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ABSTRACT. Mitchell’s theorem on the approachability ideal states that it is
consistent relative to a greatly Mahlo cardinal that there is no stationary subset
of wa Ncof(w1) in the approachability ideal I[wz]. In this paper we give a new
proof of Mitchell’s theorem, deriving it from an abstract framework of side
condition methods.
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2 THOMAS GILTON AND JOHN KRUEGER

Introduction

The approachability ideal I[A\T], for an uncountable cardinal A, is defined as
follows. For a given sequence @ = (a; : i < A\T) of bounded subsets of A", let Sz
denote the set of limit ordinals o < AT for which there exists a set ¢ C «, which
is club in a with order type cf(«), such that for all 8 < «, there is i < a with
cN B = a;. Intuitively speaking, the set Sz carries a kind of weak square sequence,
namely a sequence of clubs such that for each a in Sz, the club attached to a has
its initial segments enumerated at stages prior to . Define I[AT] as the collection
of sets S C AT for which there exists a sequence @ as above and a club C C A\t
such that SN C C Sz. In other words, I[A"] is the ideal of subsets of AT which is
generated modulo the club filter by sets of the form Sz.

Let X be a regular uncountable cardinal. Shelah [14] proved that the set AT N
cof(< M) is in I[A*]. Therefore the structure of I[A*] is determined by which
subsets of AT N cof(\) belong to it. At one extreme, the weak square principle [
implies that AT Ncof(A) is in I[AT]; therefore I[AT] is just the power set of AT. The
opposite extreme would be that no stationary subset of AT Ncof () belongs to I[AT],
in other words, that I[A"] is the nonstationary ideal when restricted to cofinality
A. Whether the second extreme is consistent was open for several decades, and was
eventually solved by Mitchell [12]. Mitchell proved that it is consistent, relative to
the consistency of a greatly Mahlo cardinal, that there does not exist a stationary
subset of wy N cof(wy) in Ifws]. We will refer to this result as Mitchell’s theorem.

Mitchell’s theorem is important not only for solving a deep and long-standing
open problem in combinatorial set theory, but also for introducing powerful new
techniques in forcing. A basic tool in the proof is a forcing poset for adding a
club subset of wy with finite conditions, using finite sets of countable models as
side conditions. A similar forcing poset was introduced by Friedman [3] around the
same time. The use of countable models in Friedman’s and Mitchell’s forcing posets
for adding a club expanded the original side condition method of Todoréevié [15],
which was designed to add a generic object of size wi, to adding a generic object
of size wy. In addition, Mitchell’s proof introduced the new concepts of strongly
generic conditions and strongly proper forcing posets, which are closely related to
the approximation property.

Several years later, Neeman [13] developed a general framework of side condi-
tions, which he called sequences of models of two types. An important distinction
between Neeman’s side conditions and those of Friedman and Mitchell is that the
two-type side conditions include both countable and uncountable models. A couple
of years later, Krueger [6] developed an alternative framework of side conditions
called adequate sets. This approach bases the analysis of side conditions on the
ideas of the comparison point and remainder points of two countable models. No-
tably, this approach has led to the solution of an open problem of Friedman [3], by
showing how to add a club subset of ws with finite conditions while preserving the
continuum hypothesis ([10]). Other applications are given in [8], [7], [9], and [2].

Notwithstanding the merits of the frameworks of Neeman [13] and Krueger [6],
these frameworks are limited in the sense that they are intended to add a single
subset of wy (or of a cardinal x which is collapsed to become wq). The proof of
Mitchell’s theorem, on the other hand, involves adding ™ many club subsets of a
cardinal k. Many consistency proofs in set theory about a cardinal s involve adding
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kT many subsets of x by forcing, so that each of the potential counterexamples to
the statement being forced is captured in some intermediate generic extension and
dealt with by the rest of the forcing extension.

The goal of this paper is to extend the framework of adequate sets to allow
for adding many subsets of wsy, or of a cardinal k which is collapsed to become
wo. The purpose of this extension is to provide general tools which will be useful
for proving new consistency results on ws. In Part III we give an example by
deriving Mitchell’s theorem from the abstract framework developed in Parts I and
II. The paper includes a very detailed treatment of adequate sets and remainder
points in Sections 1 and 2, and of Mitchell’s application of the square principle to
side conditions in Sections 7 and 8. We also develop some new ideas, including
canonical models in Sections 9 and 10, and the main proxy lemma in Section 11.

We will analyze finite sets of countable elementary substructures of H(x"). The
method of adequate sets handles the interaction of the models below k. Following
Mitchell, we employ the square principle U, to describe and control the interaction
of countable models between x and x*. We introduce a new kind of side condition,
which we call an S-obedient side condition. We show that the forcing poset consist-
ing of S-obedient side conditions on H(x1), where & is a greatly Mahlo cardinal,
ordered by component-wise inclusion, forces that x = ws and there is no stationary
subset of wy N cof(w) in the approachability ideal Ifws)].

This project began with the M.S. thesis of Gilton at the University of North
Texas, in which he reconstructed the original proof of Mitchell’s theorem in the
context of adequate sets. Krueger is indebted to Gilton for explaining to him many
of the details of Mitchell’s proof, especially the use of [J,;. Gilton isolated a workable
requirement on remainder points which later evolved into the idea of S-obedient
side conditions.

After Gilton’s thesis was complete, Krueger returned to the problem and made
a number of advances. Krueger developed the new idea of canonical models, which
is dealt with in Sections 9 and 10. Canonical models are models which appear
in a given model N, reflect information about models lying outside of N, and
are determined by canonical parameters which arise in the comparison of models.
He isolated the main proxy lemma, Lemma 11.5, which significantly simplifies the
method of proxies used by Mitchell. And he introduced the idea of S-obedient
side conditions, and showed that forcing with pure side conditions on a greatly
Mahlo cardinal produces a generic extension in which the approachability ideal on
wo restricted to cofinality wy is the nonstationary ideal.

This paper was written for an audience with a minimum background of one year
of graduate studies in set theory, with a working knowledge of forcing and proper
forcing, and with some familiarity with generalized stationarity.

For a regular uncountable cardinal p and a set X with ¢ C X, we let P,(X)
denote the set {a € X : |a| < p}. A set S C P,(X) being stationary is equivalent
to the statement that for any function F : X <% — X, there exists a € S such that
aNp € pand a is closed under F'.

If a is a set of ordinals, then lim(a) denotes the set of ordinals 8 such that for
all v < B8, an(v,B) #0. We let cl(a) = aUlim(a). If M is a set, we write sup(M)
to denote sup(M N On).
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If A is a structure in a first order language, and X, ..., X are subsets of the
underlying set of A4, then we write (A, X1,...,X}) to denote the expansion of the
structure A obtained by adding Xi, ..., X} as predicates.

Part 1. Basic side condition methods

81. Adequate sets

We begin the paper by working out the basic framework of adequate sets.
Roughly speaking, this framework provides methods for describing and handling
the interaction of countable elementary substructures below ws, or below k for
some regular uncountable cardinal x which is intended to become ws in a forcing
extension.

Adequate sets were introduced by Krueger [6]; many of the results of this section
appear in [6], although in a slightly different form.

We fix objects k, A, T, %, C*, A, Xy, and ) as follows.
Notation 1.1. For the remainder of the paper, k is a reqular cardinal with wy < K.

In [6] we only considered the case when k = ws. In the proof of Mitchell’s
theorem given in Part III, k is a greatly Mahlo cardinal.

Notation 1.2. Fiz a cardinal \ such that k < \. In Parts II and III we will let
A=rT.
Definition 1.3. A set T C P, (k) is thin if for all § < k,

HanpB:aeT} < k.

The idea of a thin stationary set was introduced by Friedman [3], who used a thin
stationary set to develop a forcing poset for adding a club subset of a fat stationary
subset of wy with finite conditions.

Observe that if |3¥| < & for all 8 < k, then P, () itself is thin. Krueger proved
that the existence of a thin stationary subset of P,,, (w2) is independent of ZFC; see
[4].

Notation 1.4. Fix a thin stationary set T* C P, (k) which satisfies the property
that for all B < k and a € T*, anN g € T*. In Part III, we will let T* = P,,, (k).

Note that if T is a thin stationary set, then the set {aN g :a € T, 8 < k}
is a thin stationary set which satisfies the property of being closed under initial
segments which is described in Notation 1.4.

Observe that if T is a thin stationary set, then |T| = &.

Notation 1.5. Fix a biyjection #* : T* — k.

Notation 1.6. Let C* denote the set of B < k such that whenever a is a bounded
subset of B in T*, then 7*(a) < 5.

The fact that T™* is thin easily implies that C* is a club subset of «.
Notation 1.7. Let A denote the set C* N cof(>w).
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Notation 1.8. For the remainder of the paper, let < denote a well-ordering of
H()\).

Notation 1.9. Let Xy denote the set of M in P, (H(\)) such that M Nk € T*
and M is an elementary substructure of (H(N), €, <, k, T*, 7%, C*,A).

Notation 1.10. Let Yy denote the set of P in P,(H(\)) such that PNk € k and
P is an elementary substructure of (H(N), €, <, k, T*, 7%, C*, A).

Note that if P and @ are in )y, then PNQ is in )y. And if M € Xy and P € ),
then M N P is in Xy. For the presence of the well-ordering < implies that P N Q
and M N P are elementary substructures, and M N P N & is an initial segment of
M Nk and hence is in T*. For the intersection of models in Xp, see Lemma 1.23.

This completes the introduction of the basic objects.

Next we will define comparison points and a way to compare two models in Xj.

Definition 1.11. For M € Xj, let Ap; denote the set of B € A such that
B = min(A \ sup(M N G)).

Observe that since any member of Ay is determined by an ordinal in cl(M), and
cl(M) is countable, it follows that Ajps is countable.
Lemma 1.12. Let M € Xy. If B € Ay and By € AN B, then M N [Py, B) # 0.
Proof. If M N [By,B) =0, then sup(M N B) < By. So

B =min(A \ sup(M N f3)) < B < B,

which is a contradiction. [l
Lemma 1.13. Let M and N be in Xy. Then Apy N Ax has a mazimum element.

Proof. Note that the first member of A is in both Aj; and Ay, and therefore
Ap N Ay is nonempty. Suppose for a contradiction that v := sup(Ay N Ay) is not
in Apy N Ay. Fix an increasing sequence (v, : n < w) in Aps N Ax which is cofinal
in . Then for each n < w, M N [y, Vn+1) is nonempty by Lemma 1.12. So v is a
limit point of M. Similarly, v is a limit point of N. Let 8 = min(A \ ). Since ~
has cofinality w, v < 3, and since 7 is a limit point of M and a limit point of N,
easily 8 € Ay N Ayn. This contradicts that v = sup(Ay NAn) and v < 8. O

Definition 1.14. For M and N in Xy, let Bay,n be the mazimum element of
Ay N An. The ordinal Byr,n is called the comparison point of M and V.

The most important property of 8 n is described in the next lemma.

Lemma 1.15. Let M and N be in Xy. Then
cd(Mne)Nc(NNk) C Bun-

Proof. Suppose for a contradiction that & is in cl(M Nk)Ncl(NNk) but By v < E.
Let 8 = min(A \ (£ +1)). Since S is a limit ordinal, Sy vy < <€+ 1 < 5. We
claim that 8 € Ay N Ay. Then by the maximality of By, n, 8 < Bar,n, which is a
contradiction.

First, assume that £ € A. Then £ has uncountable cofinality. So £ cannot be a
limit point of M or of N. Hence £ € M N N. By elementarity, £ +1 € M N N.
Since £+1e MnNp, E+1<sup(MnNpP)<pB. As f =min(A\ (£ + 1)), clearly
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B = min(A \ sup(M N 5)). So B € Ap. The same argument shows that 8 € Ay,
and we are done.

Secondly, assume that £ ¢ A. Then min(A\¢) = min(A\(£+1)) = 8. Since & < 3
and & is either in M Nk or is a limit point of M N k, clearly £ < sup(M N B) < 3.
Hence 8 = min(A \ sup(M N B)), and therefore 5 € Aps. The same argument shows
that 8 € Ay, finishing the proof. O

The next lemma provides some useful technical facts about comparison points.
Statement (4) is not very intuitive; however it turns out that this observation
simplifies some of the material in the original development of adequate sets in [6].

Lemma 1.16. Let L, M, and N be in Xy.
(1) f LNk C M Nk then A, € Ap. Hence Br,n < Bum,N-
(2) If LNk C 8 where f € A, then A, C 5+ 1. Hence Br.p < .

2)
(3) If g < ﬂM,N and B € A, then M N [/BaﬁM,N) #* 0.
(4) Suppose that M N Bry € N. Then Brm < BrL.n-

Proof. Statements (1) and (2) can be proven in a straightforward way from the
definitions, and (3) follows immediately from Lemma 1.12. (4) By definition,
Br,m € Ap. Since M N By € N, sup(M N B ) < sup(N N Bra). As
Br.v € A, by definition Sz pr = min(A \ sup(M N Br.ar)). So clearly Sra =
min(A \ sup(N N Br.a)). Hence B € Any. So By € Ap N An. Therefore
Br,v <max(Ap NAy) = Br,N- O

Now we introduce our way of comparing models.

Definition 1.17. Let M and N be in Xj.

(1) Let M < N if M N Bu,N € N.
(2) Let M ~ N ifMﬁﬂM,N:NﬂﬂM,N.
(3) Let M < N if either M < N or M ~ N.

Definition 1.18. A finite set A C Xy is said to be adequate if for all M and N
i A, either M < N, M ~ N, or N<M.

If M < N, then by elementarity cl(M N By, n) is a member of N. Since cl(M N
Bar,n) is countable, cl(M N Bar,n) € N. Also every initial segment of M N Bar n is
in N. For any proper initial segment has the form M N~y = M N By, n Ny for some
v € M N BN, and since M N By, n and y are in N, so is M N+.

The next lemma provides some useful technical facts about the relation on models
just introduced.

Lemma 1.19. Let {M,N} be adequate.
(1) If (NN Ba,n) \ M is nonempty, then M < N.
(2) If M <N then MNBun=MNNNe=MNONNBunN.
(3) Bm,ny = min(A\ sup(M NN NK)).
(
(

)
3)
4) IfM < N then ﬂM,N € N.
5) If B < Bu,n and B € A, then (M NN)N[B, Ba,n) # 0.
Proof. The assumption of (1) implies that M ~ N and N < M are impossible.
(2) Both M N Bu,n € N and M N Bar,nv = N N B,y imply that M N By, v € N.
So M Npun € MNNNMN&k. Conversely by Lemma 1.15, M N NNk C Bu,n,
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so MNNNk C MnNBy,n. This proves that M NN Nk = M N By,n. Since
MNNNk C Bu,ny by Lemma 1.15, MNNNk=MNNNBu,N-

(3) Without loss of generality assume that M < N. Then MNNNx = M NSy N

by (2). Since Sur,n € Anr, by definition
Bar,y = min(A\ (sup(M N Bar,w))) = min(A \ (sup(M NN Nk))).

(4) If M < N then M N Byn € N. By (2), MNByunx = MANAk. So
MNNNk € N. By (3), B,y = min(A\ sup(M NNNk)). SoBun €N by
elementarity.

(5) Without loss of generality assume that M < N. Then by (2), MNNNBy.n =
MNBu,n- Since By n € Apr, Lemma 1.12 implies that M N[3, Bar,n) is nonempty.
Fix ¢ € Mﬂ[ﬁ,ﬂ]\/j,]\]). Then & € MﬂBM,N = MQNQBM’N. So (MﬂN)ﬂ[,B,BM’N)
is nonempty. (]

Lemma 1.20. Let M and N be in Xy, and assume that {M, N} is adequate. Then
cd(MNNNk)=cl(Mnk)Nc(NNEK).

Proof. The forward inclusion is immediate. Suppose that « is in cl(MNk)Nel(NNk).
Then by Lemma 1.15, oo < Bpr,n. Without loss of generality, assume that M < N.
Then

acc(Mne)Npun=c(MnNBun)=c(MNNNEK)
by Lemma 1.19(2). O

If {M, N} is adequate, then the relation which holds between M and N is de-
termined by the intersection of M and N with w;.

Lemma 1.21. Let {M, N} be adequate. Then:

(1) M <N iff MNw; < NNuws;
(2) M~Nff MNw, = NNwy.

Proof. Suppose that M < N. Then M N By,ny € N. Since S,y has uncountable
cofinality, w1 < Bar,n. So M Nw; is an initial segment of M N By v, and hence
MNwi €N. So MNw; < NNuwj.

Suppose that M ~ N. Then M N By,ny = N N Buy,n. Since wi < Bu,n,
MnN w1 = NN wi.

Conversely if M Nw; < N Nwy, then the facts just proved imply that M < N
is the only possibility of how M and N relate. Similarly M Nw; = N Nw; implies
that M ~ N. O

Lemma 1.22. Let A be an adequate set. Then the relation < is irreflezive and
transitive on A, ~ is an equivalence relation on A, and the relations < and <
respect ~.

Proof. Immediate from Lemma 1.21. (I

In proving amalgamation results over countable models, we will need to be able
to enlarge an adequate set A by adding M N N to A, where M < N are in A. Let
us show that we can do this while preserving adequacy.

First we note that M N N is in Xj.

Lemma 1.23. Let {M, N} be adequate. Then M NN is in Xp.
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Proof. Without loss of generality, assume that M < N. Then by Lemma 1.19(2),
MNNNKk=MnNPBy,n. Since T is closed under initial segments and M Nk € T,
it follows that M N By v € T*. Hence M NN Nk € T*. Also clearly M NN is an
elementary substructure. [

Lemma 1.24. Let K, M, and N be in Xy. Suppose that M < N and {K, M} is
adequate. Then:

(1) Br,mnN < Br,m and Br mnN < Bm,N;
2) M<K iff MON < K;
(3) K~ M iff K ~ MNN;
(4) K <M iff K < MNN.

In particular, {K,M N N} is adequate.

Proof. (1) Since MNN C M, Bk mnn < Br,m by Lemma 1.16(1). Also MNNNk C
B, N by Lemma 1.15, which implies that Sk ann < Sar,n by Lemma 1.16(2). This
proves (1).

Since M NN N 5M,N =MnN 5M,N by Lemma 119(2) and 5K’MQN < ﬂ]w’]\{7 it
follows that

MNONNBr,maN =M N Br mnN-

(2,3,4) First we will prove the forward implications of (2), (3), and (4). f M < K
then M N Bg a is in K. But since Bx viny < Br,m, M N B mnn is an initial
segment of M N Bk ar, and hence is in K. So M NN N Br ynn = M N B mnn is
in K, and therefore M NN < K.

If K ~ M, then KﬂﬂK,M = Mﬂﬂ}gM. Since BK’MQN < ﬂK,Ma

KN B mnny =M N Bx,vuny = M NN N Br,vnN-

Therefore K ~ M N N.

Suppose that K < M. Then K N Brg .y € M. Since Bx vnn < Br,m, KN
Br,mnn € M. So to show that K < M NN, it suffices to show that K NBx pnn €
N.

Since K Nk € T* by the definition of Xy, KN Bx mnn € T* as T is closed under
initial segments. Recall from Notation 1.5 that 7* : T* — k is a bijection. As M is
closed under 7* by elementarity, 7*(K N Bk, mnn) € M N k. Since K N Bk pman s
a bounded subset of Sk ynn and Bk mnnv < Bar,n, we have that K N Bk pnn is a
bounded subset of Sar,n. Since Bar,n € A, it follows that #* (K N Sx mnn) < Bm,n
by the definitions of C* and A from Notations 1.6 and 1.7. Hence 7*(K NSk mnn) €
M N Bu,n € N. Since N is closed under the inverse of 7* by elementarity, K N
Br,mnN € N.

Now we consider the reverse implications of (2), (3), and (4). Suppose that
M NN < K. Since {K, M} is adequate, either K < M, K ~ M, or M < K. But
K ~ M and K < M are ruled out by the forward implications of (3) and (4). So
M < K. The other converses are proved similarly. O

Proposition 1.25. Let A be an adequate set and N € Xy. Let M be in A, and
suppose that M < N. Then AU{M N N} is adequate.

Proof. Immediate from Lemma 1.24. ([l
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Our next goal is to prove the first amalgamation result over countable models,
which is stated in Proposition 1.29 below. See Proposition 13.1 for a much deeper
result.

Lemma 1.26. Let L, M, and N be in Xy. Suppose that N < M and L € N. Then
L <M.

Proof. Since L € N, B i < Bm,n by Lemma 1.16(1). Also LN B ar isin NNT™*,
since it is an initial segment of L N k. As N is closed under 7* by elementarity, the
ordinal 7*(L N Brar) isin NN k. And as By n € A and LN B a is a bounded
subset of Sy, v in T™, it follows that 7*(L N S, a) < Sm,n by the definition of A.
Hence 7*(L N Br.am) € NN Bun € M. By elementarity, M is closed under the
inverse of 7%, so LN Br m € M. O

Lemma 1.27. Let L, M, and N be in Xy. Suppose that M < N and L € N.
Then:

(1) Br,m = Br,mnn;

(2) L~ MNON iff L~ M;
(3) L<MNN iff L < M;
(4) MNN <L iff M < L.

Proof. (1) Since M N NNk C M Nk, Br.mav < Br,m by Lemma 1.16(1), which
proves one direction of the equality. Since LNx € NNk, Br.m < Bu,ny by Lemma
1.16(1). So

MNBryy CSMNByn CSMNN.

By Lemma 1.16(4), BL,m < Br,mnn-
(2,3,4) First we will prove the forward implications of (2), (3), and (4). As
BL,M < 5M,N and MﬁﬂMyN = MﬁNﬁﬁMyN, it follows that

MNBru=MNNNBLum.
It L ~ M AN, then
LnBrym=LNBrvuan =MNONNBLyuan =MNONNBL v =MNBL -
So LN Br.ym =MNPr v, and hence L ~ M. And if L < M N N, then
LnpBry=LNBryuny € MNN C M.
So LN Brm € M, and hence L < M. If M NN < L, then
MABryr=MNONNBLy=MANNMBpuny € L.

So M N Br.am € L, and therefore M < L.

For the reverse implications, each of the assumptions L ~ M, L < M, and
M < L implies that {L, M} is adequate. Hence these assumptions imply that
L~MNN,L<MNN,and M NN < L respectively by Lemma 1.24. a

Lemma 1.28. Let L, M, and N be in Xy. Suppose that M < N and L € N. If
{L,M N N} is adequate, then {L, M} is adequate.

Proof. Immediate from Lemma 1.27. |

Proposition 1.29. Let A be adequate, N € A, and suppose that for all M € A, if
M < N then MNN € AN N. Suppose that B is adequate and ANN C B C N.
Then AU B is adequate.
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Proof. Let L € B and M € A, and we will show that {L, M} is adequate. Since
LeBand BCN,LeN.If N<M,then L <M by Lemma 1.26. Suppose that
M < N. Then MNN € AN N by assumption. Since ANN C B, MNN € B. As
B is adequate, {L, M N N} is adequate. Since L € N and {L, M N N} is adequate,
{L, M} is adequate by Lemma 1.28. O

In the last proposition, we assumed that M < N implies that M NN € N, for
M € A. At this point we do not have any reason to believe this implication is true
in general. In Section 7, we will define a subclass of Xy on which this implication
holds. See Notation 7.7 and Lemma 8.2.

So far we have discussed the interaction of countable models in Xy. We now turn
our attention to how models in Xj relate to models in ).

Lemma 1.30. Let M and N be in Xy U Y,y. Suppose that:

(1) M and N are in Xy and M < N, or
(2) M and N are in Yy and M Nk < NNk, or
(3) M e Xy, N €y, andsup(MNNNk)<NNk.

Then MNNNk€EN.

Proof. (1) If M and N are in Xy, then M < N implies that M N Sy n € N. By
Lemma 1.19(2), M Ny n=MNNNKk,so MNNNk€N. (2) If M and N are
in )y, then since MNk < NNk, MNNNk=MnNk€EN.

(3) Suppose that M € Xy, N € Yy, and sup(MNNNk) < NNk. Let §:= NNk.
By the elementarity of N, 8 is a limit point of A. So fix v € N N A such that
sup(M N B) <~. Then MN NNk =MnN~. Since v has uncountable cofinality,
M N~ is a bounded subset of v, and as M € &y, M N~y € T*. By the definition of
C* and A, 7*(M N~v) <y < NNk. Since N is closed under the inverse of 7* by
elementarity, MNy=MNNNk &€ N. (]

Note that (3) holds if c¢f(N N k) > w, which is the typical situation that we will
consider.

Lemma 1.31. Let M € Xy and N € Yy, and assume that sup(MNNNK) < NNk.
Then
d(MNNNk)=cd(MnNk)Nc(NNkK)N(NNEK).
Proof. The forward inclusion is immediate. Let
acc(MNkg)Nc(NNk)N(NNEK).
Since cl(N Nk) = (NNk)U{N Nk},
accd(MNk)N(NNkK)=cl(MNNNEk).
O

Recall that if M € Ay and P € )y, then M NP € Xy. We show next that we
can add M N P to an adequate set and preserve adequacy.

Lemma 1.32. Let K and M be in Xy and P in YVy. Assume that {K, M} is
adequate and sup(M NP Nk) < PNk. Then:

(1) Br,mnp < Brm and B pnp < PN k;
2) M<KiffMNP<K;
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(3) K~ M iff K ~MnP;
(4) K<Miff K<MnNP.

In particular, {K, M N P} is adequate.

Proof. (1) Since M NP C M, Br.mnp < Br,m by Lemma 1.16(1). As sup(M N
PNk) < PNk and A is unbounded in PNk by elementarity, we can fix § € A with
sup(M N PNk)< B < PNk. By Lemma 1.16(2),

Br,mnp < B < PNEK.

This proves (1). It follows that

M0 Br,mnp =M NPNOBrMAP-

(2,3,4) First we will prove the forward implications of (2), (3), and (4). Assume
that M < K. Then M NPk m € K. Since Bx mnp < Br,m, M N B vnp € K. So

MNPNBrmnp =M N B unp € K.

Hence M NP < K.
Suppose that K ~ M. Then K N Bx = M N Bx . Since Bx vinp < Br,u, it
follows that

KN Brx,mnp =M N Bx munp =M N PN B mnp-

Therefore K ~ M N P.

Finally, assume that K < M. Then K N Sk € M. Since Sr pmnp < Bk, M,
KN Brmnp € M. As Bx.mnp < PNk, by elementarity there is v € PN A
with Srx . mnp < 7. Then K N Bx mnp is a bounded subset of v in T™. Hence
(K NBr . mnp) < . In particular, 7*(K N Bk mnp) € PNk. By the elementarity
of P, P is closed under the inverse of 7*. So KN Bk pnp € P. Thus KNBx pnp €
M N P, and therefore K < M N P.

Conversely, assume that M NP < K. Since {K, M} is adequate, either M < K,
M ~ K, or K < M. But the forward implications of (3) and (4) rule out M ~ K
and K < M. Hence M < K. The other converses are proved similarly. (I

Proposition 1.33. Let A be an adequate set. Let M be in A and P in Yy, and
assume that sup(M N PNk) < PNk. Then AU{M N P} is adequate.

Proof. Immediate from Lemma 1.32. |

Next we will prove an amalgamation result for uncountable models. See Propo-
sition 13.2 for a deeper result.

Lemma 1.34. Let L and M be in Xy and P € ),. Assume that L € P and
sup(M NPNk) < PNk. Then:

(1) Br,m = Br,mnp and B, < PN k;

(2) L~ MAPiff L~ M;

(B) MNP<Liff M<L;

(4) L<MANPiffL<M.
In particular, {L, M N P} is adequate iff {L, M} is adequate.
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Proof. (1) Since M NP C M, Brmnp < Br,m by Lemma 1.16(1), which proves
one direction of the equality. As L € P, by elementarity, A;, € P. Since Ay is
countable, A, C P. As Bpar € AL, By € PNk, So MN By € MNP. By
Lemma 1.16(4), it follows that S am < Br.mnp-

(2,3,4) First we will prove the forward implications of (2), (3), and (4). Since
Br,m € P as noted above,

Mﬂﬂ[“M :MﬁpﬂﬂL’M.

If L ~ M N P, then

LB =LNBryunp=MNPNBLuap=MNPNBLm=MnNPBL M.
So LN fBr.m =MNPBr v, and hence L ~ M.

If MNP < L, then

MﬂﬁLM ZMﬂPﬁﬁLM =MNPNBLmnp € L.
So M N Br.a € L, and therefore M < L. And if L < M N P, then
LNnBrm=LNBryunp e« MNP C M.

So LN Br.m € M, and therefore L < M.

Conversely, the assumptions M < L, L ~ M, and L < M imply that {L, M} is
adequate. Hence each of these assumptions imply that M NP < L, L ~ M NP,
L < M N P respectively by Lemma 1.32. ([l

Proposition 1.35. Let A be adequate, P € Yy, and assume that for oll M € A,
MNP e AN P. Suppose that B is adequate and ANP C B C P. Then AU B is
adequate.

Proof. Let L € Band M € A. Then MNP € AN P C B. Since B is adequate,
{L, MNP} is adequate. As MNP € P, sup(MNPNk) < PNk. By Lemma 1.34,
{L, M} is adequate. O

We conclude the discussion about models in Xy and )y with the following useful
lemma.

Lemma 1.36. Let M and N be in Xy, and assume that {M, N} is adequate. Let
P €)y. Then either BM,N = ﬁ]y[mp’N, or PNk < ﬁM,N~

Proof. Since MNP C M, BMHP,N < BM7N- If B]\/I,N = ﬁMﬁP,N, then we are done.
So assume that Synpn < Bu,n. We claim that P Nk < Buy,n. Suppose for a
contradiction that Sy v < PN k. Since Sypnpn < Bar,nv, by Lemma 1.19(5), we
can fix

§€(MNN)N[BrunpN, BuN)-
As BuN < PNE,

Ee(MNN)NPNk=(MnNP)NNNEk.
Therefore £ < Barnp,ny by Lemma 1.15, which contradicts the choice of €. O

Finally, we prove an amalgamation result over transitive models.

Lemma 1.37. Let M, M’', N, and N’ be in Xy. Assume that MNk = M'Nk and
NnNk=N'Nk. Then:

(1) Bym,n = By nvs
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(2) M ~N iff M’ ~ N';
(3) M <N iff M’ < N';
(4) N<M iff N < M'.
In particular, {M, N} is adequate iff {M’', N'} is adequate.

Proof. (1) Since M Nk € M' Nk and NNk C N' Nk, it follows that Sy,n <
Bavrr.N < Bar.n by Lemma 1.16(1). Similarly, the reverse inclusions imply that
Bumr Nt < Bar,n- So By, = B e

(2,3,4) Tt suffices to prove the forward direction of the iff’s of (2), (3), and (4),
since the converses hold by symmetry. If M ~ N, then

M N By N =MNByun=NNBun =N 0By N,
which proves (2). Suppose that M < N. Then
M’ mﬂM/,N/ = MﬁﬂMJ\/ € N.

By elementarity,

W*(MlﬂﬂM/’N/) ENNk=NNk.
Since N’ is closed under the inverse of 7* by elementarity, M’ N By no € N'. (4)
is similar. (]

Proposition 1.38. Let A be an adequate set. Assume that X < (H(kT), €),
|X| =k, and X NkT € k7. Let B be an adequate set such that ANX C B C X.
Suppose that for all M € A, there is M’ € B such that M Nk = M' N k. Then
AU B is adequate.

Proof. Let M € A and K € B be given. Fix M’ € B such that M Nk = M’ N k.
As {M',K} C B, {M’', K} is adequate. Therefore {M, K} is adequate by Lemma
1.37. (]

82. Analysis of remainder points

In this section we will provide a detailed analysis of remainder points; some of
these arguments appeared previously in [8] and [9], although in a less complete
form. This analysis will be the foundation from which we derive the amalgamation
results of Section 13.

Definition 2.1. Let {M, N} be adequate. Let Rp;(N), the set of remainder points
of N over M, be defined as the set of ( satisfying either:

(1) ¢ =min((N Nk)\ Bum,N), provided that M ~ N, or
(2) thereis vy € (M Nk)\ Ba,n such that ¢ =min((N Nk) \ 7).

Note that if N < M, then Sy,n € M by Lemma 1.19(4). It follows that
min((N N k) \ By .n) € Ry (N) by Definition 2.1(2).
The next lemma describes some basic properties of remainder points.

Lemma 2.2. Let {M, N} be adequate. Then:
(1) Ry(N)Ned(MnNk)=0;
(2) Rup(N) is finite;
(3) suppose that ¢ € Ry (N) and ¢ > min(Rpy(N) U Ry(M)); then o =
min((M N k) \ sup(NN¢)) € Ry(M) and ¢ = min((N Nk) \ o).
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Proof. (1) If ¢ € Ry (N), then by definition, ( € N and Sy,n < ¢. Hence ¢ ¢
cl(M N k) by Lemma 1.15.

(2) Suppose for a contradiction that (¢, : n < w) is a strictly increasing sequence
from Rp(N). Then by definition, for each n > 0 there is v, € M such that
Cn = min((N N k) \ 7). Let ¢ := sup{¢, : n < w}. Then ¢ = sup{y, : n < w}.
Therefore

Cecd(Mnk)Nc(NNEk).

Hence ¢ < Bu,n by Lemma 1.15. But

Bu.n <G <,

which is a contradiction.

(3) Since ¢ > min(Rp (N) U Rn(M)) and Ry (N) and Ry (M) are finite, let og
be the largest member of Ry (N)URy (M) less than (. We claim that o9 € Ry (M).
If not, then oy € Ra(IN), and in particular, og € (NN()\ Bar,n- Since ¢ € Ry (N),
by the definition of Ry, (IN) we have that M N (o9, ) # 0. But then min((MNk)\op)
isin Ry (M) and is between oo and ¢, which contradicts the maximality of og.

We claim that ¢ = min((N N k) \ gg). Otherwise min((N Nk)\ 0¢) is in Ry (N)
and is between oy and (, which contradicts the maximality of oy. It follows that
sup(N N¢) < og. Finally, we show that op = min((M Nk) \ sup(N N¢)). Therefore
o = 09, and we are done. Suppose for a contradiction that o < o¢. As sup(INN() <
o, we have that N N (o,00) = 0.

Observe that S,y < 0. Forifo < Sy, n, then o € (MNBar,n)\N, which implies
that N < M. And since sup(N N¢) < o, it follows that ¢ = min((N N k) \ Bm.N)-
So ¢ = min(Rp(N) U Ry(M)), which is a contradiction. Hence Sy n < o < 0g.
Since o9 € Ry (M), there is v € N such that g = min((M N k) \ 7). But then
o < v < 09, which contradicts that N N (o, 00) = 0. O

The rest of the section follows roughly the same sequence of topics covered in the
previous section. Lemma 2.3 describes the remainder points which appear when
adding M NN to an adequate set, where M < N, as in Lemma 1.24 and Proposition
1.25. Then Lemmas 2.4-2.6 analyze remainder points which appear in the process
of amalgamating over countable models, as in Proposition 1.29.

