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We study space and time discretizations for mixed formulations of parabolic problems. The
spatial approximation is based on the multipoint flux mixed finite element method, which
reduces to an efficient cell-centered pressure system on general grids, including triangles,
quadrilaterals, tetrahedra, and hexahedra. The time integration is performed by using a
domain decomposition time-splitting technique combined with multiterm fractional step
diagonally implicit Runge–Kutta methods. The resulting scheme is unconditionally stable
and computationally efficient, as it reduces the global system to a collection of uncoupled
subdomain problems that can be solved in parallel without the need for Schwarz-type
iteration. Convergence analysis for both the semidiscrete and fully discrete schemes is
presented.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the parabolic initial-boundary value problem

pt + ∇ · u = f in Ω × (0, T ], (1a)

u = −K∇p in Ω × (0, T ], (1b)

p = g on ΓD × (0, T ], (1c)

u · n = 0 on ΓN × (0, T ], (1d)

p = p0 in Ω × {0}, (1e)

where Ω ⊂ Rd , d = 2 or 3, is a convex polygonal or polyhedral domain with Lipschitz continuous boundary ∂Ω = Γ D ∪ Γ N

such that ΓD ∩ ΓN = ∅. In this formulation, p = p(x, t), u = u(x, t), f = f (x, t), g = g(x, t) and p0 = p0(x). Further, n is
the outward unit normal on ∂Ω and K = K (x) is a symmetric and uniformly positive definite tensor satisfying, for some
0 < κ∗ � κ∗ < ∞,

κ∗ξ T ξ � ξ T K (x)ξ � κ∗ξ T ξ ∀x ∈ Ω, ∀ξ ∈ Rd. (2)
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In applications to flow in porous media, u is the Darcy velocity, p is the fluid pressure, and K represents the rock perme-
ability divided by the fluid viscosity.

In this work, we extend the formulation of the multipoint flux mixed finite element (MFMFE) method (cf. [1–7]) to time-
dependent diffusion problems. In doing so, we introduce an unconditionally stable domain decomposition time-splitting
technique which is designed to take advantage of the computational efficiency of parallel implementations. Similar ideas
have been proposed in [8] and [9], where alternative compatible spatial discretizations – such as mimetic finite difference
or expanded mixed finite element methods – have been studied in combination with fractional step time integrators. The
convergence analysis developed in these works is restricted to the use of rectangular grids and diagonal tensors K . Here,
we propose a general formulation which overcomes these restrictions and applies to two- and three-dimensional meshes
composed of simplices, quadrilaterals and hexahedra, with full tensor coefficients.

The MFMFE scheme was motivated by the multipoint flux approximation (MPFA) methods (cf. [10–13]), where the in-
troduction of sub-face (sub-edge in 2D) fluxes allows for local flux elimination and reduction to a cell-centered pressure
scheme. In the MFMFE framework, similar elimination is achieved by employing appropriate finite element spaces and
special quadrature rules. The MFMFE method is based on the lowest order Brezzi–Douglas–Marini, BDM1, or Brezzi–
Douglas–Durán–Fortin, BDDF1, spaces (cf. [14] and [15], respectively), with a trapezoidal quadrature rule applied on the
reference element (cf. [1,5–7]; see also [2–4] for an alternative formulation on quadrilateral grids using a broken Raviart–
Thomas space).

The system of ordinary differential equations resulting from the spatial semidiscretization process is integrated in time
by means of an operator splitting method (see [16]). To this end, the time derivative function is first partitioned via an
overlapping domain decomposition splitting technique. This kind of splitting was first introduced in [17,18] in the context
of regionally-additive schemes, and has been subsequently extended in [19–21] for solving linear parabolic problems. The
monographs [22,23] show an overview of some recent contributions to the topic. As a matter of fact, the domain decom-
position operator splitting requires a time integrator which allows for multiterm partitioning. A suitable choice for such
a method can be found within the class of m-part fractional step Runge–Kutta (FSRKm) schemes. These time integrators
are constructed by merging together m diagonally implicit Runge–Kutta schemes into a single composite method. A survey
on their use for solving linear parabolic problems can be found in [24]. Here, we present the general formulation of this
class of schemes, and subsequently focus on a particular family of them, first proposed in [25], which extends the classical
Peaceman–Rachford alternating direction implicit (ADI) method (cf. [26]) to a domain decomposition partitioning into an
arbitrary number of terms. Similar combinations of the Peaceman–Rachford procedure with domain decomposition methods
have been studied in [27]; however, the method there is based on non-overlapping decompositions in the context of elliptic
problems and is restricted to an operator splitting into two split terms. For a related work on non-overlapping domain de-
compositions, see [28]. The key to the efficiency of our proposed method lies in reducing the system matrix to a collection
of uncoupled submatrices of lower dimension. As compared to classical domain decomposition algorithms (cf. [29]), this
technique does not involve any Schwarz iteration procedure, thus reducing the computational cost of the overall solution
process.

We note that, to suitably merge the space and time discretization methods, the standard definition of the split functions
for the scalar variable is no longer valid. In this case, we need to introduce a specific splitting for the flux variable that
properly handles the degrees of freedom defined in the MFMFE approach.

We derive a priori error estimates for both the continuous-in-time and fully discrete formulations of the problem under
study. Two variants of the MFMFE method are analyzed, namely: a symmetric scheme (cf. [1,2,4–6]), which applies to sim-
plices and O(h2)-perturbations of parallelograms and parallelepipeds; and a non-symmetric method (cf. [3,7]), designed to
preserve the accuracy on general quadrilaterals and hexahedra. The semidiscrete scheme is proved to satisfy the following
convergence properties. In the symmetric case, the velocity and pressure variables are O(h) convergent, the latter being
O(h2) superconvergent at the cell centers. In the non-symmetric case, the velocity variable is shown to be O(h) convergent
either when compared to a suitable projection of the true solution or when computed in a face-based (edge-based) norm;
in turn, the pressure preserves its O(h) optimal convergence. After a suitable elimination procedure for the velocities, we
obtain a fully discrete scheme in the pressure variable. The convergence analysis is described in detail for the symmetric
method and just sketched for its non-symmetric counterpart. Based on stability and consistency results, unconditional con-
vergence of order O(h + τ 2) and superconvergence of order O(h2 + τ 2) are obtained, respectively, in the continuous and
discrete L2-norm in space. These results extend those derived in [30] for the Peaceman–Rachford ADI method applied to
linear problems to a domain decomposition splitting formula into an arbitrary number of split terms. From a computational
viewpoint, parallel scalability tests for the non-iterative time-splitting technique are reported for the first time.

The rest of the paper is organized as follows. In Section 2, we describe the MFMFE semidiscrete scheme. Some con-
vergence results for the elliptic problem are presented in Section 3. Based on these results, the error analysis is extended
to the parabolic problem in Section 4. Section 5 introduces a domain decomposition splitting method leading to the fully
discrete scheme. The convergence analysis for such a scheme is provided in Section 6. Finally, a series of numerical experi-
ments illustrates the convergence and scalability behavior of the proposed algorithms in Section 7. A specific application to
transient flow modeling in heterogeneous porous media is also discussed.
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2. The multipoint flux mixed finite element method

In this section, we introduce an MFMFE formulation based on the BDM1 or BDDF1 spaces. This formulation is defined
on simplicial, quadrilateral and hexahedral elements. The method further considers a suitable quadrature rule which allows
for local velocity elimination, thus yielding a cell-centered semidiscrete scheme for the pressure. For the sake of complete-
ness in the presentation, we provide some well-known expressions of finite element mappings and mixed finite element
spaces for the type of elements under consideration.

2.1. The weak formulation

For a domain G ⊂ Rd , let W k,p(G) be the standard Sobolev space, with k ∈ R and 1 � p � ∞, endowed with the norm
and seminorm ‖ · ‖k,p,G and | · |k,p,G , respectively. Let Hk(G) be the Hilbert space W k,2(G), endowed with the norm and
seminorm ‖ · ‖k,G and | · |k,G , respectively. We further denote by (· , ·)G and ‖ · ‖G the inner product and norm, respectively,
in either L2(G) or (L2(G))d . The subscript G will be omitted whenever G = Ω . For a section of the domain or element
boundary S ⊂ Rd−1, 〈·, ·〉S and ‖· , ·‖S represent the L2(S)-inner product (or duality pairing) and norm, respectively. We
shall also use the space

H(div; G) = {
v ∈ (L2(G)

)d
: ∇ · v ∈ L2(G)

}
,

with corresponding norm

‖v‖div;G = (‖v‖2
G + ‖∇ · v‖2

G

)1/2
.

Finally, if χ ≡ χ(G) denotes any of the above normed spaces on G , with associated norm ‖ · ‖χ , we shall consider
Lq([0, T ];χ) as the space of χ -valued functions ϕ : [0, T ] → χ(G), equipped with the norm

‖ϕ‖Lq([0,T ];χ) ≡ ‖ϕ‖Lq(χ) =
{

(
∫ T

0 ‖ϕ(t)‖q
χ dt)1/q if 1 � q < ∞,

ess supt∈[0,T ] ‖ϕ(t)‖χ if q = ∞.

In this framework, the variational formulation of the first-order system (1) is given by: Find (u, p) : [0, T ] → H0(div;Ω)×
L2(Ω) such that

(pt, w) + (∇ · u, w) = ( f , w) ∀w ∈ L2(Ω), (3a)(
K −1u,v

)= (p,∇ · v) − 〈g,v · n〉ΓD ∀v ∈ H0(div;Ω), (3b)

p(0) = p0, (3c)

where

H0(div;Ω) = {
v ∈ H(div;Ω): v · n = 0 on ΓN

}
.

2.2. Finite element mappings

Let Th be a conforming, shape-regular and quasi-uniform partition of Ω , where h = maxE∈Th diam(E). The elements
are considered to be triangles or convex quadrilaterals, in two dimensions, and tetrahedra or convex hexahedra, in three
dimensions. For any E ∈ Th , there exists a bijection mapping F E : Ê → E , where Ê is the reference element. We denote by
DF E the Jacobian matrix of the transformation and let J E = |det(DF E)|. In addition, we consider the inverse mapping F −1

E

and obtain its Jacobian matrix to be DF−1
E (x) = (DF E (x̂))−1 with determinant J−1

E (x) = 1/ J E (x̂). In the sequel, we describe
in detail how F E is constructed for the three-dimensional instances.

In the case of tetrahedra, Ê is the reference tetrahedron with vertices r̂1 = (0,0,0)T , r̂2 = (1,0,0)T , r̂3 = (0,1,0)T and
r̂4 = (0,0,1)T . Let ri = (xi, yi, zi)

T be the corresponding vertices of E , for i = 1,2,3,4. The outward unit normal vectors
to the faces of Ê and E are denoted by n̂i and ni , respectively, for i = 1,2,3,4. We shall also use the notation n̂ê and ne

to represent the outward unit normals on faces ê ⊂ ∂ Ê and e ⊂ ∂ E , respectively. The affine mapping F E is given, for any
x̂ = (x̂, ŷ, ẑ)T ∈ Ê , by

F E(x̂) = r1(1 − x̂ − ŷ − ẑ) + r2x̂ + r3 ŷ + r4 ẑ. (4)

The Jacobian matrix of F E is thus

DF E = [r21, r31, r41],
where ri j = ri − r j , and its determinant is J E = 6|E|, |E| being the volume of E .

In the case of hexahedra, Ê denotes the unit cube with vertices r̂1 = (0,0,0)T , r̂2 = (1,0,0)T , r̂3 = (1,1,0)T , r̂4 =
(0,1,0)T , r̂5 = (0,0,1)T , r̂6 = (1,0,1)T , r̂7 = (1,1,1)T and r̂8 = (0,1,1)T . Let ri be the corresponding vertices of E , for
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Fig. 1. Trilinear hexahedral mapping.

i = 1,2, . . . ,8, as shown in Fig. 1. Note that the hexahedra may have non-planar faces. In this case, F E is a trilinear mapping
of the form

F E(x̂) = r1(1 − x̂)(1 − ŷ)(1 − ẑ) + r2 x̂(1 − ŷ)(1 − ẑ) + r3 x̂ ŷ(1 − ẑ) + r4(1 − x̂) ŷ(1 − ẑ)

+ r5(1 − x̂)(1 − ŷ)ẑ + r6x̂(1 − ŷ)ẑ + r7 x̂ ŷ ẑ + r8(1 − x̂) ŷ ẑ.

Rearranging terms, it can be expressed as

F E(x̂) = r1 + r21x̂ + r41 ŷ + r51 ẑ + (r34 − r21)x̂ ŷ + (r65 − r21)x̂ẑ

+ (r85 − r41) ŷ ẑ + (r21 − r34 − r65 + r78)x̂ ŷ ẑ. (5)

Given F E , each component of the Jacobian matrix is a bilinear function of two space variables, i.e.,

DF E(x̂) = [
r21 + (r34 − r21) ŷ + (r65 − r21)ẑ + (r21 − r34 − r65 + r78) ŷ ẑ,

r41 + (r34 − r21)x̂ + (r85 − r41)ẑ + (r21 − r34 − r65 + r78)x̂ẑ,

r51 + (r65 − r21)x̂ + (r85 − r41) ŷ + (r21 − r34 − r65 + r78)x̂ ŷ
]
.

In the cases of triangles and convex quadrilaterals, the mappings are two-dimensional counterparts of (4) and (5), re-
spectively (see, e.g., [1]).

To conclude, considering the previous mappings and the classical formula ∇φ = DF−T
E ∇̂φ̂, where φ(x) = φ̂(x̂), it holds

that

ni = DF−T
E n̂i

|DF−T
E n̂i|Rd

, (6)

on any face or edge ei ⊂ ∂ E , where | · |Rd stands for the Euclidean norm in Rd and the superscript −T denotes inversion
and transposition.

