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322 K. Lipnikov et al.

1 Introduction

Coupled Stokes–Darcy flows occur in various physical processes of significant impor-
tance. Blood motion in the vessels, the interaction of ground and surface water, and
engineering filtration problems are just a few examples that involve such flows. Our
model consists of a fluid whose motion is governed by the Stokes equation and a
porous medium saturated by the same fluid, in which the Darcy’s law is valid. The
two equations are coupled through transmission conditions that must be satisfied on
the interface between the free fluid region and the porous medium region. These con-
ditions are continuity of flux and normal stress, as well as slip with friction condition
for the Stokes velocity known as the Beavers–Joseph–Saffman condition [6,51]. In
this paper, we consider the surface–subsurface water flow as an application of the
model.

There are number of stable and convergent numerical methods developed for the
coupled Stokes–Darcy flow system, see e.g., [21,26,27,37,42,44,48,57]. Often it is
of interest to study contaminant transport in such flows, which necessitates employing
numerical schemes that conserve mass locally. In this paper we use the discontinuous
Galerkin (DG) and the mimetic finite difference (MFD) methods to discretize the
Stokes and Darcy equations, respectively. Both methods are locally mass conservative.
We consider very general polygonal or polyhedral grids, as they allow us to model
complex geometries with relatively few degrees of freedom.

The local mass conservation property of the DG method stems from the fact that
discontinuous functions are used to approximate the solution on a given mesh. The
original DG method was introduced in the early seventies for solving the neutron
transport equation [36,46]. Since that time, several DG schemes have been intro-
duced, including the Bassy–Rebay method [5], the interior penalty Galerkin methods
[2,20,47,56], the Oden–Babuška–Baumann method [45], and the local discontinuous
Galerkin (LDG) method [17]. A unifying DG framework for elliptic problems is stud-
ied in [4]. DG methods have been used to solve a wide range of problems, including
compressible [5] and incompressible [29,41,48] fluid flows, magneto-hydrodynamics
[55], and contaminant transport [20]. In [54], the LDG method is employed for trans-
port coupled with Stokes–Darcy flows.

The MFD method is a relatively new discretization technique originating from
the support-operator algorithms [34,52]. The method has been successfully applied
to problems of continuum mechanics [43], electromagnetics [33], linear diffusion
[34,39], and recently fluid dynamics [7,8]. The goal of the MFD discretization is to
incorporate essential mathematical and physical principles (conservation laws, dual-
ity of operators and solution positivity) of the underlying system in the numerical
model. This is achieved by approximating the differential operators in the govern-
ing equations by discrete operators that satisfy discrete versions of the fundamen-
tal identities of vector and tensor calculus. The MFD method can handle polygonal
in 2-D and polyhedral in 3-D meshes with curved boundaries and possibly degen-
erate cells, which are well-suited to represent the irregular features of the porous
medium.

For simplicial and quadrilateral meshes, an equivalence between the MFD method
and the lowest order Raviart–Thomas MFE method has been established in [9] and [10],
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Discontinuous Galerkin and mimetic finite difference methods 323

respectively. For polyhedral meshes, a relationship between the MFD method and the
multipoint flux approximation (MPFA) has been studied in [40]. A strong connection
between the MFD family of methods and a family of the gradient-type finite volume
methods [24] and the mixed-finite volume methods [22] has been established in [23].

In this paper, we formulate the DG method on polygonal or polyhedral meshes
by using one of the MFD tools, a lifting operator from mimetic degrees of freedom
to a functional space. In particular, constant flux values on each edge (or face) of an
element are extended into a piecewise linear function inside the element. This allows
us to formulate a DG-MFD method for coupled Stokes–Darcy flows on polygonal or
polyhedral meshes. The method is heterogeneous in the sense that discrete mimetic
degrees of freedom in the Darcy domain are coupled with piecewise polynomial finite
element spaces in the Stokes region. The meshes from the two regions may be non-
matching on the interface and the continuity of flux condition is imposed through
a Lagrange multiplier space. This space is defined on an interface mesh that is the
trace of the mesh of the Darcy region and it is also used to approximate the normal
stress on the interface. A global inf-sup condition is established that implies the well-
posedness of the coupled scheme. For this we construct an interpolant in the space of
DG-MFD velocities with weakly continuous normal components. We also establish
optimal order convergence for the approximate velocity and pressure fields. Numerical
calculations in 2-D are presented to support the theory.