Lemma 2.3. Let K, M, and N be in Xy. Suppose that M < N and {K,M,N} is
adequate. Then:

(1) Rg(M N N) C Ry (M);
(2) Raron(K) C Ry (K) U Ry (K).

Proof. Note that by Lemma 1.24, {K, M N N} is adequate, Sx,mnn < Bk, M, and
Br.maN < Bum,N-

(1) Let ¢ € Rx(M N N), and we will show that ( € Rx(M). Then either (a)
K ~ MNN and ¢ = min((MNNN&)\Bk,mnn), or (b) thereis v € (KNK)\ Bk pmnn
such that { = min((M NN Nk)\ 7).

Case a: K ~ MNN and ¢ = min((MNNNkK)\ Bk mnn). Then by Lemma 1.24,
K ~ M. We claim that Sk y < (. Suppose for a contradiction that ¢ < Bx .
Then since K ~ M and ¢ € M N Bk m, it follows that ¢ € K. But this contradicts
that ( € Rg(M N N).
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Since ﬂK7MﬁN < ﬁK,M < ¢, it follows that ( = min((M NNN K) \ /BK,M)~
As M < N, MN NNk = MnN Bu,n, which is an initial segment of M N k. So
¢ =min((M N«) \ Bx,m), and hence ¢ € Rx(M).

Case b: There is v € (K N k) \ Bk, mnn such that ¢ = min((M NN Nk)\ 7).
Since M NN Nk = M N By N is an initial segment of M N k, it follows that
¢ =min((M Nk)\v). If Bx a <, then since vy € K, ( € Rg(M). So assume that
v < Br,m-

Now ¢ € M N N N« implies that ¢ < Bar,n. So vy < Bu,n. Since v € (K Nk)\
Brman, yE MNON. But MANNkKk=MNBpn,s0y ¢ MNk. Since v < Bx.m
and v € K \ M, we have that M < K. So M N Bx,m € K. As ¢ € Rx(M NN),
¢ ¢ K. Since M NBxym C K and ¢ € M\ K, it follows that Sx p < (. In
conclusion, v < B a < ¢. Hence ¢ = min((M N k) \ Bx,a). Since M < K, this
implies that ¢ € Ri(M).

(2) Let ¢ € Rynn(K). Then either (a) K ~ M NN and ¢ = min((K Nk) \
Br,mnan), or (b) there is v € (M N N) \ Bk, mnn such that ¢ = min((K Nk) \ 7).
We will show that either ¢ € Ry (K) or ¢ € Ry(K).

Case a: K ~ M NN and ¢ = min((K N &)\ frxmnn). Then K ~ M by
Lemma 1.24. Assume first that SBg pr < (. Then S vy < Brm < . So
¢ =min((K N k) \ Bk,m), which implies that ( € Ry (K).

Now assume that ( < Bg . Since K ~ M and ( € KN Bx.m, ¢ € M. As
(€ Rynn(K), (¢ MNN,so(¢N. Since K~M<N,K<N. As¢e€ K\N
and K < N, Bg,ny <. Since MNN C N, Bg mnn < Bk, n. Hence

Br.mnn < Br.n < C.
So ¢ = min((K N k) \ Bk,~), and therefore ¢ € Ry (K).

Case b: ¢ = min((K N k) \ v), for some v € (M N N)\ Bx,mnn. If Br.m <7,
then v € (M N k) \ fx,m, and hence ¢ € Ry (K). Suppose that v < Sr,m < .
Then ¢ = min((K N &) \ fr,m). Since v € (M N Br.m) \ K, K < M. Therefore

The remaining case is that v < { < Bk m. Since Sx,mnny < yand vy € M NN,
v¢ K. Soye (Mn Bk u)\ K. It follows that K < M. But ¢ € K N Bk, m, s0
(eM. AsCe Rynnv(K)and (€ M, (¢ N. But K < M < N,so K < N. As
CEK\N, Brgn<C(.

If B,n <7, then v € (NN k) \ Bk n, and therefore ¢ € Ry (K). Suppose that
v < Br,n < ¢ Then ¢ =min((K Nk)\ Bk,n). Since K < N, ¢ € Ry(K). ]

Lemmas 2.4 and 2.5 describe the same situation we considered in Lemmas 1.26
and 1.27.

Lemma 2.4. Let N < M and L € N, where L, M, and N are in Xy. Then:

(1) forall¢ € R (M), Bun <( and ¢ € Rn(M);
(2) for all ¢ € Ry(L), there is & € Rpyf(N) such that ¢ = min((L N k) \ &).

Proof. Note that by Lemma 1.26, L < M.

(1) Let ¢ € Rp(M). Since L < M, there is v € (LN k) \ Br,m such that
¢ =min((MNk)\~v). Sinceye Land L € N,y € N. Sov € N\ M. Since
N <M, Bu,ny <. Hence By ny < ¢ As ¢ =min((M Nk) \7v), ¢ € Rn(M).
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(2) Let ¢ € Ry(L). Since L < M, there is v € (M N &) \ Br,m such that
¢=min((LNk)\v). Now( € L\M and L € N. So ( € N\ M. Since N < M,
this implies that Sy n < C.

If v < Bpm,n, then let & :=min((NNk)\ Bu.n). Since N < M, { € Ry (N). As
L C N, clearly ¢ = min((LNk)\E). If By, n < 7, thenlet € := min((NNk)\y), which
exists since ¢ € N. Then £ € Ry;(N), and since L C N, ( =min((LNk)\§). O

Lemma 2.5. Let M < N and L € N, where L, M, and N are in Xy. Then:

(1) for all ¢ € R (M), either ( < Bun and ( € R(M N N), or Bun < ¢
and ¢ € Ry(M);

(2) for all ¢ € Ry (L), either ¢ € Rynn (L) or there is § € Ry (N) such that
¢ = min((ZNk) \ ).

Proof. Note that by Lemma 1.27, 51, p = Br,mnn. Andsince M < N, MNPy N =
MNNNEK.

(1) Let ¢ € Rr(M). Then either (a) L ~ M and ¢ = min((M N k) \ Br.m),
or (b) there is v € (L N k) \ Br,m such that ¢ = min((M N k) \ ). Assume first
that ( < By,n. In case (a), L ~ M N N by Lemma 1.27. Since ¢ < Sum.n,
¢ =min((MNNNEk)\ Brmnn). In case (b), v € (LNkK)\ Br,mnny and ¢ =
min((M NN Nk)\ 7). In either case, ¢ € Rr(M N N).

Now assume that Sy, n < ¢. In case (a), since

Br,m < B,y < ¢,

¢ =min((M Nk)\ Bam,n). Since M < N, this implies that ( € Ry (M). In case (b),
if v < BN, then again ¢ = min((M N k) \ Bar,n), and so ¢ € Ry (M). Otherwise
v € (NNkK)\ Bu,ny and ¢ =min((M Nk)\v), so ¢ € Ry(M).

(2) Let ¢ € Ry(L). Then either (a) L ~ M and ¢ = min((LN k) \ Br,m), or (b)
there is v € (M Nk)\ B a such that ¢ = min((LNk)\ 7). In case (a), L ~ M NN
by Lemma 1.27 and ¢ = min((L N k) \ Sz, mnn). Hence ¢ € Rynn(L).

Assume (b). First consider the case that v < Sy, n. Then

’YEMﬂﬁM,NgMﬂN.

So
ye€(MNNMNK)\ BL.maN

and ¢ = min((L N k) \ 7). Hence ¢ € Rynn(L). Now consider the case that
Bum,n <. Theny e (MNk)\ By, n. Let £ :=min((NNk)\ ), which exists since
¢ € N. Then £ € Ry (N) and ¢ = min((L N k) \ &). d

When amalgamating over a countable model N, the presence of M NN prevents
certain incompatibilities between M and the object we build in V. But oftentimes
M N N does not have enough information about M. In that case, we will use a
model M’ in N which is more representative of M than M N N.

Lemma 2.6. Let L, M, M’, and N be in Xy. Assume that M < N and L € N.
Also suppose that M’ € N, {L, MNN, M’} is adequate, and MNBy,n = M'NBu N
Then:

(1) either Br.v = Br,me or Bu,n < Br,mrs
(2) if Bo,m = Brv and ¢ € Ryan (L), then ¢ € Ry (L).
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Proof. Note that {L, M} is adequate by Lemma 1.28. We claim that ;v < B a-.
Otherwise fr am < Br,m. Since {L, M} is adequate, we can fix { € (LN M) N
[BL.avs Bra) by Lemma 1.19(5). Since L € N, £ € N. So

EeMNNNk=MnNBun C M.

Hence &£ € (LN M’ N &)\ Br,mr, which is impossible.
(1) If Br.v = Br,mv, then we are done. So assume that 51, pr < Br.ar. We claim
that ﬁM,N < ﬁL,M" Otherwise

Br,m < Brm < Bu,N-
Since {L, M’} is adequate, we can fix £ € (LN M') N [Br,m,Br,m) by Lemma
1.19(5). Then
fGM/OﬂM,N C M.
So & e (LNMn&k)\ Br,am, which is a contradiction.
(2) Assume that 8y v = Br,m and ¢ € Rynn(L). By Lemma 1.27,

Br,mr = Br,.m = Br,mnN-

First, assume that L ~ M NN and ¢ = min((L N &) \ Br.mnn). Then ¢ =

min((L N k) \ B m). Also
LNwi=(MNN)Nwy =MNBunNwr =M NBuyNw =M Nw;.

Since {L, M'} is adequate and L Nwy = M’ Nwy, L ~ M’ by Lemma 1.21. Since
L~M and ( =min((LNk)\ Br.m ), ¢ € Ry (L).

Secondly, suppose that v € (M NN N &)\ Brmunny and ¢ = min((L N k) \ 7).
Then

ye(MNNNOEK)\ Br,m-
Since
MNNNKk=MnNpByn C M,
ve M Nk)\ Brm. So ¢ € Ry (L). O

The statement of the next technical lemma is not very intuitive. But its discovery
led to substantial simplifications of some of the arguments from [8].

Lemma 2.7. Let K, M, and N be in Xy such that { K, M, N} is adequate. Suppose
that

C€Ry(N), (¢ K, 0 =min((KNk)\(), and 0 < Bk N-
Then 6 € Ry (K).

Proof. Since ( < 0 < Bg,n and ¢ € N\ K, it follows that K < N. In particular,
KNn@+1)CN.

Case 1: N < M. Then K < N <M, so K < M. We claim that Bk am < Bum,n-
Otherwise 8y, n < Bk,m, which implies that

(KNM)N[Bu,n, Br,m) # 0

by Lemma 1.19(5). Let v = min((K'Nk)\ Bum,n). Then since the intersection above
is nonempty, v < Bk.m, and hence y € KN M. But Sy y < ¢ <60and 0 € K
implies that v < 6. Since KN(#+1) CN,y€ N. Soy e (MNN)\ By n, which
is impossible. This proves that Sx v < B, nN-
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Suppose that ¢ = min((N N k) \ ) for some v € (M N k) \ Bar,nv. Since Br,mr <
B, N, it follows that v € (M Nk)\ Br,m. As KN(6+1) C N, 0 = min((KNk)\ 7).
Hence 6 € Ry (K).

Suppose that M ~ N and ¢ = min((N N k) \ Bar,n). Since KN(H+1) C N, it
follows that = min((KNk)\Bar,n). We claim that 8 = min((KNk)\ Bk, a), which
implies that 6 € Ra(K) as desired. If not, then there is 7 € K N [Bk,m, Bm,N)-
But Byn < (<0< Prn,some KNPBrgny CN. Hence m € NN By,y € M. So
7w € M. Therefore m € (K N M)\ Bx, a, which is impossible.

Case 2: M < N. Since ( € Ry(IN), there is v € (M N k) \ Bm,n such that
¢ =min((NNk)\Y). If Bx,m < v, then vy € (MNk)\Bk, v, and since KN(6+1) C N,
0 =min((K Nk)\ 7). Hence 0 € Ry (K).

Otherwise v < Bx m. Since vy ¢ N, v <0, and KN (0 + 1) C N, it follows that
v ¢ K. Sovy e (MnNpBk m)\ K, which implies that K < M. Since KN(#+1) C N,
it follows that 6 = min((K Nk)\v). Asf € (NNkK)\Bun,0¢ M. As K <M
and 0 € K Nk, /BK,]\/[ <46 Sovy< BK,M < 0. Hence 0 = mln((K N H) \/BK,JVI)a
which implies that 0 € Ry (K). O

The next three lemmas are analogues of Lemmas 2.3, 2.5, and 2.6, where the
countable model NV in A} is replaced by an uncountable model P in ).

Lemma 2.8. Let K and M be in Xy and P € Yy. Assume that {K, M} is adequate
and sup(M N PNk) < PNk. Then:

(1) Re(M N P)C Re(M);

(2) if ¢ € Ryunp(K), then either ¢ € Ry (K) or ¢ = min((K Nk) \ (PNk)).

Proof. Note that by Lemma 1.32, Sk mnp < Br,um, Br,mnp < PNk, and {K,MN
P} is adequate.

(1) Let ¢ € Rx(M N P). Then either (a) K ~ MNP and ¢ = min((MNPNk)\
Br.mnp), or (b) there is v € (K Nk)\ Bx mnp such that ¢ = min((M NP Nk)\ 7).

Case a: K ~ MNP and ¢ = min((M NP Nk)\ Pr mnp). Then K ~ M by
Lemma 1.32. By Lemma 1.36, either 8x ar = Br,mnp, or PNk < Br m-

We claim that 8k ar = Bk, mnp. Suppose for a contradiction that PNk < Bx ar-
Since (e MN PNk C PNk, (<P nm. Butsince K ~ M and ¢ € M N Bk um,
(€ K. So¢e KN (MnNP)Nk, which contradicts that ¢ € R (M N P).

So Bxk,m = Br,mnp. Since M N PNk is an initial segment of M Nk, ¢ =
min((M N k) \ Br,m). Hence ¢ € R (M).

Case b: ¢ = min((M NP NEk)\~y), for some v € (K Nk)\ Bx,mnp. Since
M N PNk is an initial segment of M Nk, ¢ = min((M N k) \ 7). By Lemma 1.36,
either Sx am = Br,mnp or PNk < B a. In the first case, v € (K N k) \ Bx,m, S0
¢ e RK(M)

We prove that the other case is impossible. Suppose for a contradiction that
PNk < Bg,m. Sincey < (< PNk, v € P. Buty € (KNk)\ Bk, mnp implies that
YyEMNP. Sovy¢ M. Asy < PNk < Bk, m, we have that v € (K N Bx,m) \ M.
Hence M < K. Since (e MNPNk, (€ MNPBxm. As M < K, ( € K. But this
is impossible since ¢ € Rg(M N P).
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(2) Let ¢ € Rynp(K). We will prove that either ¢ € Ry (K), or ¢ = min((K N
&)\ (PNk)). Either (a) K ~ MNP and ¢ = min((K N«) \ Br,mnp), or (b) there
isye (MNPNk)\ Pr mnp such that ¢ = min((K Nk) \ 7).

Case a: K ~ MNP and ¢ = min((K Nk)\ Bx,mnp). Then K ~ M by Lemma
1.32. Also by Lemma 1.36, either Bx v = B, mnp or PNk < Bx -

First, assume that Sx v = Bx,mnp. Then ¢ = min((K N k) \ Bx,m), so ¢ €
Ry (K).

Secondly, assume that PNk < Bk ar. Suppose that Sx a < €. Since B pnp <
B, it follows that ¢ = min((K N k) \ Bk ). Therefore ¢ € Ry (K).

Otherwise ¢ < Bk, p. But then K ~ M and ¢ € K N Bk, imply that ( € M.
Since ¢ € Rynp(K) and ¢ € M, ¢ ¢ PN k. Therefore Sx pnp < PNk < (. So
¢(=min((KNk)\ (PNk)).

Case b: ¢ =min((K Nk)\v) for some v € (MNPNk)\ fx mrp. EPNK <,
then v < PNk < ¢ implies that ¢ = min((K Nk) \ (P Nk)).

Suppose that ¢ < PN k. If B <7, then v € (M N k) \ Bk, m, and therefore
¢ € Ry(K). So assume that v < Sk a. First consider the case that Sx v < C.
Then ¢ = min((K Nk)\ Bk, m). Since v € (M N Br )\ K, it follows that K < M.
So ¢ € Ry (K).

In the final case, assume that v < ( < Sg, . We will show that this case does
not occur. Then

Br.mnp < v < (< Bk M-

Since v € (M N Bxr.a) \ K, it follows that K < M. Soas ¢ € K N Br,m, ( € M.
But also ¢ € PN k. So ¢ € M N P, which contradicts that ( € Rynp(K). O

Lemma 2.9. Let L and M be in Xy and P in Yy. Assume that L € P, {L, MNP}
is adequate, and sup(M NP Nk) < PNk. Then:
(1) if ¢ € RL(M), then either ( € RL,(M N P) or ( =min(M Nk)\ (PNk));
(2) Rm(L) € Rynp(L).

Proof. Note that by Lemma 1.34, 51 p = Br.mnp, Bo,m < PNk, and {L, M} is
adequate.

(1) Let ¢ € Rp(M). Then either (a) L ~ M and ¢ = min((M N k) \ Br,m), or
(b) there is v € (LN k) \ B a such that ¢ = min((M N k) \ 7).

Case a: L ~ M and ¢ = min((M Nk)\ Sr.a). Then L ~ MNP by Lemma 1.34.
If PNk < ¢, then since B pr < PNk, it follows that ¢ = min((M N k) \ (P N kK)).
Suppose that { < PN k. Then

¢=min(MNPNkK)\Brm)=min((MNPNk)\ BL.mnp)-
So ¢ € Rp(M N P).
Case b: There is v € (L N k) \ Sr,a such that ¢ = min((M N k) \ 7). Then

v € (LNK)\BL.mnp- If ¢ < PNk, then ¢ = min((MNPNk)\v),s0 ¢ € R, (MNP).
Otherwise PNk < ¢, and since y € L, v < PN k. So ¢ = min((M N k) \ (P Nk)).

(2) Let ¢ € Ry (L), and we will show that ( € Rynp(L). Either (a) L ~ M
and ¢ = min((L N &) \ Br,m), or (b) there is v € (M N k) \ Br,m such that ¢ =
min((LN k) \ 7).
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Assume (a). Then L ~ M NP by Lemma 1.34. Also ¢ = min((LNk&)\ Br,mnp),
so ¢ € Runp(L).

Assume (b). Since (€ Land L€ P, (€ P. Asy<{and ( € PNk, v < PNk.
Soye MNP. Thusy e (MNPNEk)\ Brynp and ¢ = min((LN k) \ 7). So
¢ € Rynp(L). O

Lemma 2.10. Let L, M, and M’ be in Xy, and let P and P’ be in Y. Assume
that {L, M, M’} is adequate, and L, M', and P' are in P. Let B := PNk and
B = P'Nk. Suppose that sup(M NB) < B and MNB =M Np. Then:

(1) ﬁL,M < B/;

(2) either Br.m = Brmr or B < Br s

(3) if Br.m = Brv and ¢ € Rynp(L), then ¢ € Ry (L).

Proof. (1) Since MNBC B and LNk C B, LNMNkCH. Assup(MNP) < f,

LN M Nk is a bounded subset of 3’. By the elementarity of P’, fix v € A such that
sup(LN M Nk) << . By Lemma 1.19(3),

Br.ar =min(A\sup(LN M Nk)) <vy<f.

(2) If B = Br,mr, then we are done. So suppose not. We claim that
Br.m < Br,m. Suppose for a contradiction that Br s < Sr,m. By Lemma
1.19(3), Br,m = min(A \ sup(L N M’ Nk)). But

Br,m < Brov < g

by (1) and the assumption just made. So 81 p < 8. Hence LNM'Nk = LNM'NJ'.
Since M N B = M'np’, it follows that

sup(LNM' Nk)=sup(LNM' NB")=sup(LNMNB)=sup(LNMnNEk).
So
Br,am = min(A\ sup(LNM Nk)) = Br,m.
But this contradicts the assumption that 8z, a < Br -

This proves that Sr y < Brar. By Lemma 1.19(5), we can fix £ € (LN
M) 0 [Br,m,Brm). Since By < € and € € L, it follows that £ ¢ M. But
Mnpg=Mnpg. Since £ € (M'Nk)\ M, ' <& As & < B m, it follows that
B < Br.m-

(3) Suppose that Sr. v = Pr,m and ¢ € Rynp(L). We will prove that ( €
Ry (L). Since Br.m = Br.mnp by Lemma 1.34, Sy = B mnp. First assume
that L ~ M NP and ¢ = min((L N k) \ Br,mnp). Hence ¢ = min((LN k) \ Br,a).
AsL~MnNP,

LNnwy=MnNnPNw; =M Nw;.
So L ~ M’ by Lemma 1.21. Hence ¢ € Ry (L).

Now assume that ¢ = min((L N k) \ v), where v € (M NP Nk)\ Br,mnp. Since
MNPNk=MNBCM,ve M. And

Br,mnp = Br,m = Br,mr < 7.
Sov € (M' Nk)\ Br,m. Therefore ¢ € Ry (L). O

The final lemma concerning remainder points will be used when amalgamating
over transitive models.
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Lemma 2.11. Let M, M', N, and N’ be in Xy. Assume that M Nk = M'Nk and
NnNk=N'Nk. Then Ry (N) = Ry (N').

Proof. We will show that Ry;(N) C R (N'). The reverse inclusion follows by
symmetry. So let ¢ € Ry (N).

First, assume that M ~ N and ¢ = min((N Nk)\ Ba,n). Then by Lemma 1.37,
Bum,N = Bumr.ne and M’ ~ N’. Since N' Nk = N Nk, clearly ¢ = min((N' N k) \
Bur,n). So ¢ € Ry (N).

Secondly, assume that ¢ = min((N N k) \ 7), for some v € (M Nk)\ Bu,n. By
Lemma 1.37, By N = By nv. Since M Nk =M Nk, ve€ (M Nk)\ By nr. As
Nnk=N Nk, (=min((N' Nk)\ 7). So ¢ € Ry (N'). O

83. Strong genericity and cardinal preservation

In this section we will discuss the idea of a strongly generic condition, which is
due to Mitchell [12]. Then we will use the existence of strongly generic conditions
to prove cardinal preservation results. All of the results in this section are either
due to Mitchell, or are based on standard proper forcing arguments.

Definition 3.1. Let Q be a forcing poset, ¢ € Q, and N a set. We say that q is a
strongly N-generic condition if for any set D which is a dense subset of NN Q, D
is predense in Q below q.

Note that if g is strongly N-generic and r < ¢, then r is strongly N-generic.

Notation 3.2. For a forcing poset Q, let A\g denote the least cardinal such that
Q € H(Ag).

Note that ¢ is strongly N-generic iff ¢ is strongly (N N H(Ag))-generic.
The following proposition gives a more intuitive description of strong genericity.

Lemma 3.3. Let Q be a forcing poset, g € Q, and N < (H(x), €,Q), where A\g < x
is a cardinal. Then q is a strongly N-generic condition iff q forces that N NG is a
V -generic filter on N N Q.

Proof. Suppose that ¢ is a strongly N-generic condition, and let G be a V-generic
filter on @ containing q. We will show that N N G is a V-generic filter on N N Q.

First, we show that NN G is a filter on NNQ. If pe NNGandt € NNQ
with p <t, then ¢ € G since G is a filter, and hence t € N NG. Suppose that s and
t are in N NG, and we will find p € N NG such that p < s,¢t. The set D of p in
N N Q which are either incompatible with one of s and ¢, or below both s and ¢, is
a dense subset of N N Q by the elementarity of V. Since ¢ is strongly IN-generic,
D is predense below ¢q. As ¢ € G and G is a V-generic filter, we can fix p € GN D.
Since s, t, and p are in G, p is compatible with s and ¢, and therefore p < s,t by
the definition of D. As D C N, pe NNG.

Secondly, we prove that NN G is V-generic on NNQ. So let D be a dense subset
of NN Q. Since ¢ is a strongly N-generic condition, D is predense below ¢. As
q € G, it follows that DNG # 0. But D C N,so DNNNG # 0.

Conversely, suppose that ¢ forces that N NG is a V-generic filter on N NQ, and
we will show that ¢ is strongly N-generic. Let D be a dense subset of N N Q. If
D is not predense below ¢, then we can fix » < ¢ which is incompatible with every
condition in D. Let G be a V-generic filter on Q containing r. Since r < ¢, ¢ € G.
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Hence by assumption, N N G is a V-generic filter on N N Q. Since D is dense in
NNQ, we can fix s € GN D. Then r is incompatible with s by the choice of r, and
yet r and s are compatible since they are both in the filter G. (]

The following combinatorial characterization of strong genericity is very useful
in practice.

Lemma 3.4. Let Q be a forcing poset, ¢ € Q, and N a set. Then the following are
equivalent:
(1) gq is strongly N-generic;
(2) for all r < q, there exists v € N NQ such that for allw < v in NNQ, r
and w are compatible.

Proof. For the forward direction, suppose that there is r < ¢ for which there does
not exist a condition v € NNQ all of whose extensions in NNQ are compatible with
r. Let D be the set of w € N N Q which are incompatible with r. The assumption
on r implies that D is dense in N N Q. But D is not predense below ¢ since every
condition in D is incompatible with r. So ¢ is not strongly N-generic.

Conversely, assume that there is a function 7 — v, as described in (2). Let D be
dense in N NQ, and let » < ¢. Since D is dense in N NQ, we can fix w < v, in D.
Then r and w are compatible by the choice of v,.. So D is predense below g. (|

The next idea was introduced by Cox-Krueger [2].

Definition 3.5. Let Q be a forcing poset, ¢ € Q, and N a set. We say that q is
a universal strongly N-generic condition if q is a strongly N -generic condition and
forallp e NNQ, p and q are compatible.

The strongly generic conditions used in this paper are universal. This fact allows
us to factor forcing posets over elementary substructures in such a way that the
quotient forcing has nice properties. See Section 6 for more details on this topic.

Definition 3.6. Let Q be a forcing poset and p < Ag a regular uncountable cardinal.
We say that Q is p-strongly proper on a stationary set if there are stationarily many
N in P,(H(\g)) such that for all p € N NQ, there is ¢ < p such that q is strongly
N-generic.

When we say that Q is strongly proper on a stationary set, we will mean that it
is wy-strongly proper on a stationary set.

By standard arguments, Q is p-strongly proper on a stationary set iff for any
cardinal Ag < ¥, there are stationarily many N in P,(H(x)) such that for all
p € NNQ, there is ¢ < p such that ¢ is strongly N-generic.

Lemma 3.7. Let Q be a forcing poset and pn < Ag a regular uncountable cardinal.
If there are stationarily many N in P,(H(A\g)) such that there exists a universal
strongly N -generic condition, then Q is p-strongly proper on a stationary set.

Proof. Let N € P,(H()Ag)) be such that there exists a universal strongly N-generic
condition qy. Let p € NN Q, and we will find » < p which is strongly N-generic.
Since qy is universal, p and ¢y are compatible. So fix » < p,qn. Then r < p and
r is strongly N-generic. O
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Definition 3.8. Let p be a regular uncountable cardinal. A forcing poset Q is said
to satisfy the u-covering property if Q forces that for any set a C On in the generic
extension, if a has size less than p in the generic extension, then there is b in the
ground model with size less than p in the ground model such that a C b.

Note that if Q has the u-covering property, then Q forces that u is regular.

Proposition 3.9. Let Q be a forcing poset, and let ;n < Ag be a regular uncountable
cardinal. Suppose that Q is p-strongly proper on a stationary set. Then Q satisfies
the p-covering pmperty.l

Proof. Let p be a condition, and suppose that p forces that a is a set of ordinals of
size less than p. We will find ¢ < p and a set x of size less than p such that ¢ forces
that @ C x. Extending p if necessary, we can assume that p forces that a has size
o, for some cardinal pg < p. Fix a sequence (¢ : i < po) of Q-names such that p
forces that @ = {&; : ¢ < po}-

Fix a regular cardinal Ag < x such that Q, @, and (&; : 4 < po) are members of
H(x). Fix N € P,(H(x)) such that N < (H(x),€,Q,p,a,(d; : i < po)), po € N,
and for all pg € N NQ, there is ¢ < pg which is a strongly N-generic condition. In
particular, since p € N N Q, we can fix ¢ < p such that ¢ is strongly N-generic.

We claim that g forces that for all ¢ < pg, &; € N. Let i < pug. Let D be the set
of s € NN Q such that s decides the value of ;. By the elementarity of N, it is
easy to see that D is dense in N N Q. Since ¢ is strongly N-generic, D is predense
below q. Therefore ¢ forces that &; is decided by a condition in N. By elementarity,
the value of the name ¢; decided by a condition in NV lies in N. Hence g forces that
&; € N. It follows that g forces that ¢ C N N On. Since N has size less than pu, we
are done. O

Corollary 3.10. Let Q be a forcing poset, and let ;1 < Ag be a regular uncountable
cardinal. Suppose that there are stationarily many N in P,(H(A\g)) for which there
ezists a universal strongly N-generic condition. Then Q satisfies the p-covering
property. In particular, Q forces that w is a reqular cardinal.

Proof. Immediate from Lemma 3.7 and Proposition 3.9. O

Proposition 3.11. Let Q be a forcing poset, and let p < Ag be a regular uncount-
able cardinal. Suppose that there are stationarily many N € P,(H(Ag)) such that
every condition in Q is a strongly N-generic condition. Then Q is p-c.c.

Note that if Q has a maximum condition, then every condition in Q being
strongly N-generic is equivalent to the maximum condition being strongly N-
generic.

Proof. Let A be a maximal antichain in Q, and we will show that |A| < p. Let
N € P,(H(\g)) be such that N < (H(\g),€,Q, A) and every condition in Q is
strongly N-generic.

Note that by the elementarity of N and since A is a maximal antichain, NN A is
predense in N N Q. Namely, if u € N NQ, then u is compatible with some member
of A. By elementarity, v is compatible with some member of N N A. Let D be the

IThe proof of this proposition is basically the same as a standard proof that proper forcing
posets preserve w.
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set of t € N N Q such that for some s € NN A, t <s. Then easily D is dense in
N N Q. Since every condition in Q is strongly N-generic, D is predense in Q.

We claim that A C N, which implies that |A] < |[N| < p. So let p € A be
given, and we will show that p € N. Since D is predense in Q, fix t € D which is
compatible with p. By the definition of D, we can fix s € N N A such that t < s.
Then p and s are compatible. But p and s are both in A and A is an antichain, so
p=s. Sinces€ N, pe N. ([

In general, forcings which include adequate sets as side conditions will collapse x
to become ws. In other words, all the cardinals g with wi < p < k will be collapsed
to have size wi. The next result describes some general properties of a forcing poset
which imply that such collapsing takes place.

Proposition 3.12. Suppose that Q is a forcing poset which preserves wi and sat-
isfies:

(1) there exists an integer k < w such that the conditions of Q are of the form
(z1,...,2k, A), where x1,...,x are finite subsets of H(\), and A is an
adequate set;

(2) if (y1y---,yx, B) < (x1,...,2, A), then A C B;

(3) there are stationarily many N € Xy such that whenever (x1,...,zx, A) €
NNQ, then (z1,...,zx, AU{N}) is a condition below (x1,...,x, A).

Then for any cardinal w1 < p < K, Q collapses p to have size wy.

Proof. It suffices to show that Q singularizes all regular cardinals p with w; < p <
k. For suppose that this is true, but there is a cardinal p in the interval (wy, ) in
some generic extension. Assume moreover that p is the least such cardinal. Then
1 = wy in the generic extension. By downwards absoluteness, u is regular in the
ground model. This contradicts our assumption that all regular cardinals in the
interval (w1, k) are singularized.

Let G be a V-generic filter on Q. Define

X = {N:H(ml,...,xk,A) €@q, NEA}

Let
X, ={NeX:peN}

Then by (2) and the fact that G is a filter, for any M and N in X, there is a
condition (x1,...,xx, A) € G such that M and N are in A. Since A is adequate,
{M, N} is adequate. As p € MNNNk, p < By, n. Therefore either MNp = NNy,
MnNpe N,or NN € M. Moreover, which of these three relations holds is
determined by how M Nw; and N Nw; are ordered, by Lemma 1.21. It follows that
{sup(NNp): N € X, } is a strictly increasing sequence of ordinals with order type
at most wi.

We claim that the set {sup(N N ) : N € X,,} is cofinal in p. The claim implies
that p has cofinality less than or equal to wy in V|G|, finishing the proof. Fix a
name X » which is forced to be equal to the set X, defined above.

Let v < p and (21, ...,2x, A) be a condition. By (3), there is N € A} such that
(x1,..., 2k, A), v, and p are in N, and (z1,...,z,, AU {N}) is a condition below
(z1,...,2x, A). Since p € N, (21, ..., 25, AU{N}) forces that N € Xu- Asy €N,
v < sup(N N p). O
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84. Adding a club

In this section we give an example to illustrate the methods developed so far,
by showing how to add a club subset of a stationary subset of wy using adequate
sets of models. Adding a club with finite conditions was the original application of
the side conditions of Friedman [3] and Mitchell [12]. Later Neeman [13] defined a
forcing for adding a club using his method of two-type side conditions. The forcing
poset we develop in this section is the first example of a forcing which adds a club
subset of ws using conditions which are just finite sets of models ordered by reverse
inclusion.

The following general lemma will be used frequently in this section.

Lemma 4.1. Let A be an adequate set. Let K, M, and N be in A, and { € Ry (N).
Suppose that 6 = min((K N k) \ (). Then

0 € Ryy(N)URy(K)URN(K).

Proof. If 6§ = (, then 8 € Ry (N) and we are done. Assume that ¢ < 6, which
means that ( ¢ K. If 0 < Bk n, then 6 € Ry (K) by Lemma 2.7.
Suppose that gy < 0. If Sx n < (, then since ¢ € N, we have that

0 =min((KNk)\ () € Ry(K).

Otherwise ¢ < Sx,n < 6. Then § = min((KNk)\ Bk n). Since ¢ € (NNBr,n)\ K,
it follows that K < N. So 6 € Ry(K). O

For the remainder of this section, let kK = A = ws. Recall that T is a thin
stationary subset of P, (w2). We will also assume that 2“1 = ws, and hence that
H (w2) has size wq. Fix a bijection g* : wy — H(ws).

Let B denote the structure

(H(wq),€,4, T, 7", C*, A, g").

Note that if N is a countable elementary substructure of B and N Nws € T%, then
N € Xy. Also note that if M and N are countable elementary substructures of B
and M Nws € N, then by the elementarity of M, M = ¢g*[M N ws], and hence by
the elementarity of N, M € N.

Fix a stationary set S C wa Ncof(wy). We will define a forcing poset which adds
a club subset of S U cof (w).?

Definition 4.2. A finite set A of elementary substructures of B in Xy is S-adequate
if it is adequate, and for all M and N in A, Ry (N) C S.

Recall that (B, S) is the structure B augmented with the additional predicate S.
Note that the property of being S-adequate is definable in the structure (B, .5).

Definition 4.3. Let P be the forcing poset consisting of S-adequate sets, ordered
by reverse inclusion.

