′ ∈ � , and �� �′ ∈ 
, where ��h′ � h	 is the probability
that the patient’s health status will be h′ at time t +1 given
that her health at time t is h, ��k′ � k	 is the probability that
the patient’s rank will be k′ at time t + 1 given that her
rank at time t is k, and ���′ � k′	 is the probability that the
patient will be offered an organ of quality �′ at time t + 1
given that her rank at time t + 1 is k′. We assume that the
transitions among health states and the transitions among
rank states are independent. Admittedly, the patient’s rank
at time t +1 depends on her health at time t +1. However,
for analytical and computational tractability, we choose to
include the dependency on her rank at time t only. Because
patient rank is the primary indicator of patient health,
an additional dependency on health would not change
the values of these probabilities significantly. Finally, we
define the rank transition probability matrix, �, as � =
���k′ � k	�∀k�k′∈� , the health probability matrix, � , as � =
���h′ � h	�∀h�h′∈�, and the liver offer probability matrix,
�, as � = ����′ � k′	�∀k′∈��∀�′∈
. We emphasize that∑

k′∈� ��k′ � k	 =∑
�′∈
 ���′ � k′	 = 1 for all k�k′ ∈ � . We

interpret 1 − ∑
h′∈� ��h′ � h	 as the probability of dying

when the patient’s health is h.
Given the discount rate � ∈ �0�1�, the optimal solution

to this problem can be obtained by solving the Bellman
optimality equations (Puterman 1994)

v�h�L+1�k�

=rW �h�+�
∑

�h′��′�k′�
��h′ �h	·��k′ �k	���′ �k′	v�h′��′�k′�

∀h∈�� ∀k∈�� (1)

and

v�h���k�=max
{

rT �h����rW �h�+�

· ∑
�h′��′�k′�

��h′ �h	��k′ �k	���′ �k′	v�h′��′�k′�
}

∀h∈�� ∀k∈�� �∈
\�L+1	� (2)

The value associated with the absorbing states of death and
posttransplant, � and  , is zero by construction and these
states are, therefore, excluded from Equations (1) and (2).

3. Structural Properties
In this section, we establish several structural properties of
the MDP model formulated in §2. Specifically, we iden-
tify conditions on the parameters that guarantee structured
value functions and optimal policies. In addition to their
analytical elegance, such results may provide deeper insight
into the overall problem and help devise computationally
faster solution approaches.
The following assumptions hold throughout.

Assumption 1 (AS1). rW �h� is nonincreasing in h.

Assumption 2 (AS2). rT �h� �� is nonincreasing in both h
and �.

Assumption 1 implies that the intermediate reward of
waiting does not increase as the patient deteriorates. Simi-
larly, (AS2) implies that the posttransplant reward does not
increase as the patient deteriorates and/or the quality of the
liver degrades.
Proposition 1 establishes the intuitive fact that it is al-

ways better to be offered a higher-quality organ. The proof
is obvious and is therefore omitted.

Proposition 1. v�h� �� k� is monotonically nonincreasing
in � for any h ∈ � and k ∈ � .

Similar to Alagoz et al. (2007a), we define a liver-based
control-limit optimal policy to be a policy among the opti-
mal policies that, for a given health state h, and rank k,
distinguishes a critical liver state �∗ and prescribes “trans-
plant” for all livers �� �∗ and “wait” for all livers � > �∗.

Theorem 1. There exists a liver-based control-limit opti-
mal policy for all h ∈ � and k ∈ � .

Proof. For any given liver quality � < L, it suffices to
prove that if a∗�h� � + 1� k� = T , then a∗�h� �� k� = T for
all h ∈ � and k ∈ � . For any given h ∈ � and k ∈ � , if
a∗�h� � + 1� k� = T , then

v�h� � + 1� k� = rT �h� � + 1�

� rW �h� + �
∑
h′

∑
k′

∑
�′
��h′ � h	 ·��k′ � k	

·���′ � k′	 · v�h′� k′� �′��

Because v�h� �� k� = max�rT �h� ��� rW �h� + �
∑

h′
∑

k′∑
�′ ��h′ � h	 ·��k′ � k	 ·���′ � k′	 · v�h′� k′� �′�	 and AS2

implies rT �h� ��� rT �h� �+1� for � = 1� � � � �L−1, we find
v�h� �� k� = rT �h� ��. Therefore, a∗�h� �� k� = T for any
h ∈ � and k ∈ � . �

Next, we introduce the concept of a Column-wise Con-
cave with the maximum element of each column on the
Diagonal (CCD) matrix, which facilitates the results associ-
ated with the rank component �k� of the MDP model. Sev-
eral properties of CCD matrices are given in the appendix.
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Definition 1. An n×n stochastic matrix � is called CCD
(Column-wise Concave with the maximum element of each
column on the Diagonal) if, for i = 1� � � � � n−1, it satisfies

�i� ��j � i	���j � i + 1	 for j = 1�2� � � � � i� (3)

�ii� ��j � i	���j � i + 1	 for j = i + 1� � � � � n� (4)

This definition implies that within each column of a CCD
matrix, the values are nondecreasing up to (and including)
the diagonal element, and nonincreasing after the diagonal
element. As a consequence, a necessary (but not sufficient)
condition for a stochastic matrix to be CCD is to have the
maximum value within each column at the diagonal entry.
In the context of our MDP model, a CCD rank transition

probability matrix implies that the likelihood that a patient
with rank i moves to a better rank j1 < i in the next period
is at least as large as the likelihood of moving to the same
rank j1 from a rank that is further down the list. On the
other hand, the likelihood that a patient with rank i moves
to a worse rank j2 > i in the next period is no more than
the likelihood of moving to the same rank j2 if the patient
is further down the list than i. Proposition 2 presents an
inequality for the row differences of a CCD matrix, which
is used in proving Theorem 2. The proof is given in the
appendix.

Proposition 2. Let f � � → �+ and g� � → � be two
functions. If g�·� is nonincreasing and � is a CCD transi-
tion probability matrix, then the following hold�

�i�
∑
j�k

���j � k	 −��j � k + 1	�f �j�g�j�

� g�k� ·∑
j�k

���j � k	 −��j � k + 1	�f �j�� (5)

�ii�
∑
j>k

���j � k	 −��j � k + 1	�f �j�g�j�

� g�k� ·∑
j>k

���j � k	 −��j � k + 1	�f �j�� (6)

An immediate result of Proposition 2 is Corollary 1.