2.3. Mixed finite element spaces

Let V̂ (Ê) and Ŵ (Ê) be the finite element spaces on the reference element Ê . For simplicial elements, we use the BDM1
spaces on the unit triangle and the BDDF1 spaces on the unit tetrahedron, i.e.,

V̂ (Ê) = (
P1(Ê)

)d
, Ŵ (Ê) = P0(Ê),

where Pk denotes the space of polynomials of degree not greater than k. On the unit square, we define BDM1 spaces of
the form

V̂ (Ê) = (
P1(Ê)

)2 + r curl
(
x̂2 ŷ

)+ s curl
(
x̂ ŷ2), Ŵ (Ê) = P0(Ê),

where r and s are real constants. Finally, on the unit cube, we use the so-called enhanced BDDF1 spaces introduced in
[5]:

V̂ (Ê) = BDDF1(Ê) + r2 curl
(
0,0, x̂2 ẑ

)T + r3 curl
(
0,0, x̂2 ŷ ẑ

)T + s2 curl
(
x̂ ŷ2,0,0

)T + s3 curl
(
x̂ ŷ2 ẑ,0,0

)T

+ t2 curl
(
0, ŷ ẑ2,0

)T + t3 curl
(
0, x̂ ŷ ẑ2,0

)T
,

Ŵ (Ê) = P0(Ê),

where the BDDF1(Ê) space is given by

BDDF1(Ê) = (
P1(Ê)

)3 + r0 curl(0,0, x̂ ŷ ẑ)T + r1 curl
(
0,0, x̂ ŷ2)T + s0 curl(x̂ ŷ ẑ,0,0)T + s1 curl

(
ŷ ẑ2,0,0

)T

+ t0 curl(0, x̂ ŷ ẑ,0)T + t1 curl
(
0, x̂2 ẑ,0

)T
,
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Fig. 2. Degrees of freedom and basis functions for the enhanced BDDF1 velocity space on hexahedra.

ri, si and ti being real constants, for i = 0,1,2,3. Note that, in all four cases, ∇̂ · V̂ (Ê) = Ŵ (Ê). Furthermore, on any face
(edge in 2D) ê ⊂ ∂ Ê , v̂ ∈ V̂ (Ê) is such that v̂ · n̂ê ∈ P1(ê) on the reference simplex or the reference square, and v̂ · n̂ê ∈ Q1(ê)
on the reference cube. Here, Q1(ê) denotes the space of bilinear functions on ê. The degrees of freedom for v̂ ∈ V̂ (Ê) are
chosen to be the values of v̂ · n̂ê at the vertices of each face (edge) ê; see Fig. 2 for the hexahedral case.

The spaces V (E) and W (E) on any physical element E ∈ Th are defined via the transformations

v ↔ v̂ : v =
(

1

J E
D F E v̂

)
◦ F −1

E , w ↔ ŵ : w = ŵ ◦ F −1
E .

Note that any v ∈ V (E) is obtained from the corresponding v̂ ∈ V̂ (Ê) through the Piola transformation (cf. [31]). This trans-
formation preserves the continuity of the normal components of the velocity vectors across interelement faces (edges),
which is a necessary condition for building approximations to H(div;Ω). More precisely, we have (cf. [32])

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê , 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê, (7)

where (v, w) ∈ V (E) × W (E) and (v̂, ŵ) ∈ V̂ (Ê) × Ŵ (Ê). Moreover, (6) implies that

v · ne =
(

1

| J E D F −T
E n̂ê|Rd

v̂ · n̂ê

)
◦ F −1

E (x),

and (7) implies that

∇ · v =
(

1

J E
∇̂ · v̂

)
◦ F −1

E (x).

For any v ∈ V (E), while J E is constant on simplices, this is not true on quadrilaterals and hexahedra. As a result, ∇ · v is not
constant in the latter cases. Along these lines, v · ne ∈ P1(e) on simplices and quadrilaterals, but v · ne /∈ Q1(e) on hexahedra.

Finally, the global MFE spaces Vh × Wh ⊂ H0(div;Ω) × L2(Ω) on Th are given by

Vh = {
v ∈ H0(div;Ω): v|E ↔ v̂, v̂ ∈ V̂ (Ê) ∀E ∈ Th

}
,

Wh = {
w ∈ L2(Ω): w|E ↔ ŵ, ŵ ∈ Ŵ (Ê) ∀E ∈ Th

}
.

As we shall see below, a proper definition of the semidiscrete scheme requires the non-homogeneous Dirichlet boundary
data to be projected onto the lowest order Raviart–Thomas (RT 0) velocity space. Let us recall that the RT 0 spaces, as
defined in [33,34], are given by

V̂ 0(Ê) =
( r1 + sx̂

r2 + s ŷ
r3 + sẑ

)
, Ŵ 0(Ê) = P0(Ê),

and

V̂ 0(Ê) =
( r1 + s1 x̂

r2 + s2 ŷ
r3 + s3 ẑ

)
, Ŵ 0(Ê) = P0(Ê),

on the reference tetrahedron and the reference cube, respectively, where ri , si and s, for i = 1,2,3, are constants. The
definition of the RT 0 spaces on two-dimensional elements is analogous.

In this case, ∇̂ · V̂ 0(Ê) = Ŵ 0(Ê) and v̂ · n̂ê ∈ P0(ê). The degrees of freedom for v̂ ∈ V̂ 0(Ê) are chosen to be the values of
v̂ · n̂ê at the midpoints of each face (edge) ê ⊂ ∂ Ê . The global spaces V 0

h × W 0
h ⊂ H0(div;Ω) × L2(Ω) on Th are defined in

accordance with Vh × Wh . By definition, V 0
h ⊂ V h and W 0

h = W h .
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2.4. Projection operators

Let us now recall how to construct the projection operator onto the space Vh . We first introduce a reference element
projection operator Π̂ : (H1(Ê))d → V̂ (Ê), which is defined, for any q̂ ∈ (H1(Ê))d , as〈

(Π̂ q̂ − q̂) · n̂ê, q̂1
〉= 0,

on any face (edge) ê ⊂ ∂ Ê , where q̂1 ∈ P1(ê) if Ê is the unit simplex or the unit square, and q̂1 ∈ Q1(ê) if Ê is the unit cube.
Then, the global projection operator Πh : (H1(Ω))d ∩ H0(div;Ω) → Vh is locally defined on each element E via the Piola
transformation, i.e., for any q ∈ (H1(Ω))d ∩ H0(div;Ω),

Πhq|E ↔ Π̂hq, Π̂hq = Π̂ q̂ ∈ V̂ (Ê).

Based on the previous expressions, it can be deduced that(∇ · (Πhq − q), w
)= 0 ∀w ∈ Wh.

The idea is analogous for the RT 0 space V 0
h . The reference element projection operator Π̂0 : (H1(Ê))d → V̂ 0(Ê) is

defined, for any q̂ ∈ (H1(Ê))d , as〈(
Π̂0q̂ − q̂

) · n̂ê, q̂0
〉= 0,

on any face (edge) ê ⊂ ∂ Ê , where q̂0 ∈ P0(ê). Then, the global projection operator Π0
h : (H1(Ω))d ∩ H0(div;Ω) → V 0

h is
obtained similarly to the case of Πh . As a result, it also satisfies, for any q ∈ (H1(Ω))d ∩ H0(div;Ω),(∇ · (Π0

h q − q
)
, w

)= 0 ∀w ∈ W 0
h .

Finally, we also require the standard L2(Ω)-projection operator onto the space Wh . To define it, we first introduce the
L2(Ê)-projection P̂ : L2(Ê) → Ŵ (Ê) satisfying, for any ϕ̂ ∈ Ŵ (Ê),

(ϕ̂ − P̂ϕ̂, ŵ)Ê = 0 ∀ŵ ∈ Ŵ (Ê).

Then, we let Ph : L2(Ω) → Wh be the L2(Ω)-projection operator, which is locally defined on each element E , for any
ϕ ∈ L2(Ω), as

Phϕ|E = P̂ϕ̂ ◦ F −1
E .

It is not difficult to see that, due to (7),

(ϕ −Phϕ,∇ · v) = 0 ∀v ∈ Vh. (8)

2.5. Quadrature rules

When discretizing the mixed variational formulation (3), it is necessary to compute an integral of the form (K −1q,v), for
q,v ∈ Vh , which derives from (3b). In doing so, the MFMFE method considers a quadrature rule that permits to reduce the
semidiscrete problem to a cell-centered finite difference scheme for the pressure. The integration on each element E ∈ Th is
accomplished by mapping to the reference element Ê , where the quadrature rule is defined. Namely, for any q, v ∈ Vh and
q̂, v̂ ∈ V̂ (Ê),

(
K −1q,v

)
E =

(
1

J E
DFT

E K −1(F E(x̂)
)
DF E q̂, v̂

)
Ê

≡ (K−1
E q̂, v̂

)
Ê ,

where

K−1
E (x̂) = 1

J E(x̂)
DFT

E (x̂)K −1(F E(x̂)
)
DF E(x̂). (9)

The quadrature rule on E ∈ Th is given by the trapezoidal rule, i.e.,

(
K −1q,v

)
Q ,E ≡ (K−1

E q̂, v̂
)

Q̂ ,Ê ≡ |Ê|
nv

nv∑
i=1

K−1
E (r̂i)q̂(r̂i) · v̂(r̂i),

where |Ê| is the volume (area) of Ê and nv denotes the number of vertices of Ê (i.e., nv = 3 for the unit triangle, nv = 4 for
the unit square or the unit tetrahedron and nv = 8 for the unit cube). Hence, the global quadrature rule is defined as
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(
K −1q,v

)
Q ≡

∑
E∈Th

(
K −1q,v

)
Q ,E . (10)

Mapping back to the physical element E , we obtain

(
K −1q,v

)
Q ,E = 1

nv

nv∑
i=1

J E(r̂i)K −1(ri)q(ri) · v(ri). (11)

If the mesh is composed of highly distorted quadrilateral or hexahedra, we modify formula (9) to get

K̃−1
E (x̂) = 1

J E(x̂)
DFT

E (x̂c)K −1
E DF E(x̂),

where K E is a constant matrix such that (K E )i j is the mean value of (K )i j on E , (K E )i j and (K )i j being the elements on the
ith row and jth column of matrices K E and K , respectively. Furthermore, x̂c denotes the center of mass of Ê . In this case,
the quadrature rule on E ∈ Th takes the form

(
K −1q,v

)
Q ,E ≡ (K̃−1

E q̂, v̂
)

Q̂ ,Ê ≡ |Ê|
nv

nv∑
i=1

K̃−1
E (r̂i)q̂(r̂i) · v̂(r̂i),

where nv = 4 for the unit square and nv = 8 for the unit cube. The transformation back to the physical element E yields

(
K −1q,v

)
Q ,E = 1

nv

nv∑
i=1

J E(r̂i)DF−T
E (ri)DFT

E (x̂c)K −1
E q(ri) · v(ri). (12)

Given this local formula, the global quadrature rule is derived from (10). Note that the expression (12) induces a non-
symmetric discrete bilinear form unless the Jacobian matrix DF E is constant. In fact, if the mesh consists of parallelograms
or parallelepipeds and the permeability is an element by element piecewise constant tensor, (12) becomes symmetric and
reduces to (11).

2.6. The semidiscrete scheme

The MFMFE approximation to (3) on quadrilaterals and hexahedra reads: Find (uh, ph) : [0, T ] → Vh × Wh such that

(ph,t, w) + (∇ · uh, w) = ( f , w) ∀w ∈ Wh, (13a)(
K −1uh,v

)
Q = (ph,∇ · v) − 〈

g,Π0
h v · n

〉
ΓD

∀v ∈ Vh, (13b)

ph(0) = Sh p(0), (13c)

where Sh p(0) denotes the elliptic MFE projection of p0 (to be defined below). Note that the initial condition ph(0) de-
termines uh(0) through (13b). The use of Π0

h in (13b) permits to control the numerical quadrature error underlying the
semidiscretization (cf. [5,6]). In this case, the discrete bilinear form (K −1· , ·)Q can be either symmetric, if given by (10)
and (11), or non-symmetric, if given by (10) and (12). We call the resulting scheme a symmetric or non-symmetric MFMFE
method depending on the choice of quadrature rule. As we shall see below, the introduction of a non-symmetric variant
of the method is motivated by the loss of convergence that is observed when the symmetric scheme is applied to highly
distorted quadrilateral and hexahedral meshes (cf. [7]).

In the case of simplicial elements, there is no need to project the non-homogeneous Dirichlet boundary data onto V 0
h .

Further, due to the geometry of simplicial meshes, the use of a non-symmetric quadrature rule is not required. As a result,
the MFMFE method is defined as above, with (K −1· , ·)Q given by (10) and (11), but removing the projection operator Π0

h
from (13b).

2.7. Reduction to a cell-centered finite difference scheme for the pressure

In this subsection, we describe how the MFMFE formulation (13) reduces to a cell-centered finite difference scheme for
the pressure. More precisely, we express the velocity degrees of freedom in terms of the pressure degrees of freedom via the
quadrature rule in (13b), and substitute them back into (13a) in order to obtain a single equation for the pressure unknown.