The paper outline is as follows. In Sect. 2 we formulate the coupled problem. Its
discretization is presented in Sect. 3. In Sect. 4 we construct some interpolants that
will be used in the analysis of the method. Section 5 deals with the well-posedness
of the method. Error estimates are derived in Sect. 6. In Sect. 7, we discuss some
implementation details and provide results from computational tests that verify the
theoretical error bounds.

2 The coupled Stokes–Darcy problem

The following model describes flow of incompressible fluid in a free fluid domain �1
and a porous medium domain �2 across an interface �I . We assume that both �1 and
�2 are Lipschitz polyhedral domains in �d , d = 2, 3, separated by a simply connected
interface �I (see Fig. 1). Let

�k = ∂�k\�I , k = 1, 2,

and nk be the exterior unit normal vector to ∂�k . We denote the fluid velocity in
domain �k by uk , the fluid viscosity by μ, and the pressure by pk . The stress tensor
is given by

T1 = −p1I + 2μ D(u1), D(u1) = 1

2
(∇ u1 + ∇ uT

1 ).

Flow in the Stokes domain is governed by the conservation of momentum and mass
laws. Considering no slip boundary conditions for simplicity, we have
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Fig. 1 A 2-D model of the coupled Stokes–Darcy flow

−div T1 = f1, ∇ · u1 = 0 in �1,

u1 = 0 on �1.
(2.1)

Flow in the Darcy domain is governed by Darcy’s law and the conservation of mass
law:

u2 = −K∇ p2, ∇ · u2 = f2 in �2,

u2 · n2 = 0 on �2,
(2.2)

where for simplicity we assume no-flow boundary conditions. In the above, K is a
uniformly positive definite and bounded full tensor representing the rock permeability
divided by the fluid viscosity.

The above problems are coupled across �I through three interface conditions repre-
senting the mass conservation, the balance of normal stress, and the Beavers–Joseph–
Saffman condition [6,51]:

u1 · n1 = −u2 · n2, (2.3)

(T1n1) · n1 = −p2, (2.4)

u1 · τ j = −2G j (D(u1)n1) · τ j , j = 1, · · · , d − 1, (2.5)

where τ j , j = 1, · · · , d − 1, is an orthonormal system of tangential vectors on �I .
Condition (2.5) models slip with friction, where G j = (μKτ j ) · τ j/α and α > 0 is
an experimentally determined friction constant. Existence of a unique weak solution
to the coupled problem (2.1)–(2.5) is shown in [37].

3 Coupling of two discretization methods

In this section we describe coupling of two discretization methods, the discontinuous
Galerkin (DG) method in the Stokes domain and the MFD method in the Darcy
domain.
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Discontinuous Galerkin and mimetic finite difference methods 325

3.1 Admissible meshes

Let �h
k be a partition of �k , k = 1, 2 into polygonal in 2-D and polyhedral in 3-D

elements E with diameter hE . The meshes may be non-matching on the interface �I .
Let hk = maxE∈�h

k
hE . Hereafter, we shall use the term face, denoted by e, for both a

face in 3-D and an edge in 2-D. We will denote edges in 3-D by �. Let xE , xe, and x�

be the centroids of element E , face e, and edge �, respectively. Let |E | be the volume
of E and |e| be the area of face e. Let C denote a generic constant independent of hE

and E . We assume that the partitions �h
k are shape-regular in the following sense.

Definition 3.1 The polygonal (polyhedral) partition �h
k is shape-regular if

• Each element E has at most N � faces, where N � is independent of h1 and h2.
• Each element E is star-shaped with respect to a ball of radius ρ�hE centered at

point xE , where ρ� is independent of h1 and h2. Moreover, each face e of E and
each edge � of E in 3-D is star-shaped with respect to a ball of radius ρ�hE centered
at the point xe and x�, respectively. Thus,

C hd
E ≤ |E | ≤ hd

E , C hd−1
E ≤ |e| ≤ hd−1

E . (3.1)

Note that meshes with non-convex elements may be shape-regular in this sense.
Let Eh

k be the set of interior faces of �h
k . For every face e, we define a unit normal

vector ne that will be fixed once and for all. If e belongs to �k , we choose the outward
normal to �k . If e belongs to �I , we choose the outward normal to �2. Let nE be the
outward unit normal vector to E , so that χe

E ≡ ne · nE is either 1 or -1.