Corollary 1. If � is a CCD matrix and v�h� �� k� is
nonincreasing in k for any h ∈ � and � ∈ 
, then the fol-
lowing hold�

�i�
∑
�′

∑
k′�k

���k′ �k	−��k′ �k+1	����′ �k′	v�h′��′�k′�

�
∑
�′

v�h′��′�k�
∑
k′�k

���k′ �k	−��k′ �k+1	����′ �k′	�

�ii�
∑
�′

∑
k′>k

���k′ �k	−��k′ �k+1	����′ �k′	v�h′��′�k′�

�
∑
�′

v�h′��′�k�
∑
k′>k

���k′ �k	−��k′ �k+1	����′ �k′	�

Lemma 1 states that, for a given set of nonincreasing
weights, the nonnegative linear combination of the values

obtained by taking the difference of any two successive
rows of a CCD matrix is always nonnegative. The proof
of this lemma follows immediately from the fact that CCD
matrices have the increasing failure rate (IFR) property
(see Proposition 4 in the appendix and Lemma 4.7.2 of
Puterman 1994).

Lemma 1. Let �zj	
	
j=1 be a given sequence of nonnegative

and nonincreasing numbers. If � is a CCD transition prob-
ability matrix, then for any given k,∑

j

���j � k	 −��j � k + 1	�zj � 0�

Theorem 2 states that a patient’s maximum expected total
discounted reward does not increase in her rank. The condi-
tion on � simply states that a patient’s chance of receiving
a liver offer does not increase in her rank.

Theorem 2. If� is CCDand��� � k	 ismonotonically non-
increasing in k ∈ � for all � 
= L+1, then v�h� �� k� is mono-
tonically nonincreasing in k ∈ � for any h ∈ � and � ∈ 
.

Proof. By induction on the steps of the value iteration
algorithm.
We prove the theorem for � 
= L + 1 and note that the

proof for � = L + 1 follows similarly.
If we can show that the value functions at each iter-

ation of the value iteration algorithm are monotonically
nonincreasing in k ∈ � for given h ∈ � and � ∈ 
, then
the result holds by the convergence of value iteration. Let
vi�h� �� k� be the value associated with state �h� �� k� ∈ �
at the ith iteration of the value iteration algorithm and
assume, without loss of generality, that the algorithm starts
with a value of zero for each state, i.e., v0�h� �� k� = 0 for
all �h� �� k� ∈� .
It is clear that v1�h� �� k� is constant and therefore non-

increasing in k ∈ � for all h ∈ � and � ∈ 
.
Next, assume, as the induction hypothesis, that for a

given h ∈ � and � ∈ 
, vi�h� �� k� � vi�h� �� k + 1� for all
k ∈ � for iterations i = 2� � � � � n�
By Equation (2),

vn+1�h� �� k� =max
{

rT �h� ��� rW �h� + �
∑
h′

∑
k′

∑
�′
��h′ � h	

·��k′ � k	���′ � k′	vn�h′� �′� k′�
}

(7)

and

vn+1�h� �� k + 1�

=max
{

rT �h� ��� rW �h� + �
∑
h′

∑
k′

∑
�′
��h′ � h	

·��k′ � k + 1	���′ � k′	vn�h′� �′� k′�
}

� (8)

If an+1�h� �� k + 1� = T , then vn+1�h� �� k + 1� =
rT �h� ��� vn+1�h� �� k�.
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If an+1�h� �� k + 1� = W , then by Equations (7) and (8),

vn+1�h���k�−vn+1�h���k+1�

��
∑
h′
��h′ �h	

{∑
k′

∑
�′

���k′ �k	−��k′ �k+1	�

·���′ �k′	vn�h′��′�k′�
}

=�
∑
h′
��h′ �h	

{∑
�′

∑
k′�k

���k′ �k	−��k′ �k+1	����′ �k′	

·vn�h′��′�k′�+∑
�′

∑
k′>k

���k′ �k	−��k′ �k+1	�

·���′ �k′	vn�h′��′�k′�
}

� (9)

Because vn�h′� �′� k′� is nonincreasing in k′ ∈ � for all
h′ ∈ � and �′ ∈ 
, by the induction hypothesis, and the fact
that � is CCD, Corollary 1 implies that inequality (9) is
preserved if we replace vn�h′� �′� k′� by vn�h′� �′� k� for all
�h′� �′� k′�. Making this substitution and rearranging yields

vn+1�h� �� k� − vn+1�h� �� k + 1�

� �
∑
h′
��h′ � h	

{ ∑
�′ 
=L+1

vn�h′� �′� k�
∑
k′

���k′ � k	

−��k′ � k + 1	����′ � k′	

+ vn�h′�L + 1� k�
∑
k′

���k′ � k	

−��k′ � k + 1	���L + 1 � k′	
}

�

Employing the identity ��L + 1 � k′	 = 1 −∑
�′ 
=L+1���′ � k′	 yields

vn+1�h� �� k� − vn+1�h� �� k + 1�

� �
∑
h′
��h′ � h	

{ ∑
�′ 
=L+1

vn�h′� �′� k�

·∑
k′

���k′ � k	 −��k′ � k + 1	�

·���′ � k′	 − vn�h′�L + 1� k�

·∑
k′

���k′ � k	 −��k′ � k + 1	�

· ∑
�′ 
=L+1

���′ � k′	 + vn�h′�L + 1� k�

·∑
k′

���k′ � k	 −��k′ � k + 1	�
}

�

Eliminating the final term in the right-hand side of the last
inequality because it is always zero and rearranging yields

vn+1�h� �� k� − vn+1�h� �� k + 1�

� �
∑
h′
��h′ � h	

{ ∑
�′ 
=L+1

�vn�h′� �′� k� − vn�h′�L + 1� k��

·
[∑

k′
���k′ � k	 −��k′ � k + 1	����′ � k′	

]}
�

Now � � 0, ��h′ � h	 � 0 for all h�h′ ∈ �, and
vn�h′� �′� k� − vn�h′�L + 1� k� � 0 for all h′ ∈ ���′ ∈ 
�
and k ∈ � , by Proposition 1. Furthermore, because � is
CCD and � is nonincreasing in k′ ∈ � for fixed �′ 
= L+1,
Lemma 1 implies that

∑
k′ ���k′ � k	 −��k′ � k + 1	����′ �

k′	 � 0 for all �′ 
= L + 1. Therefore, vn+1�h� �� k� −
vn+1�h� �� k + 1�� 0, which completes the proof. �

The main result on the structure of the optimal policy
is given in Theorem 3, which establishes conditions under
which there exists a rank-based control-limit optimal pol-
icy. Analogous to a liver-based control-limit optimal policy,
a rank-based control-limit optimal policy is an optimal pol-
icy that prescribes, for a given health state h, and a liver
quality �, “wait” if the rank of the patient is below some
threshold rank k∗ and “transplant” for all ranks greater
than k∗.