We will show that P preserves all cardinals, and adds a club subset of SUcof(w).
Note that since H(ws) has size we and P C H(ws), P has size wy and thus
preserves all cardinals greater than wo.

2More generally, it is possible to add a club subset to a fat stationary subset of wa using
adequate sets as side conditions, but the argument is more complicated than the one which we
give here. See [9].
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Proposition 4.4. The forcing poset P is strongly proper on a stationary set. There-
fore P satisfies the wi-covering property and preserves ws.

Proof. Let N be a countable elementary substructure of (B, S) such that N Nws €
T*. Note that N € Xy. Let Ag be in N NP. Define A; := Ay U{N}. Observe that
A, is adequate, since for all M € Ay, M N By, v = M Nws, which is in N. Also A4,
is S-adequate, because for all M € Ay, Rp(N) and Ry (M) are empty. Thus A;
isin Pand A; < Ag.

We claim that A, is a strongly N-generic condition. By Lemma 3.4, it suffices
to show that for all Ay < A;, there exists B € N NP such that for all C' < B in
NNP, A, UC is S-adequate. Let Ay < Aj.

We claim that whenever A3 < A, K and M are in Az, and M < N, then

Rynn(K)URg(MNN)CS.

But this follows immediately from Lemma 2.3 and the fact that Ag is S-adequate.
By applying Proposition 1.25 and the last claim finitely many times, we get that
the set
A::AQU{MQN:MGAQ, M<N}
is S-adequate. Hence A € P and A < As.
Let

z:=| J{Ru(N): M € A}.
Since x C N and z is finite, x € N.
The sets A and N witness that the following statement holds in (B, .5):

There are B and N’ such that B is S-adequate, AN N C B, N’ € B, and
x=U{Ru(N'): M € B}.

The parameters which appear in the above statement, namely AN N and z, are
members of N. By the elementarity of IV, we can find B and N’ in N which satisfy
the same statement.

Suppose that C € NNP and C' < B. We claim that AUC' is S-adequate, which
finishes the proof. Note that if M € A and M < N, then M NN € A. By Lemma
1.19(2), M N By,n = M NN Nws. Since M < N, it follows that M N N Nwy € N.
But M NN = g*[M N N Nws| by the elementarity of M NN, so M NN € N by
the elementarity of V. Hence the assumptions of Proposition 1.29 hold. Therefore
AU C is adequate.

To show that AU C is S-adequate, let M € A and L € C. Let ( € Rr,(M), and
we will show that ¢ € S. By Lemmas 2.4(1) and 2.5(1), we have that

¢ € Ry(M)URL(MNN).

Since A and C are S-adequate, M and N are in A, and L and M N N are in C, it
follows that ¢ € S.

Let 0 € Rpr(L). By Lemmas 2.4(2) and 2.5(2), either M < N and § € Rynn (L),
or there is £ € Ry/(N) such that § = min((L Nws) \ ). In the first case, § € S
since C is S-adequate and M N N and L are in C. In the second case, £ € x, and
hence for some K € B, £ € Rg(N’). By Lemma 4.1,

0 e RK(N/) U RK<L) U Ry (L)
Since K, L, and N’ are in C and C is S-adequate, it follows that 6 € S. (]
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Lemma 4.5. Suppose that M € Xy and Q is in Vy. Let 8 := Q
assume that cf(f) = w1 and B € M. Then M ~ M N Q, Ry(M
and Ryng(M) = {5}

Proof. By the comments after Notation 1.10, M N Q € Ay. By the elementarity of
Q, [ is a limit point of A. Hence the ordinal

o := min(A \ sup(M N B))
is less than 5. By the definition of Sy, clearly

Bo € Ay N AMQQ.

And since M N Q Nwa C By, By is the maximal element of Ays N Aprng. Therefore
Bo = Bm,MnQ- As M N By=MnNEN Gy, we have that M ~ M N Q.
Since M NQ Nwa C By = Bar,mngs Ry(MNQ) =0. As M ~MnNQ and

8= mln((M N wg) \ ﬁo) = mln((M ﬂwg) \ BN[,MQQ),
we have that 8 € Ryng(M). And the fact that M N Q Nwe C By implies that
Rynq(M) = {8} O

Lemma 4.6. Let Q be an elementary substructure of (B,S) such that Q has size
wr and QNuwe € S. Let B:= QNuwsy. Let Ag € QNP. Suppose that M € Xy, and
A and B are in M. Then 8 € Ryng(M), and

AgU{M}IU{MNQ}
is a strongly Q-generic condition.

Proof. Define Ay := AgU{M}. Then A; is S-adequate and A; < Ay. Namely, for
all K € Ay, K € M implies that K N g, = K Nwy € M. So K < M for all
K € Ag. Also R (M) and Ryr(K) are both empty.

Define A := A;U{M NQ}. By Proposition 1.33, A is adequate. We claim that A
is S-adequate. Solet K bein A;. If K € Ap, then K € MNQ. So Rx(MNQ) and
Ruyng(K) are empty. Suppose that K = M. Then by Lemma 4.5, M ~ M N Q,
Ry(MNQ) =0, and Ryng(M) = {B}. Since € S, we are done.

Thus we have established that A is S-adequate. We will show that A is strongly
Q-generic. So let Ay < A be given.

We claim that for all A3 < Ay, for all K € A;, A3 U{K N Q} is S-adequate.
By Proposition 1.33, A3 U{K N Q} is adequate. To show that it is S-adequate, let
N € A3, and we will show that Ry (K N Q) and Rxng(N) are subsets of S.

By Lemma 2.8(1), Rxy(K N Q) C Ry(K). Since K and N are in A3 and A3 is
S-adequate, Ry (K) C S. Thus Ry(KNQ) C S. Now suppose that ¢ € Rgng(NV).
Then by Lemma 2.8(2), either ¢ € Rx(N), or ( = min((N Nws) \ 5). In the first
case, since K and N are in As, we have that ( € Rx(N) C S. Assume the second
case. Since 8 € Rayng(M) by Lemma 4.5, and M NQ, M, and N are in A3, Lemma
4.1 implies that ¢ is in Ryng(M), Rung(N), or Ry (N). Since As is S-adequate,
¢ € S, which proves the claim.

By applying the claim finitely many times, we get that the set

A=A U{KNQ: K € Ay}
is S-adequate.

Next we claim that for all K € Ay, KNQ is in Q. By Lemma 1.30, K N Q Nws
is in Q. Since K and @ are elementary in B, KNQ = ¢g* [K NQ Nwsy]. As Q is
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elementary in B, KNQ = ¢g*[K N Q Nws] is in Q. It follows that for all K € A*,
KNnQeaq.

Let B := A* N Q. We will show that for any C < Bin PNQ, A*UC is S-
adequate, which finishes the proof. So let C < B be in PN Q. By the previous
claim, for all K € A*, KNQ € A*NQ. And A*NQ C C C Q. By Proposition
1.35, A* U C is adequate.

To prove that A* U C' is S-adequate, let L € C' and N € A*, and we will show
that

RL(N)URN(L) C S.
By Lemma 2.9(2), Ry(L) € Ryng(L). Since L and NNQ arein C, Rnng(L) € S.
Hence Ry (L) C S.

Let ¢ € Rr(N). Then by Lemma 2.9(1), either ¢ € R, (NNQ), or ( = min((N N
wa) \ B). In the first case, since L and N N Q are in C and C is S-adequate, it
follows that ¢ € S. Assume the second case. Then since S € Ryng(M), and M,
MnNQ, and N are in A*, by Lemma 4.1 we have that ¢ is in Ryrng(M), Raung(N),
or Ry/(N). Since A* is S-adequate, it follows that ¢ € S. O

Corollary 4.7. The forcing poset P is wy-strongly proper on a stationary set.
Therefore P preserves ws and has the ws-covering property.

Proof. Immediate from Lemma 4.6. ]
Proposition 4.8. The forcing poset P adds a club subset of S U cof(w).
Proof. Let C be a P-name for the set

J{Bu(N):3A€ G, M N € A}.

It follows easily from Lemma 4.6 that P forces that C is cofinal in wo.
We claim that P forces that
lim(C) € S U cof(w),
which completes the proof. Let 8 < ws, and assume that A is a condition which
forces that § is a limit point of C. We will prove that § is in S U cof(w). If
has cofinality w, then we are done. So assume that cf(8) = w;. We will show that
ges.

Fix N € X such that A and 8 are in N. Then AU {N} is an S-adequate set,
and thus is in P. Since AU{N} < A, AU{N} forces that /5 is a limit point of C
with uncountable cofinality. Hence we can fix B < AU{N}, K and M in B, and
v € Rg (M) such that

sup(NNP) <y<p.
Since § € N, we have that § = min((N Nwz) \ 7). By Lemma 4.1,

RS RK(M) U RK(N) U RM(N)
As B is S-adequate, it follows that 5 € S. O

We remark that it is not necessary to assume that k is wy. If K > wy, we can
fix any stationary set S C kN cof(>w), and then the forcing poset P defined above
will add a club subset of S U cof(w), and collapse k to become wy by Proposition
3.12.
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85. S-obedient side conditions

We now generalize the idea of an S-adequate set to the case when we have a
sequence S of sets, instead of a single set S. For the remainder of this section fix a
sequence S = (S, : 7 < ), where each S, is a subset of kN cof(>w).

Definition 5.1. A set P € )y is §—strong if forallT€e PNkt, PNKkeES,.

Note that if P is §—strong, then ¢f(PNk) > w, since PNk € Sy C kNcof(>w).
For the next two definitions, we fix a class ) C ). The definitions of S-adequate
and S-obedient are made relative to the class ).

Definition 5.2. Let A be an adequate set. We say that A is g—adequate if for all
M and N in A and ¢ € Ry (N):
(1) forallTe MNNNkY, (€S,
(2) if P € MNY is S-strong and sup(N N ¢) < PNk < ¢, then for all
TeNNPNk', €S, .

Definition 5.3. A pair (A, B) is an S-obedient side condition if:
(1) A is an S-adequate set;
(2) B is a finite set of S-strong models in Yo;
(3) for all M € A and P € B, if ( = min((M N k) \ (P NK)), then for all
TePNMnkt, (c€S,.

The next two lemmas show that we can add certain models to an S-obedient
side condition and preserve S-obedience.

Lemma 5.4. Let (A, B) be an S-obedient side condition.
(1) If N € Xy and (A, B) € N, then ({N},0) and (AU{N}, B) are S-obedient

side conditions.
(2) If P € Yy is S-strong and (A, B) € P, then (§,{P}) and (A, BU{P}) are
S-obedient side conditions.
Proof. (2) is trivial. (1) The fact that ({N},0) is an S-obedient side condition is
easy. The set AU{N} is S-adequate because for all M € A, MNPy n =MNkisin
N, and Ry (N) and Ry (M) are empty. If P € B, then min((NNk)\(PNk)) = PNk.
Andif re PNNNk™, then PNk € S, since P is §—str0ng. O

Lemma 5.5. Let (A, B) be an S-obedient side condition.
(1) Let M and N be in A, and suppose that M < N. Then (AU{M NN}, B)
is an S-obedient side condition.
(2) Let M € A and P € B. Then (AU {M N P},B) is an S-obedient side
condition.
(3) Suppose that P and Q are in B and PNk < QNk. Then (A, BU{PNQ})
is an S-obedient side condition.

Proof. (1) The set AU {M N N} is adequate by Proposition 1.25. To show that
AU{M N N} is S-adequate, it suffices to show that for all K € A, {K, M N N} is
S-adequate. So let K € A be given.

Let ¢ € Rg(MNN). Then ¢ € Rg(M) by Lemma 2.3. Let 7 € KN(MNN)N&T,
and we will show that ( € S;. Then 7 € K N M, which implies that { € S; since
¢ € Rx(M).
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Suppose that P € K NY is S-strong and sup(M NN N¢) < PNk < (. Let
7€ (MNN)NPNkT, and we will show that ¢ € S,. Since ¢ € M N N N &,
¢ < Bum,n. And since M NN Nk = M N PBy,n is an initial segment of M N &,
sup(M NN N¢) =sup(MN¢). Sosup(MN¢) < PNk <. Since ¢ € Rg(M), it
follows that ¢ € 5.

Let ( € Rynn(K). Then by Lemma 2.3, either (i) ( € Ry(K) or (ii) ¢ €
RN (K). Consider 7 € KN (M NN)NkT, and we will show that ¢ € S;. Then
7€ KNM,soin case (i), ( € S;. AlsoT € KN N, soin case (ii), ¢ € S;. Suppose
that P € (MNN)NY is S-strong and sup(KN¢) < PNk < (. Let 7€ KNPNkK™T,
and we will show that ¢ € S,. Then P € M NY, so in case (i), ¢ € S;. And
P e NNY, soin case (ii), ¢ € S;. This completes the proof that AU {M NN} is
§—adequate.

Let @ € B, and suppose that £ = min((M NN Nk)\ (QNk)). Since M < N,
MNNNk = MnN Buy,n, which is an initial segment of M N k. Hence { =
min((M Nk)\ (QNk)). Let 7€ (MNN)NQNkT, and we will show that & € S;.
Then 7 € M NQ, so £ € S, since (A4, B) is S-obedient.

(2) Since P is S-strong, cf(P N k) > w. So clearly sup(M NP N k) < PNk. It
follows that AU {M N P} is adequate by Proposition 1.33.

To show that AU{M N P} is S-adequate, let K € A be given, and we will show
that {K, M N P} is S-adequate.

Let ¢ € Rx(MNP). Then ¢ € Ri (M) by Lemma 2.8. Let 7 € KN(MNP)Nk™T,
and we will show that ¢ € S.. Then 7 € K N M implies that ¢ € S;.

Suppose that Q € K NY is S-strong and sup(MNPN¢ <QNk < (. Let
TeQN(MnNP)Nkt, and we will show that ¢ € S,. Since ¢ € PNk and PNk
is an ordinal, sup(M NP N¢) =sup(M N¢). Sosup(MN¢) < QNk < (. Since
(€RKk(M),Qe KNY,and 7 € M NQ, it follows that ¢ € S;.

Let ¢ € Rynp(K). Then by Lemma 2.8, either (i) ( € Ry (K) or (ii) ¢ =
min((K Nk)\ (PNk)).

Let 7 € (MNP)NKNk", and we will show that ¢ € S,. In case (i), 7 € MNK
implies that ¢ € S, since A is §—adequate. In case (ii), 7 € K N P implies that
¢ € S, since (A, B) is S-obedient.

Suppose that Q@ € (M NP)NY is S-strong and sup(KN¢) < QNk < (. Let
7€ KNQNk", and we will show that ¢ € S;. In case (i), @ € M NY implies
that ¢ € S, since A is S-adequate. In case (ii), since 7 € Q and Q € P, 7 € P. So
¢ € S, since (A, B) is S-obedient. This completes the proof that AU {M N P} is
g—adequate.

Let @ € B, and suppose that ¢ = min(M N PNk)\ (@ Nk)). Let 7 €
(MNP)YNQNkT, and we will show that ¢ € S,. Since PNk €k, MNPNkKis
an initial segment of M N k. Hence ¢ = min((M N k) \ (@ Nk)). Since 7 € M N Q,
it follows that ¢ € S, since (A, B) is S-obedient.

(3) Note that since PNk < QNkK, PNQNKk=PNk.

To show that PN Q is §—str0ng, let 7€ PNQNk". Then 7 € P. Since P is
g—strong, PNnQNk=PNkeSs,.

Let M € A, and suppose that ¢ = min((M Nk) \ (PNQNk)). Then ¢ =
min((MNk)\ (PNk)). Let 7€ MN(PNQ)NkT. Thent € MNP,so¢e€S,. O
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We conclude the section with an easy lemma which will be used frequently for
checking that certain models are S-strong.

Lemma 5.6. Suppose that N € Xy U Yy, Q € NN)Yy, and P € V. Suppose
that P is S-strong and N < (H(\),€,Y0,S). Assume that QN N Nx™ C P and
Pnk=QNk. Then Q is §—str0ng.

Proof. Since Q € N, it suffices to show that N models that @Q is g—strong. So let
T€QNNNKT. Since QNNNKT C P, 7€ P. As P is S-strong, QNk =PNk €
Sr. O

86. The approximation property and factorization

We briefly discuss the approximation property, and state the theorem on factor-
ing a generic extension which we will use in the proof of Mitchell’s theorem in Part
I11.

Let (W1, W3) be a pair of transitive class models of ZFC such that W; C Wh.
We say that the pair (W7, Wa) satisfies the wy -approzimation property if, whenever
X € W5 is a set of ordinals such that a N X € W; whenever a € W7 is countable in
W1, then the set X itself is in W;.

The approximation property is due to Hamkins [5], and is similar to properties
studied in Mitchell’s construction of a model with no Aronszajn trees on wy [11]. Tt
plays a crucial role in the original proof of Mitchell’s theorem on the approachability
ideal, as well as in the proof presented in Part III.

We will use the following easy consequence of the approximation property.

Lemma 6.1. Suppose that (W1, Ws) satisfies the wy-approzimation property. As-
sume that ¢ is a set of ordinals of order type wy in Wy such that for all B < sup(c),
cNpeWy. Then c e Wy.

Proof. To show that ¢ € W7, it suffices to show that for any set a € W; which is
countable in Wy, anNc € Wy. Solet a € Wy be countable in W;. Then a is countable
in Ws. Since ¢ has order type wy, there is 8 < sup(c) such that ane C ¢nN 8. By
the assumption on ¢, cN B € Wi. Since ¢N B and a are in Wi, aNec=aN(cNf)
is in Wy, [l

In the original proof of Mitchell’s theorem, being able to factor a generic exten-
sion in a way which satisfies the approximation property relied on what was called
tidy strongly generic conditions (see Lemma 2.22 of [12]). However, the strongly
generic conditions used in the present paper are not tidy. Therefore we need a
different factorization theorem which is applicable in the present context; such a
theorem was provided by Cox-Krueger [2].

Let us recall the property * introduced in [2].

Definition 6.2. Let Py be a suborder of a forcing poset Py, where Py has greatest
lower bounds. We say that Py satisfies property x(P1,Py) if for all p € Py and
q,7 € Py, if p, q, and r are pairwise compatible in Py, then p is compatible in Py
with ¢ A r.
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Note that if a forcing poset Q satisfies property *(Q, Q), then for any suborder
P of Q, +(P, Q).

Notation 6.3. Let Q be a forcing poset. If ¢ € Q and K is a subset of Q, let
(Q/q)/K denote the forcing poset consisting of conditions s € Q such that s < g,
and s is compatible in Q with all conditions in K.

The following result appears as Theorem 4.3 in [2].

Theorem 6.4 (Factorization theorem). Let Q be a forcing poset with greatest lower
bounds satisfying *(Q,Q), x a regular cardinal with Ag < x, and N < (H(x), €
,Q). Suppose that there are stationarily many models in P,, (H(x)) which have
universal strongly generic conditions. Assume that q is a universal strongly N -
generic condition.

Then for any V-generic filter G on Q which contains q, V[G] = V|G N N|[H],
where G N N is a V-generic filter on QN N, H is a V|G N N]-generic filter on
(Q/q)/(GNN), and the pair (VIGNN], V[G]) satisfies the wy-approzimation prop-
erty.

This theorem will be used in the final argument of the proof of Mitchell’s theorem
in Section 16. It is interesting to note that not all intermediate extensions of a
strongly proper forcing extension satisfy the w;-approximation property; see Section
5 of [2] for a counterexample.

Part 2. Advanced side condition methods

§7. Mitchell’s use of [J,.>

For the remainder of the paper we will assume [, and 2% = k*. Also we let the
cardinal A from Part I equal k. Since 2" = k*, H(x™) has size 7.

Notation 7.1. Let f* denote a bijection from k% to H(k™).

Notation 7.2. Fiz a sequence C = (Co o < KT, « limil) satisfying that for all
limit o < k:
(1) Cq is a club subset of a with ot(Cy) < k; in particular, if cf(a) < k then
ot(Cy) < K;
(2) if B € im(Cy,), then Cg = Cy, N B;
(3) if a is a limit of limit ordinals, then every ordinal in Cy, is a limit ordinal;
(4) if a = ap +w for a limit ordinal «g, then ag € lim(Cy,), and hence Cy, =
Oa N Q.

Properties (1) and (2) embody the standard definition of a square sequence. It
is easy to modify a square sequence to also satisfy properties (3) and (4). For
example, start by replacing each ordinal in C, with the greatest limit ordinal less
than or equal to it. The details are left to the reader.

Notation 7.3. For each limit ordinal o < k* and 8 < ot(Cy), let ca,3 denote the
B-th member of C,, that is, the unique v in Cy such that ot(Cy Nvy) = 3.

3Almost all of the arguments in this section and the next are due to Mitchell, but adopted to
the present context.
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Notation 7.4. Fix a sequence A= (A, 3:n < kT, B<K) satisfying the following
properties:
(1) for eachn < k™, {A, 3 : B < K} is an increasing and continuous sequence

of sets with union equal to n;

) Ant1, = Ayp U{n};

) for alln < k™ and B < K, |4, 8] < |B]-w;

) if e lim(Cn) UA,zU lim(An”@), then A¢p = Ay NE;

) there exists a function ¢* : K — k such that for alln < k¥ and B8 < &,
Ot(An,ﬁ) < C*(ﬂ);

(6) if B < ot(Cy), then A, g C ¢y g and im(Cy) Ney g € Ay g;

(7) if y en\C,, then v € Ay, 5 iff

Y € Amin(C,\y),p and min(Cy \ v) € Ay g;
(8) if & € im(A, 8) N and ot(Ce) < B, then § € A, 5.

Properties (1), (2), and (3) describe a typical kind of filtration of each ordinal
n < kT. The coherence property (4) is one of the most often used facts in the
paper. It gives sufficient conditions for coherence to hold between A¢ g and A4, g,
where £ < n. If £ is a limit point of C},, then

VB < kK Ag’g = Amﬁ NnE.
And if 8 < k and £ is either in A, g, or a limit point of A, g, then
Aep = AgpNE.

We recommend that the reader memorize this important fact before proceeding.
Property (5) follows immediately from property (3) in the case when & is weakly
inaccessible, by letting ¢*(3) = B8%. This property is only used in one lemma in
the paper, namely Lemma 8.6. Likewise, properties (6), (7), and (8) are technical
facts about A which are only used in Lemmas 8.10 and 8.11, and in several places
in Section 12. There is no harm in the reader forgetting about properties (5)—(8)
for now, and just looking back at them later in the rare places that they are used.

Theorem 7.5 (Mitchell [12]). Assume that k is weakly inaccessible and C is a
sequence as in Notation 7.2. Then there exists a sequence A as described in Notation

7.4.

Mitchell constructs the sequence A using the square sequence C in a careful way.
The only place where the weak inaccessibility of k is used is to derive property (5)
from property (3), as mentioned above. If k is weakly inaccessible in an inner model
W which satisfies O, and (k7)) = (kT)Y, then the sequence A constructed in W
still satisfies properties (1)—(8) in V' by upwards absoluteness. For example, if V is
obtained from W by collapsing » to become wy while preserving T, then there is
a sequence A as above in V.

The construction of A appears in [12, Section 3.1]. We do not repeat it here
because it is technical and not helpful for understanding the other material in our

paper.
Notation 7.6. Let A denote some expansion of the structure

(H(k"),€,4, n,T*,ﬂ*,C*,A,yo,f*,C", ff, ).
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Note that A is an expansion of the structure described in Notations 1.9 and 1.10.
Thus any elementary substructure of A is also an elementary substructure of that
structure.

Notation 7.7. Let X denote the set of M in P, (H(k™)) such that M Nk € T*,
M < A, and im(Csyp(ary) N M is cofinal in sup(M).

Notation 7.8. Let ) denote the set of P in P.(H (k")) such that PNk € K,
P < A, and lim(Csyp(py) N P is cofinal in sup(P).

Note that X C Ay and Y C )y, where Xy and )y were defined in Notations 1.9
and 1.10.%

Observe that by elementarity, for any M € X and P € Y, M = f*[M Nx*] and
P = f*[PNxT]. In particular, if M and N are in X UY and M Nk* € N, then by
elementarity, M € N.

As a result of the presence of the well-ordering <, the structure A described in
Notation 7.6 has definable Skolem functions. Let (7, : n < w) be a complete list of
definable Skolem terms for A. For any set a C H(x™"), let Sk(a) denote the closure
of a under the Skolem terms.

For n < w and m equal to the arity of 7,,, we define a partial function 7, :
(k7)™ — kT by letting 7/ (v, ---,¥m_1) = Tn(®0,---,@m_1), provided that this
is an ordinal, and otherwise is undefined. Note that 7/, is also definable in A.

Notation 7.9. Let H* : (k7)<¥ — kT be a function such that any elementary
substructure of A is closed under H*, and whenever a C k™ is closed under H*,
then Sk(a) N k™ = a. In addition, a is closed under H* iff a is closed under 7/, for
alln < w.

The existence of such a function H* is proved by standard arguments. Note
that if a is a set of ordinals closed under H*, then Sk(a) = f*[a]. In particular,
if M e XUY and a € M is a set of ordinals which is closed under H*, then by
elementarity, Sk(a) € M.

The next simple lemma will prove very useful throughout the paper.

Lemma 7.10. Suppose that N € X UY, a is a set of ordinals in N, and for some
set b which is closed under H*, NNa= NNb. Then a is closed under H*.

Proof. Tt suffices to show that a is closed under 7}, for all n < w. Fix n < w,
and let k be the arity of 7). Since a € N and 7}, is definable in A, it suffices to

show that N models that a is closed under 7). Let ag,...,a;—1 € N Na. Then
Qg,...,ax—1 € NNb. Since N and b are both closed under H*, they are closed
under 7;,. So 7, (ag,...,ar—1) € NNb. Since NNbCa, 7, (ag,...,a5-1) €a. O

In the remainder of this section, we will provide a thorough analysis of the models
in X and V.
The following notation will be useful.

Notation 7.11. Let N C H(xk™") be a set and v € k™ Nsup(N). Let vy denote the
ordinal min((N N k*)\ 7).

Recall that if a is a set of ordinals, then cl(a) denotes the set a U lim(a).

4The requirement that lim(Cgyp(xy) N X is cofinal in sup(X) appears in Mitchell’s definition
of a model ([12, Definition 3.14]). We do not, however, assume that ot(Cyup(x)) ¢ X, as in his
definition.
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Lemma 7.12. Let N € XUY and n € cl(N), and suppose that n < sup(N). Then
either n € N or n € lim(C,,,, ). Hence:

(1) CV] = CTIN 077;

(2) Ape=AnyeNn forall§ < k;

(B) NNA,ye=NNA,¢ forall £ < k.

Proof. If n € N, then ny =1, and (1), (2), and (3) are trivial.

Suppose that n < 7y, and we will show that n € lim(C,, ). Let v < n. Since
n € c(N)\ N, n € im(N). So we can fix o0 € (NNn)\vy. Nowny € N
and o € N Ny, so by elementarity there is 6 € C,, N N larger than o. Then
deNNny Cn. Sov<d<nandd € C,y,. This proves that n € lim(C,,,, ).

(1) follows from the definition of a square sequence, and (2) follows from Notation
7.4(4). For (3), since N Nny = N N, it follows that for all £ < k&,

NOAWN{ :NﬁAnNé nn= NﬂAn,g.
[l

Lemma 7.13. Let N € X UY, and suppose that n € cl(N)\ N. Then lim(C,) "N
is cofinal in n.

Proof. Note that n € lim(N). If n = sup(IV), then the statement of the lemma
follows from the definitions of & and ). Otherwise by Lemma 7.12, C,, = Cp,, N1n.
Let v < 1. Since n € lim(N), we can fix 0 € N Nn larger than v. As n < nn, nn
has uncountable cofinality. So certainly lim(C,, ) is cofinal in x. By elementarity,
we can find 0 € lim(C,,,) Ny NN which is larger than o. Then § < 1. Since
C, = Cy, N, it follows that § € lim(C,). Thus v < § and 6 € lim(C,)) " N. O

The next lemma is standard.

Lemma 7.14. Suppose that P € P.(H(k")), P < (H(k"),€), PNk € Kk, and
cf(PNkK) > w. Assume that v is a limit point of P N k™ below sup(P), and
cf(vy) < cf(PNk). Then v € P.

Proof. Suppose for a contradiction that v ¢ P. Then p is in P and v < vp. By
elementarity, we can fix an increasing and cofinal function f : c¢f(yp) — vp which
is in P. Since yp < k7, either cf(yp) < k or cf(yp) = k. In the first case, cf(yp) €
PNk € k implies that cf(yp) C P. By elementarity, f[cf(vp)] € PNvyp C «, which
is impossible since f[cf(yp)] is cofinal in yp and v < yp. Therefore cf(yp) = k. By
elementarity, f [ P Nk is cofinal in P N ~yp, and hence is cofinal in . But then
has cofinality equal to cf(P N k), which contradicts our assumption on ~. O

Lemma 7.15. Let P € P,(H(k")) with PNk € k and P < A. Ifcf(PNEK) > w
and cf(sup(P)) > w, then P € ).

Proof. Let o := sup(P). By the definition of Y, it suffices to show that lim(C, )N P
is cofinal in 0. So let & < 0. Since sup(P) = o has uncountable cofinality, there
exists a sequence (v, : n < w) increasing and bounded below o such that £ < g,
Y € Pifniseven, and v, € C, if nis odd. Let v be the supremum of this sequence.
Then « is a limit point of P which is strictly below sup(P) with cofinality w. Since
cf(PNk)>w, cf(y) < cf(PNk). Soy € P by Lemma 7.14. On the other hand, 7
is a limit point of Cy. So & <« and v € lim(C,) N P. O
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Lemma 7.16. Let M and N be in X UY, and assume that {M, N} is adequate in
the case that M and N are in X. Then M NN € X UY. Specifically:

(1) fMeX and Ne XU)Y, then MNN € X;
(2) fMeY and N €)Y, then MNN €.

Proof. Obviously M N N is an elementary substructure of A. If M € X, then
M NN € &y by Lemma 1.23 and the comment after Notation 1.10. Hence M N
NNk eT* Andif M and N are in Y, then M N NNk =min{M Nk, NNK} € k.
Let o := sup(M N N). It remains to show that lim(Cy,) N (M N N) is cofinal in o.
First we claim that lim(C,)NM and lim(C,)NN are cofinal in a. Since MNNN
kT is closed under successors, it does not have a maximum element, and therefore o
is a limit point of MNNNkT. As a € lim(M), if « ¢ M then lim(C, )N M is cofinal
in @ by Lemma 7.13, and similarly with N. So if « is neither in M nor N, then
the claim is proved. Assume that « is in one of them. Since a = sup(M N N), «
cannot be in both in M and N. Without loss of generality, assume that « € N\ M.
Then lim(C,) N M is cofinal in « as just observed, and so in particular, lim(C,) is
cofinal in a.. By the elementarity of N, and since & € N and also « is a limit point
of N, easily lim(C,) N N is cofinal in «. This completes the proof of the claim.
To show that lim(Cy) N (M N N) is cofinal in «, let v < a. Fixy € MNNN&kT
with v < 4. Let 0 = min(lim(C,)\v'). We claim that o € M NN, which completes
the proof. Since lim(C,)NM is cofinal in a, we can fix n € im(Cy)NM with o < 7.
As n € lim(C,), C, = Co Nn. Therefore 0 = min(lim(C;)) \ v’). Since n and ~' are
in M, 0 € M by elementarity. The same argument shows that ¢ € V. O

We now introduce the idea of a simple model.> These are the models for which
there exist strongly generic conditions. To motivate the definition, we prove a
bound on ot(Cyup(ny)-

Lemma 7.17. Let N € X UY. Ifn € im(N), then ot(Cy) € cl(NNk). In
particular, ot(Cgup(ny) < sup(N N k).

Proof. Since n € lim(N) and |N| < &, it follows that cf(n) < k. If n € N, then
ot(Cy) € N Nk by elementarity. Assume that 7 is not in N. Then n € cI(N) \ N.
By Lemma 7.13, lim(C},) N N is cofinal in 1. We claim that ot(C)) is a limit point
of NN k. Let v < ot(Cy). Then we can find ¢ € lim(C,) N N such that

v < ot(Cp N ) = ot(Cs) < ot(Ch).
Since § € N, ot(Cs) € NNot(Cy). Soy < ot(Cs) < ot(Cy) and ot(Cs) € NNk. O

Definition 7.18. Let N € X UY. We say that N is simple if ot(Csup(n)) =
sup(N N k).

We prove next that there exist stationarily many simple models in X.

Lemma 7.19. Let N € X UY and ¢ := sup(N). Then for all £ € N N ot(Cs),
Cse € N.

Proof. Let £ € N Not(Cs). Then € < ot(Cs). As lim(Cs) N N is cofinal §, we can
fix n € lim(Cs) N N such that £ < ot(Cs N'n) = ot(Cy,). Hence cs5¢ = ¢, Since n
and { are in NV, by elementarity, ¢, ¢ is in N. (I

S5This is the same idea as described in [12, Section 3.3].
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Proposition 7.20. The collection of models in X which are simple is stationary
in P, (H(kT)).

Proof. Let F: H(kT)<¥ — H(x™), and we will find a simple model in X which
is closed under F'. Fix X of size k such that X < A, X is closed under F', and
0 := X Nk™ has cofinality . Let ¢ : kK — 6 be the function ¢(§) = ¢p ¢ for all £ < k.
Since T* is stationary in P,, (k) and X < A, we can find M € B, (X) which is
closed under F' such that

MnNrkeT*, M<A, and M < (X, €,Cy,c).
Let ¢ := sup(M).
We claim that M is in X and is simple. To show that M € X, it suffices to

show that lim(Cs) N M is cofinal in §. By elementarity, clearly 6 € lim(Cy). Hence
Cs = CgnNd. As M is closed under ¢, for all £ € M Nk,

c(é) =cope € MNKT C 4.
Thus ¢(§) € CoNd = Cs. So c(§) = cpe = c5¢. It follows by elementarity that
{c(§) : £ € M Nk} is increasing and cofinal in M N 4. In particular, the set
{c(§): £ € M Nk, & limit} witnesses that lim(Cs) N M is cofinal 4.

It remains to show that M is simple, which means that ot(Cs) = sup(M Nk). We
know that ot(Cs) < sup(M N k) by Lemma 7.17. Suppose for a contradiction that
ot(Cs) < sup(Mnk). Fix 8 € (MNk)\ot(Cs). Then ¢(8) € M by elementarity. But
c(B) = co,p = ¢s,3, as previously observed, which is absurd since ot(C5) < 5. O

Regarding the stationarity of simple models in ), see Lemma 8.3 and Proposition
14.2.

Next we will show that a model M in X U Y is determined by sup(M N x) and
sup(M).

Notation 7.21. Consider n < k™ and 8 < k. For vy < ot(4, ), let a, g be equal
to the y-th element of A, . Define m, : k X k = n by letting m,(v, B) = an g, if
v < ot(Ay ), and 0 otherwise.

Note that m, is a surjection of k x x onto 1. Also if £ € A, 5, then & =
Ty(0t(An,5 N ), B).