To this end, let us first introduce the vector space Hv of semidiscrete velocity functions Uh ≡ Uh(t) ∈ RL , whose
degrees of freedom are located at the vertices of each face (edge). We denote L = nN� , where n is the number of
vertices per face (edge) and N� denotes the number of faces (edges) in Th . A generic element of Hv has the form
Uh = (Uh,1, Uh,2, . . . , Uh,Nv )

T , where Uh,i ∈ R�i . In this case, �i is the number of faces (edges) that share the vertex point i
and Nv denotes the number of vertices in Th . Note that the component of Uh,i associated to the face (edge) e j is given by
the volumetric flux (uh · ne j )(ri)|e j|, where |e j| denotes the area (length) of e j , for j = 1,2, . . . , �i . On the other hand, we
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consider the vector space Hp of semidiscrete pressure functions Ph ≡ Ph(t) ∈ RNe , whose degrees of freedom are located at
the geometric centers of the cells. Here, Ne denotes the number of elements in Th . A generic element of Hp is considered
to be Ph = (Ph,1, Ph,2, . . . , Ph,Ne )

T , where Ph,i = ph(xc,i) and xc,i denotes the coordinate vector of the cell center i.

Let {vi}L
i=1 and {w j}Ne

j=1 be the bases of Vh and Wh , respectively. The differential system stemming from (13a)–(13b) is
defined as(

0
P ′

h

)
+
(

M BT

−D−1 B 0

)(
Uh
Ph

)
=
(

Gh
Fh

)
(14)

where the matrices M ∈ RL×L and B ∈ RNe×L are given by (M)i j = (K −1v j,vi)Q and (B)i j = −(∇ · v j, wi), respectively. In
addition, D ∈ RNe×Ne is a diagonal matrix of the form D = diag(|E1|, |E2|, . . . , |E Ne |), where |Ei | denotes the volume (area)
of Ei , for i = 1,2, . . . , Ne . Finally, Gh ∈ RL and Fh ∈ RNe contain the respective contributions of the Dirichlet boundary data
g and the right-hand side f .

The choice of the trapezoidal quadrature rule (K −1· , ·)Q permits to decouple the velocity degrees of freedom associated
to a vertex from the rest of them. In consequence, the assembled velocity mass matrix M has a block-diagonal structure,1

i.e.,

M = diag(M1, M2, . . . , MNv ), (15)

where each block Mi ∈ R�i×�i is a local matrix associated to the vertex point i, for i = 1,2, . . . , Nv . The inversion of M in
the first equation of (14) allows for the velocity function Uh to be expressed in terms of the pressure Ph , namely

Uh = M−1(Gh − BT Ph
)
. (16)

Since M is block-diagonal, this operation is locally performed on each block Mi . As a result, the velocity degrees of freedom
associated to corner i are expressed in terms of the pressures located at the centers of the elements that share such a
corner. Substituting (16) into the second equation of (14) leads to a cell-centered system for the pressures, i.e.,

P ′
h + D−1 BM−1 BT Ph = Fh + D−1 BM−1Gh.

If we denote

Ah = D−1 BM−1 BT , Ch = D−1 BM−1Gh, (17)

we can rewrite the MFMFE semidiscrete scheme (13) as a stiff initial value problem of the form: Find Ph : [0, T ] →Hp such
that

P ′
h(t) + Ah Ph(t) = Fh(t) + Ch(t), t ∈ (0, T ], (18a)

Ph(0) = P 0
h , (18b)

where Fh and P 0
h are given element-wise by

(
Fh(t)

)
E = 1

|E|
∫
E

f (x, t)dx,
(

P 0
h

)
E = 1

|E|
∫
E

p0(x)dx,

respectively, for all E ∈ Th . The discrete diffusion operator Ah has a 27-point or 9-point stencil on logically cubic or rectan-
gular grids, respectively.

2.8. Coercivity of the discrete bilinear form (K −1· , ·)Q

The coercivity of the discrete bilinear forms induced by the quadrature rules introduced in Section 2.5 is a crucial
requirement in the forthcoming analysis.

In the symmetric case, it is not difficult to verify that the quadrature rule given by (10) and (11) always induces a
coercive discrete bilinear form in Vh , i.e.,(

K −1q,q
)

Q � β0‖q‖2 ∀q ∈ Vh, (19)

where β0 is a positive constant, defined to be independent of h. The proof of (19) can be found in [1], for simplices and
quadrilaterals, or [5], for hexahedra.

1 Since M is induced by the discrete bilinear form (K −1· , ·)Q , the symmetry of the corresponding blocks Mi will be determined by the local quadrature
rule under consideration, i.e.: if (K −1· , ·)Q ,E is given by (11), Mi will be symmetric; otherwise, if it is given by (12), Mi will be non-symmetric unless the
mesh is composed of parallelogram or parallelepiped elements.
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On the other hand, the coercivity of the non-symmetric discrete bilinear form induced by (10) and (12) is only guar-
anteed under certain restrictions on the element geometry and/or the anisotropy of tensor K . In order to derive such
restrictions, we first rewrite the quadrature rule in the form

(
K −1q,v

)
Q =

∑
E∈Th

(
K −1q,v

)
Q ,E ≡

Nv∑
i=1

vT
i Miqi,

where vi ≡ {(v · ne j )(ri)|e j |}�i
j=1 (with a similar definition for qi ), ri is the coordinate vector of the vertex point i and �i is

the number of faces (edges) that share such a vertex. Moreover, Mi ∈ R�i×�i are the local matrices which form the global
matrix M given by (15), for i = 1,2, . . . , Nv . Then, under the following condition,

ξ T Miξ � Chdξ T ξ ∀ξ ∈ R�i , (20)

(K −1· , ·)Q is coercive in Vh and satisfies (19). If, in addition,

ξ T MT
i Miξ � Ch2dξ T ξ ∀ξ ∈ R�i , (21)

the discrete bilinear form is also continuous in Vh , i.e.,(
K −1q,v

)
Q � β1‖q‖‖v‖ ∀q,v ∈ Vh, (22)

where β1 is a positive constant, defined to be independent of h (cf. [7]). Further details on the conditions (20) and (21) are
discussed in [3,35].

3. The elliptic mixed finite element projection

The error analysis of the semidiscrete scheme (13) requires the introduction of a so-called elliptic MFE projection op-
erator. Such an operator was first suggested in [36] and has been subsequently used in, e.g., [37,38]. In particular, the
variational formulation (3) admits an elliptic MFE projection of the form: Find (Rhu,Sh p) : [0, T ] → Vh × Wh such that

(∇ ·Rhu, w) = ( f − pt, w) ∀w ∈ Wh, (23a)(
K −1Rhu,v

)
Q = (Sh p,∇ · v) − 〈

g,Π0
h v · n

〉
ΓD

∀v ∈ Vh, (23b)(Sh p(0), w
)= (p0, w) ∀w ∈ Wh. (23c)

Note that the pair (Rhu,Sh p) is precisely the solution of the MFE approximation to a continuous elliptic problem whose
exact solution is (u, p). Subtracting (23) from (3), we get the error equations(∇ · (u −Rhu), w

)= 0 ∀w ∈ Wh,(
K −1u,v

)− (
K −1Rhu,v

)
Q = (p − Sh p,∇ · v) − 〈

g,
(
v − Π0

h v
) · n

〉
ΓD

∀v ∈ Vh,(
p(0) − Sh p(0), w

)= 0 ∀w ∈ Wh.

The local quadrature error on each element is defined to be

σE(q,v) ≡ (q,v)E − (q,v)Q ,E ,

in such a way that σ(q,v)|E ≡ σE (q,v) represents the global quadrature error. Taking into account (8), the previous equa-
tions can be rewritten as(∇ · (u −Rhu), w

)= 0 ∀w ∈ Wh, (24a)(
K −1(u −Rhu),v

)+ σ
(

K −1Rhu,v
)= (Ph p − Sh p,∇ · v) − 〈

g,
(
v − Π0

h v
) · n

〉
ΓD

∀v ∈ Vh. (24b)

Let us now recall some convergence results derived for the elliptic case in two- and three-dimensional meshes. The
results related to the symmetric MFMFE method assume certain restrictions on the element geometry (in the case of
quadrilaterals and hexahedra), which are described in the sequel. Following the terminology from [1,5,6], we call gener-
alized quadrilaterals the (possibly non-planar) faces of a hexahedral element E defined via a trilinear mapping F E of the
form (5). A generalized quadrilateral with vertices r1, r2, r3 and r4 is called an h2-parallelogram if

|r34 − r21|Rd � Ch2.

Elements of this kind are obtained by uniform refinements of a general quadrilateral grid. Furthermore, a hexahedral ele-
ment is called an h2-parallelepiped if all of its faces are h2-parallelograms. Recalling (5), this condition implies that ∂x̂ ŷ F E ,
∂x̂ẑ F E and ∂ ŷ ẑ F E are O(h2). Finally, an h2-parallelepiped is called regular if
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∣∣(r21 − r34) − (r65 − r78)
∣∣
Rd � Ch3.

This condition implies that ∂x̂ ŷ ẑ F E is O(h3).
In the following subsections, W α,∞

Th
denotes a space consisting of functions ϕ such that ϕ|E ∈ W α,∞(E) for all E ∈ Th , α

being an integer.

3.1. Optimal convergence for the velocity

On simplicial grids or h2-perturbed quadrilateral and hexahedral grids, the symmetric MFMFE elliptic projection gives
first-order convergence for the velocity.

Lemma 1. (See Wheeler–Yotov [1, Theorem 3.4], Ingram–Wheeler–Yotov [5, Theorem 3.1].) If K −1 ∈ W 1,∞
Th

, then the velocity Rhu(t)
of the symmetric MFMFE elliptic projection (23), with the quadrature rule (10) and (11), satisfies, for all t ∈ [0, T ],

∥∥u(t) −Rhu(t)
∥∥� Ch‖u‖1 (25)

on simplices, h2-parallelograms and h2-parallelepipeds, where C is a positive constant, defined to be independent of h.

On distorted quadrilateral and hexahedral grids, the non-symmetric MFMFE elliptic projection also gives first-order con-
vergence for the velocity.

Lemma 2. (See Wheeler–Xue–Yotov [7, Theorem 3.1].) Let K ∈ W 1,∞
Th

and K −1 ∈ W 0,∞
Th

. If (20) and (21) hold, then the velocity
Rhu(t) of the non-symmetric MFMFE elliptic projection (23), with the quadrature rule (10) and (12), satisfies, for all t ∈ [0, T ],

∥∥Πhu(t) −Rhu(t)
∥∥� Ch

(|u|1 + ‖p‖2
)

(26)

on general quadrilaterals and hexahedra, where C is a positive constant, defined to be independent of h.

Based on the previous lemma, we can also derive a convergence result for the velocity on the element faces (edges). To
this end, we introduce a norm for vectors in Ω which considers the normal components on the faces (edges) of Th , i.e.,

‖v‖2
Fh

=
∑
E∈Th

∑
e∈∂ E

|E|
|e| ‖v · ne‖2

e , (27)

where |E| is the volume (area) of E and |e| is the area (length) of e.

Lemma 3. (See Wheeler–Xue–Yotov [7, Theorem 3.2].) Let K ∈ W 1,∞
Th

and K −1 ∈ W 0,∞
Th

. If (20) and (21) hold, then the velocity
Rhu(t) of the non-symmetric MFMFE elliptic projection (23), with the quadrature rule (10) and (12), satisfies, for all t ∈ [0, T ],

∥∥u(t) −Rhu(t)
∥∥Fh

� Ch
(‖u‖1 + ‖p‖2

)
(28)

on general quadrilaterals and hexahedra, where C is a positive constant, defined to be independent of h.

Note that the results of the last two lemmas were obtained in [7] for the case of homogeneous Dirichlet boundary
conditions. The extension of such results to the case under study, involving non-homogeneous Dirichlet and homogeneous
Neumann boundary data, is straightforward. Further details are omitted.

3.2. Optimal convergence for the pressure

Under the assumptions of the preceding lemmas, the pressure variable is observed to be first-order convergent in both
the symmetric and the non-symmetric MFMFE elliptic projections.

Lemma 4. (See Wheeler–Yotov [1, Theorem 4.1], Ingram–Wheeler–Yotov [5, Theorem 4.1].) If K −1 ∈ W 1,∞
Th

, then the pressure Sh p(t)
of the symmetric MFMFE elliptic projection (23), with the quadrature rule (10) and (11), satisfies, for all t ∈ [0, T ],

∥∥p(t) − Sh p(t)
∥∥� Ch

(‖u‖1 + ‖p‖1
)

(29)

on simplices, h2-parallelograms and h2-parallelepipeds, where C is a positive constant, defined to be independent of h.
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Lemma 5. (See Wheeler–Xue–Yotov [7, Theorem 4.1].) Let K ∈ W 1,∞
Th

and K −1 ∈ W 0,∞
Th

. If (20) and (21) hold, then the pressure
Sh p(t) of the non-symmetric MFMFE elliptic projection (23), with the quadrature rule (10) and (12), satisfies, for all t ∈ [0, T ],∥∥p(t) − Sh p(t)

∥∥� Ch
(|u|1 + ‖p‖2

)
(30)

on general quadrilaterals and hexahedra, where C is a positive constant, defined to be independent of h.

As mentioned above, the subsequent analysis considers an extension of the result of Lemma 5, derived in [7] for a
problem with homogeneous Dirichlet boundary data, to the case of dealing with boundary conditions of the form (1c) and
(1d).

3.3. Superconvergence for the pressure

In addition, the symmetric MFMFE elliptic projection shows second-order superconvergence for the pressure variable at
the center of mass of the elements.

Lemma 6. (See Wheeler–Yotov [1, Theorem 4.3], Ingram–Wheeler–Yotov [5, Theorem 4.2].) Let K ∈ W 1,∞
Th

and K −1 ∈ W 2,∞
Th

. If

H2-elliptic regularity holds, then the pressure Sh p(t) of the symmetric MFMFE elliptic projection (23), with the quadrature rule (10)
and (11), satisfies, for all t ∈ [0, T ],∥∥Ph p(t) − Sh p(t)

∥∥� Ch2(‖u‖1 + ‖∇ · u‖1
)

(31)

on simplices and∥∥Ph p(t) − Sh p(t)
∥∥� Ch2‖u‖2 (32)

on h2-parallelograms and regular h2-parallelepipeds, where C is a positive constant, defined to be independent of h.