Theorem 3. If � is CCD and ��� � k	 is monotonically
nonincreasing in k ∈ � for all � 
= L + 1, then there exists
a rank-based control-limit optimal policy.

Proof. By contradiction.
To prove the claim, we need to show that, given h ∈ �

and � ∈ 
, a�h� �� k� = T for any k ∈ � implies that
a�h� �� k′� = T for all k′ � k. In other words, given h ∈ �
and � ∈ 
, the optimal policy is of the following form:

a�h� ��1� = · · · = a�h� �� k − 1� = W�

a�h� �� k� = a�h� �� k + 1� = · · · = T �

for some k ∈ � .
Consider any rank k ∈ � and assume otherwise, i.e., as-

sume that a�h� �� k� = T but a�h� �� k + 1� = W uniquely.
This assumption, respectively, implies that v�h� �� k� =
rT �h� �� and v�h� �� k + 1� > rT �h� ��. Therefore, we find

v�h� �� k� − v�h� �� k + 1� < 0�

which contradicts the result of Theorem 2. �

Before we proceed with the results associated with the
health component �h� of the MDP model, we provide a
technical lemma that is used in the proof of Theorem 4.
The proof of the lemma and the definition of an IFR matrix
is given in the appendix. For notational convenience, we
denote the dead state, �, as H + 1 in the remainder of
the paper. Let the �H + 1� × �H + 1� augmented health
transition probability matrix �� , where the first H states
of this matrix represent the health states and the last state
represents death, be given by

�� =
[
� �I −��e

0 1

]
�

where I is the H × H identity matrix and e is an H × 1
vector of ones.
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Lemma 2. Let �� be an IFR transition probability matrix
and v�h� �� k� be a nonincreasing function of h ∈ � for any
k ∈ � and � ∈ 
. Then, the following hold for all h ∈ � �

�i�
∑
h′�h

{
� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�h′� �′� k′�

]}

�

[∑
k′

∑
�′
��k′ � k	���′ � k′	v�h� �′� k′�

]

· ∑
h′�h

� ���h′ � h	 − ���h′ � h + 1	�� (10)

�ii�
∑
h′>h

{
� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�h′� �′� k′�

]}

�

[∑
k′

∑
�′
��k′ � k	���′ � k′	v�h + 1� �′� k′�

]

· ∑
h′>h

� ���h′ � h	 − ���h′ � h + 1	�� (11)

Theorem 4 presents the conditions under which the value
function is monotone in patient health for fixed rank and
liver quality.

Theorem 4. If �� is IFR, then v�h� �� k� is monotonically
nonincreasing in h for any k ∈ � and � ∈ 
.

Proof. By induction on the steps of the value iteration
algorithm.
We prove the theorem for � 
= L + 1 and note that the

proof for � = L + 1 follows similarly.
Let vi�h� �� k� be the value associated with state

�h� �� k� ∈ � at the ith iteration of the value iteration
algorithm and assume, without loss of generality, that
the algorithm starts with a value of zero for each state,
i.e., v0�h� �� k� = 0 for all �h� �� k� ∈ � . It is clear, by
Assumptions AS1 and AS2, that the result holds for
iteration 1. Given that vn�h� �� k� � vn�h + 1� �� k�, we
must show that vn+1�h� �� k� � vn+1�h + 1� �� k�. Because
v�H + 1� = 0, by Equation (2),

vn+1�h� �� k� =max
{

rT �h� ��� rW �h� + �
∑
h′

∑
k′

∑
�′

���h′ � h	

·��k′ � k	���′ � k′	vn�h′� �′� k′�
}
(12)

and

vn+1�h + 1� �� k�

=max
{

rT �h + 1� ��� rW �h + 1� + �
∑
h′

∑
k′

∑
�′

���h′ � h + 1	

·��k′ � k	���′ � k′	vn�h′� �′� k′�
}

� (13)

If an+1�h + 1� �� k� = T , then vn+1�h + 1� �� k� = rT ·
�h + 1� ��� rT �h� ��� vn+1�h� �� k�.
If an+1�h + 1� �� k� = W , then by Equations (12)

and (13),

vn+1�h� �� k� − vn+1�h + 1� �� k�

� rW �h� − rW �h + 1� + �
∑
h′

���h′ � h	

·
{∑

k′

∑
�′
��k′ � k	���′ � k′	vn�h′� �′� k′�

}

−�
∑
h′

���h′ �h+1	

{∑
k′

∑
�′
��k′ �k	���′ �k′	vn�h′��′�k′�

}

� �
∑
h′

{
� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	vn�h′� �′� k′�

]}
� (14)

Because �� is IFR by assumption, ��·	 and ��·	 are
nonnegative by definition, and vn�h′� �′� k′� is nonincreas-
ing in h′ ∈ � for all k′ ∈ � and �′ ∈ 
, Lemma 2 implies
that inequality (14) is preserved if we replace vn�h′� �′� k′�
by vn�h� �′� k′� for all �h′� �′� k′�. Therefore,

vn+1�h� �� k� − vn+1�h + 1� �� k�

� �

[∑
k′

∑
�′
��k′ � k	���′ � k′	vn�h� �′� k′�

]

·∑
h′

� ���h′ � h	 − ���h′ � h + 1	��

The result follows because
∑

h′ � ���h′ � h	 − ���h′ �
h + 1	� = 0. �

Analogous to a liver-based or a rank-based control-limit
optimal policy, a health-based control-limit optimal policy
is defined as an optimal policy that prescribes, for a given
rank state k, and a liver quality �, “wait” in all health states
up to (and including) a threshold health state h∗ and “trans-
plant” in all health states greater than h∗. Given the result of
Theorem 4 and similar conditions to the conditions of The-
orem 3 in Alagoz et al. (2004), it can easily be shown that
there exists a health-based control-limit optimal policy.

4. Numerical Results
In this section, we present numerical results driven by clin-
ical data. Section 4.1 discusses the parameter estimation
process for the MDP model formulated in §2 and presents
a numerical example for a patient with Hepatitis B. Sec-
tion 4.2 discusses the concept of price of privacy in greater
detail and presents the results of a numerical study for 200
ESLD patients.