Observe that 7, is definable in the structure A.
Lemma 7.22. Letn < k™ and B < k. Suppose that
d € lim(C,) U A, g Ulim(A, )
and v < ot(As ). Then an g~ = a58.~. So (7, B) = m5(7, B).
Proof. By Notation 7.4(4), As 3 = A, N0, so clearly a, g = as3,~- O
Lemma 7.23. Let N €¢ X U)Y. Then
NN & = {maup) (1, 8) 17,8 € NNk}

Proof. Let n:=sup(N). Suppose that v and 8 are in N N«, and we will show that
(v, 8) € N. This is obvious if m,(v, ) = 0. So assume that v < ot(4, g) and
(v, 8) = anp. Since N € X U Y, lim(Cy) N N is cofinal in 1. As a, g, < 1,
we can fix 0 € lim(C,) N N such that a, 3~ < d. Since Asg = A, 3 N0, clearly
v < ot(Asg). By Lemma 7.22, m,(v,8) = m5(v,5). As d, v, and § are in N,
7s(v, B) € N by elementarity.
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Conversely, let £ € N N k™ be given, and we will find v and 8 in N N & such
that m,(y, ) = £ Since lim(C,)) N N is cofinal in 1, we can fix § € lim(C,) N N
such that £ < §. Then £ and § are in N. By elementarity, there is § € NNk
such that £ € Aspg. Let v := ot(As g NE). Since d, B, and £ are in N, v € N. As
noted after Notation 7.21, a5 5, = 7ws(7,5) = £ Since § € lim(C,), by Lemma

7.22, m,(7, 8) = m5(7, B) = €. -

Lemma 7.24. Let M and N be in X UY, and suppose that M N k and sup(M)
are in N. Then M € N.

Proof. Since M = f*[M Nk™], by elementarity it suffices to show that MNk+ € N.
Let 1 := sup(M). Then

Mnw" = {my(v,8) : 7,8 € MNr}
by Lemma 7.23. Since n and M N« are in N, M Nk* € N by elementarity. (]

The next topic we consider is the set Agup(ar),sup(rns), where M € X U Y.
Lemma 7.25. Let M € X UY. Then M N KT C Agup(ar), sup(Mn) -

Proof. Let £ € M N kT, Since lim(Cyup(ary) N M is cofinal in sup(M), we can
fix o € lim(Csup(ary) N M which is strictly greater than . By elementarity, we
can fix 3 € M N« such that § € A, 5. Since o € lim(Cgyp(ary), we have that
Asp = Asup(m),p No. Hence & € Agupary,g- As B € M Nk, B < sup(M N k).
Therefore Asup(M),ﬂ - Asup(]V[),sup(Mﬁn)- Hence € € Asup(M),sup(Mﬁra)- U

Lemma 7.26. Let Q € Y. Then QN K+ = Aqup(0),0nx-

Proof. By Lemma 7.25, we have that Q N ™ C Agup(0),0nx- Conversely, let & €
Asup(Q),@ni, and we will show that & € Q. Since lim(Cyup(g)) N @ is cofinal in
sup(Q), we can fix o € lm(Cyup(g)) N Q which is strictly greater than §. As
o € lim(Csup(@))s Ao,0ne = Asup(@),@ni N 0. Therefore € A, gnk. Since Q Nk
is a limit ordinal, we can fix § < @ N« such that £ € A, 3. Then o and § are in
Q, and hence A, 3 € Q. Since |A, 3| < k by Notation 7.4(3), A, 3 C Q. Therefore
£eq. |

Lemma 7.27. Let Q € Y and n € cl(Q). Then QNn = A, onk-
Proof. By Lemma 7.26, Q N k" = Agup(0),0nk- Since 1 € cl(Q),

1 € Asup(@),@nw U I (Asup(@),@ns)-
By Notation 7.4(4),

An,@ns = Asup(@).@ns N1 = Q@ N1,

Lemma 7.28. Suppose that Py and Py are in Y.
(1) If ANk < PoNk andn € cl(Py) Ncl(Py), then PNy C PoN.
(2) If ANk < PoNk andn € PLNPyNcof(k), then PyNn € Py. In particular,
sup(PyNn) € P,Nn.



MITCHELL’S THEOREM REVISITED 39

Proof. By Lemma 7.27, under the assumptions of either (1) or (2), we have that
Pinn= A’r],Plﬁm and P, Nnp = An’p?rm.

(1) If PyNk < PyNk, then clearly A, p,nw € Ay pynk. Therefore PrNn C PoNy.
(2) f PNk < PyNk, then Py Nk € Py. So Py Nk and 7 are in Py, and hence
Ay pne = PrNnis in Py by elementarity. Since n has cofinality &, sup(P1Nn) < 7.
So sup(P1Nn) € P,N. O

Lemma 7.29. Let M € X. Let A := Agup(m)sup(mnr)- Then A is closed under
H*, ANk =sup(M N k), and sup(A) = sup(M).

Proof. To show that A is closed under H*, it suffices to show that for each n < w,
A is closed under 7). At the same time, we will show that sup(M N k) C A. So fix
n < w, and let k be the arity of 7/,. Let ap,...,ap—1 € A and 8 < sup(M Nk), and
we will show that 7, (a0, ..., ax—1) and B are in A. Fix ng € lim(Cgyp(ar)) N M such
that ao,...,ax—1 and By are strictly less than ng. Then ANy = Ay sup(mrne)-
So ag,...,ap-1 are in A, supvnx)- Also By € M Nk C A by Lemma 7.25, so
also By € Ay sup(Mrix)- As sup(M N k) is a limit ordinal, we can fix an infinite
v € M Nk such that ag,...,ar—1 and By are in Ay .

By the elementarity of M, we can fix n; € M strictly greater than 7y such that
m is closed under 7). Fix 1o € lIim(Cyupar)) N M with 11 < 2. Since 19 < m
and n; is closed under 7, for all yo,...,ve—1 in Ay vy Th(V05 -3 Ye—1) < M1 < N2.
Define a function A : A};O,,Y — k by letting h(7g, . ..,vx—1) be the least ordinal £ <
such that 7/ (yo,...,7x—1) and all ordinals below s are in A,, (. Since ng, v, 12,
and Bjs are in M, by elementarity h is in M.

Now the domain of h has size |[AX | < |y| < k. So there exists a minimal

70,y
& < k such that h[Afmﬂ] C &. By elementarity, £ € M N k. In particular, § :=
h(ag, ..., ap—1) is less than . That means 7}, (o, ..., r—1) and § are in A4,, 5 C
Ay, .¢. Since 19 € lim(Osup(M)), A7727§ = Asup(M)7€ Nne. So 7} (ag,...,ak—1) and B
are in Agup(ar),e € Asup(),sup(mne) = A. This completes the proof that A is closed
under 7, for all n < w and sup(M N k) C A. Tt follows that A is closed under H*.

Now A is the union of sets of the form Aj g, where 0 € lim(Cgyp(ary) N M and
B8 € M Nk, and each such set is in M. Thus each such set A5 g satisfies that
sup(A4s s N k) < sup(M N k). It follows that sup(A N k) < sup(M N k). But we
just proved that sup(M N k) C A, and therefore sup(M N k) = AN k. By the
definition of A, obviously A C sup(M). And since M N kT C A by Lemma 7.25,
sup(A) = sup(M). O

We conclude this section with two technical lemmas which will be useful later.

Lemma 7.30. Let N € X, a € N, and 7 € NN k*. Suppose that cf(r) > w. If
an[sup(N N7),7) #0, then T is a limit point of a.

Proof. If 7 is not a limit point of a, then sup(a N 7) < 7. Since a and 7 are in
N, sup(anN 1) € N N7 by elementarity. Hence sup(a N 7) < sup(N N 7), which
contradicts the assumption that a N [sup(N N7),7) # 0. O

Lemma 7.31. Let N € X. Suppose that n € NNk* and 8 € N Nk. Let
e An”g \N. Then ¢ € AENﬂ‘
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Proof. Note that since n € N and £ < n, {y exists. Since £ ¢ N, & < n. It follows
that cf(n) > w, since otherwise N N &x would be cofinal in £y by elementarity.
Also sup(NNén) <& Since Ay g € N and § € A, gN[sup(N NEn), En), it follows
that {x is a limit point of A, g by Lemma 7.30. So A¢y 3 = Ay, N&En. Since
fEAmﬂ ﬂf]\],fEAgng. ([l

§8. Interaction of models past

The method of adequate sets, which we dealt with in Part I, handles the inter-
action of countable elementary substructures below k. In this section we will show
how the coherent filtration system A from Section 7 can be used to control the
interaction of models between x and ™.

Notation 8.1. For M and N in X UY, let ap,n denote the ordinal sup(M N N).

As we discussed in Section 1 in the paragraph after Propostion 1.29, if M < N,
in general it does not necessarily follow that M NN € N. The next lemma describes
a situation in which this implication does hold.

Lemma 8.2. Let M and N be in X U)Y, where N is simple. Suppose that:
(1) M and N are in X and M < N, or
(2) M and N are inY and M Nk < NNk, or
8) Me X, Ne), andsup(MNNNk)<NNEk.

Then M NN € N. In particular, apr,ny € N.

Proof. By Lemma 1.30, MN NNk € N. Therefore by elementarity, c(M NNNk) €
N. We claim that

cd(MNNNk)CNNE.
If M NN is countable, then so is cl(M NN Nk). Since cl(MNNNk) € N, it follows
that (M NN Nk) C NNk. If M NN is uncountable, then M and N are both in
Y. So MNk < NNk by (2), and hence M N N Nk = M N k. Therefore

d(MNNNk)=(Mng)U{MNk},

which is a subset of N N k.
Next we claim that
(NN&)\ apn # 0.
Suppose for a contradiction that (NN k™) \ apy,n = 0, which means that sup(N) =
o, n. Since N is simple, it follows that

0t(Capp n) = sup(N N k).
But ot(Ca,, ) € (M NN Nk) by Lemma 7.17. By the first claim, it follows that
ot(Cay, ) € N N K, which contradicts that ot(Ca,, x) = sup(N N k).
Let a := min((N N &™)\ aam,n). By Lemma 7.23,

MNONN&Y ={mapx(v.8):7,8€ MNNNK}.

We claim that for all 7,3 € M NN Nk, Tay (7, 8) = Taly, B). This is immediate
if & = apr N, so assume that aps,y ¢ N. Then by Lemma 7.12, ap n € Im(Cy).
Fix v and 8 in M NN N k.

First, assume that ot(Aq,g) < . Then 74(7,8) = 0. Since Ay, v.5 = Aa,p N
aum, N, clearly ot(Aq,, v.8) < 0t(Aq,p) < 7. S0 Tay, v (7, 8) = 0. Secondly, assume
that v < ot(Aq,g), so that 7 (v, 8) = @a,p,4. Since o, v, and B are in N, aq g~ €
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NnaCoayn. As Ay vp = Aap Nann, clearly v < ot(Aq,, v,5). By Lemma

7.22, ﬂa(77 ﬂ) = 7T0¢1\/I,N(’>/? 6)
It follows that

MNONNkT = {r.(7,8):v,€ MNNNk}.
Since a and M NN Nk are in N, so is M N N N kT by elementarity. Hence by
elementarity, M NN = f*[IM NN Nk*T| € N, and sup(M NN) =ayy €N. O
Lemma 8.3. Let P € Y, and assume that cf(sup(P)) = PN k. Then P is simple.

Proof. Since Cyyp(py is cofinal in sup(P),
PNk = cf(sup(P)) < ot(Csup(p))-
On the other hand, as sup(P) € lim(P), Lemma 7.17 implies that
ot(Caup(py) € (PN k) = (PNkK)U{P Nk}
Hence ot(Cgup(py) < P N k. Therefore PNk = ot(Cyup(py), and P is simple. O

Lemma 8.4. Let P € Y, and assume that cf(sup(P)) = PNk. If M € X, then
MNPeP. IfQeY and QNk < PNk, then QNP € P.

Proof. By Lemma 8.3, P is simple. Since cf(sup(P)) = PNk, P Nk is a regular
cardinal. Obviously w < PNk, so PNk is a regular uncountable cardinal. If
M € X, then sup(M NPNk) < PNk since sup(M N PNk) has countable cofinality.
By Lemma 8.2, we are done. O

Lemma 8.5. Let M € X and N € X U, where {M, N} is adequate if N € X,
and sup(M NNNk)<NNk if Ne)Y. Then

lim(M) Nlim(N) C apn + 1.

Proof. Let n € lim(M) Nlim(N), and we will show that n < ap n. By Lemma
717,
ot(Cy) € cl(M Nk)Ncl(N N k).

Since 7 is a limit point of M and M is countable, n has cofinality w. Therefore
ot(Cy) has cofinality w. We claim that ot(C}) is a limit point of M Nk. If ot(C)) €
M, then since ot(C),) has countable cofinality, easily M Not(C),) is cofinal in ot(C,,)
by elementarity. Hence ot(C,) is a limit point of M N k. Otherwise if ot(C,,) ¢ M,
then since ot(Cy) € cl(M N k), it follows immediately that ot(C,) is in lim(M N k).

Next we claim that

ot(Cy) € (M NN NEK).
First, assume that N € X. Then by Lemma 1.20,
ot(Cp) € (M Nk)Nc(NNk)=cl(MNNNkK).
Secondly, assume that NV € ). Now
ot(Cy) €c(NNk)=(NNk)U{NNk}.

So ot(Cy) < N Nk. Since sup(M NN Nk) < NNk and ot(Cy) is a limit point of
M N k, it cannot be the case that ot(C,) = N N k. Therefore ot(C,) < NN&k. By
Lemma 1.31,

cd(MNNNkg)=cd(Mnk)Ne(NNk)N(NNEK).
Since ot(C,;) is in the set on the right, it is in cl(M NN N k).
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Now we claim that
ot(Cy) € im(M NN N k).
As ot(C) € c(MNNNk), either ot(C,)) € MNN Nk, or ot(Cy) € im(M NN Nk).
In the latter case, we are done. In the former case, since ot(C;,) has cofinality w,
by the elementarity of M N N, clearly M N N N« is cofinal in ot(C,), so again
ot(Cy) € im(M NN N k).

Finally, we are ready to prove that n < ajs,n. Suppose for a contradiction that
an,n < 1. Since ot(Cy) is a limit point of M NN Nk, we can fix vy € MNNNot(Cy)
such that oy, n < ¢,,,. We claim that ¢, , € M N N, which is a contradiction
since M NN Nkt C apn. If n € M, then obviously ¢, , € M by elementarity.
Otherwise n € cl(M) \ M. By Lemma 7.13, lim(C,)) N M is cofinal in 7. So we can
fix ¢ € lim(C,) N M such that ¢, , < d. Then clearly ¢, , = ¢5~, which is in M by
elementarity. The proof that ¢, , € N is the same. (|

We now turn to address the following general issue. Suppose that M and N are
in XU)Y, and P € NNY. Under what circumstances can we conclude that an
ordinal in M N P is in N, or is in some canonically described member of N7

The next lemma is the most frequently used result on this topic.

Lemma 8.6. Let M and N be in X, where M < N. Suppose that
n€ NNk and B <sup(M NN NEkK).
Then Ay 3N M C N. Therefore

A MaNnx) VM C N.

n,sup(

Proof. Let { € A, 3N M, and we will show that £ € N. Since § < sup(M NN Nk),
we can fix y € M NN Nk greater than 5. Then § € A, . So & = m,(ot(A,,NE),7),
as noted in the comments after Notation 7.21. Since { € A, -, A¢y = Ay, NE.
Therefore ot(A,,, N§) = ot(A¢ ). Hence & = m,(ot(A¢,4),7). Since £ and 7 are in
M, so is ot(A¢ ~).

Since v € M NN N k, by elementarity ¢*(y) € M NN N k. By Notation 7.4(5),
since M < N, we have that

ot(Aey) EM N (y) SMNNNKCN.

So ot(A¢,) € NN k. Hence 7, v, and ot(Ae ) are in N, which implies that
my(0t(Ae~),v) =& isin N.

To show that A, qup(vinnns)y VM C N, let 7 € A, qup(vinnnk) N M. Since
sup(M NN Nk) is a limit ordinal, there is 5 < sup(M NN N k) such that 7 € 4, 3.
By what we just proved, A, 3N M C N. So7T € N. O

Lemma 8.7. Let M and N be in X, where M < N. Let Q € NNY with QNk <
sup(M N NNk). Then QN MNrT CN.

Proof. By Lemma 7.26, QNkT = Agup(Q),0nr- By elementarity, sup(Q) € NNk™,
and by assumption, @ Nk < sup(M NN N k). By Lemma 8.6,

QNMNk* = Ayup@).ors N M C N.

Lemma 8.8. Let M and N be in X.
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(1) If M < N, then
AOCM,N,Sup(MﬂNn,g) NMCN.
(2) If M ~ N, then
AO(M’N’SIIP(MHNW‘) nM= AaM,Nﬁup(MﬁNﬁn) N N.

Proof. Note that (2) follows from (1). To prove (1), assume that M < N, and
let & € Aay nsup(mnnng) N M. We will show that £ € N. Fix € MN NNk
such that £ € An,, v,8- As M NN € X and sup(M N N) = ap,w, it follows that
1im(Cl,, ») N (M N N) is cofinal in aps . So we can fix § € lim(Ca,, y) V(M NN)
which is strictly larger than &. Then As g = Aq,, v,5MNJ, and hence & € A . Since
0 €N, B <sup(MNNNk),and M < N, it follows that As 3N M C N by Lemma
8.6. So £ € N. 0

Lemma 8.9. Let M € X and N e X UY. Then
MNNN K+ g AaMYN,sup(MﬂNﬂn)

Proof. Since M NN € X and sup(M N N) = au, v, the statement follows immedi-
ately from Lemma 7.25. (]

Lemma 8.10. Let M € X and N € X UY. Let Q € M NY, and suppose that
sup(MNNNk)<QNk. Then
QNNNayn € Aoy n,Qrr-

Proof. Let { € QN N Nayy,n, and we will show that § € Ay, v .onx- First assume
that £ € M. Then £ € M NN Nx*, so by Lemma 8.9, £ € Ay, y sup(MANNK)-
Since sup(M NN Nk) < Q Nk, it follows that & € Aay, v ,Qnr-

Assume that £ is not in M. Then & € QN kT = Agup(g),0nk, Where sup(Q) and
QNkarein M, and £ ¢ M. By Lemma 7.31,

§¢e AEM,QFW'
We claim that
Ywve MNNNkKT (fM <V = fEAl,ﬁQm,{).

We will prove the claim by induction. So let v € M N N N k™ be strictly greater
than &7, and assume that the claim holds for all v/ € M NN Nv.

Case 1: v = vy + 1 is a successor ordinal. Since v € M NN, vp € M N N by
elementarity. If £); < v, then by the inductive hypothesis, £ € A, gnk. So
§ € AVO,QWG U {VO} = Au,Qﬂm-
If vy = &p, then
§¢e AéM,QﬂH = Avy,0nx € Av,one-

Case 2: v is a limit ordinal and &3; € lim(C,). Then
ASM,QQH = Ay gns N&m-
Since £ € A¢,,.0nx, it follows that £ € A, gnx, and we are done.

Case 3: v is a limit ordinal and &y is not in lim(C,). Let v/ := min(C, \ &),
and let v := sup(C, Nv'). Since v/ = min(C, \ {ur), clearly v = sup(C, N&pr).
As &y is not a limit point of C,, v < &py.
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We claim that v/ € M N N. Since v and &y are in M, v/ = min(C, \ &) is
in M by elementarity. And as v and v/ are in M, v = sup(C, Nv') is in M by
elementarity. But v < &3 and &py is the least ordinal in M with € < &y Tt
follows that v” < &. So v/ = min(C, \ (v + 1)) = min(C, \ §). Since v and £ are
in N, so is v/ by elementarity.

Next we claim that £ € A,/ gn,. This is immediate if {y = v/, so assume that
v <v'. Then &y < v/ <vand v € MNNNkT, which imply by the inductive
hypothesis that £ € A,/ grik-

Let /8 be the least ordinal in & such that v/ € A, z. Since v and v/ are in M NN,
it follows that 8 € M N N N k by elementarity. As

B<sup(MNNNk)<QNE,
we have that v/ € A, gnx. And since v/ = sup(C,, Nv’) and
Vi< €<y <V,
£¢C,. So

5 cev \ Czu V= min(cu \ f) S Au,Qﬁrm and 5 € Amin(CV\f),Qﬂn-
By Notation 7.4(7), £ € A, onk, which completes the proof of the claim.

Since MNN € X and sup(MNN) = ap w, it follows that lim(Cy,, )N (M NN)
is cofinal in aps,n. Since £ < ap,n by assumption and ajs n is a limit point of
M, we have that £y < apr,n. So we can fix v € lim(Cq,, ) N (M N N) which
is strictly greater than £p;. By the claim, { € A, gnk. Since v € lim(Cy,, ),
Aygrr = Aoy n . Nv. Therefore § € Ay, v Qrx- [l

Lemma 8.11. Let M € X and N € X U). Suppose that M < N in the case that
N ecX. Let Pe MN)Y, and suppose that PNk € MN NNk and PNay N is
bounded below apr N .
Define
0= Sup(P n AaM,N,sup(MﬂNﬁn))'

Then o satisfies:

(1) ce MNNNKT;

(2) Pno= Ag7pmm'

B) PN(MNN)NKkT = A, pr N(MNN);

(4) NﬂPﬂOZMJ\/ - Aa,pm,ﬁ.

Proof. Let a := ap n and § :=sup(M N N N k). Note that by Lemma 7.29,
Sk(Aas) MKt = Ans, AasNk =246, and sup(4as) = .

Since P and A, s are closed under successors, P N A, s has no maximal element.
Note that since P N apy, n is bounded below ajy,n, we have that o < a. We claim
that o satisfies (1)—(4). Observe that since o is a limit point of P, it follows that
PnNo = Ay pnx by Lemma 7.27, which proves (2).

(3) We prove that

PN(MNN)NkT = A pas N (MNN).

Let v € PN(MNN)Nkt, and we will show that v € A, pn,. Since v € M NN, by
Lemma 8.9 we have that v € Ay 5. Sov € PNAys € 0. Hencey € PNo = Ay prs.
Conversely,

Agﬁpm,{ n (MON) - Agypm,{ =PnoCP
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(1,4) It remains to show that 0 € M NN and NNPNan,nv C As pnx. We claim
that

0= Sup(Asup(Pﬁa),Pﬂn N Aa,é)-

As P and « are closed under successors, PN« has no maximal element. So sup(PnN
«) is a limit point of P, which by Lemma 7.27 implies that

Pna=Pnsup(PNa) = Agprna),Prx-

Therefore
Agup(Pna),Prs N Aas = PNanAys =PNAys.

Taking supremums of both sides yields the claim.

Next, we claim that o € A, 5. As PNa and A, s are closed under successors
and PN a = Agup(Pna),Prxs it follows that o is a limit point of Agup(pna),Prx and
a limit point of A, s. By Notation 7.4(8) and the fact that o € lim(A,5) Na, to
show that o € A, s it suffices to show that ot(C,) < ¢.

Since PNo = A, pni and o is a limit point of P, it follows that ¢ = sup(As pns)-
If PNk < ot(Cy), then by Notation 7.4(6), it follows that Ay prx C o pnk < 0.
But this contradicts that ¢ = sup(A, pnx). Hence ot(Cy) < PNk < §, which
completes the proof of the claim that o € A, 5.

Fix n € lim(Cy) N (M N N) such that ¢ <. Then A, s = As,s N7. Therefore
o € A, 5. Since § = sup(M NN Nk), we can fix v € M NN Nk such that o € 4, ,.
Then 7 and v are in M N N.

Let us show that

o = max(4, , Nlim(P)).

Suppose for a contradiction that o’ € A, , Nlim(P) and o < ¢’. Since n € lim(Cy,)
and v < ¢, 0’ € Ay s Nlim(P). But then by Lemma 7.27, it follows that

Pno' = 140/7130,,i - AU/75 = Aa,é No'.

Since ¢’ is a limit point of P, there is 7 € P N ¢’ strictly greater than o. Then
T € PN A,,s, which contradicts that o = sup(P N Aq.s)-

Now we prove that ¢ € M NN. Since 7, v, and P are in M, and 0 = max(A4, N
lim(P)), it follows that o € M by elementarity. On the other hand, 0 € M N 4, .,
wheren € N and v € MNNNk. So o € N by Lemma 8.6, in the case when M and
N arein X. If N € Y, then 0 € 4, , € N implies that 0 € N, since |4, | < k.
This proves that c € M N N.

Now we claim that N N P N oy, v € o. This completes the proof, for then

NmPﬂOéMyNngU:AJ,Pﬂ/{'

Suppose for a contradiction that # € NN P Nayy and 0 < 7. Let my :=
min((P N k") \ o), and note that my < 7. Since P and o are in M, mp is in M by
elementarity. We claim that my is in N. This is immediate if 79 = 7, so assume
that myp < m. Then 7 € P implies that P N7 = A, pn, by Lemma 7.27. Since 7
and PNk are in N, so is Az pnx = PNw. But mp = min((PN7)\ o). Hence mp € N
by elementarity. So mp € M N N N ap, N, and therefore 7y € A, s by Lemma 8.9.
So mg € PN Ags. Since 0 = sup(P N Aq,5) and PN A, s has no maximal element
as previously observed, it follows that my < ¢. But this contradicts that fact that
o < m. O
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So far in this section we have been mostly concerned about the interaction of
models M and N below an,ny = sup(M N N). We now turn to analyze what
happens above o, n.

The next two lemmas state that for a simple model NV, if a model does not bound
N below k, then it does not bound N above k.

Lemma 8.12. Let M and N be in X, where N is simple and {M, N} is adequate.
If Ryp(N) # 0, then (NN k) \ ap .y # 0.

Proof. Since Rps(N) is nonempty, Sy,nv < sup(N N k). As ap,n is a limit point
of M and a limit point of N, Lemma 7.17 implies that ot(Cy,, ) is in cl(M Nk) N
cl(N Nk). Hence by Lemma 1.15, 0t(Ca,, v) < Bum,n. I (NNKT)\ aar v is empty,
then sup(N) = ap,n. Since N is simple, it follows that ot(Ca,, ) = sup(N N k).

But then sup(N N k) < B, n, which contradicts the first line above. O

Lemma 8.13. Let N € X be simple and Q € Y. If Q Nk < sup(N N k), then
sup(N N Q) < sup(NV).

Proof. Let 8 := QNk and 1 := sup(INNQ), and assume that 5 < sup(INNk). Since
N and @ are closed under successors, 7 is a limit point of N N Q. In particular, n
is a limit point of N. Suppose for a contradiction that sup(N) = n. Then since N
is simple, ot(C),) = sup(N N k). So B < ot(Cy). As NNQ is in X by Lemma 7.16
and sup(N N Q) = 7, it follows that lim(C,) N (N N Q) is cofinal in 7. So we can fix
0 € lim(C,)) N (NNQ) such that 5 < ot(C,,N6) = ot(Cs). But 6 € Q, and therefore
by elementarity, ot(Cs) € @ Nk = . So ot(Cs) < 3, which is a contradiction. O

We now introduce an analogue of remainder points for ordinals between a s, v
and 7.

Definition 8.14. Let M and N be in X UY. Define RY; (M) as the set of ordinals
n such that either:

(1) n=min((M Ns*)\ am ) and ap,n <1, or

(2) n=min((M Nrk*t)\E), for some & € (NNKT)\ amn.

Lemma 8.15. Let M € X and N € X UY, where {M, N} is adequate if N € X,
andsup(M NNNk)< NNk if NeY. Then:
(1) RY(M) is finite;
(2) ifn € R (M), then cf(n) > w;
(3) suppose thatn € RY (M), n is not equal to min((M Nk™)\an,n), and o :=
min((N N&*)\sup(M Nn)); then o € RY;(N) and n = min((M Nk*)\ o).

Proof. (1) If R, (M) is not finite, then the supremum of the first w many members
of RE(M ) is a limit point of M and a limit point of N. Hence this supremum is less
than or equal to s,y by Lemma 8.5, which contradicts the definition of RY (M).

(2) is easy. (3) Note that o exists, since otherwise 7 would not be in R (M).
Clearly n = min((M N k%) \ o). We will show that o € R};(N). Since 7 is not
equal to min((M N k™) \ anmn), fix 0 € (M Nn)\ anmn. Then apyn < 6 < o,
and therefore apy < 0. If o = min((N N ")\ amn), then o € R (N) by
definition. So assume not. Then we can fix £ € (NNo) \ am,n. By definition,
Co :=min((M Nk*)\ &) is in RE(M). Since £ < o = min((N N &™)\ sup(M N 7))
and £ € N, it follows that £ < sup(M Nn). Therefore (y < sup(M Nn) < o.



MITCHELL’S THEOREM REVISITED 47

Let ¢; be the largest member of R} (M) which is below o. Then (; exists since
R},(M)No is finite and nonempty, as witnessed by (9. We claim that ¢ = min((N N
xT)\ 1), which proves that o € R},(N). Otherwise oo := min((N N&T)\ (1) is
strictly below 0. So 09 < o = min((N N xT) \ sup(M N 7)), which implies that
oo < sup(M Nn). But then min((M Nn) \ o) is in RY (M) N o, and is strictly
larger than (3, which contradicts the maximality of (5. O

Lemma 8.16. Let M and N be in X UY. Then for alln € R (M) U RL,(N), n
1s closed under H*.

Proof. First consider n = min((N Nx1) \ am,n). Let n < w and let k be the arity
of 7/, and we will show that 7 is closed under 7;,. Since n € N, by elementarity
it suffices to show that N models that n is closed under 7). Let «ap,...,ax_1 €
N Nn. By the minimality of n, N Nn C au N, S0 ao,...,05-1 < apr,n. By the
elementarity of M NN and since sup(MNN) = aps n, there is some y € MNNNkT
such that ayg,...,ar_1 are below 7 and  is closed under 7,,. Then

(o, .. ap—1) <y < amn <.

The same proof works for min((M N k1) \ am n).

Now we prove the general statement by induction on ordinals in R]"\’, (M) U
Ry, (N). Suppose that n € R (M), and for all ¢ € (R;(M)URS,(N))Nn, o
is closed under H*. If n = min((M Nx*)\ anr,n), then we are done by the previous
paragraph. Otherwise by Lemma 8.15(3), the ordinal

o :=min((N Nk")\ sup(M Nn))

is in R}, (N), and n = min((M Nx*)\ o). By the inductive hypothesis, o is closed
under H*.

Let n < w, and we will show that 7 is closed under 7). Let k be the arity of
7). Since n is in M, by elementarity it suffices to show that M models that 7 is
closed under 7. Let ag,...,ax—1 € M Nn. Then ag,...,ap_1 are strictly less
than sup(M Nn) < o. Since o is closed under H*,

T, ... ag—1) < o <.

The same argument works for ordinals in R}, (N). (]

§9. Canonical models

In this section we will introduce some models which are determined by canonical
parameters which arise in the comparison of two models. Specifically, we consider
a simple model N € X and a model M in X U)Y which is not necessarily a member
of N. The canonical models associated with M and N are models in N 1) which
reflect some information about M inside N. Canonical models will be used when
amalgamating side conditions or forcing conditions over a simple model N; see
Sections 13 and 15.°

The three types of canonical models are described in Notations 9.1, 9.3, and
9.13.

6The idea of a canonical model is new to this paper, and does not appear in Mitchell’s original
proof [12].
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Notation 9.1. Let N € X be simple and P € Y, where PNk < sup(N N k). Let
B:=PnNk and n:=sup(NNP). We let Q(N,P) denote the set Sk(Ay,y gn)-

Note that ny exists by Lemma 8.13. It is easy to check that if P € NN ), then
Q(N,P)=P.

Lemma 9.2. Let N € X be simple and P € ), where PNk < sup(N N k). Let
B := PNk and n := sup(N N P). Then Q := Q(N, P) satisfies the following
properties:

(1) Qe NNY;
(2) QNE=Pn, QNKET = Ayy sy, and sup(Q) = 1v;
3) NnQnkT=NnNnPnNk™.

Proof. Since ny and Sy are in N, A, g, and @ are in N by elementarity. As
N N P is closed under ordinal successors, n is a limit point of N N P. Therefore
Pnn=A,s by Lemma 7.27. And since 7 is a limit point of N N x", by Lemma
7.12, C,, = Cy, N1, and for all £ < &,

A77»5 = Am\uf N n and NmA"'lNy£ = NmAn,ﬁ-

We claim that
NNPNst=NNA,, gy

Let « € NN PNk, and we will show that a € A, g,. Then a < n by the
definition of 7. So
a € Pﬂn:An”@ :Am\,ﬁﬂn.

Hence o € A, 3. Since 8 < Bn, a € A,y gy- Conversely, let o € N N A, sy,
and we will show that a € P. Since 7y, Oy, and « are in N and Sy is a limit
ordinal, by elementarity we can fix £ € N N By such that o € A, ¢. Then
a€ NNAyjwe=NNA,¢ Since £ € NNPn, E<B. So Aye C Ay =Pn.
Hence a € P.

We have proven that NN PNk™ = NNA,, gy. By Lemma 7.10, it follows that
A,y 8y s closed under H*. In particular, @ N x* = A, 3, . Therefore

NNQNkt=NNA,,s =NNPNxT,

which proves (3).
To show that Q@ Nk = By and sup(Q) = nn, it suffices to prove that N models
these statements. Let a € N N Q Nk, and we will show that o < Sy. Then

aeENNQNE=NNPNkCPNk=p<PN.

So a < Bn. Conversely, let a € N N By, and we will show that a € . Then
a€ NNpBy CB. So

aeNNB=NNPNe=NNENEk.

So indeed « € Q.

Since @ Nkt = A, gy, clearly sup(Q) < nn. To show that N models that
sup(Q) = nn, let £ € NNny. Then & < n = sup(N N P). So we can fix
o € NN PnNk* which is larger than &. Thenc e NN PNkT=NNQNkT. So
o € @ and £ < o. Thus sup(Q) = nn. This completes the proof of (2).

To show that @ € ), it suffices to prove that lim(Cj,) N @ is cofinal in 7.
Again it will be enough to show that N models this statement. So let £ € N Nny.
Then £ < =sup(N N P). Since NN P € X by Lemma 7.16 and sup(N N P) =,
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there is o € lim(Cy) N (N N P) with £ < o. Since C), = Cy, N1, o € lim(C,), ).
Alsoce NNPNnkt =NNQNkt. Soo €lim(C,,)NQ and ¢ < o. O

Notation 9.3. Let M and N be in X, where N is simple. Let ( € Ry;(N) and
n:=min((NNk*)\ amn). We let Q(N,M,() denote the set Sk(A, ).

Note that 7 exists by Lemma 8.12.

Lemma 9.4. Let M and N be in X, where N is simple. Suppose that N < M and
¢C=min((NNk)\ Bun). Let n:=min((N N &)\ apn). Then Q := Q(N, M, ()
satisfies the following properties:

(1) Qe NNY;

(2) QN =¢ QNkKt =A, ¢, and sup(Q) = n;

B) NnQnkt=MnNNkt.