4. Error analysis of the semidiscrete scheme

In order to derive a priori error estimates for the MFMFE semidiscrete formulation (13), we need to bound the distance
between the elliptic projection (Rhu,Sh p) and the semidiscrete solution (uh, ph). The subsequent combination of such
bounds and the corresponding results from the previous lemmas yields the convergence for both the velocity and the
pressure variables.

4.1. Optimal convergence for the velocity

The symmetric variant of the MFMFE method shows optimal convergence of order O(h) for the velocity variable in the
time–space norm L∞(L2).

Theorem 1. Under the hypotheses of Lemma 1, the velocity uh(t) of the symmetric MFMFE method (13), with the quadrature rule (10)
and (11), satisfies

‖u − uh‖L∞(L2) � Ch
(‖u‖L∞(H1) + ‖u‖L2(H1) + ‖pt‖L2(H1)

)
(33)

on simplices, h2-parallelograms and h2-parallelepipeds, where C is a positive constant, defined to be independent of h.

Proof. For all t ∈ [0, T ], let us split the error term in the L2(Ω)-norm by using the triangle inequality, i.e.,

‖u − uh‖ � ‖u −Rhu‖ + ‖Rhu − uh‖. (34)

Subtracting (13) from (3), we get the error equations

(pt − ph,t, w) + (∇ · (u − uh), w
)= 0 ∀w ∈ Wh,(

K −1u,v
)− (

K −1uh,v
)

Q = (p − ph,∇ · v) − 〈
g,
(
v − Π0

h v
) · n

〉
ΓD

∀v ∈ Vh,(
p(0) − ph(0), w

)= 0 ∀w ∈ Wh.

Let us shorten the notations by setting

ξh = Sh p − ph, γh = p − Sh p, ζh =Rhu − uh. (35)

Then, taking into account (24), we get
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(ξh,t + γh,t, w) + (∇ · ζh, w) = 0 ∀w ∈ Wh, (36a)(
K −1ζh,v

)
Q = (ξh,∇ · v) ∀v ∈ Vh, (36b)

ξh(0) = 0. (36c)

In this derivation, we use the easily established fact that the projection operator Sh commutes with time differentiation. If
we further differentiate (36b) with respect to t , and choose v = ζh and w = ξh,t , we get

(ξh,t, ξh,t) + (
K −1ζh,t, ζh

)
Q = −(γh,t, ξh,t), (37)

by adding the resulting equations. Since the discrete bilinear form (K −1· , ·)Q is symmetric, it satisfies

(
K −1ζh,t, ζh

)
Q = 1

2

d

dt

(
K −1ζh, ζh

)
Q . (38)

Thus, (37) can be expressed as

‖ξh,t‖2 + 1

2

d

dt

(
K −1ζh, ζh

)
Q � 1

2

(‖γh,t‖2 + ‖ξh,t‖2), (39)

where we use the Cauchy–Schwarz inequality and Young’s inequality in the form

ab � 1

2

(
εa2 + 1

ε
b2
)

∀a,b � 0,

with ε = 1. Note that the first term in (39) is non-negative. Integrating this expression with respect to t and taking into
account the coercivity (19) of (K −1· , ·)Q , we obtain

∥∥ζh(t)
∥∥2 � 1

β0

t∫
0

‖γh,t‖2 dτ ,

for all t ∈ [0, T ]. Since ξh(0) = 0, then ζh(0) = 0, as can be derived from (36b) by taking v = ζh(0). The right-hand side of
the previous inequality is bounded by (29). This result, together with (25) and (34), yields

∥∥u(t) − uh(t)
∥∥2 � Ch2

(∥∥u(t)
∥∥2

1 +
t∫

0

(‖u‖2
1 + ‖pt‖2

1

)
dτ

)
,

for all t ∈ [0, T ]. Taking the supremum over all t , we obtain (33) and complete the proof. �
In the non-symmetric case, the argument in Theorem 1 does not apply. The next theorem proves convergence of the

semidiscrete velocity uh(t) to the MFE projection of the true solution Πhu(t) with order O(h) in the time–space norm
L2(L2).

Theorem 2. Under the hypotheses of Lemma 2, the velocity uh(t) of the non-symmetric MFMFE method (13), with the quadrature
rule (10) and (12), satisfies

‖Πhu − uh‖L2(L2) � Ch
(‖u‖L2(H1) + ‖p‖L2(H2) + ‖pt‖L2(H2)

)
(40)

on general quadrilaterals and hexahedra, where C is a positive constant, defined to be independent of h.

Proof. In this case, for all t ∈ [0, T ], the error term in the L2(Ω)-norm is split into

‖Πhu − uh‖ � ‖Πhu −Rhu‖ + ‖Rhu − uh‖. (41)

Let us consider the error equations (36). Since the pair (ζh, ξh) belongs to Vh × Wh , we may choose v = ζh and w = ξh .
Then, by adding (36a) and (36b), we obtain

(ξh,t, ξh) + (
K −1ζh, ζh

)
Q = −(γh,t, ξh).

Now, we bound the terms on the left-hand side from below and bound those on the right-hand side from above. Using the
coercivity (19) of (K −1· , ·)Q , together with the Cauchy–Schwarz and Young’s inequalities, we get

1

2

d

dt
‖ξh‖2 + β0‖ζh‖2 � 1

2

(‖γh,t‖2 + ‖ξh‖2).
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Integrating with respect to the time variable from 0 to t , we obtain

∥∥ξh(t)
∥∥2 + 2β0

t∫
0

‖ζh‖2 dτ �
t∫

0

(‖γh,t‖2 + ‖ξh‖2)dτ ,

for all t ∈ [0, T ], using that ξh(0) = 0. The subsequent application of Gronwall’s lemma yields

∥∥ξh(t)
∥∥2 + 2β0

t∫
0

‖ζh‖2 dτ � C

t∫
0

‖γh,t‖2 dτ , (42)

for all t ∈ [0, T ]. At t = T , it holds

T∫
0

‖ζh‖2 dτ � C

2β0

T∫
0

‖γh,t‖2 dτ .

Thus, (40) follows by recalling (30) for the right-hand side, together with (26) and (41). �
In addition, first-order convergence is also observed for the velocity of the non-symmetric method on the element faces

(edges). The following result is given in the norm

‖v‖L2([0,T ];Fh) ≡ ‖v‖L2(Fh) =
( T∫

0

∥∥v(t)
∥∥2
Fh

dt

)1/2

,

where ‖ · ‖Fh is defined in (27).

Theorem 3. Under the hypotheses of Lemma 3, the velocity uh(t) of the non-symmetric MFMFE method (13), with the quadrature
rule (10) and (12), satisfies

‖u − uh‖L2(Fh) � Ch
(‖u‖L2(H1) + ‖p‖L2(H2) + ‖pt‖L2(H2)

)
(43)

on general quadrilaterals and hexahedra, where C is a positive constant, defined to be independent of h.

Proof. For all t ∈ [0, T ], the error term in the norm ‖ · ‖Fh is split into

‖u − uh‖Fh � ‖u −Rhu‖Fh + ‖Rhu − uh‖Fh . (44)

In order to obtain a suitable bound for the second term on the right-hand side, we first note that

‖Rhu − uh‖Fh � C‖Rhu − uh‖. (45)

This follows from the trace inequality (cf. [7, Lemma 3.9])

‖v · ne‖e � Ch−1/2‖v‖E ∀v ∈ Vh,

and the shape regularity of Th , which implies

‖v‖Fh � Ch1/2
( ∑

E∈Th

∑
e∈∂ E

‖v · ne‖2
e

)1/2

,

by using |E|/|e| =O(h). Then, along the lines of the preceding theorem, (43) follows from (28), (30), (44) and (45). �
4.2. Optimal convergence for the pressure

Both the symmetric and the non-symmetric MFMFE methods show first-order convergence for the pressure variable in
the time–space norm L∞(L2). The corresponding error estimates are derived in the sequel.

Theorem 4. Under the hypotheses of Lemma 4, the pressure ph(t) of the symmetric MFMFE method (13), with the quadrature rule
(10) and (11), satisfies

‖p − ph‖L∞(L2) � Ch
(‖u‖L∞(H1) + ‖u‖L2(H1) + ‖p‖L∞(H1) + ‖pt‖L2(H1)

)
(46)

on simplices, h2-parallelograms and h2-parallelepipeds, where C is a positive constant, defined to be independent of h.
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Proof. For all t ∈ [0, T ], let us split the error term in the L2(Ω)-norm by using the triangle inequality, i.e.,

‖p − ph‖ � ‖p − Sh p‖ + ‖Sh p − ph‖. (47)

Following the argument of Theorem 2, we may derive the inequality (42). Since the second term in this expression is
non-negative, we have

∥∥ξh(t)
∥∥2 � C

t∫
0

‖γh,t‖2 dτ ,

for all t ∈ [0, T ]. Inserting this bound into (47) and using (29) to control its right-hand side, we obtain

∥∥p(t) − ph(t)
∥∥2 � Ch2

(∥∥u(t)
∥∥2

1 + ∥∥p(t)
∥∥2

1 +
t∫

0

(‖u‖2
1 + ‖pt‖2

1

)
dτ

)
,

for all t ∈ [0, T ]. The proof is completed by taking the supremum over all t . �
Theorem 5. Under the hypotheses of Lemma 5, the pressure ph(t) of the non-symmetric MFMFE method (13), with the quadrature
rule (10) and (12), satisfies

‖p − ph‖L∞(L2) � Ch
(‖u‖L∞(H1) + ‖u‖L2(H1) + ‖p‖L∞(H2) + ‖pt‖L2(H2)

)
(48)

on general quadrilaterals and hexahedra, where C is a positive constant, defined to be independent of h.

Proof. The proof is analogous to that of the previous theorem. In this case, we make use of the expression (30), related to
the non-symmetric method, for bounding the term ‖p − Sh p‖ and its time derivative. �
4.3. Superconvergence for the pressure

In the case of the symmetric MFMFE method, a superconvergence phenomenon of order O(h2) is observed for the
pressure variable at the center of mass of the elements.

Theorem 6. Under the hypotheses of Lemma 6, the pressure ph(t) of the symmetric MFMFE method (13), with the quadrature rule
(10) and (11), satisfies

‖Ph p − ph‖L∞(L2) � Ch2(‖u‖L∞(H1) + ‖u‖L2(H1) + ‖∇ · u‖L∞(H1) + ‖∇ · u‖L2(H1)

)
(49)

on simplices and

‖Ph p − ph‖L∞(L2) � Ch2(‖u‖L∞(H2) + ‖u‖L2(H2)

)
(50)

on h2-parallelograms and regular h2-parallelepipeds, where C is a positive constant, defined to be independent of h.

Proof. The proof is similar to that of Theorem 4. In this case, for all t ∈ [0, T ], the error term in the L2(Ω)-norm is split
into

‖Ph p − ph‖ � ‖Ph p − Sh p‖ + ‖Sh p − ph‖.
In addition, we must redefine γh in (35) as γh = Ph p − Sh p. Then, using (31) and (32) to bound those terms involving γh
and γh,t , we get (49) and (50), respectively, and complete the proof. �
5. The domain decomposition splitting method

Once the cell-centered finite difference method (18) is defined, we are in position to construct a suitable time integrator
to approximate the semidiscrete solution. In this section, we first introduce an adequate operator splitting for the discrete
diffusion and right-hand side, which belongs to the class of domain decomposition methods. Then, such a splitting is
combined with a fractional step formula in order to reduce the system of ordinary differential equations (18) to a collection
of algebraic linear systems (one per internal stage).
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5.1. A domain decomposition operator splitting

In order to define the domain decomposition splitting technique, Ω is first partitioned into a number m of overlapping
subdomains {Ωk}m

k=1. Under such a decomposition, we subsequently introduce a family of m smooth functions {ρk(x)}m
k=1

forming a partition of unity. Via this partition, both Ah and Fh(t) are decomposed into m split terms to further apply a
fractional step time integrator. The overall procedure is described in the sequel.

Let Ω∗
1 ,Ω∗

2 , . . . ,Ω∗
m form a non-overlapping decomposition of Ω into m subdomains. Such a decomposition fulfills the

conditions Ω =⋃m
k=1 Ω∗

k and Ω∗
k ∩ Ω∗

l = ∅, for k �= l. In turn, each Ω∗
k ⊂ Ω is considered to be an open disconnected set

involving mk connected components, i.e.,

Ω∗
k ≡

mk⋃
l=1

Ω∗
kl, for k = 1,2, . . . ,m.

Such components are pairwise disjoint (that is, Ω∗
ki ∩Ω∗

kj = ∅, for i �= j) and typically chosen to be shape regular of diameter
h0. For instance, the components Ω∗

kl may correspond to the elements in a coarse partition Th0 of Ω with mesh size h0.
Let Ωkl be the extension of Ω∗

kl obtained by translating its internal boundaries, ∂Ω∗
kl ∩ Ω , within a distance βh0 in Ω .