4.1. Parameter Estimation and an Example

In our computational experiments, we define each period to
be one day and consider the objective of maximizing the
patient’s total expected remaining lifetime. Therefore, we
set rW �h� = 1 for all h ∈ � and estimate the patient-specific
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total expected posttransplant life days, rT �h� �� for all
h ∈ � and � ∈ 
, using the posttransplant survival model
of Roberts et al. (2004).
Adult ESLD patients are classified by disease severity

into Status 1 patients (i.e., patients with a life expectancy of
less than seven days without a liver transplant) and MELD
(Model for End-Stage Liver Disease) patients. We only
consider MELD patients in this study because there are
typically fewer than a dozen Status 1 patients nationwide
at a given time. In the allocation mechanism, each MELD
patient has an integer-valued MELD score based on several
lab values between 6 (healthiest) and 40 (sickest). However,
due to sparsity of the available data, we represent patient
health �h� by MELD scores aggregated in groups of two.
Because the natural history of ESLD depends on the type
of diagnosis, we estimate different � matrices for different
disease groups using the Natural History Model of Alagoz
et al. (2005).
We also follow the liver quality classification scheme of

Alagoz et al. (2007a), which considers 14 liver qualities
as determined by the age, race, and gender of the donor
(Roberts et al. 2004). Detailed descriptions of the liver
quality assignment scheme and the estimation of rT �h� ��
are provided in Alagoz et al. (2007a).
To estimate � and �, we use the national liver allo-

cation model of Shechter et al. (2005), which simulates
the evolution of the waiting list under various liver alloca-
tion policies for the United States based on clinical data.
We resort to this simulation model to collect rank infor-
mation, which is not available in any form from any of
the clinical resources. Tracking the rank of a patient in the
nationwide waiting list would result in enormously large �
and � matrices given that the waiting list contains nearly
20,000 patients. Moreover, the vast majority of offers are
made to patients in the same geographic area as the donated
liver because the allocation mechanism exhausts the local
geographic area before considering other areas. Therefore,
we simulate the national waiting list, but track the rank
of the patients within the geographic area where they are
registered. Because OPOs represent different populations,
for each OPO we estimate different � and � matrices of
varying sizes depending on the size of the geographic area
served by the OPO. For notational convenience, we drop
the dependency on OPOs in the following discussion.
We use 30 independent replications of the simulation

to estimate � and �. In their original paper, Shechter
et al. (2005) also used 30 replications for their simulation
model and found that the simulation output closely matches
UNOS data for several important statistics such as number
of new patients listed, number of cadaveric donors, num-
ber of transplants, median waiting time for a transplant, and
one-year survival rates for patients and organs after receiv-
ing the transplant. To estimate �, for each OPO, we count
the number of offers each rank receives during the simula-
tion, provided a liver is donated, and transform these counts
into probabilities. Let f �k� represent the probability that a

rank k patient in an arbitrary OPO receives an offer given
that a liver is offered in her OPO. When a liver is offered
in an OPO, the patient having the highest priority in this
OPO receives this offer, and depending on her decision, the
liver may be offered to the patient with the second-highest
priority and so on. Therefore, we assume that f �1� = 1 and
f �k� is monotonically nonincreasing in k. The second step
in estimating each � matrix involves augmenting f �k� to
distinguish between liver qualities. To do so, we fit an expo-
nential function of the form exp�−�k� to f �k� using ordi-
nary least squares. Then, to ensure that higher-quality livers
are accepted earlier, we perturb � to obtain f̃ �k� ��, the prob-
ability that a rank k patient receives a donated liver of qual-
ity � given that this liver is offered in her OPO. In doing so,
we assume that the probability that a rank k patient receives
an average-quality liver is at most twice that of the highest-
quality liver (i.e., � = 1) and is at most 2/3 of the probability
of receiving the lowest-quality liver (i.e., � = 14). Specifi-
cally, we obtain the perturbed � values, ��, by

�� =
⎧⎨
⎩

��1+ 1/�� if � = 1� � � � �7�

��1− 0�05�� − 7�� if � = 8� � � � �14�

For a typical OPO, Figure 2 shows the original f �k�
as estimated from the simulation and the best exponential
fit to f �k� as discussed above. Figure 3 shows the result-
ing f̃ �k� �� functions for � = 1� � � � �14. Next, we assume
that liver arrivals in each OPO follow a Poisson process
such that the probability that there is a liver offer in this
OPO during an arbitrary day is given by �, where � is
estimated using data obtained from UNOS (UNOS 2006a).
Lastly, let ��·� be the organ quality distribution of an arriv-
ing liver, which we obtain from the simulation by counting
the number of liver offers of each quality. Then,

��� � k	 = � · ���� · f̃ �k� �� for all � 
= L + 1� k ∈ ��

and

��L + 1 � k	 = 1− ∑
�∈


��� � k	 for all k ∈ ��

Figure 2. Liver offer probabilities as a function of rank
given there is an offer for OPO “A.”
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Note. r2 = 0�9991 for the exponential fit to f �k�.
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Figure 3. Liver offer probabilities as a function of rank given there is an offer of some quality for OPO “A.”
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Notes. Given f �1� = 1 and f �k� is nonincreasing in k, we construct f̃ �1� �� = 1 and f̃ �k� �� is monotonically nonincreasing in k for all � = 1� � � � �14.
Furthermore, �f̃ �k� ��/�k < �f̃ �k� � + 1�/�k for � = 1� � � � �13, indicating that higher-quality livers are accepted sooner.

Even within an OPO, the number of rank states can be
as large as several thousand for OPOs serving large popu-
lations, which may yield computationally intractable prob-
lems. For this reason, for each OPO, we aggregate the
rank states into 30 new rank states, which is found to be
computationally tractable for the numerical study presented
in §4.2, using the original f �k� estimates in the following
manner. Given a number of original rank states, we start
from rank 1 and consolidate the first j ranks, where j is the
maximum number of ranks such that the difference between
the average function value over these j states and the

Figure 4. Effect of state aggregation on f �k� for OPO “A.”
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Notes. This OPO originally had 615 rank states. The first seven original rank states remain unaggregated, the next two form rank 8, and so on.

function value at the �j +1�st state (e.g., �1/j�
∑j

i=1 f �i�−
f �j +1�) is larger than some predetermined threshold. The
threshold is found by line search so as to guarantee 30 final
rank states. We then repeat this process starting from the
�j +1�st rank and so on. Figure 4 depicts the approximation
generated by this aggregation scheme for a typical OPO.
Table 2 displays detailed information about the aggregated
rank states for this OPO.
To estimate the corresponding 30×30 � matrix for each

OPO, we count the number of transitions during the sim-
ulation from each rank to every rank. We then transform
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Table 2. Aggregated rank information for OPO “A.”