Proof. Since n and ¢ are in N, A, - and @ are in N by elementarity. As ajs y is a
limit point of N, by Lemma 7.12, C,,, v = C, Nan,n, and for all § < &,

AQM’N{ = A771§ Nay, N and NﬂAaM,N’g = NﬁAmg.

We claim that
NNA,c=MNNNkt,

Let € MNNNk™T, and we will show that o € A, . By Lemma 8.9, MNNNk™ C
AaM,N,sup(]VIﬂNﬁn)- Since C € RM(N)7 Sup(M nNNN "i) < BM,N < C So

ae MANOKTC AQI\/I,stuP(MmNmH) < AQM,N,C C Apc.

Hence a € A, ¢.

Conversely, let « € N N A, ¢, and we will show that o € M. Since «, 7, and ¢
are in IV and ( is a limit ordinal, by elementarity we can fix v € N N ( such that
a€ A, . Since ( =min((NNk)\Su,n) and N < M,vye NNByu,ny =MNNNEk.
So

aeNNAy,=NN AO&M,N,“/ cCNN AOLM,NSUP(MWNHK)'

By Lemma 8.8(1), a € M.
We have proven that NN A, =M NN Nk". By Lemma 7.10, it follows that
A, ¢ is closed under H*. In particular, @ N k™ = A, .. Therefore

NNnQnkt=NnA,c=MnNnNk™,

which proves (3).

To show that @ Nk = ¢ and sup(Q) = 7, it suffices to show that N models
these statements. Let v € NN Q Nk, and we will show that v < (. Then
yeNNQNKE=MNNNE, so

v <sup(MNNNk) < Bun <.

Conversely, let v € N N ¢, and we will show that v € Q. Since { = min((N N
K)\ BmuN), v € NNBun. As N < M, NN pBun C M, soy € M. Hence
yEMNNNKT CQ.

Since @ N k* = A, ¢, obviously sup(Q) < 7. To show that N models that
sup(Q) = n, let £ € N Nn be given. Since n = min((N Ns*)\ apmn), £ < apmn.
As apyny = sup(M NN Nk"), we can fix 0 € M NN NkT with £ < 0. Then
ceEMNNNKT CQ. So & <o and o € Q. This completes the proof of (2).

To show that @ € ), it suffices to show that N models that lim(C,)NQ is cofinal
inn. Let £ € NNn. Then & < ap n. Since MNN isin X and sup(MNN) = an,w,
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we can fix 0 € lim(Cy,, ) N (M N N) with £ < 0. But Cy,, v = C; Nan, N, s0
o€ lim(Cy). Alsoce MNNNkT CQ. Soo €lim(C,) NQ and & < o. O

Notation 9.5. Let M and N be in X such that {M,N} is adequate. Let ( €
Ry (M). We let Qo(M,N,() denote the set Sk(Aay, v.c)-

Lemma 9.6. Let M and N be in X such that {M,N} is adequate. Let n €
MNNNkT with k < n. Fizm < w, and let k be the arity of 7). Define
Sy o &= Kk by letting fm, n(B) be the least ' < k such that € A, 3 and

nn T;n [Az,ﬁ] CApp.
Then for all o € Ry(M)U Ry(N), o is closed under fp, .

Note that since A, g has size less than x by Notation 7.4(3), the set TT’n[Af,)ﬁ]
also has size less than . So the definition of f,, , makes sense. Also note that f, ,
is definable from 7 in A.

Proof. The proof is by induction on remainder points in Ras(N)U Ry (M). For the
base case, let o be the first ordinal in Ry (N)U RN (M). Without loss of generality,
assume that o € Ry (M). Since n € M and f, 5, is definable from 7 in A, it suffices
to show that M models that o is closed under f,,,. Solet 8 € M No, and we will
show that f,, ,(8) < o.

Since 0 € Ry(M) and o is the first remainder point, we have that M < N
and 0 = min((M N k) \ Bun). As B € MNo = M N Byny and M < N,
B e MnNBun CN. Sof € N. Therefore n and 8 are both in M N N. By
elementarity, fmn(6) € MN NNk But MNANNNk =MnNpBun S o. So
fmn(B) <o.

Now suppose that ( is a remainder point which is greater than the least remainder
point, and assume that the lemma holds for all remainder points in Ry (N)URy (M)
which are below ¢. Without loss of generality, assume that ¢ € Ry (M). Then by
Lemma 2.2(3), o := min((N N &) \ sup(M N¢)) is in Ry (N), and ¢ = min((M N
k) \ o). To show that M models that ¢ is closed under f, ,, let 5 € M N¢. Then
B < sup(M N¢{) < o. By the inductive hypothesis, ¢ is closed under f,,. So

fmn(B) <o. Since 0 < ¢, fmy(8) <. O

Lemma 9.7. Let M and N be in X such that {M, N} is adequate. Let o € Ry (M).
Then Qo := Qo(M, N, o) satisfies the following properties:

(1) QO € yz'

(2) QNr=0, QuNK" = Ausy yo, and sup(Qo) = anr n;

(3) MNNNkT CQo.
Proof. Recall that Qo = Qo(M, N,0) = Sk(Aay n,0)- We begin by proving that
Ay n,o s closed under H*. Let m < w, and let k be the arity of 7,,. Let
Qg, ..., 0p—1 € Ay y .0, and we will show that 7, (ag, ..., ax—1) € Aay, y,0- Since
o is a limit ordinal, we can fix 8 < o such that ag,...,ax—1 € Aay, x 8-

By the elementarity of M NN, fix § € M N N N kT strictly greater than

Qg, - ..,ak—1 such that ¢ is closed under 7;,. Now fix n € im(C,,, ) N (M N N)
strictly greater than ¢ and k. Since ¢ is closed under 7/,

T (g, ..y ap—1) <5 <.
As n € im(Coyy ),
g, ...,0p—1 € AQM)N,ﬁ nn= An,ﬁ'
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So
7! (Qgy .. ak_1) €nN T;n[AZﬁ}.
As B <o and 0 € Ry(M), by Lemma 9.6 there is 5’ < o such that
7707'7/71[1457,3] CA,p.

Then
7'7/%(0(0, .. .,Ozkfl) S An,ﬁ’ - An,g = AOCI\/I,N;U' NnnC AOtM,N,U'

This proves that Aa,, v.o is closed under H*. In particular, Qo Nk = Aa,, v,0-
Since MNNNrt C Aays nsup(MANnx) Dy Lemma 8.9, and sup(M NN N K) < o, it
follows that MNNNkT C Ay, v.o € Qo. In particular, since sup(MNN) = ap, y,
it follows that sup(Qo) = ar.n-

It remains to show that Qp € V and QyNx = o. For the first statement, once we
know that QoNk = o, it will suffice to show that lim(C,,, ,)NQo is cofinal in aps v
But since M NN € X, lim(Ca,, ) N (M N N) is cofinal in sup(M N N) = an n-
And as M NN Nk C Qo, it follows that lim(Cy,, v) N Qo is cofinal in aps x.

Now we prove that Qg Nk = o. First we will show that Qy Nk C 0. More
generally, we will prove by induction on remainder points that

VC S RM(N) U RN(M), AaM,N,C Nk C(.

Consider the first remainder point (. Without loss of generality, assume that
¢ € Ry(M). Then M < N and ¢ = min((M Nk) \ Bu,n). Let B € Ay voc NE,
and we will show that 8 < ¢. Fix n € im(Cy,, ») N (M N N) with 8 < 1. Then
B € Aayrn,c N1 = Ay . To show that 8 < ¢, it suffices to show that Ay cNKkCC.
Since 7 and ¢ are in M, it is enough to show that M models that A, Nk C (.

Let ' € MNA, Nk, and we will show that 5" < (. Since  is a limit ordinal, by
elementarity we can fix y € M N ¢ with g’ € A, . Since ¢ = min((M N k) \ Bu,N)
and M < N,vye MNpBun CN. AsM < N, e MNnA n € N, and
~v € M N NNk, it follows that 8/ € N by Lemma 8.6. Hence

B eMNNNKCBun<C.

.7

So B’ <.

For the inductive step, let { be a remainder point which is not the first remainder
point. Without loss of generality, assume that ¢ € Ry(M). Then by Lemma
2.2(3), there is m € Rps(N) such that 7 = min((N N ) \ sup(M N ¢)) and ¢ =
min((M Nk) \ 7). Let 8 € Aqy ¢ MK, and we will show that 3 < (. Fix
n € im(Ca,, ) N (M N N) with 8 < 7. Then

ﬂ € AO‘M,N7< nn= ATLC'

To show that 5 < (, it suffices to show that A, Nx C (. Since n and ( are
in M, by elementarity it suffices to show that M models that A, Nx C (. So
let v € M N A, ¢ Nk, and we will show that v < ¢. Since ( is a limit ordinal, by
elementarity we can fix a € M N ¢ such that v € A, . Then oo < sup(M N¢) < 7.
Soy € Aya CAyr Sincen e M NN and m € Ry (N), the inductive hypothesis
implies that

Ay -Nk=A4
Sovy<m<(.
This completes the induction. In particular,

QoNk= A4, yoNkCo.
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Conversely, let 3 < o, and we will show that 8 € Q. Fixn € im(Cq,, , )N(MNN)
with x < 7. Then by Lemma 9.6, there is 5’ < ¢ such that § € A, 5. So
pe A”LB/ = ACVIW,N7B/ nnc AaM,Nﬁ' - AaM,N,U € Qo-
([l

Lemma 9.8. Let M and N be in X, where {M, N} is adequate and N is simple.
Suppose that 0 € Ry(M), ¢ € Ry(N), and ¢ = min((N N k) \ o). Let n =
min((N N &™)\ ann). Let Qo := Qo(M,N,0) and Q := Q(N,M,(). Then:

(1) Qe NNY;

(2) QNk= <7 QN Kkt = An,(; and SUP(Q) =n;

(B) NNnQNskT=NNQoNkT;

(4) MNNNkrt CQ.

Proof. We will apply Lemma 9.2 to the models N and @)y. Let us check that the
assumptions of this lemma hold, using Lemma 9.7. We know that N € X is simple,

QOGy,and
Qo Nk =0 < <sup(NNk).

Also, sup(N N Qo) = am N, since sup(Qo) = an,n, sup(M N N) = ap,n, and
MNNN&t C NNQgy. Moreover,
min((NNk)\ (QoNk)) =min((NNk)\o)=¢,
and
min((N N &™)\ sup(N N Qo)) = min((N N&t)\ apn) =n.
By Notations 9.1 and 9.3,
QN, Qo) = Sk(Ayc) = Q(N, M, () = Q.
By Lemma 9.2, we have that:
(a) Qe NNY;

(b) QQHZC, Qﬂ/i+ :An,(a and Sup(Q) =1
() NNnQNkT=NNQoNrkt.

This proves (1), (2), and (3). By Lemma 9.7(3), MNNNx+ C Q. So MNNNkT C
NNnQoNnkt=NNQnNkT CQ, which proves (4). O

The next lemma summarizes Lemmas 9.4 and 9.8.

Lemma 9.9. Let M and N be in X such that {M, N} is adequate and N is simple.
Let ¢ € Ry (N), n:=min((NN&T)\ arn), and Q := Q(N, M, ). Then:
(1) Qe NNY;

(2)
(3) MNNNkrT CQ;
(4) if ¢=min((NNk)\ Bun), then NNQNrkt =MNNNkt;
(5) if ¢ = min((N Nx)\ o), where 0 € Ry(M), then NNQNxT = NN
Qo(M,N,O') ﬂ/{"’.
Proof. Immediate from Lemmas 9.4 and 9.8. O
Let us derive some additional information about the model Q(N, M, ().

Lemma 9.10. Let M and N be in X such that {M,N} is adequate and N is
simple. Let ¢ € Ry (N), n:=min((NNk1)\ amn), and Q := Q(N, M,(). Then:
(1) f PeMNY andsup(NN¢) < PNk <, then NNPNayn CQ;
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(2) if N<M,PeMNY, and PNk <sup(MNNNk), then NNPNrT C Q;
(B if M<Nand Pe MNNNY, then NN PNkt C Q.

Proof. Note that since oy, n is a limit point of NV, for all £ <k, A
op,n by Lemma 7.12.
(1) Suppose that P € M NY and sup(N N¢) < PNk < (. Since Bu,n < ¢,

MANNKk=MONNByun CNNC.
So sup(M NN Nk) <sup(NN¢) < PNk. By Lemma 8.10,
PNONNamn C Aoy n,Prs © Aarnc = ApcNamn C Q.

2)UN<M,PeMnY,and PNk <sup(MNNNk), then NNPNrt C M
by Lemma 8.7. Hence

Am& n

am,N,§E T

NNPNkTCMNONNTCQ

by Lemma 9.9(3).

(3) Suppose that M < N and P € M NN NY. Then sup(P) and PNk are in
M NN N k" by elementarity, and hence in @ by Lemma 9.9(3). So Agup(py,prx =
PN k' € Q by elementarity. So PN k™ C Q. In particular, NNPNk™ C Q. O

Finally, we consider canonical models determined by ordinals in R (M).

Notation 9.11. Let M and N be in X, where {M, N} is adequate and N is simple.
Let ¢ € Ry (N) and o € RN, (M). Let X be any nonempty set of P € M NY such
that sup(NN¢) < PNk < ¢ and PNNN[sup(M Na),0) #0. We let Px denote
the set Sk((U{PNo: P € X}) and Bx denote the ordinal Px N k.

Lemma 9.12. Under the assumptions of Notation 9.11, the following statements
hold:

1)
2) Bx =sup{PNk:Pe X} <(;
3) PxnNkt=U{PNo:PeX};
4) sup(Px) =o.

Proof. Let P € X. Since 0 € R{;(M), 0 € M and o has uncountable cofinality.
Also P € M and PN [sup(M No),o) # B, which imply that o is a limit point of P
by Lemma 7.30. It follows that if P, and P, are in X and P, Nk < P, Nk, then
PiNo C P,No by Lemma 7.28. Thus {PNo : P € X} is a subset increasing
sequence. Since each P No is closed under H* by Lemma 8.16, the set J{P No :
P € X} is closed under H*. Hence

PXﬂH"’:Sk(U{PQU:PeX})ﬂm+=U{Pﬂa:P€X},

which proves (3).
Since o is a limit point of P N o for each P € X, obviously ¢ is a limit point of
Px. But Px Nk* C o, so sup(Px) = o, which proves (4). Clearly

Bx =PxNk=sup{PNk:Pe X},

which is in k. Since PNk < ( for all P € X, it follows that Py Nk < (. But
Pnke Mnk for all P € X. Therefore Px Nk € cl(M N k), which implies that
Bx = Px Nk < ¢ by Lemma 2.2(1), which proves (2).
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To show that Px € Y, it suffices to show that lim(C,) N Py is cofinal in . Fix
P € X. Then it will suffice to show that lim(C,) N P is cofinal in o, since this set
is a subset of Px. First, assume that o ¢ P. Then o € cl(P) \ P, which implies by
Lemma 7.13 that lim(C,) N P is cofinal in o. Secondly, assume that o € P. Since o
is a limit point of P and |P| < k, cf(0) < k. So ot(C,y) < k. Hence ot(C,) € PNk
and PNk € k, which implies that C, C P. As ¢ has uncountable cofinality, clearly
lim(Cy) is cofinal in o. So lim(C,) N P is cofinal in o. O

Notation 9.13. Under the assumptions of Notation 9.11, we let
Q(N,M,{,0,X) = Sk(Ayy.c),
where 1 := sup(N N Px).

Note that Px € Y and Sx = Px Nk < ¢ < sup(N N k) imply by Lemma 8.13
that ny exists. Also since ¢ = min((N N k) \ Bx), Q(N,M,(,0,X) is equal to
Q(N, Px) from Notation 9.1.

Lemma 9.14. Let M and N be in X, where {M, N} is adequate and N is simple.
Let ( € Ry (N) and o € R (M).

Let X be any nonempty set of P € M NY such that sup(NN¢) < PNk < ¢ and
PN NN[sup(M Na),o) #0. Let n := sup(N N Px) and Q := Q(N,M,(,0,X).
Then:

(1) Qe NNY;
(2) QN =( QNKT = A ¢, and sup(Q) = 1n;
(3) NnQnkT=NnNPxNkt;
(4) forallPe X, NNPNo CQ.
Proof. As noted above, @ = Q(N, Px). Also n = sup(N N Px) and ¢ = min((N N
k) \ (Px Nk)). By Lemma 9.2:
(a) Qe NNY;
(b) Q Nk = Cv Q N H’+ = AnN,Cv and Sup(Q) =1N;
() NNnPxnNst=NNNkT.
This proves (1), (2), and (3). In particular, if P € X, then
NNPnoCNNPxNkt CQ,

which proves (4). O

§10. Closure under canonical models

Fix a sequence (S, : n < 1), where each S, is a subset of kN cof(>w). Let
us assume that the structure A from Notation 7.6 includes S as a predicate. In
this section we will show that we can add canonical models to an S-obedient side
condition and preserve g—obediency.

As stated in the comments prior to Definition 5.2, the definitions of g—adequate
and S-obedient are made relative to a subclass of Yy. For the remainder of the
paper, this subclass will be the set ) from Notation 7.8.

Lemma 10.1. Let (A, B) be an S-obedient side condition. Suppose that N € A is
simple. Let P € B be such that PNk < sup(N Nk). Let Q := Q(N,P). Then
(A, BU{Q}) is an S-obedient side condition.
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See Notation 9.1 for the definition of Q(N, P).

Proof. Let B := PN k. By Lemma 9.2,
QeNNY, QNk=Pfn, and NNQNsT=NNPNkt.

Let us show that @ is g—strong. Since @@ € N, it suffices to show that N models
that @ is §—strong. Let 7€ NNQNk™, and we will show that Q Nk = By € S-.
But 7€ NNQNkt =NNPNk'. Since N € A, P € B, and (A, B) is S-obedient,
it follows that Sy € S;.

Let M € A, and suppose that ¢ = min((M Nk)\ Bn). Fix € MNQNk™, and
we will show that ( € S,. If { = By, then ¢ € S, because @ is g—strong. Assume
that Sy < ¢, which means that Sy ¢ M.

First assume that ¢ € Ry(M). Then since Q € NN is g—strong and sup(M N
() < QNk =Py <, it follows that ¢ € S, as A is g—adequate. In particular,
if Bun < Bn, then ( € Ry(M). Suppose that Sy < Bun < (. Then ¢ =
min((M N k) \ Bu,n). Since fn € (N N Bu,n) \ M, we have that M < N. So
¢ =min((M Nk)\ Ba,n) is in Ry (M).

The remaining case is that ¢ < Sar,n. Then since Sy € (NN Bu,n) \ M, it
follows that M < N. So

MN¢CSMnBun S N.
AsTteMN@QNkT, Qe NNY, and
QNk < ¢<sup(MNByn) =sup(MNNNEK),
it follows that 7 € N by Lemma 8.7. So7 € NNQNxkT = NN PNkT. Since
MN¢C N and ¢ =min((M Nk)\ Bn), we have that
¢=min(M Nk)\B) =min((MNk)\ (PNk)).

Since M € A, P € B,and 7 € M N PNkt it follows that ( € S, as (4, B) is
S-obedient. O

Lemma 10.2. Let (A, B) be an S-obedient side condition. Let N € A be simple and
M € A. Suppose that N < M and ( = min((NN&)\ Bm,n). Let Q :== Q(N, M, ().
Then (A, BU{QY}) is an S-obedient side condition.

See Notation 9.3 for the definition of Q(N, M, ().

Proof. By Lemma 9.4,
QeNNY, QNk=C¢C and NNQNkT=MnNNNk™.

First we show that @ is g—strong. Since @ € N, it suffices to show that N models
that Q is S-strong. Let 7 € NN Q N«k+, and we will show that Q Nk = ( is in 3.
ThenT € NNQNkt=MNNNk'T. Sor € MNN. Since ¢ € Ry (N), ¢ € S, as
Ais §—adequate.

Now let K € A, and suppose that § = min((K Nk)\ (). Fix t € KNQ Nk,
and we will show that 8 € S... If { = 6, then 6 € S since @ is g—strong. So assume
that ¢ < 6, which means that { ¢ K.

Suppose first that § € Ry (K). Then since Q € NNY is §-str0ng and sup(K N
0) < QNk =<0, it follows that § € S, as A is g—adequate. In particular, if
Br,n < ¢, then § € Ry(K). Suppose that ( < Bx,ny < 6. Then 6 = min((K N«k) \
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Br,n). Since ¢ € (NNBxr,n)\ K, we have that K < N. So § = min((K Nk)\ Br,N)
is in Ry (K).

The remaining case is that § < B n. We apply Lemma 2.7. We have that
{K,M,N} is adequate, ( € Ry(N), ¢ ¢ K, 0 = min((K Nk)\ (), and 6 < Bg n.
By Lemma 2.7, § € Ry (K). Since ¢ € (NN Bk n) \ K, it follows that K < N. As
QeENNY, K<N, 7€ KNQ, and

QNe=¢(<0<sup(KNPBgn)=sup(KNNNEk),

it follows that 7 € N by Lemma 8.7. So7 € NNQN«kT = M NNNkT. Hence
T € KNM. Since 6 € Ry (K), it follows that § € S, as A is S-adequate. O

Lemma 10.3. Let M and N be in X such that {M, N} is adequate and N is simple.
Assume that M < (A,Y). Let 0 € Ry(M) and ¢ € Ry(N). Then Qo(M, N, o)
and Q(N, M, () are S-strong.

Recall that (A,)) is the structure A augmented with the additional predicate

V.
See Notations 9.3 and 9.5 for the definitions of Q(N, M, ) and Qo(M, N, o).

Proof. The proof is by induction on remainder points in Ry;(N) U Ry (M). First
consider ¢ € Ry (N). If ¢ = min((N N &)\ Bar.n), then Q(N, M, ¢) is S-strong by
Lemma 10.2. So assume that ¢ = min((N N«) \ o), for some o € Ry(M).

Let Q := Q(N,M,¢) and Qo := Qo(M, N,o). By the inductive hypothesis, Qq
is g—strong. And by Lemma 9.7,

QoNk=cand QyNk" = Aars noo-

To show that @ is §—strong, it suffices to prove that N models that @ is §—strong.
Let 7€ NNQNk™, and we will show that Q Nk € S;. By Lemma 9.8,

QNrk=Cand QNkT = A,,
where 7 := min((N N x*) \ ap n), and
NNnQnNeT=NNQyNk™.
In particular, 7 € N N Qq. Also
TENNA, Camn,

so T < QpMN-
Fix 6 € lim(Ca,, v) N (M N N) greater then 7. Then

TE QO no = AaM‘N,U neo = AG,U-

Since 6 and ¢ are in M, Qg is g—strong, QoNk =0, and Ag, C Qo, by the
elementarity of M we can fix an g—strong model P € M NY such that PNk =0
and Ap, C P. Then 7 € NNP. Since ¢ € Ry(N) and sup(NN¢) < o = PNk < ¢,
it follows that ¢ € S, as A is §—adequate.

Now consider o € Ry (M), and we will show that Qg := Qo(M, N, o) is S-strong.
We first claim that for all 6 € lim(Cy,, ) N (M N N) and for all 7 € Ag 5, o € S;.
So fix 6 € im(Cy,, v) N (M N N). Since 6 and o are in M, it suffices to prove that
M models that for all 7 € Ag,, 0 € S;. Let 7 € M N Ag,. Since o is a limit
ordinal, by elementarity we can fix v € M No such that 7 € Ay ,.
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If o = min((MNk)\Bum,n), then M < Nandy e MNBy,ny CN. Sobisin N,
v <sup(M NNNk), and 7 € M N Ag ~, which by Lemma 8.6 implies that 7 € N.
Sore MNNNk'. As o € Ry (M), it follows that o € S; as A is S-adequate.

Otherwise there is ¢ € Rp(IN) such that o = min((M Nk)\ ). By the inductive
hypothesis, @ := Q(N, M, () is S-strong. Since o, N 1s a limit point of M NN and
M NN NkT CQ by Lemma 9.9(3), it follows that apy n is a limit point of Q. So

QNann = Aay n.Qnr

by Lemma 7.27. By Lemma 9.9(2), @ Nk = (. So

QNaun = AocM,N,C'
Now v € M No C (. Hence
TGMﬁAgﬁ gMﬁA&C :MOAQM,N&FWOQMHQ.

So we have that Q € NNY is S-strong, sup(MNo) < ¢ =QNk < o,and 7 € MNQ.
Since o € Ry (M), it follows that o € S; as A is g—adequate.

This completes the proof of the claim that for all 0 € lim(Cly,, )N (M N N), for
all 7 € Ag », 0 € S-. Now we show that @) is g—strong. By Lemma 9.7, Qo Nk =
Aayn.o- Let 7€ QoNkT. Then 7 < ap n. Fix 6 € lim(Cy,, ) N (M N N) which
is greater than 7. Then

TEQRENO = AOtM,N,O' ne = AQJ.

By the claim, o € S,. |

Lemma 10.4. Let (A, B) be an S-obedient side condition. Suppose that N € A is
simple, M € A, and M < (A,Y). Let ¢ € Ry(N). Let Q := Q(N,M,(). Then
(A, BU{Q}) is an S-obedient side condition.

Proof. If ¢ = min((N N &) \ Bam,n), then we are done by Lemma 10.2. So assume
that ¢ = min((NNk)\ o), where 0 € Ry(M). Let Qo := Qo(M, N, o). By Lemma
9.8,

QNk=Cand NNQNrkT=NNQyNk™.

By Lemma 9.7,
QoNk=cand QyNkt = Acrrn,o

Also QQp and @ are §—strong by Lemma 10.3.

Suppose that K € A and § = min((KNk)\ (). Let 7€ KNQNkT, and we will
show that 8 € S,. If { = 0, then 6 € S; since Q is §-strong. So assume that ¢ < 6,
which means that ¢ ¢ K.

First consider the case that § € Ry (K). Then since

sup(KNO)<(=QNkrk<0

and Q € NN)Yis S"—s‘crong7 it follows that 8 € S; as A is §—adequate. In particular,
if Bk N < ¢, then 0 € Ry (K). Suppose that ( < 8x n < 6. Then § = min((KNk)\
Br,n). Since ¢ € (NNBr,n)\ K, we have that K < N. So § = min((KNk)\ Bk,N)
is in Ry (K).

The remaining case is that § < Bx n. We apply Lemma 2.7. We have that
{K,M,N} is adequate, ( € Ry(N), ¢ ¢ K, 0 =min((K Nk)\ (), and 6 < g n.
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By Lemma 2.7, 6 € Ry (K). Since ¢ € (N N Bk,n) \ K, we have that K < N. As
QeNNY,

QNr=¢(<0<sup(KNPBxn)=sup(KNNNEk),
and 7 € K NQ, it follows that 7 € N by Lemma 8.7. So
TENNQNKT=NNQyNkT.

Hence 7 € K N Qq. Since Qp Nkt = Aaps .o, it follows that 7 < ap N
Fix 7 € im(Caq,, x) N (M N N) with 7 < 7. Then

TEQNT=A0y noNT=Ar,.

Since m and o are in M, (g is g—strong, QoNk =0, and A, € Qo, by the
elementarity of M we can fix P € M NY which is g—strong such that PNk = o
and A, , C P. In particular, 7 € P. Since K N0 C N and ¢ = min((N N k) \ o),
clearly # = min((K Nk)\ o). So7 € KNP, P € MNY is S-strong, and
sup(KN#) <o =PNk < 0. Since § € Ry (K), it follows that 6§ € S; as A is
g—adequate. O

Notation 10.5. Let M and N be in X, where {M, N} is adequate and N is simple.
Let ¢ € Ry(N) and o € R (M). Let X be the set of P € M NY such that P is
S-strong, sup(NN¢) < PNk < ¢, and PN N N [sup(M No),0) # 0. Assume that
X is nonempty. We let Q(N, M, ¢, o, §) denote the set Q(N,M,(, 0, X).

See Notation 9.13 for the definition of Q(N, M, ¢, 0, X).

Lemma 10.6. Let (A, B) be an S-obedient side condition. Let M and N be in A,
where N is simple. Let { € Ry (N) and o € Rﬁ(M) Let Q := Q(N, M, ¢, o, §)
Then (A, BU{QY}) is an S-obedient side condition.

Proof. Let X be as in Notation 10.5, and let Px be as in Notation 9.11. Then by
Lemma 9.14,

QeNNY, Qnk=¢ and NNQnNkt =NnNPxnk™.

Let us prove that () is g—strong. Since () € N, it suffices to show that N models
that @ is §—str0ng. Fix 7 € NNQNk™, and we will show that Q Nk = ¢ € S.
Since NN QNkT = NN Px N«sT, we have that 7 € Px. By the definition of Py,
for some P € X, 7 € P. But then sup(NN{) < PN <, PeMnN)is §—strong,
and 7 € NN P. Since ( € Ry(N), this implies that € S, as A is S-adequate.

Let K € A, and suppose that # = min((K N«)\ (). Fix 7 € KNQN«kT, and
we will show that § € S,. If § = (, then 6 € S, since @Q is g—strong. So assume
that ¢ < 6, which means that ¢ ¢ K.

If € Ry(K), then since @ € NNY is S-strong, sup(KN#) < QNk < 6, and
T € KNQ, it follows that 6 € S as A is g—adequate. In particular, if Sx n < (,
then 0 € Ry(K). Suppose that ¢ < fxn < 6. Then § = min((K N k) \ Bk,N).
Since ¢ € (N N Bk ,n) \ K, we have that K < N, which implies that § € Ry (K).

The remaining case is that § < Bx n. We apply Lemma 2.7. We have that
{K,M,N} is adequate, ( € Ry(N), ( ¢ K, 0 = min((K Nk)\ (), and 0 < Bx N
By Lemma 2.7, 0 € Ry (K). Since ¢ € (N N Bk.n)\ K, we have that K < N. As
RQeNNY,

QNk=(<0<sup(KNpPgn)=sup(KNNNEkK),
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and 7 € K NQ, it follows that 7 € N by Lemma 8.7. So
reNNQNkt=NNPxNk™.

By the definition of Px, there is P € X such that 7 € P. Since sup(NN({) < PNk <
Cand KNH C N, clearly sup(K N#) < PNk < 6. As P € MNY is S-strong,
7€ KNP, and 0 € Ry (K), it follows that 6 € S; since A is S-adequate. |

Definition 10.7. Let (A, B) be an S-obedient side condition. Suppose that N € A
is simple. We say that (A, B) is closed under canonical models with respect to NV
if:

(1) for all P € B with PNk < sup(N Nk), Q(N,P) € B;

(2) forall M € A and ¢ € Ry (N), Q(N,M,() € B;

(3) for all M € A, ( € Ry(N), and o € Rf,(M), Q(N,M,¢,0,5) € B.

Proposition 10.8. Let (A, B) be an S-obedient side condition such that for all
Me A, M < (AY). Suppose that N € A is simple. Then there exists (A, C) such
that B C C, (A,C) is an S-obedient side condition, and (A,C) is closed under
canonical models with respect to N.

Proof. First apply Lemma 10.1 finitely many times to obtain Cj such that B C
Co, (A,Cy) is an S-obedient side condition, and (A, Cy) satisfies property (1) of
Definition 10.7. Then apply Lemmas 10.4 and 10.6 finitely many times to obtain
C such that Cy C C, (A,C) is an S-obedient side condition, and (A, C) satisfies
properties (2) and (3) of Definition 10.7. Since all of the models which are added
are in N, and for all P € NNY, Q(N, P) = P, it follows that (A, C) also satisfies
property (1) of Definition 10.7. O

Lemma 10.9. Suppose that (A, B) is an S-obedient side condition, and N € A
is simple. Assume that (A, B) is closed under canonical models with respect to N.
Then:

(1) Suppose that P € B, PNk <sup(NNk), and 7€ NNPNk'. Then there
is @ € BN N such that Q Nk =min((NNk)\ (PNkK)) and T € Q.

(2) Suppose that M € A and ¢ € Ry (N). Then there is Q € BN N such that
QNe=Cand MNNNkKT CQ.

(3) Suppose that M € A, M < N, and ( € Ry;(N). Then there is @ € BN N
such that Q Nk = ¢, and for all P € M NN NY which is g—stmng,
NNPNkT CQ.

(4) Suppose that M € A, ¢ € Ry(N), P € MNY is S-strong, sup(N N ¢) <
Pnk < ¢ and T € NNPNk'. Then there is Q € BN N such that
QNrk=C_and 1€ Q.

Proof. (1) Suppose that
PeB, Pnu<sup(NNk), andT € NNPNx™.
Then Q(N, P) € BN N. By Lemma 9.2,
Q(N,P)Nk=min((NNk)\ (PNk)) and NNPNkr" CQ(N,P).
In particular, T € Q(N, P).
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(2,3) Let M € A and ¢ € Ry (N). Let Q := Q(N,M,(). Then Q € BN N. By
Lemma 9.9,

QNk=Cand MNNNkT CQ,

which proves (2). If in addition M < N, then by Lemma 9.10(3), for all P €
MNNNY, NnPnkt CQ, which proves (3).

(4) Suppose that M € A, ( € Ryf(N), Pe MNY is S-strong, sup(NN¢) < PN
k < (,and 7 € NNPNk™T. First assume that 7 < apr,v. Then Q(N, M,¢) € BNN,
and Q(N,M,¢) Nk = ¢ by Lemma 9.9. Also by Lemma 9.10(1),

NNPNaun C Q(N,M,C)

Hence 7 € Q(N, M, ().

Assume that apr,ny < 7. Note that o := 7 exists since 7 < sup(P) € M. As
7€N,oisin RL(M). Sor e NNPno. Let Q := Q(N, M,(,0,5), which is in
BN N. Then

QNe=Cand NNPNo CQ
by Lemma 9.14. In particular, 7 € Q. [

§11. The main proxy lemma

Let M € X and N € X U ), where N is simple. Suppose that M < N in the
case that N € X, and sup(M NN Nk) < NNk in the case that N € ). Consider
P € M NY such that PNk < sup(M N N N k), and assume that we are building
an object in N which needs to be compatible in some sense with the model P. By
Lemma 8.2, we know that M N N is a member of N. However, when we intersect
M with N, the model P will disappear if it is not in N. Thus although N sees a
fragment of M, it does not necessarily see P even though PNk is in N.

Proxies are designed to handle this situation. We will define an object p(M, N),
called the canonical proxy of M and N, which is a member of N. The canonical
proxy codes enough information about M that we can rebuild fragments of P inside
N which can be used to avoid incompatibilities between P and the object we are
constructing.”

Although the description and the proof of the existence of proxies is quite com-
plicated, in practice when we use proxies we only need to appeal to a single result,
called the main prozy lemma, which is Lemma 11.5 below. In applications of prox-
ies, it is not necessary to understand anything else about proxies except what is
contained in that lemma.

The next lemma asserts the existence of proxies. We will postpone the proof
until the next section.