3.2 Discretization in the Stokes domain

Let D be a domain in �d and W s,p(D), s ≥ 0, p ≥ 1, be the usual Sobolev space
[1] with a norm ‖ · ‖s,p,D and a seminorm | · |s,p,D . The norm and the seminorm in
the Hilbert spaces Hs(D) ≡ W s,2(D), (Hs(D))d , and (Hs(D))d×d are denoted by
‖ · ‖s,D and | · |s,D , respectively.

We extend the formulation in [29,48] on simplicial elements to general polyhedra.
Let X1 and Q1 be Sobolev spaces for the velocity and the pressure, respectively, in
the Stokes domain:

X1 =
{

v1 ∈ (L2(�1))
d : v1|E ∈ (W 2,3/2(E))d ∀E ∈ �h

1, v1 = 0 on �1

}
,

Q1 =
{

q1 ∈ L2(�1) : q1|E ∈ W 1,3/2(E) ∀E ∈ �h
1

}
.

The functions in X1 and Q1 have double valued traces on the interior element faces.
The trace inequality and the Sobolev imbedding theorem imply the q1|e ∈ L2(e). For
a scalar function w, we define its average {w}e and its jump [w]e across an interior
face e ∈ Eh

1 as follows:

{w}e = 1

2
w|E1 + 1

2
w|E2 , [w]e = w|E1 − w|E2 ,
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326 K. Lipnikov et al.

where E1 and E2 are two elements that share face e and such that ne is directed from
E1 to E2. For e ∈ ∂�h

1, the average and the jump are equal to the value of w. Similarly,
we define the average {v}e and the jump [v]e of a vector function v by using the above
definitions for each component of v.

For v1 ∈ X1, we define the elementwise gradient

∇ hv1 ∈ (L2(�1))
d×d : ∇ hv1|E = ∇ v1|E ∀ E ∈ �h

1 .

We introduce the following norms:

|‖v1|‖2
1,�1

= ‖∇ hv1‖2
0,�1

+ ‖v1‖2
0,�1

,

‖v1‖2
X1

= ‖∇hv1‖2
0,�1

+
∑

e∈Eh
1 ∪�1

σe

he
‖[v1]‖2

0,e +
∑
e∈�I

d−1∑
j=1

μ

G j
‖v1 · τ j‖2

0,e,

‖q1‖Q1 = ‖q1‖0,�1 ,

where σe > 0 is a parameter that is a constant on e. The DG method is based on the
bilinear forms a1 : X1 × X1 → � and b1 : X1 × Q1 → � defined as follows:

a1(u1, v1)=2μ
∑

E∈�h
1

∫

E

D(u1) : D(v1) d x+
∑

e∈Eh
1 ∪�1

σe

he

∫

e

[u1] · [v1] d s

−2μ
∑

e∈Eh
1 ∪�1

∫

e

{D(u1)}ne ·[v1] d s+2με
∑

e∈Eh
1 ∪�1

∫

e

{D(v1)}ne · [u1] d s

+
∑
e∈�I

d−1∑
j=1

μ

G j

∫

e

(u1 · τ j )(v1 · τ j ) d s, ∀u1, v1 ∈ X1

b1(v, q)=−
∑

E∈�h
1

∫

E

q1 div v1 d x+
∑

e∈Eh
1 ∪�1

∫

e

{q1}[v1] · ne d s,

∀v1 ∈ X1,∀q1 ∈ Q1.

The jump term involving σe is added for stabilization. We assume that for all faces e

σe ≥ σ0 > 0, (3.2)

where σ0 is chosen to be sufficiently large according to Lemma 5.3 in order to guarantee
the coercivity of a(·, ·). The parameter ε controls the symmetry of the bilinear form
and takes value −1, 0 or 1 for the symmetric interior penalty Galerkin (SIPG) [2,56],
the incomplete interior penalty Galerkin (IIPG) [20], and the non-symmetric interior
penalty Galerkin (NIPG) [45,47] methods, respectively.

Following closely the 2-D proof in Lemma 2.5 of [48], we obtain the following
result.
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Lemma 3.1 The solution (u, p) = (u1, u2; p1, p2) to (2.1)–(2.3) satisfies

a1(u1, v1) + b1(v1, p1) +
∫

�I

p2v1 · n1 d s =
∫

�1

f1 · v1 d x, ∀v1 ∈ X1, (3.3)

b1(u1, q1) = 0, ∀q1 ∈ Q1. (3.4)

The case of simplicial elements has been studied extensively in the literature. Let
Pr denote the space of polynomials of degree at most r . The DG discrete spaces Xh

1
and Qh

1 for the velocity and the pressure, respectively, are defined as

Xh
1 =

{
vh

1 : vh
1 |E ∈ (Pr (E))d ∀E ∈ �h

1

}
,

Qh
1 =

{
qh

1 : qh
1 |E ∈ Pr−1(E) ∀E ∈ �h

1

}
.