Aggregated Original Aggregated Original Aggregated Original
rank rank rank rank rank rank

1 1 11 14–15 21 43–46
2 2 12 16–17 22 47–50
3 3 13 18–19 23 51–55
4 4 14 20–22 24 56–61
5 5 15 23–25 25 62–68
6 6 16 26–28 26 69–78
7 7 17 29–31 27 79–90
8 8–9 18 32–34 28 91–107
9 10–11 19 35–38 29 108–140
10 12–13 20 39–42 30 141–615

these counts into transition probabilities by dividing each
count by its row sum. Finally, we average the resulting tran-
sition probabilities across replications. Across all estimates
of �, the maximum standard error of the point estimates
varies between 0.1245% and 0.3682% with an average of
0.1844% and a standard deviation of 0.0448%. Similarly,
the maximum standard error of the point estimates in �
varies between 0.0684% and 0.3616% with an average of
0.1594% and a standard deviation of 0.0709%.
Finally, we assume an annual discount rate of 0.97,

which translates into a daily discount rate ��� of 0.999917.
Given these parameter estimates, Figure 5 depicts the

optimal policy, which exhibits control-limit structure in all
components, for a 50-year-old female patient in OPO “B”
with Hepatitis B. In Figure 5, liver quality 15 represents

Figure 5. Control-limit optimal policy in all parameters for a 50-year-old patient with Hepatitis B.
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the “no liver offer” case. As shown in Figure 5, the optimal
action varies across liver quality and health as measured by
MELD score. If the patient is at the top of the list and has
a MELD score of 20, then the optimal policy prescribes
“transplant” for a liver of quality 1 and “wait” otherwise.
This is an example of a liver-based control-limit optimal
policy. Similarly, if the patient is at the top of the list and
receives a liver offer of quality 2, then the optimal policy
prescribes the “wait” action if her MELD score is below 25
and the “transplant” action otherwise. This is an example of
a health-based control-limit optimal policy. Figure 5 further
shows that the optimal action varies significantly by rank as
well. The “Transplant” region is smallest when the patient
is at the top of the list and gradually grows as her rank dete-
riorates. In other words, the patient is more selective if she
is at the top of the list and becomes less selective if her rank
decreases. For example, when the patient’s MELD score
is 20 and she is at the top of the list, she rejects all liver
offers of quality �� 2 and accepts only the highest-quality
liver. However, at the same MELD score, if she is at the
bottom of the list, she rejects only liver offers of quality
�� 12 and accepts all liver offers of quality � < 12, which
is an example of a rank-based control-limit optimal policy.
In all of our 200 test problems that are randomly gener-

ated from the simulation model of Shechter et al. (2005),
(AS1) and (AS2) are satisfied by the reward estimates
rW �h� and rT �h� l�, and the conditions on � in Theorems 2
and 3 are satisfied by the parameter estimates. However,
the CCD condition on the � matrix is not always satisfied,
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although violations are not large. To quantify the magnitude
of the violation of the CCD condition, we define the fol-
lowing metric:

� =∑
k′

�k′ �

where

�k′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
k′
max�0���k′ � k	 −��k′ � k + 1		

for k′ = 1� � � � � k − 1�∑
k′
max�0���k′ � k + 1	 −��k′ � k		

for k′ = k�k + 1� � � � �

Note that � depends on the geographic area. Across all the
estimates of � for each of the OPOs, � varies between
0.001838 and 0.005425 with an average of 0.003332 and
a standard deviation of 0.000806. Given the monotonicity
of the value function in k and the rank-based control-limit
optimal policy in all of the 200 test instances, we conclude
that the results of Theorems 2 and 3 are fairly robust to
small violations of the CCD requirement for the � matrix.
We refer the reader to Alagoz et al. (2004) for a discussion
of violations on the �� matrix.

4.2. Estimating the Price of Privacy

The societal price of privacy is the aggregate benefit that
society would accrue if the waiting list were made trans-
parent. An estimate for the true price of privacy would be
obtained by comparing a system (in which every patient has
partial rank information as in the current allocation system
and behaves optimally with this information) to a bench-
mark system (in which every patient has full rank informa-
tion and behaves optimally). Our current model is unable
to provide an exact value for the societal price of privacy
because if the waiting list were to become transparent, the
organ offer probabilities would change substantially as the
allocation system moved to a new equilibrium, thus making
precise parameter estimation using existing data impossi-
ble. Rather, due to difficulties in identifying an equilibrium
in either of these systems, we focus on a special case where
only one patient, who is provided the waiting list informa-
tion, is considered. As a result, the quantities we provide
can be viewed as estimates for the true values. We define
the patient’s price of privacy (PPoP) as the amount of life
days gained when she acts optimally based on full knowl-
edge of the waiting list, as opposed to her optimal actions
under the current allocation rules.
We provide an estimate of the PPoP by comparing

the model of §2, denoted the explicit waiting list model
(EWLM), to the implicit waiting list model (IWLM) of
Alagoz et al. (2007a). More specifically, let �a be an opti-
mal IWLM policy and �E be an optimal EWLM policy for
the same patient. For any given h ∈ � and � ∈ 
, define

�I�h� �� k� = �a�h� �� for all k ∈ ��

This policy �I may be viewed as the projection of the
optimal IWLM policy onto the EWLM state space. Intu-
itively, if the patient does not have any rank information
and solves IWLM, then her optimal actions as prescribed
by this model should be same for each �h� �� pair regard-
less of her rank, k. Let the benefit of using policy �E over
policy �I in state �h� �� k� ∈� ′ be given by

b�h� �� k� = v�E �h� �� k� − v�I �h� �� k��

where v�E �h� �� k� and v�I �h� �� k�, respectively, is the
maximum total expected discounted reward for state
�h� �� k� associated with policy �E and �I .
Proposition 3 establishes that the benefit of using pol-

icy �E over policy �I is nonnegative in every state, which
implies that an optimal policy recommended by IWLM
may not provide the true optimal policy for EWLM. The
proof is obvious and is therefore omitted.