"The idea of a canonical proxy which we use in this paper is a variation of a technical device
used by Mitchell for a similar purpose. In the proof of Mitchell’s theorem from [12], a side condition
is a pair (M, a), where M is a countable model and a is a proxy. In this paper we separate the idea
of a side condition and a proxy. In contrast to [12], where proxies are present in many different
parts of the proof, all applications of proxies which we give reduce to a single lemma, which is the
main proxy lemma, Lemma 11.5. The idea of a canonical proxy and the main proxy lemma are
new to this paper and do not appear in [12].



MITCHELL’S THEOREM REVISITED 61

Lemma 11.1 (Proxy existence lemma). Let M € X and N € X UY, where N is
simple. Assume that M < N in the case that N € X, and sup(M NN Nk) < NNk
in the case that N € Y. Let n* € Ri(M). Then there exist finite sets a and a'
satisfying the following statements:
(1) a is a finite set of pairs of ordinals, and o’ = {o : 36 (B,0) € a}.
(2) For all (8,0) in a,
(a) Be MNNNK;
(b) 0 € NNk™ is a limit ordinal;
(c) sup(NNo) <n*;
(d) if a # 0, then min(a’) = min((N N x™T) \ sup(M Nn*)).
3) If (B,0) € a, where min(a') < o, and 8 < v < k, then:
(a) Aps yNsup(N No) = A, Nsup(NNo);
()Anmema_AmmN
(4) IfPe MNY, PNk € MNN Nk, and PNN N [sup(M Nn*),n*) # 0, then
there exists o € a’ such that:
(a) PONNny* Co;
(b) the least such o is equal to the largest o in a’ such that for some (3,
B< PNk and (B,0) €
Let P and o be as in (4), and assume that (8,0) € a; then:
(a) B< PNk
(b) PN sup(N No) = Ay prx Nsup(N No);
() PAN N7 = Ag.pre N N.

(

()

For the remainder of this section, we will assume that the proxy existence lemma
holds. We now define the canonical proxy p(M, N).

A lexicographical ordering on sets of pairs of ordinals is described as follows.
We identify a finite set of pairs of ordinals as a finite set of ordinals using the
Godel pairing function, and then compare any two finite sets of pairs using the
lexicographical ordering on their corresponding sets of ordinals.

Definition 11.2. Let M € X and N € X U )Y, where N is simple. Assume that
M < N in the case that N € X, and sup(M N NN k) < NNk in the case that
Ne).

Let no, ... ,nk—1 enumerate the ordinals in Ri (M) in increasing order. Define
p(M, N) as the function with domain k such that for all i < k, p(M,N)(i) is the
lexicographically least set a satisfying (1)—(5) of Lemma 11.1 for n* = n;.

Note that p(M, N) is a member of N.
The proof of the main proxy lemma will use the next two technical lemmas.

Lemma 11.3. Let M € X and N € X U)Y, where N is simple. Assume that
M < N in the case that N € X, and sup(M NN Nk) < NNk in the case that
Ne.

Let k be the size of R, (M), and assume that n* is the i-th member of Ri (M),
where i < k. Let a ;== p(M,N)(i) and o' := {0 : 38 (8,0) € a}.

Suppose that P € MNY, PNk € MNNNk, cf(PNK) >w, and PNNN
[sup(M Nn*),n*) # 0. Let o be the least ordinal in o’ such that PN N Nn* C o,
which exists by Lemma 11.1(4). Let Q = Sk(As,pnk). Then:

(1) Qe NNY;
(2) QNk=PNk and QNKt = Ay pr;
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(3) QNNNkT =PNNNny*;
(4) @Qnsup(NNo)=PnNsup(NNo).
In particular, PO N Nn* C Q.

Proof. Let 0 := sup(N No). By Lemma 11.1(5(b,c)),
PNl=A,pns N0 and PNNNN* = A, pns N N.

In particular, as Ay pnx € IV, Lemmas 7.10 and 8.16 and the second equality imply
that A, pny is closed under H*. So Q N k+ = A, pry. Hence

QNNNkT =A,pnsNN=PNNNny*,
which proves (3). Also by the first equality,
QnNsup(NNo)=QNO=A, pr N0 =PN6O=PnNsup(NNo),

which proves (4).

We claim that @ Nk = P Nk, which proves (2). Since @ and PNk are in N, it
suffices to show that N models that QNk = PNk. Solet a« € QNN Nk, and we will
show that o < PNk. Then a € QNN Nk = PNNNn*. So a € PNk. Conversely,
let « € NNPNk, and we will show that o € Q. Then o € PONNNn* = QNNNkT,
so a € Q.

To prove (1), it suffices to show that lim(Cy,p(g)) NQ is cofinal in sup(Q). Since
QNKT = A, prk, sup(Q) < o. Also note that since P N [sup(M Nn*),n*) # 0 and
P and n* are in M, n* is a limit point of P by Lemma 7.30.

Case 1: 0 < 0. Since cf(Q Nk) = cf(P N k) > w, it suffices by Lemma 7.15
to show that cf(sup(Q)) > w. Since ¢ = min((N N 1)\ ), o has uncountable
cofinality. So if sup(Q) = o, then we are done.

Otherwise by elementarity, sup(Q) € NNo C 6. By (4), QNxt =QNO = PN4.
It follows that sup(Q) = sup(PNE), which is a limit point of P below . Since n* is a
limit point of P and sup(Q) < 6 < n* by Lemma 11.1(2(c)), if sup(Q) has countable
cofinality then sup(Q) € P by Lemma 7.14. But then sup(Q) € PNo = Q N4,
which is impossible. Therefore sup(Q) has uncountable cofinality.

Case 2: 8 = ¢. Then o is a limit point of N, and in particular, o has cofinality
w. By Lemma 11.1(2(c)), sup(N No) = ¢ < n*. Since o has cofinality w and n*
has uncountable cofinality, it follows that o < n*.

We claim that sup(P NN No) < o. Suppose for a contradiction that sup(P N
NnNo)=oc. Then o is a limit point of P. As n* is a limit point of P, o < sup(P).
Since o has cofinality w and cf(P N k) > w, Lemma 7.14 implies that ¢ € P. So
o € NN PnNn*, which contradicts that NN PNn* Co.

To show that € Y, by Lemma 7.15 it suffices to show that cf(sup(Q)) > w.
Since 0 = o, by (4) we have that Q@ No = PNo. Therefore QNN No=PNNNo.
By the claim,

sup(QNNNo)=sup(PNNNo) < o.

If sup(Q) = o, then since @ € N and o is a limit point of N, it is easy to argue by
elementarity that @ N N N k™ is cofinal in o, which is false. Therefore sup(Q) <
o =0. Since QNI = PNP, it follows that sup(Q) = sup(QN0H) = sup(PNE), which
is a limit point of P below #. Since n* is a limit point of P and sup(Q) < 6 < n* by
Lemma 11.1(2(c)), if sup(Q) has countable cofinality then sup(Q) € P by Lemma
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7.14. But then sup(Q) € PNO = Q N0, which is impossible. Therefore sup(Q) has
uncountable cofinality. ([

Lemma 11.4. Let M € X and N € X U)Y, where N is simple. Assume that
M < N in the case that N € X, and sup(M NN Nk) < N Nk in the case that
Ne.

Let k be the size of R, (M), and assume that n* is the i-th member of Ri; (M),
where i < k. Let a :== p(M,N)(i) and o' := {0 : 38 (8,0) € a}.

Suppose that (8,0) € a, where min(a’) < o. Assume that Q € NNY is such
that B < QNk, QN € MNNNk, cf(QNEK) >w, QNkT = Ay ony, and
QN NN [sup(M Nn*),0) #0.

Let P := Sk(Ayp+ gnw). Then:

(1) PeMNY;

(2) PNk=QNk, PNkt = Ay onr, and sup(P) = n*;
(3) PNNN[sup(M Nn*),n*) #0;

4) PnMnkt=QNnMnkT.

Proof. Let v:= Q Nk and 6 := sup(N No). By Lemma 11.1(3),
AW*WHHZAU),YHH and An*ﬁﬂNﬂU:AgﬁﬂN.

We claim that

Ay s N M =A,,NM.
Let o € Ay« N M, and we will show that « € A,,. Then o € M Nn*. By
Lemma 11.1(2(d)), sup(M Nn*) < min(a’) < o. Since min(a’) € N, sup(M Nn*) <
sup(N No). So

a <sup(M Nn*) <sup(NNo)=9.

Hence

a€ Ay ,NO=A,,N0,
soa € Ay .

Conversely, let o € A, , N M, and we will show that a € A, . Since QN KT =
Agryy o € QN M Nkt We claim that « € N. If N € Y, then a € Q € N
implies that & € N. Suppose that N € X. Then M < N, @ € NNY, and
Q Nk =r¢€ MnNN Nk, which implies by Lemma 8.7 that Q N M Nx™ C N. In
particular, « € N. Hence in either case,

a€A;yNN=A4,,,NNnNo.

So a € Ay .

We have proven that A« , "M = A, , N M = QN MNk+. Since A, is
in M, it follows that A, . is closed under H* by Lemma 7.10. In particular,
PNkt =4, 5. So

PNMNKT=Ap ,NM=A4,,"M=QnNMnk",

which proves (4).

Next we claim that P Nk = v and sup(P) = n*, which proves (2). Since P,
v, and n* are in M, it suffices to show that M models these statements. Let
a € PNM Nk, and we will show that o <. Thena € PNMNsT =QNMnkt.
So o € @ Nk =r. Conversely, let « € M N+, and we will show that a« € PN k.
Then

aEMNy=MNQNcCMNQNrkT=MnPNkrT.
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So a € P.
Now @ N N N [sup(M N 7n*),0) is nonempty by assumption, so fix 7 in this
intersection. Then

reQNktNN=A4,,NN=A4,-,NNno.

SoT € Ay, =Pnrt. Hence PN N N [sup(M Nn*),n*) # 0, which proves (3).
By Lemma 7.30, it follows that n* is a limit point of P. Since sup(P N k™) =
sup(A4,+ ) < 1", we have that sup(P) < n*. As n* is a limit point of P, it
follows that sup(P) = n*, finishing the proof of (2). In particular, as the ordinals
PNk =QNEk and n* both have uncountable cofinality, it follows that P € ) by
Lemma 7.15, which proves (1). O

We are now ready to prove the main lemma on proxies. This lemma contains all
the information about proxies that we will need for applications.

Lemma 11.5 (Main proxy lemma). Let M € X and N € X UY, where N is
simple. Assume that M < N in the case that N € X, and sup(MNNNk) < NNk
in the case that N € ). Let n* € RE(M)

Suppose that M' € NNX and N' € NN (X UY), where N’ is simple. Assume
that M’ < N' in the case that N' € X, sup(M’' N N' N k) < N' Nk in the case
that N' € Y, and N € X iff N' € X. Suppose that M "N = M' NN’ and
p(M,N) =p(M',N").

Assume that P € MNY, PNk € MNNNk, cf(PNk) > w, and 7 €
PN NnN[sup(MNn*),n*). Then:

(1) Thereis Q € N'NY such that QNk = PNk and QNNNkT = PNNNn*;
in particular, T € Q.

(2) IfT € N', then there is P’ € M'NY such that P'Nr = PNk, PNN'NkT =
QNN Nkt and PN M Nkt =QnNM Nkt; in particular, 7 € P'.

(3) If N € Y, then there is P € M'NY such that PNk =PNk and 7 € P'.

Moreover, zf§ is given and P is §-str0ng, then the models @ and P’ described in
(1), (2), and (3) are also S-strong.

Proof. Let k be the size of Rf; (M), and fix i < k such that n* is the i-th member
of R (M). Let a:=p(M,N)(i) and ' := {o : 3B (B,0) € a}.

(1) Let o be the least ordinal in @’ such that PN N Nn* C o, which exists by
Lemma 11.1(4). By Lemma 11.1(2(d)), min(a’) = min((N N 1) \ sup(M N n*)),
which is strictly less than o since PN N N[sup(M Nn*),n*) # @ and PNNNn* C 0.
Fix (8 such that (8,0) € a. By Lemma 11.1(5(a)), 8 < PN k.

We apply Lemma 11.3. Note that all of the assumptions of this lemma are
satisfied. Let Q := Sk(As,pnx). Then by Lemma 11.3,

(a) Qe NNY;

(b) QN =PnNrand QNKT = A, prg;
(c) QN NNkt =PNNN7*

(d) @ Nsup(NnNo)=Pnsup(NNo).

Since p(M, N) = p(M', N'), it follows that p(M,N) € N’, and so in particular,
ceN. AndQNk=PNrkeMNNNs=M NN Nk CN’'. Sooc and Q Nk are
in N'. Therefore A, gnx and @ are in N’ by elementarity. Properties (a), (b), and
(c) above imply (1).
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(2) Assume that 7 € N’. We apply Lemma 11.4 to M’ and N’. Let n§ be the
i-th member of R}, (M’). Let ag := p(M’, N')(i). Note that ag = p(M,N)(i) = a
and aj = a’.

Let us check that the assumptions of Lemma 11.4 are satisfied. Since p(M,N) =
p(M',N"), (8,0) € p(M', N")(i) = ap, and min(aj) = min(a’) < 0. We know that
QeNNMNY,B<PNe=QNk, QN =PNre MNNNk =M NN Nk,
cf(QNk)=cf(PNK)>w,and QNkrT = A, gri-

It remains to show that

QNN N[sup(M'Nng),o) # 0.
Since 7 € PN N N [sup(M Nn*),n*) and
PNNNnnp*C Nno Csup(NNo),
it follows that 7 < o, and
T€PNsup(NNo)=QNsup(NNo)
by property (d) above. Also 7 € N’ by assumption. So
7€ QNN N[sup(M Nn*),n*),
and therefore min(a’) = min((N Nx™) \ sup(M Nn*)) < 7. But then
sup(M' Nng) <min((N' N k™) \ sup(M’ Nng)) = min(ay) = min(a’) < 7.
SoT € QNN'N[sup(M’'Nng), o). This completes the verification of the assumptions
of Lemma 11.4.
Let P':= Sk(Ay: gnw)- Then by Lemma 11.4,
(i) PPeM' NY;
(i) P’Nrk=QNk, PPNKrT = Ay gnr, and sup(P’) = ng;
(iif) P'NN"N [sup(M’Nng),mn5) # 0;
(iv) PNM' Nkt =QnM nkt.
In particular, P’ Nk = P N k. It remains to prove that
PNN' Nkt =QnN nkt.

We apply Lemma 11.3 to M/, N’, and P’. Note that the assumptions of Lemma
11.3 are obviously satisfied, except for the claim that o is the least ordinal in aj) such
that P’NN'Nng C 0. So let o’ be the least ordinal in af such that PN N'Nng C o’.
Then by Lemma 11.1(4(b)), ¢’ is the largest ordinal in aj such that for some v,
v < PNk and (v,0') € ap. Now o is the least ordinal in @’ = af, such that
NN PNn* Co,so again by Lemma 11.1(4(b)), o is the largest ordinal in o’ = aj
such that for some v, vy < PNk =P Nk and (v,0) € a = ap. So o and o’ satisty
the same definition, and hence o = ¢’. So indeed o is the least ordinal in a; such
that PPN N'Nnj Co.

Since 0 = ¢’ and PNk = PNk, Q = Sk(A, prv) = Sk(As pnk). By
Lemma 11.3, QN N’ NsT = P' N N'Nns. But P’ = Sk(A,: gnx), and therefore
Pnnt=PNnkt. SoQNN Nkt =P NN Nkt.

(3) If N € Y, then N’ € Y. So @ € N’ implies that Q C N’. Hence 7 € N’. So
we are done by (2).

Finally, the last statement follows from the properties of @ and P’ described in
(1) and (2) together with Lemma 5.6. O
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The main proxy lemma was concerned with the case that P € M NY, PNk €
MNNNk, n* € RH(M), and 7 € PN N N [sup(M N7*),n*). Another case which
often occurs in the same contexts is that P € M NY, PNk € M NN Nk, and
7 € PN N Nap,n. This situation is handled by the next two lemmas.

Lemma 11.6. Let M € X and N € X U)Y, where N is simple. Assume that
M < N in the case that N € X, and sup(M NN Nk) < N Nk in the case that
Ney.

Suppose that M' € NNX and N' € NN (X UY), where N’ is simple. Assume
that M’ < N’ in the case that N' € X, sup(M' N N'Nk) < N' Nk in the case
that N' € Y, and N € X iff N' € X. Suppose that M "N = M' NN’ and
p(M, N) = p(M", N').

Assume that P € MNY, PNk € MNNNk, cf(PNK) >w, PNaun is
unbounded in ay N, and 19 € PN N Nan,n. Let n* := min((M N &™)\ ann).
Then:

(1) There is Q € N'NY such that QNk = PNk and QNNNkT = PNNNn*;
in particular, 79 € Q.
(2) If o € N', then there is P’ € M'NY such that P'NKk = PNk and 19 € P’.
Moreover, zf§ is given and P is §-str0ng, then the models @Q and P’ described in
(1) and (2) are also S-strong.

Proof. Since apn € N by Lemma 8.2, ayny ¢ M. But ay y < sup(P) and
sup(P) € M. It follows that ap n < sup(P). Consequently, the ordinal n* =
min((M N k1) \ ap n) exists and is greater than ay y. Therefore n* € Ri (M).
Since o,y is a limit point of the countable set M NN, it follows that cf (an,n) = w.
As cf(P N k) > w, we have that aps y € P by Lemma 7.14. So apyyv € NN PN
[sup(M N n*),n*).

We apply the main proxy lemma, Lemma 11.5, letting 7 = apr,n. Then the
first statement of (1) above follows from Lemma 11.5(1). Since 70 < am.n, T0 €
NN PnNn* CQ. For (2), we have that

ay,n =sup(M N N) =sup(M' N N'),
which is in N’ by Lemma 8.2. By Lemma 11.5(2), there is P’ € M’ NY such that
PNnk=PNnkand PNN' Nkt =QNN' Nk*. Assume that 7o € N’. Then
neEQNN Nkt =P NN Nkt CP.
Therefore g € P’. O
Lemma 11.7. Let M € X and N € X U)Y, where N is simple. Assume that
M < N in the case that N € X, and sup(M N NN k) < NNk in the case that
Ne).
Suppose that P € MNY, PNk € MNNNk, PNay,n is bounded below ap, N,
and T € PN N Nap,n. Then there is PP € MNNNY such that PPNk =PNk
and T € P'. Moreover, zfg is given and P is §—str0ng, then P’ is §—strong.

Proof. Let a := apg,v and § := sup(M N N N k). Define
o :=sup(PNAus)
By Lemma 8.11, o satisfies:

(a) ce MNNNKT;
(b) PmU:Aa,PﬂK;
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() PN(MNN)Nkt = A, prs N (MNN);
(d) NOPQOZMJV - Aa,pm,{.
Since o and PNk are in M N N, Lemma 7.10 and (c) imply that A, pny is closed
under H*. Let P’ := Sk(As pnk). Then P/ isin M N N.
By (b), we have that

P'Nk=A,prxNk=PNoNk=PNk.

By (d), 7 € Ay pnwx C P’. It remains to show that P’ € Y. It suffices to show that
lim(Cyyp(pry) NP’ is cofinal in sup(P’).

Since P and A, ; are closed under successors, PN A, s has no maximal element.
As o is a limit point of P,

sup(P') = sup(Ay pnx) = sup(PNo) = o.

Also P'Nk*™ = A; pry = PNo. So it is enough to show that lim(C,) N P is cofinal
in 0.

Now o is a limit point of P, and therefore has cofinality less than . If o ¢ P,
then o € cl(P)\ P, so by Lemma 7.13, lim(C,) N P is cofinal in o and we are done.
Otherwise o € P. By the definition of o, ¢ is not in A, 5. Now A, 5 is closed under
H* by Lemma 7.29. So Q := Sk(A.,s) is an elementary substructure of A with
QNkT =A,5. Let 0/ ;== min((QN«k™)\ o), which exists since ¢ < a. Then o’
has uncountable cofinality, which implies that lim(C,-) is cofinal in ¢’. Also by the
elementarity of @), o is a limit point of C,/, and therefore

C,=CyNo.

Again by the elementarity of @, lim(Cy/) N @ is cofinal in sup(Q No’) = 0. In
particular, lim(C,) is cofinal in o.

Since 0 € P and o has cofinality less than s, ot(Cy,) € P Nk, and therefore
C, C P. Hence lim(C,) N P = lim(C,), and this set is cofinal in o as observed
above.

Finally, assume that P is g—strong. Then PPNk =PNk, PP € MNN, and by
(b),

PNn(MNN)NkT =A, pr N(MNN)C Ay pri C P.

So P’ is S-strong by Lemma 5.6. O

812. The proxy construction

Let M € X and N € XU, where N is simple. Assume that M < N in the case
that N € X, and sup(MNNNk) < NNk in the case that N € Y. Let n* € RY (M).
We will prove that there exist sets a and o’ satisfying properties (1)—(5) of Lemma
11.18

We recall a well-ordering on finite sets of ordinals which was used in [12]. For
finite sets of ordinals  and y, define z < y if © # y and max(zAy) € y.

Lemma 12.1. The relation < is a well-ordering of [On]<“.

80ur proof of the proxy existence lemma is based on the construction of Mitchell [12, Lemma
3.46]. We point out that there is a mistake in Mitchell’s construction. The problem arises in the
case when the ordinal 7 from that proof is defined as max(lim(Cy) N X), and n happens to have
dropped below sup(M’). In this case, there appears to be no reason why recursion hypothesis
(1c) can be maintained. This problem was discovered by Gilton, and later corrected by Krueger.
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Proof. 1t is obvious that < is irreflexive and total. For transitivity, let z < y < z,
and we will show that x < 2. Let a := max(zAy), 8 := max(yAz), and v :=
max(zAz). Then a € y\ z and B € z \ y. We will show that v € z. Suppose for a
contradiction that v ¢ z, so that v € «.

The following statements can be easily proved: (1) a, 3, and ~ are distinct; (2)
«a € z implies that @ < 7; (3) a ¢ 2z implies that o < B; (4) B € z implies that
B < a; (5) B ¢ x implies that S < v; (6) v € y implies that v < 8; and (7) v ¢ y
implies that v < a. Now one can easily check by inspection that any Boolean
combination of the statements a € z, § € z, and 7 € y yields a contradiction. For
example, suppose that o € z, § € x, and v € y. Then (2), (4), and (6) imply that
a <7, B < a and v < B, which in turn imply that o < v < 8 < «, which is
absurd. The other possibilities are ruled out in a similar manner. This completes
the proof that < is transitive.

To show that < is a well-ordering, suppose for a contradiction that (z, : n < w)
is a <-decreasing sequence of finite sets of ordinals. We define by induction an
increasing sequence (ky : n < w) of integers and a C-decreasing sequence (A, : n <
w) of infinite subsets of w as follows. Let kg = 0 and Ay = w.

Assume that k, and A, are defined, where A,, is an infinite subset of w. Let
kn11 be the least integer in A, strictly greater than k,. Now for all r € A,, with
7 > kp41, we have that z,, <z, ,, and hence max(z,Axy, ) € 2y, ,,. Since zy,, .,
is finite and A, is infinite, we can find an infinite subset A, 1 of A, \ (knt1 +1)
such that for all r,s € A, 41, max(z,Axy, ) = max(z,Ary, ).

This completes the construction. For each n, let oy, := max(zy, Axy, ., ). We
claim that (o, : n < w) is a descending sequence of ordinals, which gives a contra-
diction. Let n < w. Since ., < Tk,, Oy € Tk, \ Tp,,,. S0 clearly a,, # api1.
Suppose for a contradiction that a,, < a;+1. Then by the maximality of a,,, a1
cannot be in x3, Axy, ., and therefore must be in xy, Nwy,,,,. But by construction,
max(xy, ATy, ,) = o. Therefore ay, 1 must be in xy, ., since otherwise it is in

xy, Az, ., but larger than «,. This contradicts that ay,41 = max(zy, , Awg,.,)
isin @p,  \ Thy - O
We will define by induction two sequences of sets ag,...,a, and by, ...,b,. The

induction stops when b,, = (). Each a; and by, will be a finite set of pairs of ordinals.
We let a), :={o:38 (B,0) € ar} and b}, := {n: 36 (8,7n) € b}

By construction, for each &, b}, ; will be equal to (b, \{n})Uz, where n = min(by,)
and z is a finite subset of 7. In particular, max(bj, Abj,_ ;) will be equal to 1, which
is in by, and hence by, ; < b}. Therefore the sequence of b} ’s is <-descending, and
so must terminate with the empty set after finitely many steps.

When defining these sequences, we will maintain the following inductive hy-
potheses:

(A) For all (8,0) € ar, B € MN NNk, o € NNkT is a limit ordinal, and
sup(N No) < n*. The least member of aj, if it exists, is equal to min((IN N
k) \ sup(M Nn*)). For each o € a}, there is a unique § with (8,0) € ai.

(B) For all (8,n) € by, B € MN NNk and n < n* is a limit ordinal. If ny <
are successive elements of b}, then N N [ny,n1) # (. For each n € b, there
is a unique § with (8,7) € bg.
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(C) If by, # 0, then ai # 0 and max(aj,) < min(b},).

(D) If (B8,0) € ax, and min(a}) < o, then for all v with 8 <y < &,
Ay« yNsup(N No) = A, Nsup(N No).

(E) If (8,7n) € by, then for all v with 8 <y < &,
Apy = Age 5 01

(F) If (B,n) € by, then whenever P € M N Y is such that
PnkeMnNnNkand PONN[n~,n) # 0,
where 7~ is the largest ordinal in a) U b}, less than 7, then § < PN k.

(G) Whenever P € M NY is such that
Pnke MNNNkand PNNN[sup(MNn*),n*) #0,
then PN N Nn* C max(aj, UDb).

(H) Suppose that P € M NY and 7 satisfy that
PnkeMNNNkand 7€ PNNNIsup(MNn*),n").

Let o := min((aj, UD)) \ (7 + 1)), which exists by (G), and assume that
o € a},. Fix 8 with (8,0) € a;. Then:

(i) B<PNE;

(ii) PNsup(N No) = A, pnx Nsup(N No).

(I) If (B,0) € ar U by, where min(a)) < o, then P := Sk(A,- ) satisfies that
PeMnY, PNk=pB, PNkT = A3, and PNNN[o~,n") #0,

where o~ is the largest member of aj, U b less than o.

Note that since o,y is a limit point of M and ap n < n*, it follows that
ap,n < sup(M Nn*).

Suppose that P is as in (G), and o is the least ordinal in aj, U b}, such that
PN NNn* Co. By the minimality of o, we can fix 7 € PN N Nn* such that
0~ < 7, where o~ is the greatest member of afc U b;€ less than o. Since N and P
are closed under successors, 7+1 € PNNNn*. As PNNNn* C g, it follows that
o =min((aj, Ub,) \ (7 + 1)).

In the arguments which follow, we will frequently consider models P € M N Y
such that P N [sup(M N n*),n*) # 0, for example, in (G) and (H). Note that by
Lemma 7.30, for any such P, n* is a limit point of P. Therefore by Lemma 7.27,
Pn ’I’]* = An*,Pﬁfv

Assume that ag,...,a, and byg,...,b, are sequences satisfying properties (A)-
(I), where n is the least integer such that b,, = (). Let us show that the sets a := a,
and o’ := {0 : 38 (B,0) € a} satisfy properties (1)—(5) in the conclusion of Lemma
11.1.

(1) is immediate, and (2) follows from (A). (3(a)) follows from (D). For (3(b)),
let us prove that the equation

Ap s NNNo=A,, NN
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follows from the equation
Ap- v Nsup(NNo) = A, Nsup(N No),
which holds by (3(a)). Let £ € A,» ,NNNo, and we will show that £ € A, . Then
¢ < sup(N No), so by the last equation, { € A, . Conversely, let £ € A, , NN,
and we will show that £ € A+ . Then £ € NNo, so { <sup(N No). By the last
equation, £ € Ay« .
(4) Suppose that

PeMnNnY, PNnke MNNNk, and PNN N [sup(M Nn*),n*) #0.
By (G) and the fact that b, =0,
PN NNny* C max(a).
Let o € o’ be the least ordinal such that PNNNn* C o. Fix 8 such that (8,0) € a.
Define
X :={(f,o')Yea: <Pnk}and X' :={c":38" (#,0') € X}.

We will prove that o = max(X’), which completes the proof of (4).

By the minimality of o, clearly there is 7 € N N PN [sup(M Nn*),n*) such that
o =min(a’\ (t+1)). By (H), 8 < PNk. It follows that (8,0) € X, and so 0 € X'.

Suppose for a contradiction that there is ¢/ € X’ which is larger than o. Fix '
with (8’,6') € X. Then o < (¢')~, where (¢’)~ is the largest member of a’ which
is less than o’. By (I),

A= AN N [(0)7,77) # 0.
Since o < (¢’)7, it follows that
AW*ﬁ/ NNN [0’, 77*) 75 0.
As 8/ < PNk by the definition of X,
An*,ﬁ’ g An*7pﬁﬁ = Pﬂn*

But then PN N N [o,n*) # 0, which contradicts that PN N Nn* C o.

(5) Suppose that P € M N satisfies that

Pnke MNNNkand PNNN[sup(M Nn*),n") # 0,

o is the least ordinal in o’ such that PN N Nn* C o, and (5,0) € a. By the
minimality of o, we can fix 7 € PN N N [sup(M Nn*),n*) such that o = min(a’ \
(7+1)). Then (5(a,b)) follow immediately from (H(i,ii)). For (5(c)), PO N Nn* =
PNNNo, and

PNNnNno=Pnsup(NNo)NN = A, prxNsup(NNo) NN = A, prs N N.

We now turn to proving that there exist sequences ag,...,a, and bg,..., b,
satisfying properties (A)—(I), where n is the least integer such that b, = 0.

First we consider the base case. Let 8 be the least ordinal in M N N N« for
which there exists P € M NY such that
Pnk=pFand PN NN[sup(M Nn*),n*) #0.

If there is no such 3, then let ag = 0 and by = 0, and we are done.
Suppose that 8 exists. Then obviously N N [sup(M Nn*),n*) # @. Define

ag := {(0,min((N N &™) \ sup(M N7y*)))} and by := (B,7").
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In the case that ag = by = ), the inductive hypotheses are all vacuously true. In
the other case, the inductive hypotheses are all either vacuously true or trivial.

Now we handle the induction step. Assume that k < w and a; and b have been
defined and satisfy the inductive hypotheses. If b, = (3, then we are done. Assume
that by, is nonempty. Then by (C), ar, # 0. Let n be the least member of b}, and
let B be the unique ordinal such that (5,n) € by. By (A) and (B), max(a},) and n
are limit ordinals. By (C), max(a}) < n, and in particular, w < 7.

First consider the easy case that 17 = 194w for some limit ordinal 79. Let agy1 :=
ak. If max(a},) < no, then let by11 := (be \ {(8,7)}) U{(B,m0)}. Suppose that iy <
max(a}). Since max(a}) is a limit ordinal and max(a},) < 7, clearly max(a},) = no.
In this case, let bxy1 :=br \ {(5,7n)}. All of the inductive hypotheses can be easily
checked, using Notation 7.2(4) and the fact that if P € Y and PN N N [ng,n) # 0,
then by the elementarity of PN N, n€ PN N.

From now on we will assume that 5 is a limit of limit ordinals. In particular,
every ordinal in C}, is a limit ordinal by Notation 7.2(3).

Define
6 := sup(lim(C,)) N cl(NV)).

We split the definition of ax41 and bg11 into two cases.
Case 1: 0 =sup(N).
Note that since max(aj,) € N and sup(N) = 6, it follows that max(a}) < 6.

Claim 1: n = max(b},). Suppose for a contradiction that there is 7’ € b), greater
than 7. Fix 8/ with (8',7) € bx. Then n < ('), where (')~ is the largest ordinal
in aj, Ub}, less than . By (I), A« g NN N[(n')~,n*) # 0. Fix 7 in this intersection.
Then 0 <n < (n')~ <7 and 7 € N, which contradicts that § = sup(N).

Since N is simple, ot(Cy) = sup(N N k). Let & := sup(M N N N k), which is in
N Nk by Lemma 1.30. Define 0 := cg¢. Since § = sup(N) and { € N, 0 € N
by Lemma 7.19. As £ has countable cofinality, so does o. In particular, N N o is
cofinal in o.

Claim 2: Age = Ay ¢ and sup(Aye) = 0. As £ is a limit ordinal, 0 = cg¢ €
lim(Cp). Therefore A, ¢ = Ag¢No. In particular, A, ¢ C Ag¢. On the other hand,
since £ < sup(IN N k) = ot(Cy), it follows that Ag¢ C coe = o by Notation 7.4(6).
So Age C AgeNo = A, ¢. This proves that Age = Ay .

Since & = sup(M N N N k), by the elementarity of M N N, £ is a limit of
limit ordinals. Therefore ¢ = cg¢ is a limit of lim(Cy) N o. For any ordinal
¢ € lim(Cy)No, the fact that ¢ € lim(Cy) Necg,e and £ < ot(Cy) implies by Notation
7.4(6) that ¢ € Age¢. So lim(Cy) No is cofinal in o and is a subset of Ay ¢. Hence
sup(Aee) = sup(Ape) = 0.

We now define api1 and byyq. Let byyq := 0. If 0 < max(a},), then let apyq :=
ax. If max(aj,) < o, then let agyq :=ar U{(B,0)}.
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We prove that the inductive hypotheses are maintained. First, consider the case
when o < max(a)). Then ayy1 = ar and by = 0. Inductive hypotheses (A), (B),
(C), (D), (E), (F), and (I) are all either vacuously true, or follow immediately from
the inductive hypotheses.

For (G) and (H), suppose that P € M N ) satisfies that

Pnke MNNNkand PNNN[sup(M Nn*),n") #0.
By inductive hypothesis (G) and Claim 1,
PN N Nn* Cmax(a), Uby) =1n.
If PONNn* C max(a},), then this proves (G) for k+1, and in that case (H) follows
immediately from the inductive hypotheses.

Otherwise P N N N [max(a},),n) # 0. Let us show that this is impossible. Since
max(aj},) is the predecessor of n in aj U b, inductive hypothesis (F) implies that
B < PN k. Inductive hypothesis (E) then implies that

An,Pﬂfs = A7]*,me"i N UR

As n* is a limit point of P,

PN n= An*,Pﬁfi N n= AU,PHK-
Since 0 € lim(C,),

Ao prx =Ap P NB=PNH.
As 6 = sup(N),

PANNy=PANNO=Agpren N.

And as PNk € MN NNk and £ = sup(M N N N k), it follows that PNk < &, so

Ag prr C Age = Ao e
by Claim 2. So
PNNNn=Appns NN C Ay Co <max(ay).
This contradicts the initial assumption that P N N N [max(a},),n) # 0.

Secondly, consider the case that max(aj) < 0. Then ap11 = ar U {(8,0)} and
biy1 = 0. We prove that the inductive hypotheses are maintained. Inductive
hypotheses (A), (B), (C), (E), and (F) are all either vacuously true, or follow
immediately from the inductive hypotheses. It remains to show (D), (G), (H), and

(D).