We consider the cases r = 1, 2, 3 in 2-D and r = 1 in 3-D.
To develop the lowest order (r = 1) DG method for general polyhedra, we follow

the mimetic approach and consider a lifting operator from degrees of freedom defined
on mesh faces to a functional space. For every element E and every face e of E , we
associate d degrees of freedom (a vector in �d ) representing the mean velocity on e:

Ve
1,E = 1

|e|
∫

e

v1 d s.

Let Xh
1,M F D be the vector space with the above degrees of freedom. For a vector

V1 ∈ Xh
1,M F D , let V1,E be its restriction to element E .

On each E , we define a lifting operator R1,E acting on a vector V1,E and returning a
function in (H1(E))d . We impose the following two properties on the lifting operator:

(L1) The mean value of the lifted function on faces e of E is equal to the prescribed
degrees of freedom:

1

|e|
∫

e

R1,E (V1,E ) d s = Ve
1,E .

(L2) The lifting operator is exact for linear functions. More precisely, if VL
1,E is the

vector of face mean values of a linear function vL
1 , then

R1,E

(
VL

1,E

)
= vL

1 .

Using the elemental lifting operators R1,E , we define the following finite element
spaces:

Xh
1,L I FT =

{
vh : vh |E = R1,E (V1,E ), ∀E ∈ �h

1, ∀ V1,E ∈ Xh
1,M F D(E)

}
,

Qh
1,L I FT =

{
qh : qh |E ∈ P0(E), ∀E ∈ �h

1

}
.
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When E is a tetrahedron, the lifting operator can be chosen to be the lowest order
Crouzeix–Raviart finite element [19]. In this case, the DG spaces Xh

1 × Qh
1 coincide

with Xh
1,L I FT × Qh

1,L I FT . A constructive method for building a lifting operator for a
polyhedron E is presented in Sect. 4.

The spaces Xh
1,L I FT × Qh

1,L I FT are new DG spaces for Stokes on polygons or
polyhedra. To keep the notation simple, for the rest of the paper we will denote the
DG spaces for both simplicial and polyhedral elements by Xh

1 × Qh
1,

Remark 3.1 Due to property (L1), the DG spaces on polygons and polyhedra defined
above have continuous fluxes. This is desirable when the computed Stokes flow field
is coupled with a transport equation.

We are now ready to formulate the DG method in �1. Given an approximation λ̄h

of p2 on �I (to be defined later), the DG solution on �1, (uh
1 , ph

1 ) ∈ Xh
1 × Qh

1, satisfies

a1

(
uh

1 , vh
1

)
+ b1

(
vh

1 , ph
1

)
+
∫

�I

λ̄hvh
1 · n1 d s =

∫

�1

f1 · vh
1 d x, ∀vh

1 ∈ Xh
1 , (3.5)

b1

(
uh

1 , qh
1

)
= 0, ∀qh

1 ∈ Qh
1 . (3.6)

Remark 3.2 An alternative approach to develop Stokes discretizations on polyhedra
is to consider MFD constructions [7,13]. In [13], a discrete gradient operator is built
using velocity degrees of freedom at the element vertices. In [7], the discretization of
a1(u1, v1) is built algebraically in two dimensions using velocity values at vertices
and normal components on edges. We do not pursue these approaches here.

3.3 Discretization in the Darcy domain

Let X2 and Q2 be the Sobolev spaces for the velocity and the pressure in �2, respec-
tively, defined as follows:

X2 =
{

v2 ∈ (Ls(�2))
d , s > 2 : div v2 ∈ L2(�2), v2 · n2 =0 on �2

}
, Q2 = L2(�2).

We introduce the following L2-norms:

‖v2‖X2 = ‖v2‖0,�2 , ‖q2‖Q2 = ‖q2‖0,�2 .

It is easy to see that the solution to (2.1)–(2.5) satisfies
∫

�2

K−1u2 · v2 d x −
∫

�2

p2 div v2 d x +
∫

�I

p2v2 · n2 d s = 0, ∀v2 ∈ X2, (3.7)

∫

�2

q2 div u2 d x =
∫

�2

f2 q2 d x, ∀q2 ∈ Q2. (3.8)

Note that the boundary integral in (3.7) is well defined if p2 ∈ H1(�2).
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We use the MFD method [15,16] to define discrete forms of (3.7)–(3.8). The first
step in the MFD method is the definition of degrees of freedom. For each face e in �h

2,
we prescribe one degree of freedom V e

2 representing the average flux across e. Let Xh
2

be the vector space with these degrees of freedom. The dimension of Xh
2 is equal to

the number of faces in �h
2.