Proposition 3. b�h� �� k� � 0 for all h ∈ ��� ∈ 
, and
k ∈ � .

We provide an estimate of a PPoP ratio (i.e., the ratio of
the patient’s price of privacy to her optimal reward under
the current allocation rules) using the following formula:

� = b�h̃�L + 1�K�

v�I �h̃�L + 1�K�
� (15)

where h̃ is the patient’s health at the time of her registration
to the waiting list and K = supk∈� �k	. This metric measures
the improvement associated with using the optimal EWLM
policy over the optimal IWLM policy as a fraction of the
optimal value of being in state �h̃�L + 1�K�. We choose
state �h̃�L+1�K� because the rank of a new patient is usu-
ally very low and a patient rarely receives a liver offer on the
day she joins the list. The quantity given by Equation (15)
provides an estimate of the true PPoP ratio partly because of
the fact that IWLM does not model the partial information
availability in the current liver allocation system.
Consider, for example, the patient whose optimal policy

is depicted in Figure 5. The estimate of her PPoP ratio,
as computed using Equation (15), is 4.51%, which corre-
sponds to 103.01 additional expected life days. Figure 6
adds the projected optimal IWLM policy to Figure 5 for the
same patient. First note that, by construction, the optimal
action of this projected policy does not vary across rank
states. Furthermore, although the trends are same, the con-
trol limits h∗ and �∗ of the projected policy do not always
coincide with those of the optimal EWLM policy. In other
words, �∗ is nondecreasing in h for fixed k in both policies;
however, they do not always coincide. Similar observations
apply for h∗ as well.
We compute the estimate � for the true PPoP ratio for

each of the 200 patients generated by the national liver allo-
cation model of Shechter et al. (2005). Figure 7 presents a
histogram of the � values for all 200 patients. The � values
range between 0.31% and 15.57%, with a median value of
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Figure 6. Comparison of EWLM and IWLM optimal policies.
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4.59%, an average value of 5.22%, and a standard deviation
of 3.82%.
Table 3 presents the descriptive statistics associated with

the estimated PPoP ratios for the sampled patients in differ-
ent disease groups; Table 4 presents these statistics by age
range; and Table 5 presents these statistics by geographic
area. We observe that the mean � values for patients in dis-
ease groups 1 and 4 and for those in disease groups 2 and 3
are close to each other. However, the mean � for patients in
disease groups 1 and 4 is more than 25% higher compared to
that for patients in disease groups 2 and 3. Patients in disease

Figure 7. Histogram of the estimate for PPoP ratio for
200 patients generated from simulation.
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groups 1 and 4 have the best post-transplant survival (e.g.,
10-year survival is approximately 75%), whereas patients in
disease groups 2 and 3 have much poorer posttransplant sur-
vival (e.g., 10-year survival is approximately 60%). There-
fore, it appears that the PPoP ratio declines as the benefit of
transplantation declines.
The mean � for patients younger than 20 and older than

70 is about 40% less than that for patients in the remaining
age groups. Although we do not observe any major differ-
ence in the mean � values for patients in the remaining age
groups, the results indicate a general decrease in the PPoP
ratio as age increases. Because elderly patients have shorter
posttransplant survival, this observation further supports the
hypothesis that a PPoP ratio decreases with decreased post-
transplant survival.
As seen in Table 5, Regions 6–11 serve significantly

larger populations than those served by regions 1–5. The
mean � for patients registered in OPOs serving larger pop-
ulations is observed to be about 3.5 times the mean � for
patients registered in OPOs serving smaller populations.
This result is intuitive because as the size of population
served in a geographic area increases, the liver offer prob-
ability differs significantly across ranks.

5. Summary and Future Research
We develop an MDP model to optimize the accept/reject
decision faced by ESLD patients. This model explicitly
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Table 3. Descriptive statistics for estimated PPoP ratio
��� by disease group.

Disease Number of Standard
group patients Min Max Median Mean deviation

1 81 0�31% 15�01% 4�82% 5�61% 4�34%
2 71 0�47 11�53 4�35 4�79 2�96
3 22 0�75 10�36 2�88 3�85 2�82
4 26 0�60 15�57 6�34 6�36 4�55

ALL 200 0�31 15�57 4�59 5�22 3�82

Notes. Disease group 1 includes primary biliary cirrhosis, primary
sclerosing cholangitis, alcoholic liver disease, and autoimmune dis-
orders; disease group 2 includes Hepatitis B and C viruses; dis-
ease group 3 patients have acute liver failure; and disease group 4
patients have metabolic disorders (e.g., glycogen storage disease
types I and II, and Gaucher’s disease).

considers waiting list effects by augmenting the state space
of the implicit waiting list model studied by Alagoz et al.
(2007a). We derive conditions under which the optimal
value function is monotone in each dimension of the state
space, namely, health, liver quality, and rank, and condi-
tions under which control-limit optimal policies exist for
each dimension. In establishing these results, we define a
new class of stochastic matrices, termed CCD matrices, and
explore its relationship to well-known classes of matrices
(i.e., IFR and TP2 matrices). Computational experiments
parameterized by clinical data reveal that complete knowl-
edge of the composition of the waiting list significantly
affects the optimal policy. In particular, a patient is much
more selective if she knows that she is near the top of
the waiting list and becomes gradually less selective as her
position deteriorates.
We solve our explicit waiting list model for 200 ran-

domly generated patients. Although the conditions of The-
orems 2 (monotonicity in rank) and 4 (monotonicity in
health) are not always satisfied, in all 200 cases the value
function is monotone in each component of the model
(i.e., h��, and k). This result suggests that the monotonic-
ity of the value function is robust to small violations of the
CCD condition on the rank transition probability matrix, as
well as the IFR condition on the augmented health transi-
tion probability matrix. In all of our computational experi-
ments, the conditions of Theorem 1 hold, and therefore we
find the optimal policy to be of liver-based control-limit

Table 4. Descriptive statistics for estimated PPoP ratio ��� by age group.