(D) By inductive hypothesis (D), we only need to check that (D) holds for £+ 1
in the case of (8,0). As noted in the paragraph before Claim 2, N N is cofinal in
o. Also observe that since 6 € lim(C),), 0 = cg¢ = ¢, ¢ is a limit point of C,.

Let 8 <+ < k be given. Since (8,n) € by, inductive hypothesis (E) implies that
A, = Ay+ 4y Nn. Since o is a limit point of C;, and sup(N No) = o, it follows that
AsyNsup(NNo)=A,,No =46y =4y, No=(Ap,Nn)No=A,,-,No =
A+ 4 Nsup(N N o), which proves (D).

(G) Suppose that P € M N Y satisfies that
Pnke MNNNkand PNNN[sup(M Nn*),n") # 0.

By inductive hypothesis (G) and Claim 1,
PN N Nn* Cmax(aj, Uby) =1n.
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If PN N Nn* C max(aj,), then since max(aj,) < max(aj_ ), we are done.

So assume that there exists 7 € (P NN Nn*) \ max(aj). We will show that
PNNNn* C o, which completes the proof since o = max(aj; ;). As PONNn* Cn,
it follows that 7 € P N N N [max(a},),n). Since max(aj},) is the largest member of
aj, U b, less than 7, inductive hypothesis (F) implies that 8 < P N k. Inductive
hypothesis (E) then implies that

An,Pﬂn = An*,Pﬁ/{ nn.
But 6 € lim(C,;) and 6 = sup(NV), so
PﬂNﬂn:An*7meﬂNﬂn:An,pmHﬁN:An,pm,{ﬁNﬁoiAg’pmnﬂN.

Hence PONNn C Ag prx. Since PNk € MNNNk, PNk <sup(MNNNk) =&
So by Claim 2,

PNNNnC Agprx € Age = Age Co.
Since PN N Nn* C n as noted above, we have that

PNNNnp*=PNNNnCo=max(aj,).

(H) Suppose that P € M NY and 7 satisfy that
PnkeMNNNkand 7€ PNNNIsup(MNn*),n").

Let ¢’ = min(aj, \ (7 +1)). Fix g’ with (8’,0’) € axq1. If ' < o, then clearly
o’ =min(a}, \ (1 + 1)), so (i) and (ii) follow from inductive hypothesis (H).

Suppose that ¢’ = o, which means that max(a},) < 7+ 1. Then 8’ = 5. Since
max(aj,) is the largest ordinal in aj, Ubj, less than 7, inductive hypothesis (F) implies
that 8 < P Nk, which proves (i). By inductive hypothesis (E),

An,Pf'm = An*,Pﬁ/{ nn.
Since o € lim(Cy),
Pno= AT]*,PﬂH No = An,Pm,{ No = AO’,PﬂI{ = AU,PQK No.

As 0 = sup(N N o), we have that P Nsup(N No) = Ay pnix Nsup(N N o), which
proves (ii).

(I) By inductive hypothesis (I), it suffices to consider (5,0). Let P := Sk(A,~ g).
Since (8,n) € by and max(a},) is the largest ordinal in aj, Ubj, less than 7, inductive
hypothesis (I) implies that P € M NY, PNk =, PNk = A, 3, and PONN
[max(ay,),n*) # 0. Since max(aj,) is also the largest ordinal in aj_ , Ubj_ , less than
o, we are done.

Case 2: § < sup(N).

Let ¢/ := min((N N %)\ 0), which exists by Case 2. If o/ < max(a}), then
let 0 := max(a)) and apy1 = ag. If max(aj,) < o', then let 0 := ¢’ and a1 =

ar U{(8,0)}.

Define A as the set of ordinals of the form min(C, \ (£ + 1)), where for some
PeMnYwith PNk e MNNNk, £€ PNNN[o,n).°

9The set A could be empty. In fact, it is possible for example that § = n* and o = min((N N
Kkt *), so that n < o. In this case we interpret [o to be the empty set, so that A is empt;

)\ 0, n p o1 pty set, pty
as well.
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Note that every ordinal in A is a limit ordinal, since C,, consists of limit ordinals,
and is strictly greater than o. Suppose that 7y < =1 are in A. Then for some
Ee PNNNo,n), y1 =min(Cy, \ (§+1)). Sov <& <&+1 <. In particular,
N0 [v,m) #0.

Claim: A is finite. Suppose for a contradiction that A is infinite. Fix an in-
creasing sequence (7, : n < w) from A. Then ¢ < 7o, and for each n, v, € C,, and
NN [Yn, Ynt1) # 0. It follows that the ordinal sup{~, : n < w} is in lim(C))) Ncl(V),
and yet is greater than ¢ and hence 6. This contradicts the definition of 6.

For each 6 € A, define S5 as the least ordinal in M N N N k such that for
some P € MNY, PNk = B, and there is £ € PN N N [o,n) such that § =
min(C,, \ (§+1)). Note that S5 exists by the definition of A. Also as max(a},) < o,
PN N N[max(a}),n) # 0. Therefore since max(aj},) is the largest ordinal in aj U b},
less than 7, inductive hypothesis (F) implies that § < PNk = Ss.

Define byy1 := (b \ {(5,m)}) U{(Bs5,9) : 6 € A}.

We verify the inductive hypotheses. Hypotheses (A) and (B) are straightforward
to check.

(C) We know that ajy1 # 0 and max(aj ) = o. If A is nonempty, then
max(ay ) = 0 < min(A) = min(bj ;).
If Ais empty and by is nonempty, then min(bj ) is the least member of b}
greater than 7. So if max(aj_ ;) = max(aj,), then by inductive hypothesis (C),
max(aj 1) = max(aj,) < min(by,) =7 < min(bj ).

Suppose that max(aj) < o. By inductive hypothesis (B), we have that N N
[, min(b),_ ,)) # 0. Since # <n, N N[0, min(bj_,)) # 0. As o =min((NNx*)\0),
this implies that max(aj_ ;) = ¢ < min(bj_ ).

(D) By inductive hypothesis (D), it suffices to consider (3,c) in the case where
max(a)) < o and a1 = a U{(8,0)}. So o = min((NN«*)\ 6), and therefore
0 =sup(N No). Let 8 <+ < k. Then by Lemma 7.12(2),

1497,y = Agﬁ ne.
Since (8,n) € bk, inductive hypothesis (E) implies that

Ap = Ay 01,
And since 0 € lim(C,)),

A‘97fy = ATIKY neo.
Therefore

ANl =49, =A,,NO=A,-,N0.
Since sup(N N o) = 0, this proves (D).
(E) Consider (85,0) € brt1, where § € A. Fix P € M NY and & such that

Pnk=ps, € PONNNo,n), and § = min(C,, \ (§+1)). Let 5 <y < k, and we

will show that
Asy = Ap- 4 N6.
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As observed above, 8 < 85 < ~. Since (8,n) € b, by inductive hypothesis (E),
Angs = Ayr g, N and Ay 5 = Ay M.
As £ € NN P, by elementarity £ +1 € N N P. Hence
E+1ePNn=Ap prcNn = Ay g, N = Ay 3;.
So &+ 1€ A, p, \ Cp. By Notation 7.4(7), min(Cy, \ (£ +1)) =6 is in A, g,. Since
Bs <, 6 € Ay 5. Therefore
Asy=ApNo= (A, NN) NI = Ay 4 NG,
proving (E).

(F) Let (7,¢) € bgy1. Then either (v,¢) = (Bs,0) for some § € A, or (v,¢) € by
and n < ¢.

Case a: (v,¢) = (Bs,0) for some § € A. Suppose that P € M N Y satisfies that
PnkeMNNNkand PONN[67,8) #0,

where 6~ is the greatest member of aj_ ; Ub)_ , which is less than . Then clearly
o = max(aj,,) < 07. Soif we fix { € PONNN[67,0), then 0 < § and 0 =
min(C), \ (£ +1)). By the minimality of 85, 85 < P N k.

Case b: (7,¢) € by and n < ¢. If ¢ is not the least element of bj, greater than 7,
then the greatest ordinal in aj, U b), less than ( is equal to the greatest ordinal in
@)y U g less than ¢. In that case, (F) follows easily from inductive hypothesis

Suppose that ¢ is the least member of ) greater than 7. Then the greatest
member of aj_; Ubj_ ; less than ¢, which we denote by (7, is equal to either
max(A) if A is nonempty, or o if A is empty.

Assume that P € M N satisfies that

Pnke MNNNkand PNNN[(,C) # 0.

We will show that v < PNk. If PN N N|[n,¢) # 0, then since n is the greatest
member of aj, U b}, less than ¢, v < PNk by inductive hypothesis (F).

Otherwise POANN[(™,n) # (. Fix £ in this intersection. Then £+1 is also in this
intersection, by the elementarity of PN N and because 7 is a limit ordinal. By the
definition of A, min(Cy,\({+1)) isin A. So A is nonempty, and hence (~ = max(A).
Yet min(C), \ ({+ 1)) is in A and is strictly greater than (- = max(A), which is a
contradiction.

(G) Let P € M N Y satisfy that
PnkeMNNNkand PNNN[sup(M Nn*),n*) #0.
By inductive hypothesis (G),
PN N Nn* Cmax(a), Uby) = max(by,).

If max(b},) = max(bj,,,), then we are done. Otherwise 7 is equal to max(b},), so
PNNNMOn* Cn If PON N7 is not a subset of max(aj_, Ubj_ ), then there is
£ € PN NNn* such that max(ay, ;) = o <&, and also max(A) = max (b, ;) < £ if
A is nonempty. So & € PN N NJo,n), which implies that min(C,, \ (£ +1)) is in A.
So A is nonempty, and max(A) < ¢ < min(C), \ (§ + 1)) € A, which is impossible.
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(H) Suppose that P € M NY and 7 satisfy
Pnke MNNNkand 7€ PNNNIsup(MNn*),n").

Let
o = min((aj4 Ubjyr) \ (74 1)),
and assume that o* € aj_,. Fix 8* with (8*,0%) € ap1.

If o* € a}, then the conclusion of (H) follows immediately from inductive hy-
pothesis (H) for aj. Otherwise we are in the case that max(a)) < ¢ and ¢* = 0.
Hence also f* = . Clearly min((a), Ub}) \ (7 + 1)) is equal to n. Since (3,7) € by
and max(a},) is the greatest member of aj, U b}, less than 7, inductive hypothesis
(F) implies that 8 < P N &, proving (H(i)).

By inductive hypothesis (E),

An,Pﬂfﬁ = An*,Pﬁn Nn=PnNn.

Since 0 < 7,

A’V],Pﬁﬁ ﬂe = Pﬂ@
As 0 € lim(C,),

AG,Pﬂn = An,Pﬂn né.
By Lemma 7.12(2),

AQ,PHN = AU,PHN no.
So

PNo= An,Pﬂn N6 = Ay prr = Ao P N 0.
Since sup(N No) = 0, it follows that
Pnsup(NNo)= Ay prx Nsup(N No),

which proves (H(ii)).

(I) Let (v,¢) € arq1 Ubgy1, where min(ay ;) = min(ay) < ¢. If (7,¢) € ax,
then the conclusion of (I) follows from inductive hypothesis (I). If (v, () € ag+1 \ ax,
then (v,{) = (8,0) and max(a},) < 0. Let P := Sk(A,~ g). Since (5,n) € by, by
inductive hypothesis (I) we know that

PeMnNnY, PNnk=24, andPﬁm*:An*ﬂ.

Also since max(aj,) is the greatest member of aj Ub) less than 7, inductive hypothesis
(I) implies that

PN NN max(ay),n*) # 0.
But the greatest member of aj_ ; Ubj,_; less than o is also equal to max(ay,), so we
are done.

Suppose that (v,¢) € by and < ¢. If ¢ is not the second element of b},
then (I) follows immediately from inductive hypothesis (I). Suppose that ¢ is the
second element of bj,. Then 7 is the greatest member of aj, U b} less than (. Let
P := Sk(A,- ). By inductive hypothesis (I),

PeMnY, Pnk=v, PNkt =A4,,, and PONN[n,n*) #0.

Let ¢~ denote the largest member of afﬁ_l U b;C_H less than ¢, and we will show

that PN N N[¢7,n*) # 0. If (- < 5, then this follows immediately from the fact

that PN N N[n,n*) # 0. If A is nonempty, then clearly (~ = max(A) < 7, and we
are done.
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Suppose that A is empty. If min((NNx*)\0#) < max(a}), then (~ = max(a},) <
7, and we are done. Suppose that max(aj,) < o = min((N Nx™)\ ). By inductive
hypothesis (B), NN[n, () # 0. Since § <n, NN[#,{) # 0. Aso = min((NNx1)\6),
it follows that o < {, and so clearly (T = o. If 0 <1, then we are done. Otherwise
o =min((NNx")\n). We know that PN N N [n,n*) # 0. But the first member
of this intersection must be greater than or equal to min((N Nx™)\ 7n) = o. Hence
PN NNJ[o,n*) # 0, and we are done since o = (.

In the final case, assume that (v, () is equal to (3s,0), for some § € A. By the
definition of s, there exists Q € M NY and &£ such that

QNk=p3,€QNNNJo,n), and § = min(C, \ (£ +1)).

So @ Nn* = Ay~ g,. Since @ and n* are closed under H*, it follows that A,- g, is
closed under H*.

We will show that P := Sk(A,- g,) satisfies the conclusions of (I). Since A, g;
is closed under H*,

PNkt = A5 =QNn"
Hence also
PNne=QNk=ps.

Since n* is a limit point of @,
sup(P) = sup(Q Nn") = n".

As n* and B are in M, so is P.

To show that P € ), it suffices to show that lim(C,-) N P is cofinal in n*. Since
QNn* = PNn*, n* is a limit point of Q. If n* is not in @, then n* € cl(Q) \ Q. By
Lemma 7.13,

lim(Cy-) N Q = lim(C,«) N P

is cofinal in n*. Otherwise n* € Q. Since n* is a limit point of @, cf(n*) < k.
Therefore ot(Cy+) € Q N k by elementarity. Hence C,« C @ by elementarity. Since
n* has uncountable cofinality, lim(C,+) is cofinal in n*. So

lim(Cy+) N P = lim(Cy+) N Q = lim(Cy+)

is cofinal in n*.

Let 0~ denote the largest member of aj_; U b§<:+1 which is less than §. Then
either 6~ = o if § = min(A), or else ¢~ is the largest member of A which is less
than 6. In the first case, the ordinal £, which is in @ N N N[0, 7n), is a witness to
the fact that Q NN N [67,n*) # 0. In the second case, £ + 1 must be greater than
d7, since otherwise § = min(C,, \ (6 +1)) < 7. So £ + 1 is a witness to the fact
that @ N NN [67,n*) # 0. In either case, since QNn* C P, PNNN[6~,n*) # 0.

813. Amalgamation of side conditions

We are now in a position to prove amalgamation results for S-obedient side
conditions over simple models in X, strong models in ), and transitive models.
The proofs of these results will use almost the entirety of the technology developed
in the paper thus far. In Part III, the amalgamation results we present here will be
used to prove the existence of strongly generic conditions.
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Proposition 13.1. Let (A, B) be an S-obedient side condition, where A C X and
B C ). Suppose that N € A is simple, and (A, B) is closed under canonical models
with respect to N. Assume that for all M € A, if M < N then M NN € A.

Let (C, D) be an S-obedient side condition, where C C X and D C )Y, such that

ANNCCCN and BONN CD CN.

Also assume that N' € C is simple, and for all M € A, if M < N, then there is
M’ in C such that

M' <N, MNN=M NN, and p(M,N) =p(M', N").
Then (AU C,BU D) is an S-obedient side condition.

Proof. First note that for all M € A, if M < N then M NN € C. For since N is
simple, M NN € N by Lemma 82. So MNN € ANN CC.

Consider M < N in A. Since M NN = M'N N’ and M’ < N’, it follows by
Lemma 1.19(2) that

MNBun=MNNNe=M NN Nk=M NBu N
So M N By,ny =M N Bar . Also by Lemma 1.19(3),
Bu,ny =min(A \ sup(M NN Nk)) = min(A \ sup(M’' " N'Nk)) = B N

So Bu,N = Bur N B
To show that (AU C, BU D) is S-obedient, we verify properties (1), (2), and (3)
of Definition 5.3. (2) is immediate.

(3)Let M € C'and P € B. Let 8 := PNk, and suppose that ¢ = min((MnNk)\B).
Fix 7 € MNP NxkT, and we will show that ¢ € S,. If 3 = (, then ¢ € S, since
Pis g—strong. So assume that § < ¢, which means that 8 ¢ M. If P € N then
PeBNNCD,soc(eS, since (C,D) is S-obedient.

Assume that P ¢ N. Since M € C and C C N, M € N. Therefore ¢ and 7
are in N. Hence PNk = < ¢ <sup(N N k). Let £ := min((N N k) \ 5). Since
M C N, ¢=min((MNk)\¢&). By Lemma 10.9(1), there is @ € BN N C D such
that QN =¢ and 7 € Q. Then ¢ =min((M Nk)\ (QNkK)) and T € MNQNKT.
So ¢ € S, since (C, D) is S-obedient.

Let M € Aand P € D. Let §:= PNk, and suppose that ¢ = min((M Nk)\ 3).
Fix 7€ MN PNkt and we will show that ¢ € S.. If 8 = ¢, then ¢ € S; since P
is §—strong. So assume that 8 < ¢, which means that 5 ¢ M.

Since Pe Dand D C N, Pe N. So §=PNkisin N by elementarity.

Case 1: By,n < B. Since § € N, ¢ = min((M Nk) \ B) is in Ry(M). As
PeNNYis S-strong, 7 € M N PNkt, and
sup(MN¢)<PnNk=p<¢,
it follows that ¢ € S; since A is g—adequate.
Case 2: B < Bu,n < (. Then ¢ = min((MN&)\Bar,n). Since 5 € (NNBar,n)\M,
it follows that M < N. Therefore ( € Ry(M). As P € NNY is S-strong,

TEMNPNKT, and
sup(MN¢) <PNk=p8<(,
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we have that ¢ € S, since A is S-adequate.

Case 3: < < Bum,n. Since 8 € (NN Bu,n) \ M, it follows that M < N. As
M<N,Pe NN)Y, and

PNk < ¢ <sup(MNBu,n)=sup(MNNNEK),

it follows that M N PNk* C N by Lemma 8.7. In particular, 7 € M NN NkT. As
(< PBunvand MNBy Ny =MNNNEK, (=min(MNNNk)\B). But MNN € C,
PeD,and 7€ (MNN)NPNkKT. So ¢ €S, since (C, D) is S-obedient.

(1) Now we prove that AU C is S-adequate. By Proposition 1.29, AU C is
adequate. Let M € A and L € C. Then L € N. We will prove that the remainder
points in Rps(L) and Ry (M) are as required.

First, consider ¢ € Rp(M). Then by Lemmas 2.4 and 2.5, either (1) M < N,
¢ <PBmn,and ¢ € RL(MNN),or (2) fu,nv < ¢ and ¢ € Ry(M).

Case 1: M < N, ( < Bu,n, and ¢ € Rp,(M N N). Recall that L and M NN are
inC. Fix 7 € LN M nNk", and we will show that ¢ € S;. Since L € N, 7 € N.
Sor e LN(MNN). Since ¢ € R,(M N N), it follows that ¢ € S, since C is
§—adequate.

Suppose that P € LNY is g—strong,

sup(MN¢) <PNk<( andT€e MNPNkKT.

We will show that ( € S;. Since Pe LandL € N,Pe N. SoPe€ NNY, M < N,
and

PNk < ¢ <sup(M N Bun) =sup(MNNNkK).

By Lemma 8.7, M N PNk™ C N. In particular, 7€ N. Sor € (MNN)NPNx*.
Since ¢ < Bp,n and M < N, we have that M N ¢ = M N N N (. Therefore

sup((MNN)N¢) =sup(MN{) < PNk <.
So¢ € R,(MNN), PeLnY is S-strong, sup((M N N)N¢) < PNk < ¢, and

=

Te€(MNN)NPNkt. It follows that ¢ € S; since C is S-adequate.

Case 2: By v <Cand ¢ € Ry(M). Fix 7€ LN M Nk, and we will show that
(€S, Since LEN, 7€ N. Sore MNNNk". As ( € Ry(M), it follows that
¢ € S, since A is §—adequate.

Suppose that P € L NY is S-strong and sup(M N¢) < PNk < (. Fixr e
M N PnNkT, and we will show that ( € S,. Since P€ Land L€ N, P € N. So
P € NNY is S-strong. Since ¢ € Ry(M),sup(MN¢) < PNk < ,and 7€ MNP,
it follows that ¢ € S; since A is g—adequate.

This completes the proof that the ordinals in Ry, (M) are as required.
Now consider ¢ € Rp;(L). Then by Lemmas 2.4 and 2.5, either M < N and

¢ € Rynn(L), or there is £ € Ry(N) such that ¢ = min((LN k) \ §). Since ¢ € L
and Le N, (€ N.
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Let 7 € LN M N k", and we will show that ( € S,. Since L € N, 7 € N.
SoT € LN (MnNN). First, assume that M < N and ( € Rynn(L). Since
¢ € Rynn(L) and 7 € LN (M N N), it follows that ¢ € S, since C is S-adequate.

Secondly, assume that there is £ € Rp(N) such that ¢ = min((LNk)\ &). Since
€ Ry(N)and 7€ MNNNkT, by Lemma 10.9(2) there is Q € BN N C D such
that QN =¢ and 7 € Q. Then ( =min((LNk)\ (QNk)) and 7€ LNQNKT,

—

which implies that ¢ € S; since (C, D) is S-obedient.

Suppose that Pe M NY is g—strong,
sup(LN¢) < PNk<(, andT € LNPNkKT.
We will prove that ¢ € S;. Note that since 7 € Land L € N, 7 € N.

Case 1: By.n < PNk. Let 0 := min((NN«k)\ (PNk)). Note that 6 exists since
¢ € N. Also ¢ =min((LNk)\ ). Since PNr € (M Nk)\ Bu,n, it follows that
0 c RM(N) and

sup(NNo) < PNk < 0.
Also 7 € NN PnNkt. By Lemma 10.9(4), there is @Q € BN N C D such that
QNk=~0and 7 € Q. But then ( =min((LNk)\ (QNk))and 7€ LNQNKT,
which implies that ¢ € S, since (C, D) is S-obedient.

Case 2: PNk < By,ny and N < M. Recall that either M < N and ¢ €
Rarnn (L), or there is € € Rps(N) such that ¢ = min((L N k) \ §). Since N < M,
we are in the second case.

Subcase 2(a): PNk < sup(N N Buy,n). Since N < M, sup(N N Bu,n) =
sup(M N N N k). Therefore PNk < sup(M NN Nk). Since r € NNP Nk, it
follows that 7 € M by Lemma 8.7. So7 € M NN N«™T. Since £ € Ry (N), by
Lemma 10.9(2) there is @ € BN N C D such that Q Nk = £ and 7 € Q. Since
¢(=min((LNk)\ (QNk))and 7€ LNQN kKT, it follows that ¢ € S, since (C, D)
is S-obedient.

Subcase 2(b): sup(N N By,n) < PN k. Since sup(N N Bar,n) has countable
cofinality and PN« has uncountable cofinality, we have that sup(NN Sy n) < PNk.
Let 6 := min((N N k) \ Bar,n), which exists since ( € N. As N < M, § € Ry(N).
Also

sup(NNéd) =sup(NNBun) < PNK<S
and 7 € NNPNxT. By Lemma 10.9(4), there is Q € BNN C D such that QNk = §
and 7 € Q. Since sup(NNJ) < PNk < 4§, we have that 6 = min((N Nk)\ (PNk)).
As L C N and sup(LN¢) < PNk <, clearly ¢ = min((L N &)\ d). So ¢ =
min((LNk)\ (QNk)) and 7 € LNQNkT. It follows that ¢ € S, since (C, D) is
S-obedient.

Case 3: PNk < Py,nv and M < N. Then PNk e M N Bynvy =MNNNk.

Subcase 3(a): T < apm,n and P N ap,n is bounded below ap n. Then 7 €
PN NNapy,n. By Lemma 11.7, there is P’ € M NN N Y which is g—strong such
that PPNk =PNkand 7€ P

Recall that either ¢ € Rynn (L), or there is &€ € Ry (V) such that ¢ = min((LN
k) \ €). Suppose first that ¢ € Rynn(L). Since P € M NN NY is S-strong,
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sup(LN¢) < PNk=PNr<( and e LNP NkT, it follows that ¢ € S, since
C is S-adequate.

Now suppose that there is € € Ry (NN) such that ¢ = min((L N &)\ §). Then by
Lemma 10.9(3), there is @ € BN N C D such that QNk =& and NNP' Nkt C Q.
So¢=min((LNk)\(QN&k)) and 7 € LNQ NxT. It follows that ¢ € S, since
(C, D) is S-obedient.

Case 3(b): Either 7 < aps v and PNapy,n is unbounded in aaz n, or apg,n < 7.
In the first case, we apply Lemma 11.6 letting 79 = 7 to get that there exists
Q € N'NY which is g—strong such that Q Nk = PNk and 7 € Q. In the second
case, we apply the main proxy lemma, Lemma 11.5. Since 7 € P and P € M,

apm,n <7 < sup(P) < sup(M).

Let 1 := min((M N &%) \ 7), which is in R};(M). Note that the assumptions of
Lemma 11.5 for n* = n are satisfied. By Lemma 11.5(1), there is @ € N'NY
which is g—strong such that @ Nk = PNk and 7 € Q. In either case, we have that
Qe N'NYis S-strong, QNk=PNk, and 7 € Q.
Let us note that if ¢ € Ry/(L), then ¢ € S; and we are done. For Q € N'NY
is g—strong,
sup(LN) < PNk=Q Nk <,

and 7 € LNQ N k™. It follows that ¢ € S; since C is g—adequate.

Subcase 3(b(i)): Br,.n < ¢. We claim that ( € Ry/(L), which finishes the
proof. If By v < PNk, then PNk = Q Nk € (N Nk)\ Br,n. Therefore ( =
min((LNk)\ (PNk)) isin Ry/(L). Suppose on the other hand that PNk < S n-.
Then ¢ = min((LNk)\Br,n). Since PNk € (N'NPL,n7)\ L, we have that L < N'.
So ¢ € Rn/(L).

Subcase 3(b(ii)): ¢ < Pr,ns. In particular, since Q Nk = PNkx < ¢ and
¢ € LNpL N, it follows that
QNk <sup(LNPBLn) < Pr.n-
As@QnNnke (N NPr )\ L, we have that L < N’. So L < N’, Q € N'NY, and
Q Nk <sup(LNBLn)=sup(LNN NEk).

By Lemma 8.7, QN LNkt C N’. Since 7 € LNQ Nk, it follows that 7 € N’. By
Lemma 11.5(2) in the case that aps,y < 7, and by Lemma 11.6(2) in the case that
T < apm N, there is P € M’ NY which is S-strong such that P’ Nk = PNk and
TeP.

By Lemmas 1.27(1) and 2.6(1), either 8p v = Br.mnn = Br,mr, or Bun <
Br,m . Suppose first that 8r v = Br,pmr. We claim that

Br.m < PNEK.

Suppose for a contradiction that PNk < 1 am = Br,m- Since A is cofinal in PNk
by the elementarity of P, and sup(L N{) < PNk, we can find 7 € AN PNk such
that sup(L N¢) <. Then 7 < B p. By Lemma 1.19(5),

LmMﬂ[’iT,ﬂL’M)#@
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Fix ¢ in this intersection. As ¢ € Ry (L), Br.m < ¢. So € € L and

sup(LN¢) <7 << Brm < ¢
But sup(L N¢) < & < ¢ and & € L is obviously impossible. Hence indeed S ar <
PNk.

So PNk =P nke (Mnk)\Prm. Since ¢ = min((LNk)\ (P’ Nk)), we
have that ¢ € Ry (L). As PPe M'NY is S-strong, sup(LN¢) < PNk < ¢, and
7€ LNP NkT, it follows that ¢ € S, since C is S-adequate.

The other alternative is that By, v < Br,am¢. We will show that this is impossible.
So assume that Sy v < fr.ar. We claim that L < M'. For PNk =P Nk e M.
Also

PNk <Bun < Prm-
So
PnNnke (M/ﬂﬁL_’M/)\L,
which implies that L < M’.

Next we claim that Sy, n < ¢. Suppose for a contradiction that ¢ < Sar, n. Then
(e Lmﬂ]\/j,]\] - LﬁﬁL’M/, and LQBL}M' C M’ since L < M’. So

ceM NPun=MNBw N =MN0BunN.
Hence ¢ € M. But this is not true since ¢ € Rys(L).

Since PNk < Bu,ny < ¢ and sup(L N () < PNk, clearly ¢ = min((L N k) \
Bam,n). Since fu,ny < Brv and fu,ny € A, by Lemma 1.19(5) we have that
LNM N [Bum.N,Br.a) is nonempty. Since ¢ = min((LN k) \ Bar,n), it follows that
C<Prm-AsL<M, 6 (eM.

Now we will get a contradiction. By Subcase 3(b(ii)), { < Br,n7. So¢ € LNBL .
Since L < M’ < N’, we have that L < N’. Hence { € N’. So ( € M'NN'Nk, which
implies that ¢ < BN = Bum,n. But By, v < ¢, and we have a contradiction. [

Proposition 13.2. Let (A, B) be an S-obedient side condition, where A C X and
B C Y. Suppose that P € B satisfies that cf(sup(P)) = PN k. Assume that for all
MeA MNPeA, and forallQ € B, if QNk < PNk then QNP € B.

Let (C, D) be an S-obedient side condition, where C C X and D C Y, such that

ANPCCCPand BNPCDCP.

In addition, assume that there exists P’ € D such that cf(sup(P’)) = P' Nk, and
for all M € A, there exists M' € C such that
MNP=M NP andp(M,P)=pM', P).
Then (AU C,BU D) is an S-obedient side condition.
Proof. By Lemma 8.3, P and P’ are simple. Note that for all M € A, MNP € C.
For MNP € P by Lemma 84, and so M NP € ANP C C. Similarly, for all
QeBwithQNk< PNk, QNP eD. For QNP € P by Lemma 8.4, and hence
QNPeBNPCD.
Let f:= PNk and B := P'Nk. Consider M € A. Then by our assumptions,
Mnp=MNPNnk=MnNPnNe=Mnpg.

So MNB = M'NP’. In particular, since 5" has uncountable cofinality, sup(MNSG) <
g
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To show that (AUC, BUD) is S-obedient, we verify properties (1), (2), and (3)
of Definition 5.3. (2) is immediate.

(3) Let M € Aand @ € D. Let 6 := QN&x, and suppose that ( = min((MNk)\0).
Let 7 € QN M N kT, and we will show that ¢ € 5.

Case 1: PNk < (. Since @ € P, < PNk, so ¢ =min((MNk)\ (PNk)). As
TeQand Qe P, 7€ P. Sor € PNMnxT. Therefore ¢ € S, since (A, B) is
S-obedient.

Case 2: ( < PNk. Then ( € MNPNk. Since MNPNk=MnNZisan
initial segment of M Nk, ( = min(M NPNk)\ ). AsTteQand Q € P, 7 € P.
SoreQN(MNP)Nnk™. Since MNP e C, it follows that ¢ € S; as (C,D) is
S-obedient.

Let M € C and @ € B. Let 0 := Q Nk, and suppose that ¢ = min((M Nk) \ 6).
Fix 7 € QN M NkT, and we will show that ¢ € S,. Since ( € M and M € P,
¢ € PNk. Hence Q Nk < PN k. So by our assumptions, QNP € D. Aste M
and M e P,reP.Sore (QNP)NMNk'. Since QNPNrk=QNk =10,

C=min(M Nk)\ (QNPNEK)).
It follows that ¢ € S, since (C, D) is S-obedient.

(1) The set AU C is adequate by Proposition 1.35. Let M € A and L € C.
Then L € P. We will prove that the remainder points in Ry/(L) and R (M) are
as required.

Consider ¢ € Rp(M). Then by Lemma 2.9, either ( € RL(M NP) or ( =
min((M N k) \ B).

Case 1: (¢ € R,(MNP). Fix 7 € LN M N k™, and we will show that ¢ € S;.
Sincet € Land L€ P, 7€ P. Sor € LN(MNP)Nk*. Since ¢ € R,(MNP), it
follows that ¢ € S since C' is g—adequate.

Suppose that Q € LNY is g—strong and

sup(M N <QnNk <.
Fix 7€ QN M Nk™, and we will show that ¢ € S;. Since MNPNk=MnNPis
an initial segment of M Nk and ( € M N PNk,
sup(MNPN¢) =sup(MN{) <QNkK <.
As@Q € Land L € P, Q € P. And since 7 € Q and Q € P, 7 € P. So
TeQN(MnNP)Nnkt. Since ¢ € R(M N P), it follows that ¢ € S; since C' is
S-adequate.

Case 2: ¢ = min((M Nk)\ B). Fix 7 € LN MNk*, and we will show that
(€S, SincercLand LEe P, 7€ P. Sor € PNMnNk"'. Since M € A and
P € B, it follows that ¢ € S, since (A, B) is S-obedient.

Suppose that Q € LNY is g—strong and

sup(M N <QnNk <.
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Fix 1€ QN M Nk, and we will show that ( € S,. AsQ € Land L€ P, Q< P.
Andsincet€ Qand Q€ P,7€ P. Sotre MNPNkT. AsM € Aand P € B, it
follows that ¢ € S, since (A, B) is S-obedient.

Consider ¢ € Ry/(L). By Lemma 2.9, ¢ € Rynp(L). Fix 7€ LN M N k™, and
we will show that ( € S;. Sincet € Land L€ P,7€ P. Sor € LN(MNP)Nkt.
As ¢ € Rynp(L), it follows that ¢ € S; since C is S-adequate.

Suppose that Q € M NY is §—str0ng and

sup(LN¢) < Q Nk <.

Fix 7 € QNLNk™, and we will show that ¢ € S;. Since¢( € Land L € P, { € PNk.
Therefore QN € MNPNk. AstTELand LEP, T€EP. Sote@QNPnk™.

Case 1: T < apr,p and QNayy, p is bounded below aps, p. Then 7 € QNPNay, p.
By Lemma 11.7, there is Q' € M NPNY which is S-strong such that Q' Nk = QNk
and 7 € Q'. So

sup(LN¢) <Q Nk=QNk <
and 7 € Q' NLN~kT. Since ¢ € Rynp(L) and Q' € (M NP)NY is S-strong, it
follows that ¢ € S since C' is g—adequate.

Case 2: Either 7 < apr p and Q Nagy,p is unbounded in o, p, or apr,p < 7. In
the first case, we apply Lemma 11.6(1) to get Q* € P'NY such that 7 € @Q*. In the
second case, we apply the main proxy lemma, Lemma 11.5. Assuming a,p < 7,
let 7 := min((M N k1) \ 7). Note that n exists since sup(Q) € M and 7 < sup(Q).
Also

TE€QNPNI[sup(M Nn),n).
By Lemma 11.5(1) there is @* € P’ N'Y such that 7 € @Q*.