For any v2 ∈ X2, we define its interpolant vI
2 ∈ Xh

2 by

(
vI

2

)e = 1

|e|
∫

e

v2 · ne d s. (3.9)

Lemma 2.1 in [40] guarantees the existence of this integral for every v2 ∈ X2.
For any V2 ∈ Xh

2 , let V2,E denote the vector of degrees of freedom associated only
with an element E . We denote its component associated with face e by V e

2,E .

To approximate the pressure, on each element E ∈ �h
2, we introduce one degree of

freedom P2,E representing the average pressure on E . Let Qh
2 be the vector space with

these degrees of freedom. The dimension of Qh
2 is equal to the number of elements in

�h
2. For any p2 ∈ Q2, we define its interpolant pI

2 ∈ Qh
2 by

(
pI

2

)
E

= 1

|E |
∫

E

p2 d x . (3.10)

We also need to define a discrete mimetic space for the approximation of the pressure
on the interface �I . This space will also serve the role of a Lagrange multiplier space
for imposing the continuity of normal flux across �I . For each face e ∈ �h

I = �h
2 |�I

we introduce one degree of freedom λe representing the average pressure on e. Let h
I

be the vector space with these degrees of freedom. Note also that h
I = Xh

2 |�I and its
dimension is equal to the number of faces of �I .

The second step in the MFD method is to equip the discrete spaces Qh
2, Xh

2 , and
h

I with inner products. The inner product in the space Qh
2 is relatively simple:

[P, Q]Qh
2

=
∑

E∈�h
2

|E | PE QE , ∀ P, Q ∈ Qh
2 . (3.11)

This inner product can be viewed as a mid-point quadrature rule for L2-product of
two scalar functions. The inner product in Xh

2 can be defined formally as

[U, V]Xh
2

= UT M2 V, ∀ U, V ∈ Xh
2 , (3.12)

where M2 is a symmetric positive definite matrix. It can be viewed as a quadrature
rule for the K−1-weighted L2-product of two vector functions. The mass matrix M2
is assembled from element matrices M2,E :
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UT M2 V =
∑

E∈�h
2

UT
E M2,E VE .

The symmetric and positive definite matrix M2,E induces the local inner product

[UE , VE ]Xh
2 ,E = UT

E M2,E VE . (3.13)

The construction of matrix M2,E for a general element E is at the heart of the
mimetic method [16]. The inner product in h

I is defined as

〈λ, μ〉h
I

=
∑

e∈�h
I

λe μe |e|, ∀λ,μ ∈ h
I . (3.14)

Since V|�I ∈ h
I for every V ∈ Xh

2 , (3.14) can also be used to define 〈V, μ〉h
I
:

〈V, μ〉h
I

=
∑

e∈�h
I

V e μe |e|, ∀ V ∈ X2
h, μ ∈ h

I .

The third step in the mimetic method is discretization of the gradient and divergence
operators. The degrees of freedom have been selected to provide a simple approxima-
tion of the divergence operator. The Gauss divergence theorem naturally leads to the
following formula:

(DIV V)E = 1

|E |
∑

e⊂∂ E

χe
E V e

E |e|. (3.15)

We have a useful commutative property of the interpolants:

(
DIV vI

)
E

= 1

|E |
∫

∂ E

v · nE d s = 1

|E |
∫

E

div v d x =(div v)I
E , ∀v ∈ X2. (3.16)

The discrete gradient operator must be a discretization of the continuous operator
−K∇. To provide a compatible discretization, the mimetic method derives this discrete
operator from a discrete Gauss–Green formula:

[U, GRAD (P,λ)]Xh
2

= [DIV U, P]Qh
2
− 〈U, λ〉h

I
∀U ∈ Xh

2 , P ∈ Qh
2, λ ∈ h

I .

This equation mimics the continuous Gauss–Green formula

∫

�2

u · K−1(−K∇ p) d x =
∫

�2

p div u d x −
∫

�I

p u · n d x, ∀u ∈ X2, p ∈ H1(�2).