The parameter β > 0 is usually referred to as the overlapping factor and its value must be chosen in such a way that the
extended components are also pairwise disjoint (i.e., Ωki ∩ Ωkj = ∅, for i �= j). Furthermore, the distance ξ = 2βh0 is called
the overlapping size. If we denote by Ωk ⊂ Ω the open disconnected set defined as

Ωk ≡
mk⋃
l=1

Ωkl, for k = 1,2, . . . ,m, (51)

then the collection Ω1,Ω2, . . . ,Ωm form an overlapping decomposition of Ω into m subdomains. Such a decomposition
satisfies Ω =⋃m

k=1 Ωk .
Subordinate to this overlapping covering of Ω , we construct a smooth partition of unity consisting of a family of m

non-negative and C∞(Ω) functions {ρk(x)}m
k=1. Each function ρk : Ω → [0,1] is chosen to be

ρk(x) =

⎧⎪⎨
⎪⎩

0, if x ∈ Ω \ Ωk,

hk(x), if x ∈⋃m
l=1; l �=k(Ωk ∩ Ω l),

1, if x ∈ Ωk \⋃m
l=1; l �=k(Ωk ∩ Ω l),

where hk(x) is C∞(Ω) and satisfies the conditions

0 � hk(x) � 1,

m∑
k=1

hk(x) = 1,

for any x ∈⋃m
l=1; l �=k(Ωk ∩ Ωl). Therefore, the family of functions {ρk(x)}m

k=1 is such that

supp
(
ρk(x)

)⊂ Ωk, 0 � ρk(x) � 1,

m∑
k=1

ρk(x) = 1, (52)

for any x ∈ Ω . For numerical purposes, functions hk(x) which are not necessarily C∞(Ω), but are continuous and piecewise
smooth, can also be considered (cf. [19]). This fact will be illustrated in the last section of the paper.

In this framework, we introduce a splitting for the time derivative of the differential system (18a) based on the preceding
partition of unity. In doing so, we first define two families of matrices, {Γk}m

k=1 and {Γ̃k}m
k=1, associated to the overlapping

decomposition {Ωk}m
k=1. The first of such families is constructed in the spirit of the block-diagonal matrix M induced by

(K −1· , ·)Q (see (15)). More precisely, each matrix Γk ∈ RL×L has a block-diagonal structure of the form

Γk =

⎛
⎜⎜⎝

ρk(r1)I�1

ρk(r2)I�2

. . .

ρk(rNv )I�Nv

⎞
⎟⎟⎠ , (53)

where I�i ∈ R�i×�i is the identity matrix and ri denotes the coordinate vector of the vertex point i, for i = 1,2, . . . , Nv

and k = 1,2, . . . ,m (see Section 2.7 for notations). As for the second family of matrices, we consider Γ̃k ∈ RNe×Ne to be a
diagonal matrix of the form
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Γ̃k =

⎛
⎜⎜⎝

ρk(xc,1)

ρk(xc,2)

. . .

ρk(xc,Ne )

⎞
⎟⎟⎠ , (54)

where xc,i denotes the coordinate vector of the cell center i, for i = 1,2, . . . , Ne and k = 1,2, . . . ,m. Note that, by construc-
tion,

m∑
k=1

Γk = I L,

m∑
k=1

Γ̃k = INe . (55)

In this context, the explicit formula for the time derivative P ′
h , as given by the second equation in (14), is

P ′
h = D−1 BUh + Fh ≡ Q h.

The time integration method described in the next subsection takes advantage of a suitable representation of Q h as a sum
of somewhat simpler terms, i.e.,

Q h = Q h,1 + Q h,2 + · · · + Q h,m,

where each split term is given by the expression

Q h,k = D−1 BUh,k + Fh,k, (56)

for k = 1,2, . . . ,m. More precisely, using the matrices (53) and (54), we define Uh,k = ΓkUh and Fh,k = Γ̃k Fh . Recall that the
velocity degrees of freedom in Uh are located at the vertex points, while the semidiscrete right-hand side Fh lies on the cell
centers. This is the reason why the partition of unity functions {ρk(x)}m

k=1 are evaluated at different points in Γk and Γ̃k .
Due to (55), we have

Uh =
m∑

k=1

Uh,k, Fh =
m∑

k=1

Fh,k. (57)

Using the expression (16) for Uh , the split velocity is given by

Uh,k = Γk M−1(Gh − BT Ph
)
,

and can be inserted into (56) to get

Q h,k = D−1 BΓk M−1(Gh − BT Ph
)+ Fh,k.

Based on the notations (17), we may write

Ah,k = D−1 BΓk M−1 BT , Ch,k = D−1 BΓk M−1Gh, (58)

so that

Q h,k = −Ah,k Ph + Fh,k + Ch,k.

According to (57), it is easy to see that

Ah =
m∑

k=1

Ah,k, Ch =
m∑

k=1

Ch,k.

As a result, the system of ordinary differential equations (18a) can be expressed as a split system of the form

P ′
h +

m∑
k=1

Ah,k Ph =
m∑

k=1

Lh,k, (59)

where Lh,k = Fh,k + Ch,k . If M is non-symmetric, a change of variable of the form P̌h = D1/2 Ph yields

P̌ ′
h +

m∑
k=1

Ǎh,k P̌h =
m∑

k=1

Ľh,k, (60)

where Ǎh,k = D−1/2 BΓk M−1 BT D−1/2 and Ľh,k = D1/2Lh,k .
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Lemma 7. The matrices {Ah,k}m
k=1 and { Ǎh,k}m

k=1 , associated to the split systems (59) and (60), respectively, satisfy

ξ T Ah,kξ � 0 ∀ξ ∈ RNe , (61a)

ηT Ǎh,kη � 0 ∀η ∈ RNe , (61b)

for k = 1,2, . . . ,m.

Proof. Since M is block-diagonal with blocks Mi , so is Γk M−1 with blocks ρk(ri)M−1
i , for i = 1,2, . . . , Nv and k =

1,2, . . . ,m. In both cases, such blocks are non-negative definite. Hence, using (20), Nk = BΓk M−1 BT is also a non-negative
definite matrix. The handling of D−1 is as follows. If M is symmetric, so is Nk . Thus, for any ξ ∈ RNe , if we consider
θ = D−1/2ξ , we get

ξ T D−1Nkξ = θ T D−1/2Nk D1/2θ � 0,

which follows from the Rayleigh quotient, since D−1/2Nk D1/2 is similar to Nk . This result implies (61a). On the other hand,
if M is non-symmetric, we consider the split system (60) and note that, for any ξ ∈ RNe ,

ξ T D−1/2Nk D−1/2ξ = θ T Nkθ � 0,

provided that θ = D−1/2ξ . Therefore, (61b) follows. �
A natural way to solve either (59) or (60) is the use of a fractional step time integrator which takes advantage of the

multiterm partitioning. Since the discrete diffusion suboperators {Ah,k}m
k=1 and { Ǎh,k}m

k=1 do not commute pairwise, we
further require a scheme whose stability is not affected by the lack of commutativity of the split terms. In the sequel, we
present a family of fractional step methods which are defined to be unconditionally stable even in the non-commuting case.

5.2. The fully discrete scheme

In this subsection, we describe in detail the time integration of the split system (59); the procedure for (60) is similar.
Let us consider an FSRKm method with s internal stages to integrate in time (59), with initial condition Ph(0) = P 0

h , i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For n = 0,1, . . . , NT :
For k = 1,2, . . . , s:

Pn,k
h = Pn

h + τ

k∑
�=1

ai�
k�

(−Ah,i� Pn,�
h + Lh,i� (tn,�)

)
,

Pn+1
h = Pn

h + τ

s∑
�=1

bi�
�

(−Ah,i� Pn,�
h + Lh,i� (tn,�)

)
,

(62)

where Pn
h is an approximation to the solution of (59) at t = tn . For the sake of simplicity in the exposition, the time step τ

is considered to be constant, tn = nτ and NT ≡ [T /τ ] − 1. Moreover, i� ∈ {1,2, . . . ,m} and tn,� = tn + c�τ , for � = 1,2, . . . , s.

The choice of different coefficients a j
k�

, b j
� and c� determines each particular FSRKm method, where 1 � � � k � s for j =

1,2, . . . ,m.
Note that ik denotes the part of the discrete operator Ah which acts implicitly at the kth internal stage, and it is also

given by the method under consideration. A specific choice for ik is given below. For k = 1,2, . . . , s, the linear system to
solve is(

I + τaik
kk Ah,ik

)
Pn,k

h = Sn,k
h , (63)

where ik ∈ {1,2, . . . ,m}. In this case, I denotes the identity matrix and Sn,k
h stands for the corresponding right-hand side.

Since supp(ρik (x)) ⊂ Ω ik , the entries of Ah,ik are zeroes outside Ω ik . Further, as Ωik involves mik disjoint connected compo-
nents, namely Ωikl , the linear system (63) is indeed a collection of mik uncoupled subsystems of the form

(
IΩikl + τaik

kk Ah,Ωikl

)RΩikl Pn,k
h =RΩikl Sn,k

h , (64)

where IΩikl = RΩikl IRT
Ωikl

and Ah,Ωikl = RΩikl Ah,ikRT
Ωikl

, RΩikl being a restriction matrix from Ω to Ωikl , as defined in

Remark 1 below. Unlike most classical domain decomposition algorithms (cf. [29]), the solution to (64) does not require any
Schwarz iteration procedure, since the internal stages in (62) are solved sequentially (i.e., interface conditions need not be
imposed on subdomains during the solution process).



Author's personal copy

1338 A. Arrarás et al. / Journal of Computational Physics 257 (2014) 1321–1351

Remark 1. The rectangular matrices RΩkl and RT
Ωkl

are usually called restriction and extension mappings, respectively, and
represent a type of domain decomposition preconditioners. Formally, let N and Ns be the number of total unknowns in
Ω and Ωkl , respectively. Let us further define an index function index(Ωkl, i) to denote the global index of the ith local
unknown in Ωkl , for i = 1,2, . . . , Ns . Then, the restriction matrix RΩkl ∈ RNs×N is defined to be

(RΩkl )i j =
{

1, if index(Ωkl, i) = j,
0, if index(Ωkl, i) �= j.

This matrix restricts a vector v ∈ RN , whose components are associated to the mesh cells in Ω , to a vector RΩkl v ∈ RNs with
components in Ωkl (using the local ordering). Likewise, the transpose matrix RT

Ωkl
∈ RN×Ns extends a vector vΩkl ∈ RNs with

components in Ωkl to a vector RT
Ωkl

vΩkl ∈ RN with components in Ω , inserting zero entries for the global indices which do

not belong to Ωkl . Note that, given a global matrix S ∈ RN×N , its submatrix SΩkl ∈ RNs×Ns corresponding to the mesh cells
in Ωkl may be obtained from the restriction and extension mappings as SΩkl =RΩkl SRT

Ωkl
(cf. [23]).

In the sequel, we introduce a specific family of FSRKm methods of the form (62). These methods are formulated for an
arbitrary number m of implicit parts, what makes them likely to be combined with an operator splitting into an arbitrary
number m of split terms. Such terms are not required to commute pairwise and, thus, the newly introduced schemes
preserve a rather general splitting framework.

In particular, the fully discrete MFMFE–FSRKm scheme reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For n = 0,1, . . . , NT :
Pn,1

h = Pn
h,

For k = 2,3, . . . ,2m − 1:

Pn,k
h = Pn,k−1

h + τ

k∑
�=k−1

α�

(−Ah,i� Pn,�
h + Lh,i� (tn,�)

)
,

Pn+1
h = Pn,2m−1

h ,

(65)

where αk = 1
2 , for k ∈ {1,m,2m − 1}, and αk = 1

4 , otherwise; accordingly, ik = k, for k = 1,2, . . . ,m, and ik = 2m − k,
otherwise. In turn, the intermediate times are tn,1 = tn , tn,k = tn + τ

2 , for k = 2,3, . . . ,2m − 2, and tn,2m−1 = tn+1.

In this case, the linear system to solve at the kth internal stage is given by (63), with aik
kk = αk and the right-hand side

Sn,k
h = (I − ταk−1 Ah,ik−1)Pn,k−1

h + τ
(
αk−1Lh,ik−1(tn,k−1) + αk Lh,ik (tn,k)

)
,

where ik ∈ {1,2, . . . ,m}, for k = 2,3, . . . ,2m − 1. As in the general case, such a system may be decomposed into mik un-
coupled subsystems of the form (64). This family of time integrators was first proposed in [25] as a variant of the classical
two-cycle scheme (cf. [39]), which reduces by two the number of internal stages while preserving its accuracy. In addition,
as mentioned above, the Peaceman–Rachford ADI method is a particular instance of the scheme (65), if m = 2 and Ah,k , for
k = 1,2, are suitable discretizations of one-dimensional differential operators with respect to x and y, respectively.

Remark 2. From a computational viewpoint, in order to minimize the number of sequential steps (i.e., internal stages) in the
algorithm (65), the number of subdomains m should be chosen to be as small as possible. Additionally, to ensure that the
loads assigned to each processor are balanced, there should be approximately the same number of connected components
mk in each subdomain Ωk and, moreover, each such component should be approximately of the same diameter. For instance,
suppose that we have q processors available for parallel computing. Then, if the number of connected components mk is
approximately the same in each subdomain Ωk and also a multiple of q, each such component can be partitioned into q
groups of mk

q components and each group assigned to one of the processors.

6. Error analysis of the fully discrete scheme

In this section, we describe the convergence analysis of the fully discrete scheme (65). In doing so, we extend the results
in [30] for the Peaceman–Rachford ADI method applied to linear problems (i.e., (65) with m = 2) to a domain decomposition
splitting formula into an arbitrary number of split terms (m � 2).

Let us define the full discretization error at tn+1 as the difference p̄h(tn+1) − Pn+1
h , where

p̄h(t) = rh
(Ph p(x, t)

)
.

Here, rh : Wh →Hp denotes the restriction operator of the scalar functions in Wh to the cell centers of Th . This global error
can be analyzed via two different approaches.

The first one considers the following decomposition
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p̄h(tn+1) − Pn+1
h = (

p̄h(tn+1) − Ph(tn+1)
)+ (

Ph(tn+1) − Pn+1
h

)
.

In this case, the former difference on the right-hand side represents a spatial semidiscretization error, and is bounded above
by Theorem 6 for the symmetric MFMFE method. In order to derive a bound for the latter difference, it would be necessary
to estimate the derivatives of the semidiscrete solution Ph(t).