Thus in either case, there is Q* € P’ N Y such that 7 € Q*. As 7 € Q* and
Q* € P, 7 € P'. Also by Lemma 11.6(2) in the first case, and Lemma 11.5(3) in
the second case, there is Q' € M’ NY such that Q" is S-strong, Q' Nk = Q Nk, and
Teq.

By Lemma 2.10(2), either S pm = Br.mr or B/ < Br . First, suppose that
Br.v = Br.ar- Since ¢ € Rynp(L), Lemma 2.10(3) implies that ¢ € Ry (L). But
Q' € M'NY is S-strong,

sup(LN¢) < Q' Nk=Q Nk <,
and 7 € @' N LNk™. It follows that ¢ € S, since C' is §—adequate.
Secondly, assume that 5’ < B av. Since
QNeeMNPNe=MnB=Mnp,
it follows that
QNk<p <Brm-
AsQnNe=Q Nk e (M NpBrm)\ L, we have that L < M’.
We claim that 8’ < (. Otherwise since L < M’,
ceLnp CLNBrm CM.
So¢e M Np' =Mnp. Hence ¢ € M, which contradicts that ¢ € Ry (L).

Since
sup(LN¢) <Qnkr<p <,
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we have that ¢ = min((L N &)\ B’). As noted above, 7 € P'. Sor € LN P' Nkt
and

¢(=min((LNk)\ B)=min((LNk)\ (P Nk)).
It follows that ¢ € S, since (C, D) is S-obedient. O

Proposition 13.3. Let (A, B) be an S-obedient side condition, where A C X and
B C Y. Suppose that X < A is such that |X| = x, X Nkt € k*, and X< C X.
Let 0 := X Nk™.

Let My,...,Mx_1 and Py,...,P,_1 enumerate the members of A and B re-
spectively. For each i < k, let (Q} : n < w) enumerate the S-strong models in
M;n Y. )

Let (C, D) be an S-obedient side condition, where C C X and D C Y, such that

ANXCCCXand BN X CDCX.

Assume that Mg, ..., M, _,, Py,..., P},
the following properties:

(1) 0" € O Ncof(k);

(2) foralli<k, M/ € C and M; N6 =M/ NE;

(3) forallj <m, Pj €D and P;N0 =P N0;

(4) for alli < k, (R, : n < w) enumerates the S-strong models in M/ NY, and

foralln <w, @, NO =R, NG
Then (AU C, B U D) is an S-obedient side condition.

1, 0, and (R} :n < w) fori < k satisfy

Proof. To show that (AUC, BUD) is S-obedient, we verify properties (1), (2), and
(3) of Definition 5.3. (2) is immediate.

(3) Let M € C and P € B. Fix j < m such that P = P;, and let P' := P].
Let 8 := PNk, and suppose that ¢ := min((M Nk)\ B). Fix 7€ MNPNkT,
and we will show that ¢ € S;. Since 7 € M and M € X, 7€ XNkt =0. So
Te€PNO=PnNH. Also PNk =PNkr=p Hence r € MNP NkT and
¢ =min((M N &)\ (P’ Nk)). It follows that ¢ € S, since (C, D) is S-obedient.

Let M € A and P € D. Fix i < k such that M = M;, and let M’ := M/. Let
B := PNk, and suppose that ¢ = min((M Nk)\ B). Fix 7 € MNP NkT, and
we will show that ¢ € S;. Since 7 € Pand P € X, 7 € X Nkt = 6. Hence
TEMNO=MnNE. Also MNk =M Nk, so ¢ =min((M Nk)\ B). Since
e M' N PnNxkt, it follows that ¢ € S, since (C, D) is S-obedient.

(1) The set AU C' is adequate by Proposition 1.38. Let M € A and L € C. We
will prove that the remainder points in Rps(L) and Ry (M) are as required. Fix
i < k such that M = M;, and let M’ := M].

Consider ¢ € Rp(M). Since M Nk = M' Nk, ( € R(M’') by Lemma 2.11.
Let 7 € LN M N k", and we will show that ( € S,. Since 7 € L and L € X,
7€ XNkt =0, Hence r € MNO = M' N@. Therefore 7 € LN M'. Since
¢ € R (M), it follows that ¢ € S, as C' is S-adequate.

Suppose that P € LNY is §—strong and

sup(M N¢) < PNk <.
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Let 7 € PN M Nk", and we will show that ¢ € S,. Since P € L and L € X,
PeX AndastePand Pe X, 7€ XNKkT =60. Hencere MNO =M nN§.
Therefore 7 € PN M’ Nk*. Also since M Nk = M' Nk,

sup(M' N¢) =sup(M N¢) < PNk <.
As ¢ € Rp(M'"), it follows that ¢ € S; since C' is S-adequate.

Now consider ¢ € Rp(L). Since M Nk = M' Nk, ¢ € Ry (L) by Lemma 2.11.
Let 7 € LN M N k", and we will show that ( € S,. Since 7 € L and L € X,
7€ XNkt =0, Hence r € MNO = M' NG. Therefore 7 € LN M'. Since
¢ € Ry (L), it follows that ¢ € S; since C' is S-adequate.

Let Pe M NY be §—strong, and assume that

sup(LN¢) < PNk < (.

Let 7 € LN PNk™, and we will show that ( € S,. Since 7 € L and L € X,
7€ XNkT =0. Fix n < w such that P = Q¢. Then

TEPNO=Q,NO=R.NG.
So 7€ RLNLNkT. Now Ri € M'NY is S-strong, and
sup(LN¢) < PNk=Q  Nr =R Nk <.

Since ¢ € Ry (L), it follows that ¢ € S, since C is S-adequate. O

Part 3. Mitchell’s Theorem

814. The ground model

With the general development of side conditions from Parts I and II at our
disposal, we now begin our proof of Mitchell’s theorem. We start by describing the
ground model over which we will force a generic extension satisfying that there is
no stationary subset of we N cof(wy) in the approachability ideal I[ws)].

We will use the same notation which was introduced at the beginning of Parts I
and II, together with some additional assumptions. Recall that x > ws is regular,
2% = g+, and .. Also the cardinal \ from Part I is equal to x™. In addition, we
will assume that k is a greatly Mahlo cardinal, and the thin stationary set T* from
Notation 1.4 is equal to P,, (k).

Define a sequence of sets (Se : &€ < k1) inductively as follows. Let Sy denote the
set of inaccessible cardinals less than x. Let § < s, and suppose that S¢ has been
defined for all £ < §. If § = dp + 1, then let a € Ss if « is inaccessible, a € S5,, and
Ss, N is stationary in . If § is a limit ordinal, then let a € S5 if « is inaccessible,
and for all € € As,, o € Se. Let §:= (S¢ : € < k).

The fact that & is greatly Mahlo implies that for all § < kT, Ss is stationary in
k. In fact, it is easily seen that this consequence is actually equivalent to x being
greatly Mahlo. See [1, Definition 4.2] for more information about greatly Mahlo
cardinals.
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Notation 14.1. For the remainder of Part III, the structure A from Notation 7.6
will be equal to

(H(H+)7 €, S‘7"€7T*37T*7C*7A7y03f*aéaga C*a §>

In Proposition 7.20, we proved that the set of simple models in X is stationary in
P,,(H(k™)). We will prove in Proposition 15.3 that most simple models in X have
strongly generic conditions. The next proposition describes the kind of models in
Y which will have strongly generic conditions.

Proposition 14.2. There are stationarily many P € P.(H(kv)) such that P € ),
P is S-strong, and cf(sup(P)) = PN k.

Proof. Let F : H(k*t)<¥ — H(x™"). Fix X which is an elementary substructure
of A of size s such that X is closed under F, and 7 := X N xT has cofinality .
Note that X = Sk(X Nk™) = Sk(r). Since 7 is the union of the increasing and
continuous sequence of sets {A,; : i < K}, it follows that X is the union of the
increasing and continuous sequence of sets {Sk(A. ;) : i < k}.

For all infinite 8 < &, |A; 3| < |B| < k by Notation 7.4(3). Since 7 has cofinality
k, sup(A,g) < 7, and hence sup(A;3) € X. Fix a club C' C & such that for all
aecC, A, is closed under H*, A; o Nk = «, Sk(A; ) is closed under F, and for
all B < a, sup(A;g) € Arqo. As S; is stationary in k, we can fix o € im(C) N S;.
Let P := Sk(A; ).

We claim that P € Y, P is S-strong, cf(sup(P)) = PN, and P is closed under
F'. The last statement follows from the fact that o € C. Since A, , is closed under
H* PNkt = A, ,. In particular, since « € C, PNk =a. Asa € S, ais
inaccessible. After we show that cf(sup(P)) = «, it will follow that P € Y by
Lemma 7.15.

To show that P is S-strong, let 0 € PN xT. Then 0 € PNkt = A, . Since
o € S; and 7 is a limit ordinal, for all m € A, 4, @ € S;. In particular, a € S,.

It remains to show that cf(sup(P)) = a. For ap < a7 in C' N,

Sup(AT,OLO) 6 AT,Ql g P
by the definition of C'. Since P Nk is a limit point of C,

Aro = J{4Ars:BeCnal.
Therefore
sup(P) = sup(A, o) = sup{sup(4,3) : B € CNal,
which is the supremum of a strictly increasing sequence. Since « is in S;, « is

inaccessible, so C' N « has order type a. Hence sup(P) has cofinality equal to
PNk=a. O

§15. The forcing poset

We now define and analyze the forcing poset which will force that there is no
stationary subset of we N cof(w;) in the approachability ideal I]ws).

Definition 15.1. Let P be the forcing poset consisting of pairs p = (Ap, Bp) satis-
fying:
(1) A, C X, and for all M € Ay, M < (A,Y);
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(2) B, C s
(3) (A4,, Bp) is an S-obedient side condition.
Let ¢ <pif A, C Ay and B, C By.
The rest of this section is devoted to proving amalgamation results for P, which
in turn yield the existence of strongly generic conditions.

Lemma 15.2. Let N € X with N < (A,Y). Then qn := ({N},0) is in P, and for
allp e NNP, p and qN are compatible.

Proof. Immediate from Lemma 5.4(1). O

Proposition 15.3. Let N € X be simple such that N < (A,V,P). Let gy :=
({N},0). Then qn is a universal strongly N -generic condition.

See Section 3 for a discussion of universal strongly generic conditions.

Proof. By Lemma 15.2, qn is compatible with all conditions in N NP. So it suffices
to show that gy is strongly N-generic. Let ryp < gy be given. We will find a
condition v in N NP such that for all w < v in NNP, ry and w are compatible.

Let My, ..., Mj_; list the models M in A, \ N such that M < N. Note that
by Lemma 8.2, M; NN € N for all i < k.

By finitely many applications of Lemmas 5.5(1) and 7.16, together with the fact
that N < (A,)), the pair

T = (Aro U{MO ﬁN,...,Mk_l ﬂN},BTO)
is a condition below 7.

By Proposition 10.8, there is a condition r < ry such that A, = A,,, and (4,, B,)
is closed under canonical models with respect to V. Note that the assumptions of
the first paragraph of Proposition 13.1 hold for A = A, and B = B,..

The objects r, N, and My, ..., My_, witness that the following statement holds
in (A,),P):

There exist v, N, and My, ..., Mj,_, satisfying:
(1) vep;
(2) A-NnN CA,, B.NN CB,, and My,..., M _, and N’ are in A,;
(3) N’ is simple;
(4) forall i <k, M/ < N', M; "N = M/ N N', and p(M;, N) = p(M],N").

The parameters which appear in the above statement, namely A, "N, B, N N,
and for i < k, M; NN and p(M;, N), are all members of N. By the elementarity of
N, there are v, N, and M, ..., M| _, in N which satisfy the same statement.

We will show that for all w < v in N NP, w is compatible with r, and hence is
compatible with r¢ since r < ry. This will complete the proof.
So fix w < v in N NP. We claim that the pair

(A, UA,, B.-UBy)
is in P. Note that the assumptions of the second paragraph of Proposition 13.1
hold for C = A,, and D = B,,. So by Proposition 13.1, (4, U A, B, U By,) is an

S-obedient side condition. So this pair is a condition in P, and it is obviously below
r and w. (]
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Corollary 15.4. The forcing poset P satisfies the wy-covering property. In partic-
ular, it preserves ws.

Proof. By Proposition 7.20, the set of N € P, (H(x™)) such that N € X and N is
simple is stationary. Hence there are stationarily many such N with N < (A, Y, P).
Any such N has a universal strongly N-generic condition by Proposition 15.3. By
Corollary 3.10, P has the w;-covering property. (Il

Next we prove that many models in ) have strongly generic conditions.

Lemma 15.5. Let P € Y be S-strong. Let qp := (0,{P}). Then qp is in P, and
forallp e PNP, p and qp are compatible.

Proof. Immediate from Lemma 5.4(2). O

Proposition 15.6. Let P € Y be S-strong such that cf(sup(P)) = P Nk and
P < (A Y,P). Let qgp := (0,{P}). Then qp is a universal strongly P-generic
condition.

Proof. By Lemma 15.5, gp is compatible with all members of PNP. So it suffices to
show that gp is strongly P-generic. Let rg < gp be given. We will find a condition
v € PN P such that for all w < v in PNP, ry and w are compatible.

By finitely many applications of Lemmas 5.5(2), 5.5(3), and 7.16, together with
the fact that P < (A4,)), there is a condition r < r¢ such that

A=A, U{PNM:Mc¢eA,}

and
B, =B,,U{PNQ:Q€B,,, QNk < PNk}
Then the assumptions of the first paragraph of Proposition 13.2 hold for A = A,
and B = B,..
Let 8:= PNk. Let My, ..., Mp_4 list the members of A,.
The objects v, P, 8, and My, ..., My_, witness that the following statement
holds in (A, Y, P):

There exist v, P/, §’, and M, ..., M| _, satisfying:
(1) vel
(2) Ar-nPCA,, BLNPCB,, Mj,...,Mj_, arein A,, and P’ € By;
(3) PNk =p" and cf(sup(P’)) = 5';
(4) for all i <k, M; " P = MNP and p(M;, P) = p(M], P").

The parameters appearing in the statement above, namely, A, N P, B,.N P, and
for i < k, M; N P and p(M;, P), are all members of P. By the elementarity of P,
we can fix v, P, 8/, and M{,..., M, _, in P which satisfy the same statement.

For each M € A,, let M’ denote M/, where i < k and M = M;,.

We will show that for all w < v in P NP, w is compatible with r, and hence is
compatible with r since r < rg. This will complete the proof.
So fix w < v in PNP. We claim that the pair

(A, U Ay, BrUB,)

is in P. Note that the assumptions of the second paragraph of Proposition 13.2
hold for C = A,, and D = B,,. So by Proposition 13.2, (A, U A,, B, U B,,) is an
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S-obedient side condition. So this pair is a condition in PP, and it is obviously below
r and w. (]

Corollary 15.7. The forcing poset P has the k-covering property. In particular, P
forces that k is a reqular cardinal.

Proof. By Proposition 14.2, there are stationarily many P in ) such that P is S-
strong and cf(sup(P)) = PN «. Therefore there are stationarily many such P with
P < (A, Y,P). By Proposition 15.6, any such P has a universal strongly P-generic
condition. Hence by Corollary 3.10, P has the x-covering property. (]

Finally, we prove that for most transitive models, the empty condition is a
strongly generic condition.

Proposition 15.8. Suppose that X is an elementary substructure of (A, V,P) of
size k such that X Nk+t € kT and X<* C X. Then the pair (0,0) is a strongly
X-generic condition.

Proof. Let 6 := X NkT. Since X<* C X, # has cofinality x.

Let D be a dense subset of PN X, and we will show that D is predense in P. Let
p be a condition.

Let My,...,Mi_1 and F,..., Pp_1 enumerate the members of A, and B, re-
spectively. Note that since X<% C X, for any model K on either of these lists,
KN e X. For each i < k, let (Q°, : n < w) enumerate the S-strong models in
M;NY. Since X<* C X, for each n < w, Q) N@ € X. Therefore the sequence
(QiN0:n <w)isin X.

Note that the assumptions of the first and second paragraphs of Proposition 13.3
hold for A = A, and B = B,,.

The objects p, 0, My,...,My_1, Py,..., Pm_1, and (Q%, : n < w) for i < k
witness that (A, ), P) satisfies the following statement:

There exist v, 6/, M{,...,M]_,, P},..., P, _,, and (R} : n < w) for i < k such
that:
) veP;
) Mg,...,M]_, arein A, and P{,..., P}, _, are in B,;
) cf(0) = k;
) M;n@=MNO and P;NO=P;NO fori<kandj<m
)

foralln <w, Q4 NO =R NG

The parameters which appear in the above statement, namely x, M;N0 for ¢ < k,
PjN6 for j <m, and (Q4 N0 :n < w) for i < k are all members of X. By the
elementarity of X, we can fix v, 0', M{, ..., M]_,, P},...,P},,_;, and (R} : n < w)
for i < k in X which satisfy the same statement.

For each M in A,, let M’ denote M/, where ¢ < k and M = M,. For each P in
By, let P’ denote P, where j <m and P = P;.

Since D is a dense subset of PN X, we can fix w < v in D. Let us show that w
and p are compatible. This proves that D is predense in P, finishing the proof. It
suffices to show that the pair

(A, U Ay, B, U By)
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is a condition. Note that the assumptions of the third paragraph of Proposition
13.3 hold for C = A,, and D = B,,. So by Proposition 13.3, (A, U Ay, B, U B,,) is
an S-obedient side condition. Therefore this pair is in P, and it is obviously below
p and w. [l

Corollary 15.9. The forcing poset P is kT -c.c.

Proof. Since (0, ) is the maximum element of P, by Proposition 3.11 it suffices to
show that there are stationarily many X in P+ (H (k™)) for which ((, @) is strongly
X-generic. By Proposition 15.8, it suffices to show that there are stationarily many
X in P+ (H(xm)) such that X N+ € k™ and X" C X. But this follows easily
from the fact that x<* = k. O

816. The final argument

We now complete the proof of Mitchell’s theorem. We begin by noting that the
forcing poset P has the desired effect on cardinal structure.

Proposition 16.1. The forcing poset P preserves wy, collapses k to become wa,
and is k*-c.c.

Proof. Immediate from Proposition 3.12, Lemma 15.2, and Corollaries 15.4, 15.7,
and 15.9. (]

Next we will show that we can apply the factorization theorem, Theorem 6.4.

It is easy to see that IP has greatest lower bounds. Namely, if (A, B) and (C, D)
are in P and are compatible, then (AU C, B U D) is the greatest lower bound of
(A, B) and (C, D).

Lemma 16.2. The forcing poset P satisfies property =(P,P).
See Definition 6.2 for the definition of .

Proof. Let p, q, and r be pairwise compatible conditions in P. Then g A r =
(AqUA,,B4UB,), pANq= (A, UA,;, B,UBy), and pAr = (A, UA,, B,UB,). To
see that p is compatible with ¢ A r, it suffices to show that

(AyUA,UA,, B,UB,UB,)

is an S-obedient side condition. But looking over the requirements of being S-
obedient, any violation of these requirements involves an incompatibility between
two objects appearing in the components of the pair, and hence would lead to a
violation of the same requirement for one of the triples p A q, p AT, or g AT. (Il

Proposition 16.3. Let Q € Y be S-strong such that cf(sup(@)) = Q@ Nk and
Q < (AV,P). Let qo := (0,{Q}). Let G be a generic filter on P which contains
qgo- Then GNQ is a V-generic filter on PNQ, and V[G] = V|G N Q|[H], where H
is a VIGNQJ-generic filter on (P/qq)/(GNQ). Moreover, the pair (VIGNQ), V[G])
satisfies the wy-approximation property.

Proof. By Proposition 15.6, gg is a universal strongly @-generic condition. By
Propositions 7.20 and 15.3, there are stationarily many models in P,,, (H (x)™) which
have universal strongly generic conditions. By Lemma 16.2, P satisfies property
*(IP,P). So the assumptions of Theorem 6.4 are satisfied, and we are done. (]
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We will need the following technical lemma about names.

Lemma 16.4. Suppose that Q € Y with Q < (H(k"),€,P), and q is a strongly
Q-generic condition. Let G be a V-generic filter on P which contains q. Let a € Q
be a nice P-name for a set of ordinals, and suppose that a® is a subset of Q N k.
Then a% € VIG N Q).

Proof. Note that since q is strongly Q-generic, GN @ is a V-generic filter on PN Q
by Lemma 3.3.
Let o := QNk. Since a is a nice name, for each v < « there is a unique antichain
A, such that (p,¥) € a iff p € A,. Since & € @, by elementarity each A, is in Q.
We claim that for all v < «,

yea®if A,NGNQ #0.

Since a% C QNk = a, it follows that a“ is definable in V[G' N Q] from the sequence

(A, : v < a) and the set GNQ. Therefore a“ € V[GNQ)], which finishes the proof.
Ifpe A,NGNQ, then (p,¥) € a by the choice of A,. Since p € G, it follows

that ()¢ = v is in . This shows that A, NG N Q # @ implies that v € a“.

Conversely, assume that v € ¢“. Then by the choice of A, wecanfixp e GNA,.
So to show that A, NG N Q is nonempty, it suffices to show that p € Q.

Since A € @ is an antichain, by elementarity there is a maximal antichain A € @
with A, C A. Let D be the dense set of u € P such that for some s € A, v < s. By
elementarity, D € ), and therefore D N @ is dense in PN @ by elementarity. Since
q is strongly Q-generic, D N @Q is predense below q.

As ¢ € G and D N @ is predense below ¢, we can fix v € GNDNQ. By
elementarity and the definition of D, there is s € AN @ such that u < s. Since
ueG, seG Nowpe A, and A, C A, sop € A Also s € A. Since s and p
are both in G, they are compatible. But A is an antichain, so s = p. Since s € Q,

pEQ. O

Proposition 16.5. Let 7 < k1 be an ordinal with cofinality k which is closed under
H*. LetY and D, be P-names such that P forces

Y={P:IpecG(PeBy)}and D, ={PNk:P€Y, 7€ P}

Suppose that B < K is an ordinal with uncountable cofinality, and p is a condition
which forces that 5 is a limit point of D,. Let Q := Sk(A. ). Then:

(1) Qey;
(2) QNk=F and QNrt = A, p;
( ) /BGST+1J
(4) cf(sup(Q)) = B;
(5) Q is S-strong;
)

(6) p forces that Q is in Y.
Proof. Define
Z*:={PeY:Pis S-strong, PNk <, 7€ P},
and
Z:={Pnrt:PeZ"}.
Note that by Lemma 7.28, if P and P, are in Z* and P, Nk < P, Nk, then
P1 Nt Q P2 nr.
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We claim that for all v < 3, there is P € Z* such that v < PN k. Namely, since
p forces that 3 is a limit point of D,, there is ¢ < p and P € B, such that 7 € P
and vy < PNk < B. Since P € By, it follows that P € ) is g—strong. So P e Z*
and v < P Nk, proving the claim. Consequently, (|JZ) Nk = .

Next we claim that |J Z = A, g. First, suppose that P € Z*, and we will show
that PN 7 C A, g. Since 7 € P, it follows that P N7 = A; pn, by Lemma 7.27,
which is a subset of A, g since PN« < (. This shows that | JZ C A, g. Conversely,
let £ € A g, and we will show that £ € |JZ. Since § is a limit ordinal, we can
fix v < B such that { € A, ,. By the first claim, there is P € Z* such that
7 < PNk. Since y < PNk and £ € A, ,, it follows that § € A, pn.. But 7 € P,
so Ay pnx = PN 7 by Lemma 7.27. Hence £ € PN 7. As PN 7 € Z, we have that
celyz

Since 7 is closed under H*, every set in Z is closed under H*. As Z is a C-chain,
UZ = A, is also closed under H*. In particular, QNx* = A; 5. As noted above,

Qﬁﬁ:ATﬁOn:(UZ)On:B.

This proves (2).
By Lemma 7.28(2), if P; and P, are in Z* and PiNk < PNk, then sup(PN7) €
P, N7, and hence sup(P; N7) < sup(P> N 7). In particular, since A, 3 =JZ,

sup(A; g) =sup{sup(PN7): P € Z"}.

Since 8 has uncountable cofinality, sup(A, ) = sup(Q)) has uncountable cofinality.
It follows that @ € ) by Lemma 7.15.

Now we prove that Q Nk = g is in S;41. Fix M in X such that p, 8, and 7
are in M. Then ¢ := (4, U{M},B,) is in P and ¢ < p. Since 8 has uncountable
cofinality, sup(M N B) < B. As q forces that § is a limit point of D., we can fix
r < g and P € B, such that sup(M NpB) < PNk < f and 7 € P. It follows that
B =min((MNk)\(PNk)). AsT € MNP, 7+1 € MNP by elementarity. So M € A,,
PeB,,and T+1€ MnN PNk, which implies that 8 = min((M N k) \ (PN k))
is in S;41 by the fact that (A,, B,) is S-obedient.

Since f € S;11, B is inaccessible, and in particular is regular. Therefore the
ordinal sup(A; g) = sup{sup(PN7): P € Z*} is the supremum of a sequence of
ordinals of order type 3. It follows that sup(Q) has cofinality 8. So cf(sup(Q)) =
QN k.

Now we show that @ is §-strong. Since g € S;y1, B € S;. As 7 is a limit
ordinal, for all € € A, g5, B € Se. Soif € € QNkT = A, 5, then QNK = € S,
which shows that @ is g—strong.

It remains to show that p forces that @ is in V. It suffices to prove that for all
g < p, there is r < ¢ such that Q € B,. So let ¢ < p. We claim that (4,, B,U{Q})
is a condition below gq.

Since Q is S-strong, to prove that (4,, B,U{Q}) is an S-obedient side condition,
it suffices to show that if M € A, and ¢ = min((M N k) \ B), then for all ¢ €
MnQnkt, (cS,.

Let c € MNQNkKT. Since 0 € QNkT = A, p and 3 is a limit ordinal, we
can fix v < § such that ¢ € A, ,. By increasing ~ if necessary, also assume that
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sup(M N B) < 7. As ¢ forces that § is a limit point of D,, we can fix s < ¢ and
P e B; such that y < PNk < fand 7 € P. So

AT,’y g AT,POH =PNr.
In particular, o € P. Since ¢ = min((M N k) \ B), we have that
sup(MN¢) =sup(MNP)<y<PNnr< B <.

So M eAs,, PeEBs,ce MNPNkT, and ( =min((M N k) \ (PN k)). Therefore
¢ €S, since (4;, By) is an S-obedient side condition. O

Lemma 16.6. Let 7 < k™ be an ordinal of cofinality k, and let B € S;y1. Suppose
that Q € Y is S-strong, Q Nk =B, QN kT = A; 5, and cf(sup(Q)) = B. Then the
set

{PeQnY:PisS-strong, cf(sup(P)) = PNk}

is stationary in Ps(Q).

Proof. Let F: Q<* — @, and we will find P € @NY such that cf(sup(P)) = PNk,
P is S-strong, and P is closed under F. Since Q € Y, QN kT = A; 3 is closed
under H*. As Q N k™ is the union of the increasing and continuous chain {A,; :
i < B}, there exists a club C' C § such that for all « € C, A, , is closed under
H* and A; o Nk = a. Then @ is the union of the increasing and continuous chain
{Sk(A;q): @ € C}. Fix a club D C C such that for all « € D, Sk(A; ) is closed
under F'.

For each a € D, let Qq = Sk(A; ). We claim that for all & € D, Q, € Q.
Since |Qa NKET| = |Ara] < |a|t < B and cf(sup(Q)) = 8, it follows that A, , is a
bounded subset of Q N kT = A, 5. Also

H(sup(Qn)) < a < § = cf(Q N k).

By Lemma 7.14, sup(Qa) € Q. But A, = Agup(a, .),o Dy coherence, and since
sup(A; ) and aare in @, so is A, ,, by elementarity. Hence Q, € Q by elementarity.
Fix a club E C lim(D) such that for all « € E, for all vy € anN D, Q, € Q..
In particular, for all o € E, since Qo = U{Q : ¥ € an D}, it follows that
cf(sup(Qq)) = cf(ot(a N D)). So if a € E is regular, then cf(sup(Qq)) = .

Since B € S;41, Sr N B is stationary in 8. So we can fix a € ENS;. To finish
the proof, it suffices to show that Q. = Sk(A,o) isin QNY, Q. is g—strong,
cf(sup(Qa)) = Qo Nk = «, and Q,, is closed under F.

We know that @, is closed under F' by the definition of D. We previously
observed that Q, € Q, and since « € F is regular, cf(sup(Q,)) = a. In particular,
Qo € Y by Lemma 7.15. To see that Q. is S-strong, let £ € Qo N K+ = A o
Since av € S; and 7 is a limit ordinal, o € S, for all n € A;,. In particular,
QaNk=ac S O

Lemma 16.7. Suppose that Q € ) 1is §—str0ng and Q@ < (A, V,P). Let 8:= QNk.
Suppose that the set

{PeQnY: P isS-strong, cf(sup(P)) =P Nk}

is stationary in Pg(Q). Then the forcing poset PN Q forces that § is a regular
cardinal.
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Proof. Let v < 3, and let f be a (PN Q)-name for a function from ~ to 8. Fix a
condition p € PNQ, and we will find ¢ < p in PN Q which forces that f is bounded
in B. Let F' be the set of triples (u,,§) such that v € PN Q and u lFpng f(z) =¢£.

Let {gn : n < w} be a set of definable Skolem functions for the structure (A, Y, P).
Since @ < (A, Y, P), Q is closed under g, for all n < w. By the assumption of the
lemma, we can fix P € Q NY such that P is S-strong, cf(sup(P)) = PNk, P
is closed under g, for all n < w, and P < (Q,€,PNQ,p,7,F). In particular,
P < (A, Y,P). As p € P, Proposition 15.6 implies that ¢ := (A4,, B, U{P}) is a
strongly P-generic condition below p.

We claim that

q Fpng ran(f) C PN k.

Since PNk < Q@ Nk = 3, this completes the proof. Let i < 7, and we will show
that
qFprg f(i) € PNk,

Let D be the set of s € PN P such that for some £ € PNk, (s,i,§) € F. We
claim that D is dense in PN P. So let w € PN P be given. Then v € PN Q. Since
fisa (PN Q)-name for a function from v to 8, there is v < v and £ < @ N & such
that v lFprg f(i) = £, and hence (v,7,&) € F. Since P < (Q,€,PNQ,p,v, F) and
u and ¢ are in P, by elementarity there is v € P and £ € PNk such that v < u and
(v,9,§) € F. Then v <w and v € D.

Since q is strongly P-generic, D is predense in P below ¢q. Let r < ¢ in Q NP
decide the value of f(i) to be &, and we will show that &€ € P. Then r < ¢ is in P,
and (r,7,€) € F. Since D is predense in P below ¢, for some v € D, r and u are
compatible in P. By the elementarity of @, PN @ is closed under greatest lower
bounds, and therefore » and u are also compatible in PN Q. Since u € D, by the
definition of D there is & € P Nk such that (u,4,¢’) € F. But (r,i,&) € F and
(u,i,&') € F imply, by the compatibility of r and w in PN Q, that £ = &’. Since
& € P, it follows that £ € P. O

Recall that for a sequence @ = (a; : i < ws) of countable sets, Sz is the set of
limit ordinals @ < wq for which there exists a club ¢ C « with order type cf(a) such
that for all 8 < «, there is ¢ < a with ¢ 8 = a;. A set S is in the approachability
ideal Ifwso] iff there exists such a sequence @ and a club D with SN D C S;.
In particular, if I[ws] contains a stationary subset of wo N cof(wy), then for some
sequence @, Sz N cof(wy) is stationary. We will show that this last statement fails
in any generic extension by P.

Theorem 16.8. The forcing poset P forces that there is no stationary subset of
wo Ncof(wy) in the approachability ideal I[ws].

Proof. Suppose for a contradiction that p is a condition, @ = (a; : i < k) is a
sequence of P-names for countable subsets of , and p forces that Sz N cof (wy) is
stationary. Without loss of generality, assume that each @; is a nice name, which
means that for some sequence of antichains (A% : a < k) of P, @; is equal to the
set of pairs {(p, &) : p € A%, o < k}. As P is kT-c.c., each name @; is a member of
H(k™). Fix v < k* such that for all i < k, @; is in f*[y], where f* : kT — H(x™)
is the bijection described in Notation 7.1.

Let M be an elementary substructure of (A, Y,P) such that |[M| =k, M NkT €
kT Neof(k), and y < M Nk, Let 7:= MNkT. Since y < MNrkT and M is closed
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under f*, it follows that for all ¢ < &, @, is in M. Fix P-names Y and D, such that
P forces

Y={P:3pecG(PecBy)}and D, ={PNk:PcY, 7€ P}

An easy observation which follows from Lemma 15.5 is that D, is forced to be
cofinal in k. Therefore lim(D,) is forced to be club in .

For each a < k, let Qo := Sk(A:,). Since 7 is the union of the increasing
and continuous sequence {A; , : a < k}, clearly M = Sk(r) is the union of the
increasing and continuous sequence {@Q, : @ < k}. Let E be a club subset of k such
that forall « € E, Qu Nk =, Qa NKT = A; 4, Qo < (A, V,P), and for all i < a,
a; € Qa~

Clearly p forces that ENlim(D;) is club in . Since p forces that Sz Ncof (w;) is
stationary, we can fix ¢ < p and « < k such that ¢ forces that « isin EN lim(DT) N
Sz N cof(wy). Since ¢ forces that cf(a) = wy, clearly a has uncountable cofinality.
Let @ := Q.. Then by Proposition 16.5, Q € Y is g—strong, QNk=ac¢c S,
QNkT =A,,, cf(sup(Q)) = QN k = a, and ¢ forces that Q is in Y. By extending
q if necessary, we can assume without loss of generality that @) € B,.

By Lemma 16.6, the set

{PeQ@QnY:Pis Sstrong, cf(sup(P)) = PN x}

is stationary in P,(Q). By Lemma 16.7, the forcing poset PN @ forces that « is a
regular cardinal. Since Q € By, clearly ¢ < qg = (0,{Q}).

Let G be a V-generic filter on P containing ¢, and we will get a contradiction by
considering the generic extension V[G]. Since ¢ < qq, it follows that ¢g € G. By
Proposition 16.3, V]G] can be factored as

VGl =VIGnQl[H],

where G N Q is a V-generic filter on PN Q, H is a V[G N Q]-generic filter on
(P/gq)/(GNQ), and the pair (V[GNQJ, V[G]) has the wi-approximation property.

As « is in Sz N cof(wq), in V[G] there is a club ¢ C « with order type wy such
that for all 8 < a, there is i < a such that ¢N 8 = a¥. For any such 8 and i,
a; € Q, and a¥ = cN B is a subset of @ Nk = a. By Lemma 16.4, it follows that
af e V[GNQ). So for all B < a,cNBeV[GNQ].

By Lemma 6.1, ¢ € V[G N @]. But since ¢ has order type wi, it follows that «
has cofinality wy in V[GNQ)]. Now « € S;41, and in particular, « is inaccessible in
V, but « is not regular in V[G N Q]. However, we previously observed that PN Q
forces that « is a regular cardinal, so we have a contradiction. (I
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