Age group Number of patients Min Max Median Mean Standard deviation

Age< 20 5 1�27% 5�38% 2�05% 2�66% 1�73%
20�Age< 30 8 1�09 11�78 4�46 5�27 4�06
30�Age< 40 34 0�31 15�57 4�95 5�78 4�09
40�Age< 50 54 0�73 14�56 6�02 5�96 3�32
50�Age< 60 56 0�35 14�50 3�92 4�76 4�09
60�Age< 70 39 0�40 15�01 4�18 4�84 4�01
Age� 70 4 1�43 6�04 3�83 3�78 2�08

ALL 200 0�31 15�57 4�59 5�22 3�82

type. Although the CCD condition of Theorem 3 is not
always satisfied, the magnitudes of the violations are not
significant, and, as a result, the optimal policy always has a
rank-based control limit in our experiments. However, for
some patients, the optimal policy does not have a health-
based control limit. As noted by Alagoz et al. (2007a), as
the patient deteriorates, the rate of increase in the proba-
bility of receiving higher-quality liver offers may be suffi-
ciently high so that she rejects low-quality livers that she
would have accepted in better health in anticipation of
higher-quality liver offers.
We use our explicit waiting list model to estimate a

patient’s price of privacy, which is incurred due to subop-
timal decision making from a lack of complete waiting list
information. By comparing the results of our model to those
of the implicit waiting list model of Alagoz et al. (2007a),
we provide a quantitative estimate for a patient’s price
of privacy. Our computational experiments reveal that this
quantity varies significantly by the particular etiology of
ESLD. Indeed, although the majority of the patients would
realize a less than 6% increase in total expected remaining
lifetime by having complete information about the waiting
list, there are patients in our study who realize improve-
ments as high as 15%. In particular, patients diagnosed with
diseases that yield shorter posttransplant survivals tend to
have a smaller PPoP ratio. Similarly, the PPoP ratio tends
to be smaller for older patients, who typically have shorter
posttransplant survivals. Furthermore, our results indicate
that patients registered in OPOs serving larger populations
experience a higher PPoP ratio.
The numerical estimates presented in this paper are

immediately useful to the policy makers if the value of
maintaining a concealed waiting list exceeds these quan-
tities. Furthermore, we are unaware of other research that
attempts to quantify a cost of privacy in health care; we
are aiding policy makers by demonstrating that such a cost
may indeed exist. However, our findings are several steps
away from providing precise estimates of the price of pri-
vacy. Furthermore, even if our estimates were exact, the
benefits may not be shared equally among all patients, and
it is likely that some patients will be worse off under a
transparent waiting list. Our results need further support
before any changes are implemented. Due to the difficulties
inherent in describing the new equilibrium in response to a
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Table 5. Descriptive statistics for estimated PPoP ratio
��� by geographic area.

Region Number of Standard
ID patients Min Max Median Mean deviation

1 2 0�47% 0�60% 0�53% 0�53% 0�10%
2 6 0�64 2�91 0�88 1�18 0�86
3 8 0�40 2�34 1�33 1�28 0�70
4 7 0�44 3�70 1�47 1�84 1�18
5 6 0�31 5�40 2�25 2�55 2�15
6 20 0�72 7�68 3�09 3�11 1�96
7 25 1�41 9�18 4�18 4�66 2�26
8 28 0�55 15�01 5�77 5�18 3�76
9 34 0�54 15�57 5�01 6�33 5�30

10 15 1�76 10�66 5�51 6�71 2�89
11 49 0�59 12�14 8�35 7�32 3�12

ALL 200 0�31 15�57 4�59 5�22 3�82

Note. We group the OPOs by region; however, the regions are re-
numbered due to a data use agreement with UNOS.

change in allocation policy, we suggest that policy makers
initiate limited pilot studies over small populations (e.g., in
a single OPO) to gauge the accuracy of our estimates if
they believe that increasing the transparency of the waiting
list may be beneficial.
One potential limitation of the current numerical study

is that the parameter estimates used in this study are point
estimates. As more data become available, future work
should include extensive sensitivity analysis on these point
estimates. Also, this limitation can potentially be overcome
by incorporating robust dynamic programming techniques
(Iyengar 2005, Nilim and Ghaoui 2005).
We emphasize that the estimate we provide for a patient’s

price of privacy can be further refined by incorporating
the partially observable nature of the waiting list under the
current liver allocation system. Modeling this partial infor-
mation availability, and hence obtaining a better estimate
of the price of privacy, is left for future research. More-
over, if a single transplant center dominates an OPO, then
the price of privacy for the patients listed in such an OPO
may be significantly smaller than what is suggested by our
numerical study. This result is expected because physicians
in such OPOs may currently be able to discern a patient’s
rank fairly precisely. Our model also provides a more real-
istic representation of the decision-making process in these
situations.
Furthermore, we assume that the current equilibrium of

the liver allocation system is not affected by the completely
observable waiting list assumption. In other words, we
assume that all other patients continue to make decisions
according to their current policies, and therefore the rank
transition probability matrix and the liver offer probability
matrix can be estimated using existing data. If completely
publishing the waiting list causes the current equilibrium
of the liver allocation system to shift, then estimating
the price of privacy becomes dramatically more difficult,
and would require modeling techniques such as compet-
itive Markov decision processes (Filar and Vrieze 1996,

Neyman and Sorin 2003). A complete equilibrium analysis
would require analyzing an asymmetric stochastic game
with thousands of players each with nonzero-sum rewards.
Analysis of such a large-scale game-theoretic model and
hence answering the question of how the match (e.g.,
median waiting time before a transplant, average quality-
adjusted life years gained) between patients and organs
changes under a new equilibrium that emerges when every
ESLD patient has access to the liver transplant waiting list
is left for future research.
Another interesting research direction is to study how

to reduce the price of privacy. Individual patients might
choose to reveal their relevant information to other such
patients by joining an information-sharing consortium. This
practice would give members of the consortium a more
complete view of the waiting list. Several interesting ques-
tions arise from such a data-sharing agreement: How
large must such a consortium be before benefits accrue
to its members? How would the composition of a con-
sortium affect the benefits/costs to the members? How
would patients who refuse to join be affected? Finally,
if UNOS does not manage such a consortium, can data-
sharing agreements be made so that each patient has an
incentive to represent her information truthfully? We leave
these and other such questions for future research.

Appendix. Properties of CCD Matrices
This appendix gives the proofs of the technical materials
presented in §3 and collects together several properties of
CCD matrices whose definition was introduced in §3. We
start with the proofs.