To overcome this requirement, we take an alternative approach based on the method of lines (cf. [40–42]). The full
discretization error is decomposed into the sum

p̄h(tn+1) − Pn+1
h = (

p̄h(tn+1) − P̂ n+1
h

)+ (
P̂ n+1

h − Pn+1
h

)
, (66)

where P̂ n+1
h denotes the numerical solution obtained when applying the method with a time step τ and the initial value

Pn
h = p̄h(tn). The difference

βn+1
h = p̄h(tn+1) − P̂ n+1

h

is commonly known as the full truncation error at tn+1. In the sequel, we shall describe in detail how to derive suitable
bounds for the global error based on (66).

Throughout this section, (· , ·)�2 stands for the discrete L2-inner product in Hp and ‖ · ‖�2 = (· , ·)1/2
�2 is the induced

discrete L2-norm. Note that, for any w ∈ Wh , the continuous and discrete L2-norms can be related via the restriction
operator rh , i.e.,

‖rh w‖�2 = ‖w‖ ∀w ∈ Wh. (67)

6.1. Stability

In order to study the stability of the fully discrete scheme (65), let us consider the perturbed scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃ 0
h = P 0

h + ε0
h ,

For n = 0,1, . . . , NT :
P̃ n,1

h = P̃ n
h,

For k = 2,3, . . . ,2m − 1:

P̃ n,k
h = P̃ n,k−1

h + τ

k∑
�=k−1

α�

(−Ah,i� P̃ n,�
h + Lh,i� (tn,�)

)+ τδ
n,k
h ,

P̃ n+1
h = P̃ n,2m−1

h ,

(68)

where ε0
h denotes the error in the initial data, and δ

n,k
h may stand for round-off errors, errors due to non-exactly solving the

implicit relations or discretization errors. Let us define, for n = 0,1, . . . , NT ,

εn+1
h = P̃ n+1

h − Pn+1
h . (69)

Subtracting (65) from (68), we may write

εn+1
h = Rh

(
I − τ

2 Ah,1

)
εn

h + τ

2m−1∑
k=2

Sk
hδ

n,k
h , (70)

where

Rh ≡ (
I + τ

2 Ah,1
)−1

T 2m−2
h T 2m−3

h · · · T 2
h , (71a)

S2m−1
h ≡ (

I + τ
2 Ah,1

)−1
, (71b)

Sk
h ≡ (

I + τ
2 Ah,1

)−1
T 2m−2

h T 2m−3
h · · · T k

h, for k = 2,3, . . . ,2m − 2, (71c)

T �
h ≡ (I − τα� Ah,i� )(I + τα� Ah,i� )

−1, for � = 2,3, . . . ,2m − 2. (71d)

In the sequel, we quote two auxiliary results that will be used below to analyze the stability of the fully discrete scheme.

Lemma 8. Let Λ ∈ Rs×s , for s ∈ N, satisfy

ξ T Λξ � 0 ∀ξ ∈ Rs, (72a)

ξ T ΛT Λξ � αξ T ξ ∀ξ ∈ Rs, (72b)
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where α is a positive constant. Then, for any μ > 0, it holds

∥∥(I + μΛ)−1
∥∥

2 � 1, (73a)∥∥(I − μΛ)(I + μΛ)−1
∥∥

2 � 1, (73b)∥∥μΛ(I + μΛ)−1
∥∥

2 � C, (73c)

where C is a positive constant and ‖ · ‖2 denotes the spectral norm.

Proof. In order to prove the first inequality, it is not difficult to see that, due to (72a),

ξ T ξ � ξ T (I + μΛT )(I + μΛ)ξ.

Thus, making the substitution ξ = (I + μΛ)−1η, we obtain (73a) and complete the proof. As for the second inequality, the
previous argument yields

ξ T (I − μΛT )(I − μΛ)ξ � ξ T (I + μΛT )(I + μΛ)ξ.

In this case, (73b) follows upon the same substitution for ξ . Accordingly, (72a) implies that

μ2ξ T ΛT Λξ � μ2ξ T (I + μΛT )ΛT Λ(I + μΛ)ξ.

The inequality (73c) is then derived by taking ξ = (I + μΛ)−1η and using (72b). �
Since the split matrices {Ah,k}m

k=1 lie in the framework of Lemma 8, the inequalities (73) can be used to derive the
following result.

Lemma 9. Let {Ah,k}m
k=1 be the matrices defined in (58). Then, for any τ > 0, q ∈ N and k = 2,3, . . . ,2m − 1, it holds

∥∥(Rh
(

I − τ
2 Ah,1

))q
φ
∥∥

�2 �
∥∥(I − τ

2 Ah,1
)
φ
∥∥

�2 , (74a)∥∥(Rh
(

I − τ
2 Ah,1

))q
Sk

hφ
∥∥

�2 � ‖φ‖�2 . (74b)

Proof. Recalling the definition (71a), the left-hand side of (74a) can be expanded to get

∥∥(I + τ
2 Ah,1

)−1
T 2m−2

h · · · T 2
h T 1

h T 2m−2
h · · · T 2

h

(
I − τ

2 Ah,1
)
φ
∥∥

�2 �
∥∥(I − τ

2 Ah,1
)
φ
∥∥

�2 ,

where (73a) and (73b), with Λ = Ah,k , do apply. Accordingly, (74b) is derived from (71a)–(71c), also taking into account
(73a) and (73b). �

The following stability result for the MFMFE–FSRKm scheme (65) is thus obtained.

Theorem 7. Let εn+1
h be defined by (69). If the matrices {Ah,k}m

k=1 are given by (58), then it holds, for n = 0,1, . . . , NT ,

∥∥εn+1
h

∥∥
�2 �

∥∥(I − τ
2 Ah,1

)
ε0

h

∥∥
�2 + C max

0� j�n
2�k�2m−1

∥∥δ j,k
h

∥∥
�2 , (75)

where C is a positive constant, defined to be independent of h and τ .

Proof. Expanding the recurrence relation (70), we obtain

εn+1
h = (

Rh
(

I − τ
2 Ah,1

))n+1
ε0

h + τ

n∑
j=0

2m−1∑
k=2

(
Rh
(

I − τ
2 Ah,1

))n− j
Sk

hδ
j,k

h .

Hence, (75) follows from the triangle inequality and the bounds (74). �
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The previous bound expresses stability of the fully discrete scheme with respect to the transformed initial error ε̂0
h =

(I − τ
2 Ah,1)ε

0
h and the original perturbations δ

j,k
h , for j = 0,1, . . . ,n and k = 2,3, . . . ,2m − 1. As a consequence, if ‖ε̂0

h‖�2 �
C‖ε0

h‖�2 , with C > 0 independent of h, then (75) shows unconditional stability2 with respect to the initial error ε0
h and the

perturbations δ
j,k

h . In general, ε̂0
h can be viewed as the difference of two forward Euler steps, i.e.,

ε̂0
h = (

P̃ 0
h − τ

2 Ah,1 P̃ 0
h

)− (
P 0

h − τ
2 Ah,1 P 0

h

)
.

Thus, we may have ‖ε̂0
h‖�2 � ‖ε0

h‖�2 , because of the explicitness of the previous expression. In [30], the authors propose a
technique to stabilize the first step of the Peaceman–Rachford ADI method that would also apply to our scheme. Nonethe-
less, as they point out, there seems to be no need for such a stabilization from a practical viewpoint.

6.2. Consistency

To study the consistency of the scheme, we consider the perturbed scheme (68) and let P̃ n
h = p̄h(tn) and P̃ n,k

h = p̄h(tn,k),

for k = 1,2, . . . ,2m − 1. As a result, P̃ n+1
h = p̄h(tn+1) and (69) represents the full discretization error at tn+1, i.e.,

εn+1
h = p̄h(tn+1) − Pn+1

h .

Since P̂ n+1
h denotes the numerical solution obtained in one single step of (65) starting at Pn

h = p̄h(tn), we have that P̂ n+1
h −

Pn+1
h = Rh(I − τ

2 Ah,1)ε
n
h and the relation (66) can be expressed as

εn+1
h = Rh

(
I − τ

2 Ah,1
)
εn

h + βn+1
h . (76)

A term-by-term comparison of (70) and (76) yields the following expression for the full truncation error

βn+1
h = τ

2m−1∑
k=2

Sk
hδ

n,k
h , (77)

where δ
n,k
h are defined from (68) with the choice P̃ n

h = p̄h(tn).
For later use, we define the spatial truncation error αh(t) as given by

αh(t) = p̄′
h(t) + Ah p̄h(t) − Lh(t), t ∈ [0, T ], (78)

where p̄′
h(t) = rh(Ph pt(x, t)) and Lh(t) = Fh(t) + Ch(t).

Within this framework, we can derive the following consistency result.

Theorem 8. Let p̄h(t) fulfill, for all t ∈ [tn, tn+1],∥∥p̄′′′
h,k(t)

∥∥
�2 � C, (79a)∥∥Λ1 p̄′′

h,k(t)
∥∥

�2 � C, (79b)∥∥Λ1Λ2 p̄′
h,k(t)

∥∥
�2 � C, (79c)

where p̄′
h,k(t) = Lh,k(t) − Ah,k p̄h(t) and Λ j ∈ {Ah,1, Ah,2, . . . , Ah,m}, for k = 1,2, . . . ,m and j = 1, 2. Then, the full truncation error

βn+1
h satisfies, for m � 2 and n = 0,1, . . . , NT ,∥∥βn+1

h

∥∥
�2 � C

(
τ 3 + τ

∥∥αh(tn+1/2)
∥∥

�2

) ∀τ ∈ (0, τ0], (80)

where C is a positive constant, defined to be independent of h and τ .

Proof. Let P̃ n
h = p̄h(tn) and P̃ n,k

h = p̄h(tn,k), for k = 1,2, . . . ,2m − 1, in (68). Initially, we consider Taylor expansions of p̄h
and −Ah,k p̄h + Lh,k around t = tn+1/2. Evaluating the spatial truncation error (78) at this same point and inserting the split
terms, we get

αh(tn+1/2) = p̄′
h(tn+1/2) +

m∑
k=1

(
Ah,k p̄h(tn+1/2) − Lh,k(tn+1/2)

)
.

2 This happens, for instance, whenever ε0
h = 0 or ε0

h is a smooth grid function, so that ‖Ah,1ε
0
h‖�2 � C ′‖ε0

h‖�2 .
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This relation, together with (79a), yields the following expressions for δ
n,k
h

δ
n,2
h = τ wh(tn+1/2) +

m−1∑
k=2

vk,h(tn+1/2) + 1
2αh(tn+1/2) +O(τ 2), (81a)

δ
n,k+1
h = −vk,h(tn+1/2), for k = 2,3, . . . ,m − 1, (81b)

δ
n,2m−k
h = −vk,h(tn+1/2), for k = m − 1,m − 2, . . . ,2, (81c)

δ
n,2m−1
h = −τ wh(tn+1/2) +

m−1∑
k=2

vk,h(tn+1/2) + 1
2αh(tn+1/2) +O(τ 2), (81d)

where

wh(t) = − 1
8 p̄′′

h(t) + 1
4 p̄′′

h,1(t), vk,h(t) = αk p̄′
h,k(t) + αk+1 p̄′

h,k+1(t).

Recall that {αk}m
k=2 denote the coefficients of the fully discrete scheme (65) with values α2 = α3 = · · · = αm−1 = 1

4 and
αm = 1

2 . Inserting the expressions (81) into the definition (77) of the full truncation error, we get

βn+1
h =

2m−2∑
�=2

S�+1
h (I + τα� Ah,i� )

−1
(
τa�αh(tn+1/2) + τ 2b� Ah,i�αh(tn+1/2) + τ 3c� Ah,i� wh(tn+1/2)

+ τ 3
∑

j,k∈{2,...,m−1}
d jk� Ah,i� Ah, j vk,h(tn+1/2)

)
+O(τ 3), (82)

where a� , b� , c� and d jk� are certain coefficients (some of them equal to zero). Finally, the application of bounds (73), with
Λ = Ah,k , (79b) and (79c) implies (80) and completes the proof. �

Conditions of type (79) are derived in [19]. In this work, the authors prove similar bounds for a standard 5-point finite
difference approximation to −∇ · (ρk K∇p) in two-dimensional parabolic problems with homogeneous Dirichlet boundary
data. The extension of these results to the MFMFE method is based on the following idea. Recall that the partitioned
discrete diffusion term is given by BΓk M−1 BT Ph . Here, BT Ph involves first-order differences in pressures, so that M−1 BT Ph
is a linear combination of pressure differences, whose coefficients contain the elements of tensor K evaluated at the vertex
points. This term represents an approximation to the negative flux, K∇p. Since B provides an extra level of first-order
differences, BΓk M−1 BT Ph becomes a 9-point stencil approximation to −∇ · (ρk K∇p) on logically rectangular grids. The
procedure in [19] can then be applied.

Let us now examine the hypotheses (79) in more detail. On the one hand, (79a) is satisfied provided that p(x, t) is
a smooth function and the problem data are sufficiently smooth and compatible. However, (79b) and (79c) are somehow
non-natural conditions, since, in general, they are not in accordance with the preceding smoothness and compatibility
requirements. This fact is illustrated in [42] for the case of a standard finite difference discretization of the one-dimensional
heat equation on a uniform grid. If homogeneous Dirichlet boundary conditions are considered, and the source term f and
its even spatial derivatives up to certain order vanish at the boundary, then (79b) and (79c) are satisfied. Otherwise, some
order reduction may occur in the full truncation error.

These considerations imply that, if we assumed (79a) as the only hypothesis of Theorem 8, we would obtain∥∥βn+1
h

∥∥
�2 � C

(
τ q+1 + τ

∥∥αh(tn+1/2)
∥∥

�2

)
(83)

instead of (80), where q is the so-called stage order. The value of the stage order equals 1, if m = 2, and 0, otherwise. For
the case m = 2, it is easy to deduce from (82) that the full truncation error admits the expression

βn+1
h = (

I + τ
2 Ah,1

)−1(
I + τ

2 Ah,2
)−1(−τ 3 Ah,2 wh(tn+1/2) + ταh(tn+1/2)

)+O(τ 3).
Taking into account the uniform boundedness of wh(t), together with the bounds (73a) and (73c), with Λ = Ah,1 and
Λ = Ah,2, respectively, the consistency result (83) follows for a value q = 1. This idea can be easily extended to derive the
corresponding bounds for higher values of m.

Remark 3. In the framework of Runge–Kutta methods for linear parabolic problems, the order reduction phenomenon was
first studied in [43,44], and has been subsequently analyzed in [41,42,45–47], among others. This subject is further investi-
gated in [48,49,30,50] in the context of splitting methods. In particular, [50] studies the order reduction of FSRKm methods
and proposes a technique to avoid it. Such a technique, based on suitably modifying the boundary values of the inter-
nal stages, is used in [25] to avoid the order reduction of scheme (65) when alternating direction operator splittings are
considered.
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6.3. Convergence

The convergence of the fully discrete scheme (65) follows from the preceding results on stability and consistency.
Throughout this section, we shall make use of the notation

‖p̄h − Ph‖�∞(�2) = max
0�n�NT

∥∥p̄h(tn+1) − Pn+1
h

∥∥
�2

for the global error of the MFMFE–FSRKm method.

Theorem 9. Under the hypotheses of Theorem 8, the fully discrete solution Pn+1
h of the MFMFE–FSRKm method (65), with {Ah,k}m

k=1
given by (58), satisfies

‖p̄h − Ph‖�∞(�2) � C
(
τ 2 + max

0�t�T

∥∥αh(t)
∥∥

�2

)
, (84)

where C is a positive constant, independent of h and τ .

Proof. Expanding the recurrence relation (76), we get

εn+1
h = (

Rh
(

I − τ
2 Ah,1

))n+1
ε0

h +
n+1∑
j=1

(
Rh
(

I − τ
2 Ah,1

))n+1− j
β

j
h . (85)

Note that ε0
h = 0 since P 0

h = rh(Ph p0(x)), and the first term on the right-hand side vanishes. As for the second term, we
consider the expression (82) for the full truncation errors, and further use (74b), (73a) and (73c), with Λ = Ah,k , (79b) and
(79c). This yields

∥∥εn+1
h

∥∥
�2 �

n+1∑
j=1

C
(
τ 3 + τ

∥∥αh(t j−1/2)
∥∥

�2

)
� C

(
τ 2 + max

0�t�T

∥∥αh(t)
∥∥

�2

)
.

The inequality (84) is finally obtained by taking the maximum over n. �
Remark 4. The local truncation error for MPFA methods is mainly studied in [12,51–53]. In these works, such an error is
shown to be second-order convergent for the pressure variable in the case of rectangular grids. Via a smooth mapping, this
result can be extended to the symmetric version of the MFMFE method on hexahedral grids. The thesis of Theorem 9 thus
implies

‖p̄h − Ph‖�∞(�2) � C
(
h2 + τ 2).

If we further define pn+1
h as the element of Wh such that rh pn+1

h = Pn+1
h , we may write

∥∥p(tn+1) − pn+1
h

∥∥�
∥∥p(tn+1) −Ph p(tn+1)

∥∥+ ∥∥rh
(Ph p(tn+1)

)− Pn+1
h

∥∥
�2 ,

where (67) applies. Since ‖p −Ph p‖ � Ch|p|1 (cf. [1,5]), it follows that the previous expression is O(h + τ 2). Finally, taking
the maximum over n yields, with an abuse of notation,

‖p − ph‖�∞(L2) = max
0�n�NT

∥∥p(tn+1) − pn+1
h

∥∥� C
(
h + τ 2). (86)

In virtue of (83), if we just considered the assumption (79a) in Theorem 8, we would expect to obtain

∥∥εn+1
h

∥∥
�2 � C

(
τ q + max

0�t�T

∥∥αh(t)
∥∥

�2

)
,

as a result of the addition of all the truncation errors. However, cancellation of such errors may occur, thus leading to an
exponent q +1 for τ in the previous expression. This behavior can also be observed for some classical Runge–Kutta methods
(see [41] and references therein). In [30], the authors recover the second-order convergence of the Peaceman–Rachford ADI
method, assuming commutativity of the split operators. A similar argument could be used for the fully discrete scheme
(65), in the case m = 2, if {Ah,k}2

k=1 were commuting matrices. Nevertheless, as we shall illustrate in the next section, the
second-order convergence is observed in practice even in the non-commuting case.
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Fig. 3. Smooth quadrilateral mesh.

7. Numerical experiments

In the sequel, we illustrate the main features of the proposed methods by reporting a collection of convergence and
scalability tests. In doing so, we obtain numerical results for both the pressure and velocity variables in different time–space
norms. Note that, since the fully discrete scheme (65) is formulated in terms of pressures, the error analysis of the previous
section does not provide error estimates for the flux variable. However, flux convergence rates may be obtained numerically
by using the fully discrete counterpart of the expression (16). In addition, we show the suitability of the algorithms for the
numerical solution of flow problems involving discontinuous permeability tensors.

7.1. Convergence and scalability tests

Let us consider problem (1) posed on the unit square, with t varying in [0,2] and tensor K given by

K (x) =
(

4 + (x + 2)2 + y2 1 + sin(xy)

1 + sin(xy) 2

)
.

Data f , g and p0 are chosen in such a way that

p(x, t) = 30 + 72t

15 + 4096t6
sin(3πx)2 sin(3π y)2

is the exact solution, and the boundary conditions are considered to be of Dirichlet type. The numerical solution of this
problem follows the method of lines approach: we initially consider a spatial discretization based on the MFMFE method
presented in Section 2, and subsequently apply a domain decomposition splitting technique along the lines of Section 5.

The spatial domain is discretized by means of three different types of quadrilateral meshes consisting of N × N elements.
The first one is a family of smooth meshes composed of h2-parallelograms, where h = 1/N . It is defined as a C∞ mapping
of successively refined uniform meshes on the unit square and presents the form

x = x̂ + 3

50
sin(2π x̂) sin(2π ŷ),

y = ŷ − 1

20
sin(2π x̂) sin(2π ŷ).

An illustration of this type of meshes is given in Fig. 3.
On the other hand, we consider a family of h-perturbed quadrilateral grids, whose construction is based on the definition

of a primal mesh on the unit square. As shown in Fig. 4 (left), such a mesh consists of four congruent elements. The element
located at the lower left position of the mesh is defined by the vertices (0,0), ( 1

2 ,0), ( 1
2 , 3

4 ) and (0, 1
4 ). Thus, in order to

construct the h-perturbed mesh shown in Fig. 4 (right), we first consider a uniform mesh on the unit square involving
N × N elements, and subsequently apply suitable dilation and translation mappings of the primal mesh onto each of these
elements (cf. [54,55]).

The third type of meshes is a family of randomly h-perturbed grids consisting of highly distorted quadrilaterals. Specif-
ically, they are constructed by perturbing the vertices of a uniform mesh by a distance O(h) in a random direction. In
particular, the vertices of the mesh displayed on Fig. 5 are obtained as

xi, j = x̂i, j − 5

4
h +

√
2

3
hrx

i, j,

yi, j = ŷi, j − 5

4
h +

√
2

3
hr y

i, j,
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Fig. 4. Primal mesh on the unit square (left) and h-perturbed quadrilateral mesh (right).

Fig. 5. Randomly h-perturbed quadrilateral mesh.

where rx
i, j and r y

i, j are pseudo-random numbers uniformly distributed in the interval (0,1).
In order to keep the number of internal stages as small as possible (cf. Remark 2), we decompose Ω into two overlapping

subdomains {Ωk}2
k=1. In turn, each subdomain is partitioned into mk = 2 disjoint connected components {Ωkl}2

l=1, for k =
1,2. To this end, we denote I = (0,1) and consider the intervals where ε is chosen to be 1

16 . Note that the overlapping size

takes a value of ξ = 2ε = 1
8 . The corresponding subdomains are then constructed as follows

Ω1 ≡ I1 × I, Ω2 ≡ I2 × I.

Following [19], we next define a piecewise smooth partition of unity in accordance with (52). For that purpose, we first
introduce the functions

w1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if x = 0,

sin( πx
1/4+ε ), if x ∈ (0, 1

4 + ε),

sin(
π(x−1/2+ε)

1/4+ξ
), if x ∈ ( 1

2 − ε, 3
4 + ε),

0, otherwise,

(87)

and

w2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin(
π(x−1/4+ε)

1/4+ξ
), if x ∈ ( 1

4 − ε, 1
2 + ε),

sin(
π(x−3/4+ε)

1/4+ε ), if x ∈ ( 3
4 − ε,1),

1, if x = 1,

0, otherwise,

(88)

and subsequently define ρ1(x) and ρ2(x) in Ω by normalizing the previous expressions, i.e.,

ρk(x) = wk(x)

w1(x) + w2(x)
, for k = 1,2. (89)

Using this partition of unity, we consider the splittings Ah = ∑2
k=1 Ah,k and Lh = ∑2

k=1 Lh,k , for the discrete diffusion
operator and the semidiscrete source/sink term, respectively. Both Ah,k and Lh,k are defined in the spirit of Section 5.1. Such
splittings are then combined with the two-level Peaceman–Rachford time integration formula in order to obtain a fully
discrete scheme for the pressures of the form (65). In this case, the linear system to solve at each implicit internal stage is
reduced to a set of two uncoupled subsystems associated to the corresponding disjoint components {Ωkl}2

l=1, for k = 1,2,
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Table 1
Global errors and numerical orders of convergence in space on the smooth mesh (τ = 5E−05; h0 = 2−4; ε = 1

16 ).

Symmetric method

h ‖p − ph‖�∞(L2) ‖rh p − Ph‖�∞(�2) ‖Πhu − uh‖�∞(L2) ‖u − uh‖�∞(Fh )

h0 3.53E−01 – 1.26E−01 – 1.25E+01 – 1.73E+01 –
h0/2 1.68E−01 1.07 3.19E−02 1.98 6.33E+00 0.99 8.88E+00 0.96
h0/22 8.30E−02 1.02 8.04E−03 1.99 3.17E+00 1.00 4.48E+00 0.99
h0/23 4.14E−02 1.00 2.02E−03 1.99 1.59E+00 1.00 2.24E+00 1.00
h0/24 2.08E−02 0.99 5.03E−04 2.01 8.02E−01 0.99 1.11E+00 1.01

Non-symmetric method

h ‖p − ph‖�∞(L2) ‖rh p − Ph‖�∞(�2) ‖Πhu − uh‖�∞(L2) ‖u − uh‖�∞(Fh )

h0 3.53E−01 – 1.26E−01 – 1.26E+01 – 1.73E+01 –
h0/2 1.68E−01 1.07 3.20E−02 1.98 6.33E+00 0.99 8.88E+00 0.96
h0/22 8.30E−02 1.02 8.04E−03 1.99 3.17E+00 1.00 4.48E+00 0.99
h0/23 4.14E−02 1.00 2.02E−03 1.99 1.59E+00 1.00 2.24E+00 1.00
h0/24 2.08E−02 0.99 5.03E−04 2.01 8.02E−01 0.99 1.11E+00 1.01

which can be readily solved in parallel. The extension to a higher number of disjoint connected components is addressed
below. Regarding the flux variable, we use the fully discrete counterpart of the expression (16) to compute Un

h in terms of
Pn

h at each time step.
Let us now test the convergence of both the symmetric and non-symmetric MFMFE–FSRKm methods on all three types of

meshes. To this end, we consider a sufficiently small fixed time step τ = 5E−05 in order to produce a negligible contribution
of the time discretization to the global error. Both the pressure and velocity errors are computed by combining the �∞-norm
in time with various norms in space. In particular, with an abuse of notation, the pressure errors are defined to be

‖rh p − Ph‖�∞(�2) = max
0�n�NT

∥∥rh p(tn+1) − Pn+1
h

∥∥
�2 ,

and ‖p − ph‖�∞(L2) as given by (86). Note that the integral involved in the last expression is approximated element-wise by
a 9-point Gaussian quadrature formula. As for the velocity errors, we consider the following expressions

‖Πu − uh‖�∞(L2) = max
0�n�NT

∥∥Πu(tn+1) − un+1
h

∥∥, (90)

‖u − uh‖�∞(Fh) = max
0�n�NT

∥∥u(tn+1) − un+1
h

∥∥Fh
, (91)

where un+1
h is the element of Vh defined, at each element E , as the Piola transform of a certain function v̂ ∈ V̂ (Ê). In

particular, the eight degrees of freedom of such v̂ (i.e., the values of v̂ · n̂ê at the vertices of each edge ê ⊂ ∂ Ê) are given by
the corresponding eight components of the vector Un+1

h . In this case, the integral involved in (90) is approximated by the
trapezoidal rule, while that in (91) is computed by a high-order Gaussian quadrature formula.

In Table 1, we show the numerical results obtained for h2-parallelogram meshes. First-order convergence is observed
for both the pressure and velocity variables in the symmetric and non-symmetric MFMFE–FSRKm methods. In addition,
second-order superconvergence is obtained for the pressure at the cell centers. Note that, since ‖rh p − p̄h‖�2 � Ch2, the
convergence behavior of the pressure errors is in accordance with the estimates derived in Remark 4. In turn, the first-order
convergence for the flux is consistent with the error estimates derived for the semidiscrete scheme. The results obtained
for the family of h-perturbed meshes are similar and can be seen in Table 2. Finally, Table 3 contains the global errors
and numerical orders of convergence in space for the randomly perturbed grids with perturbations of size O(h). On these
highly distorted grids, the convergence for both pressures and velocities is preserved by the non-symmetric scheme and
deteriorates if the symmetric method is used.