Proof of Proposition 2. (i) If � is a CCD matrix, then
the term in the square brackets on the left-hand side of
inequality (5) is nonnegative by definition (see Equa-
tion (3)). Thus, the coefficient of g�j� is nonnegative for
all j on the left-hand side of (5) because we are given non-
negative f �j�. Furthermore, because g�j� � g�k� for any
j � k, we can write

∑
j�k

���j � k	 −��j � k + 1	�f �j�g�j�

� g�k�
∑
j�k

���j � k	 −��j � k + 1	�f �j��

which establishes the result.
(ii) Similar to the proof in case (i). �

Proof of Lemma 2. (i) Starting with the left-hand side of
inequality (10), we can write

∑
h′�h

{
� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�h′� �′� k′�

]}
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= � ���1 � h	 − ���1 � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�1� �′� k′�

]

+
h∑

h′=2

{
� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�h′� �′� k′�

]}

�

2∑
h′=1

� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�2� �′� k′�

]

+
h∑

h′=3

{
� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�h′� �′� k′�

]}
�

where the last inequality follows from the fact that �� IFR
implies ���1 � h	 − ���1 � h + 1	 � 0, ��·	 and ��·	 are
nonnegative, and v�1� �′� k′� � v�2� �′� k′�. Repeating this
argument (i.e., �� IFR implies

∑2
h′=1� ���h′ � h	 − ���h′ �

h + 1	 � 0, ��·	 and ��·	 are nonnegative by definition,
and v�2� �′� k′�� v�3� �′� k′�) yields∑
h′�h

{
� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�h′� �′� k′�

]}

�

[∑
k′

∑
�′
��k′ � k	���′ � k′	v�3� �′� k′�

]

·
3∑

h′=1

� ���h′ � h	 − ���h′ � h + 1	�

+
h∑

h′=4

{
� ���h′ � h	 − ���h′ � h + 1	�

·
[∑

k′

∑
�′
��k′ � k	���′ � k′	v�h′� �′� k′�

]}
�

Continuing in this manner until v�h − 1� �′� k′� is
replaced by v�h� �′� k′� establishes the result.
(ii) Similar to the proof in case (i). �

Next, we show the relationship between CCD matrices
and two other important classes of stochastic matrices in
the literature, namely, IFR matrices and TP2 matrices. We
start by recalling the definitions of IFR matrices and TP2

matrices.

Definition 2. An n × n stochastic matrix P is called IFR
(Increasing Failure Rate) if, for i = 1� � � � � n − 1�
n∑

j=k

P�j � i	�
n∑

j=k

P�j � i + 1	 for k = 1� � � � � n�

Definition 3. An n × n stochastic matrix P is called TP2

(Totally Positive of order 2) if the determinants of all 2×2
submatrices of P are nonnegative.

IFR and totally positive matrices have been extensively
studied. We know that a TP2 matrix is also IFR (Karlin
1968) and are interested in finding any relationship between
the CCD class and these two classes. Proposition 4 states
that every CCD matrix is also an IFR matrix.

Proposition 4. If P is CCD, then it is also IFR.

Proof. Let P be an n×n stochastic CCD matrix and pick
an arbitrary index i ∈ �1� � � � � n	.
Initially consider the first set of inequalities, (3), for the

given i that must hold for a CCD matrix. Summing these
inequalities for j = 1 to i2, where i2 = 1� � � � � i, we obtain

i2∑
j=1

P�j � i	�
i2∑

j=1

P�j � i + 1	 for i2 = 1� � � � � i�

⇒1−
n∑

j=i2+1

P�j � i	�1−
n∑

j=i2+1

P�j � i+1	 for i2=1�����i�

⇒
n∑

j=i2+1

P�j � i	�
n∑

j=i2+1

P�j � i + 1	 for i2 = 1� � � � � i�

⇒
n∑

j=k

P�j � i	�
n∑

j=k

P�j � i + 1	 for k = 2� � � � � i + 1� (16)

Now consider the second set of inequalities, (4), for the
given i that must hold for a CCD matrix. Summing these
inequalities for i1 through j = n, where i1 = i + 2� � � � � n,
we obtain

n∑
j=i1

P�j � i	�
n∑

j=i1

P�j � i + 1	 for i1 = i + 2� � � � � n� (17)

Finally, combining results (16) and (17), we obtain

n∑
j=k

P�j � i	�
n∑

j=k

P�j � i + 1	 for k = 2� � � � � n� (18)

In addition, because both sides of the inequality in (18)
are equal to one when k = 1, we conclude that the inequal-
ity holds for k = 1� � � � � n, which is the definition of an IFR
matrix. �

Proposition 5 states that not every IFR matrix is CCD.

Proposition 5. If P is IFR, then it is not necessarily CCD.

Proof. Consider the following stochastic matrix:

P =

⎡
⎢⎢⎣
0�8 0�1 0�1

0�7 0�1 0�2

0�5 0�2 0�3

⎤
⎥⎥⎦ �

P is IFR, but it is not CCD because the maximum ele-
ment of the second column does not appear on the diagonal
entry. �
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Having proved that CCD is a stronger condition than
IFR, we now investigate how CCD is related to TP2. Propo-
sition 6 shows that CCD and TP2 conditions are equivalent
for 2×2 matrices. However, the answer remains ambiguous
for matrices of larger size, as indicated in Remark 1.

Proposition 6. Consider an n×n stochastic matrix P . For
n = 2, P is CCD ⇔ P is TP2 ⇔ P is IFR.

Proof. (i) Let P be given as

P =
[

a 1− a

b 1− b

]
�

where 0 � a�b � 1. First, assume that P is CCD. Then,
a� b must hold. Therefore, � P �= a�1− b� − b�1− a� =
a − b � 0, which implies P is TP2. Next, assume that P
is TP2. Then, � P �= a�1− b� − b�1− a� = a − b � 0 must
hold. Therefore, a� b, which implies P is CCD. This com-
pletes the proof for the equivalence of the CCD and TP2

conditions.
Finally, assume that P is IFR. Then, 1 − a � 1 − b

must hold. Therefore, a � b, which implies P is CCD.
Combining this result with that of Proposition 4 com-
pletes the proof for the equivalence of the CCD and IFR
conditions. �

Remark 1. For n > 2, if P is CCD �TP2�, then it is not nec-
essarily TP2 (CCD) as indicated by the following examples.
First, it is easily verified that the following matrix

is CCD:

P =

⎡
⎢⎢⎣
0�9 0�1 0�0

0�6 0�2 0�1

0�4 0�1 0�5

⎤
⎥⎥⎦ �

however, it is not TP2 because the lower left 2× 2 subma-
trix has a negative determinant.
Second, the following TP2 matrix is not CCD because

the maximum element in the second column is not on the
diagonal:

P =

⎡
⎢⎢⎣
0�4 0�4 0�2

0�3 0�3 0�4

0�2 0�3 0�5

⎤
⎥⎥⎦ �
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