In the remaining of this subsection, we study the convergence in time and scalability of the symmetric MFMFE–FSRKm
method, and the influence of the overlapping size on the accuracy of the splitting technique. For that purpose, we consider
the h-perturbed mesh displayed on Fig. 4 and assume the spatial domain Ω to be decomposed into two subdomains
{Ωk}2

k=1, each containing an increasing number q of disjoint connected components {Ωkl}q
l=1, for k = 1,2. Fig. 6 shows

the type of decomposition under consideration. In this representation, the internal boundaries of the disjoint components
belonging to Ω1 and Ω2 are depicted by dotted and dashed lines, respectively. Accordingly, the partition of unity consists
of two piecewise smooth functions {ρk(x)}2

k=1 as introduced in (89). Note that, in this case, the expressions (87) and (88)
must be suitably redefined for each chosen value of q. Using the splittings {Ah,k}2

k=1 and {Lh,k}2
k=1, the linear system to

solve at the kth internal stage is a collection of q uncoupled subsystems associated to the components {Ωkl}q
l=1, for k = 1,2.

Thus, the algorithm can be implemented on q parallel processors, each of which will solve the corresponding subsystem in
a specific component.

In order to study the convergence behavior in time of the scheme, we fix h = 2−8 so that the error in space is negligible.
Table 4 shows the global errors and numerical orders of convergence in time for ‖rh p − Ph‖�∞(�2) . In accordance with the
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Table 2
Global errors and numerical orders of convergence in space on the h-perturbed mesh (τ = 5E−05; h0 = 2−4; ε = 1

16 ).

Symmetric method

h ‖p − ph‖�∞(L2) ‖rh p − Ph‖�∞(�2) ‖Πhu − uh‖�∞(L2) ‖u − uh‖�∞(Fh )

h0 3.67E−01 – 1.23E−01 – 1.66E+01 – 1.94E+01 –
h0/2 1.77E−01 1.05 2.88E−02 2.09 8.39E+00 0.98 1.02E+01 0.93
h0/22 8.76E−02 1.01 6.98E−03 2.04 4.20E+00 1.00 5.15E+00 0.99
h0/23 4.37E−02 1.00 1.73E−03 2.01 2.10E+00 1.00 2.59E+00 0.99
h0/24 2.21E−02 0.98 4.33E−04 2.00 1.06E+00 0.99 1.29E+00 1.01

Non-symmetric method

h ‖p − ph‖�∞(L2) ‖rh p − Ph‖�∞(�2) ‖Πhu − uh‖�∞(L2) ‖u − uh‖�∞(Fh )

h0 3.64E−01 – 1.24E−01 – 1.66E+01 – 1.95E+01 –
h0/2 1.76E−01 1.05 2.86E−02 2.12 8.39E+00 0.98 1.02E+01 0.93
h0/22 8.75E−02 1.01 6.85E−03 2.06 4.20E+00 1.00 5.16E+00 0.98
h0/23 4.37E−02 1.00 1.69E−03 2.02 2.10E+00 1.00 2.59E+00 0.99
h0/24 2.21E−02 0.98 4.21E−04 2.01 1.06E+00 0.99 1.29E+00 1.01

Table 3
Global errors and numerical orders of convergence in space on the randomly h-perturbed mesh (τ = 5E−05; h0 = 2−4; ε = 1

16 ).

Symmetric method

h ‖p − ph‖�∞(L2) ‖rh p − Ph‖�∞(�2) ‖Πhu − uh‖�∞(L2) ‖u − uh‖�∞(Fh )

h0 3.47E−01 – 1.22E−01 – 1.25E+01 – 1.73E+01 –
h0/2 1.67E−01 1.06 3.62E−02 1.75 6.44E+00 0.96 8.80E+00 0.98
h0/22 8.31E−02 1.01 1.78E−02 1.02 3.91E+00 0.72 5.92E+00 0.57
h0/23 4.33E−02 0.94 1.52E−02 0.23 2.90E+00 0.42 5.03E+00 0.24
h0/24 2.52E−02 0.78 1.50E−02 0.02 2.82E+00 0.04 5.07E+00 < 0

Non-symmetric method

h ‖p − ph‖�∞(L2) ‖rh p − Ph‖�∞(�2) ‖Πhu − uh‖�∞(L2) ‖u − uh‖�∞(Fh )

h0 3.52E−01 – 1.38E−01 – 1.24E+01 – 1.70E+01 –
h0/2 1.66E−01 1.08 2.97E−02 2.22 6.33E+00 0.97 8.78E+00 0.95
h0/22 8.21E−02 1.02 7.71E−03 1.95 3.20E+00 0.98 4.45E+00 0.98
h0/23 4.08E−02 1.01 1.86E−03 2.05 1.60E+00 1.00 2.23E+00 1.00
h0/24 2.04E−02 1.00 4.67E−04 1.99 8.03E−01 0.99 1.15E+00 0.96

Fig. 6. Decomposition of Ω into two subdomains Ω1 and Ω2, each consisting of q disjoint connected components {Ω1l}q
l=1 and {Ω2l}q

l=1. The internal
boundaries of such components belonging to Ω1 and Ω2 are represented by dotted and dashed lines, respectively.

theory, for any given q, the method is second-order convergent and unconditionally stable. Although not reported in the
table, similar results are obtained for ‖p − ph‖�∞(L2) .

In Table 5, we study the effect of a reduction in the overlapping size ξ on the accuracy of the splitting technique. For
a specific number of processors, the global error ‖rh p − Ph‖�∞(�2) increases as the overlapping size is reduced. This is due
to the fact that the error constant depends on negative powers of the overlapping size. According to the experimental data
shown in the table, such a constant doubles as the value of ε is halved. Similar results concerning the influence of the
overlapping size on the global error of domain decomposition splitting schemes are reported in [19].

To conclude, we perform a scalability test on a shared-memory machine with 48 GB of RAM that runs CentOS 6.3
and has 8 Intel(R) Xeon(R) CPU E5607 2.27 GHz processors. For an increasing number q of processors, Table 6 displays
the communication time Tcomm , the computation time Tcomp , and the total execution time Ttotal (all three measured in
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Table 4
Global errors and numerical orders of convergence in time for the symmetric method on the h-perturbed mesh (h = 2−8; τ0 = 1E−02; ε = 1

80 ).

q 2 4 8

τ ‖rh p − Ph‖�∞(�2) ‖rh p − Ph‖�∞(�2) ‖rh p − Ph‖�∞(�2)

τ0 1.46E−01 – 1.36E−01 – 2.24E−01 –
τ0/21/2 7.00E−02 2.12 6.98E−02 1.92 1.16E−01 1.90
τ0/2 3.27E−02 2.20 3.54E−02 1.96 5.80E−02 2.00
τ0/23/2 1.69E−02 1.90 1.78E−02 1.98 2.89E−02 2.01
τ0/22 8.83E−03 1.87 8.88E−03 2.01 1.45E−02 1.99

Table 5
Effect of the overlapping size on the accuracy of the method. Global errors for the symmetric method on the h-perturbed mesh (h = 2−9; τ = 5E−03;
ε0 = 1

80 ).

q 2 4 8

ε ‖rh p − Ph‖�∞(�2) ‖rh p − Ph‖�∞(�2) ‖rh p − Ph‖�∞(�2)

ε0 3.76E−02 4.07E−02 6.56E−02
ε0/21/2 5.46E−02 5.41E−02 9.25E−02
ε0/2 7.03E−02 6.67E−02 1.16E−01
ε0/23/2 9.59E−02 9.22E−02 1.53E−01
ε0/22 1.47E−01 1.33E−02 2.23E−01

Table 6
Scalability test for the symmetric method on the h-perturbed mesh. Component size indicates the number of grid points on each connected component,
with α ∈ {� ε

h �,2� ε
h �} = {7,14} (h = 2−9; τ = 5E−03; ε = 1

80 ).

q Component size Tcomm Tcomp Ttotal S(q) E(q) S∗(q)

1 (256 + α) × 512 0.00E+00 1.45E+03 1.45E+03 1.00 100.00 1.00
2 (128 + α) × 512 6.11E+01 7.23E+02 7.84E+02 1.85 92.50 1.85
4 (64 + α) × 512 9.76E+01 3.85E+02 4.82E+02 3.01 75.25 3.23
8 (32 + α) × 512 1.03E+02 2.55E+02 3.58E+02 4.05 50.63 5.13

seconds), together with the parallel speedup S(q) and the efficiency E(q). The last column contains the maximum theoretical
speedup S∗(q) predicted by Amdahl’s law (to be defined below). Note that the value q = 1 represents the implementation
of the serial algorithm on a single processor. As q grows from 1 to 8 by powers of 2, the increase in Tcomm is observed
to be slower than the decrease in Tcomp . This results in a global reduction of Ttotal throughout the experiment. In order
to measure the reduction rate, we define the speedup S(q) as the ratio of the runtime of the serial program to that of
the parallel program with q processors. Thus, the efficiency is defined to be E(q) = S(q)/q × 100. Remarkably, the speedup
increases at a slower rate each time the number of processors is doubled. As a result, the parallel efficiency keeps on
diminishing as q gets a larger value. This behavior is predicted by Amdahl’s law, which establishes that, for a problem of
fixed size, the maximum speedup is given by

S∗(q) = 1

(1 − F ) + F
q

. (92)

Here, F is the fraction of time spent by a serial processor on parts of the algorithm that can be done in parallel. In this
case, using the MPI profiling tools, we estimate a value of F = 0.92. Hence, the computed speedups displayed on Table 6
are in accordance with the theoretical values provided by the expression (92).

7.2. Flow through a porous medium with discontinuous permeability

Let us now consider a numerical example of single-phase flow through a porous medium containing a low-permeability
streak. Stationary versions of this problem are solved using alternative spatial discretizations in [56–58]. In particular, we
consider problem (1) posed on the unit square, with T = 2, ΓD = {0,1} × (0,1), ΓN = [0,1] × {0,1}, f (x, t) = 0 and p0(x) =
1 − x. Pressure is specified to be equal to 1 on the boundary {0} × (0,1) and equal to 0 on {1} × (0,1). In turn, zero flux is
set on ΓN .

The flow domain contains a low-permeability region which is delimited by two curves. The top curve is chosen to be an
arc of a circle with center at (0.1,−0.4) and radius equal to 1.2, while the bottom curve is an arc of a circle with the same
center and radius equal to 1.1. The permeability throughout the domain is uniform and isotropic (K = I2), except in the
low-permeability streak. In this region, it is such that the parallel component to the local streak orientation (K‖) is equal
to 0.1, and the normal component to the local streak orientation (K⊥) is equal to 0.001. In the x–y coordinate system, the
permeability within the streak is a full tensor, whose components are given by
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Fig. 7. Geometry of the flow domain and logically rectangular grid.

Fig. 8. Pressure distributions for the MFMFE–FSRKm method (left) and for the MFMFE–TR method (right).

Kxx = K‖ cos2 φ + K⊥ sin2 φ,

Kxy = (K‖ − K⊥) cosφ sinφ,

K yy = K‖ sin2 φ + K⊥ cos2 φ.

Here, φ = φ(x, y) is the rotation angle of the orthogonal coordinate system in which K is a diagonal tensor with elements
K‖ and K⊥ . More specifically,

sinφ = − x̂√
x̂2 + ŷ2

, cosφ = ŷ√
x̂2 + ŷ2

,

where x̂ = x − 0.1 and ŷ = y + 0.4.
In order to solve this problem, we consider the MFMFE–FSRKm method (65), with m = 2 subdomains and mk = 1 con-

nected component per subdomain. In particular, we define Ω1 = (0, 9
16 ) × (0,1) and Ω2 = ( 7

16 ,1) × (0,1). Moreover, a
combination of the MFMFE scheme with a classical time integration formula – namely, the trapezoidal rule (TR) – is used.
This numerical example permits us to test the behavior of the spatial discretization method to accurately solve problems
containing irregularly shaped strata and abrupt variations in permeability. In addition, it provides a qualitative compari-
son between the proposed time-splitting approach and a standard time integrator in terms of accuracy of the numerical
solution.

Fig. 7 shows the geometry of the flow domain and the type of logically rectangular grid used in the discretization.
Observe that the grid is adapted to the geometry of the low-permeability streak, depicted in the figure by bold curves. In
Fig. 8, we display contour plots of the pressure distribution obtained with both discretizations once the stationary state
is reached. Both methods consider the quadrilateral mesh shown in Fig. 7, with 200 × 200 elements, and a time step
τ = 5E−03. Note the effect of the low-permeability streak on the pressure distribution. As it can be observed, the numerical
solution resulting from the MFMFE–FSRKm scheme is qualitatively similar to that obtained with the MFMFE–TR method.
Finally, Fig. 9 shows the velocity field obtained with both discretizations at the stationary state. As usual, the length of
the arrows is proportional to the module of the vectors. In this case, a quadrilateral mesh with 20 × 20 elements and a
time step τ = 5E−03 are considered. Once again, the results are comparable for both approaches. As expected from the
physical configuration, no flow enters the streak, so these results are also in accordance with those obtained in [56–58].



Author's personal copy

1350 A. Arrarás et al. / Journal of Computational Physics 257 (2014) 1321–1351

Fig. 9. Velocity fields for the MFMFE–FSRKm method (left) and for the MFMFE–TR method (right).

Significantly, the numerical solutions obtained for a different number m of subdomains and/or a different number mk of
disjoint connected components per subdomain are similar to those represented on the left-hand side of Figs. 8 and 9.
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