Non-homogeneous velocity boundary conditions would require additional terms
that represent non-zero boundary terms in the continuous Gauss–Green formula [32].
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The construction of an admissible matrix M2,E is based on the consistency condition
(see [16] for details). Let KE be the mean value of K on element E . We require

[
V, (−KE∇ pl)I

]
Xh

2 ,E
=
[
DIV V, (pl)I

]
Qh

2 ,E
−
∑

e∈∂ E

χe
E V e

E

∫

e

pl d s, ∀pl ∈P1(E).

(3.17)
The introduced inner products define the following norms:

|‖P2|‖2
Qh

2
= [P2, P2]Qh

2
and |‖V2|‖2

Xh
2

= [V2, V2]Xh
2
.

The Euclidean norm of algebraic vectors is denoted by ‖ · ‖.

Lemma 3.2 ([16]) Under the assumptions of Definition 3.1, there exists a local inner
product (3.13) such that

1

C
|E | ‖VE‖2 ≤ [VE , VE ]Xh

2 ,E ≤ C |E | ‖VE‖2, (3.18)

where C is a constant that depends on the shape regularity of the auxiliary partition
of E only.

In the following, for consistency between the DG and the mimetic notations, we
will denote a vector V2 ∈ Xh

2 by vh
2 , a vector Q2 ∈ Qh

2 by qh
2 , and a vector λ ∈ h

I
by λh . Given an approximation λh ∈ h

I of p2 on �I , the mimetic approximation of
(3.7)–(3.8) reads: Find (uh

2 , ph
2 ) ∈ Xh

2 × Qh
2 such that

a2

(
uh

2 , vh
2

)
+ b2

(
vh

2 , ph
2

)
+
〈
vh

2 , λh
〉
h

I

= 0, ∀vh
2 ∈ Xh

2 , (3.19)

b2

(
uh

2 , qh
2

)
= −

[
f I
2 , qh

2

]
Qh

2

, ∀qh
2 ∈ Qh

2, (3.20)

where

a2

(
uh

2 , vh
2

)
=
[
uh

2 , vh
2

]
Xh

2

and b2

(
vh

2 , qh
2

)
= −

[
DIV vh

2 , qh
2

]
Qh

2

.

3.4 Discrete formulation of the coupled problem

In the two previous subsections we presented partially coupled discretizations for
the Stokes and the Darcy regions, (3.5)–(3.6) and (3.19)–(3.20), respectively. The
approximations λ̄h and λh of p2 on interface �I are appeared in (3.5) and (3.19),
respectively. We impose the continuity of normal stress (2.4) by taking λ̄h to be the
piecewise constant function on �h

I satisfying

λ̄h |e = (λh)e, ∀e ∈ �h
I .
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We impose the flux continuity (2.3) in a weak sense, using h
I as the Lagrange

multiplier space. The weak continuity is embedded in the definition of the global
velocity space. More precisely, let Xh = Xh

1 × Xh
2 , Qh = Qh

1 × Qh
2, and

V h =
{

vh ∈ Xh :
∫

�I

vh
1 · n1 μ̄h d s + 〈vh

2 , μh〉h
I

= 0, ∀μh ∈ h
I

}
. (3.21)

We also define the composite bilinear forms

a
(

uh, vh
)

= a1

(
uh

1 , vh
1

)
+ a2

(
uh

2 , vh
2

)
, ∀uh, vh ∈ Xh,

b
(

vh, qh

)
= b1

(
vh

1 , qh
1

)
+ b2

(
vh

2 , qh
2

)
, ∀vh ∈ Xh, qh ∈ Qh .

The weak formulation of the coupled problem is: find the pair (uh, ph) ∈ V h × Qh

such that

a
(

uh, vh
)

+ b
(

vh, ph
)

=
∫

�1

f1 · vh
1 d x, ∀vh ∈ V h, (3.22)

b
(

uh, qh
)

= −
[

f I
2 , qh

2

]
Qh

2

, ∀qh ∈ Qh . (3.23)

Remark 3.3 We used a lifting operator from degrees of freedom to a functional space
to define the DG spaces for the Stokes domain. A similar lifting operator can be used
to define the MFD method in the Darcy domain as a finite element method.

4 Trace inequalities and interpolation results

Throughout this article, we use a few well known inequalities. The Young inequality
reads:

ab ≤ ε

2
a2 + 1

2ε
b2, a, b ≥ 0, ε > 0. (4.1)

A number of trace inequalities utilized in [48] on triangular meshes can be extended
to polyhedral meshes using the auxiliary partition of an element E into shape-regular
simplices. In particular, for any face e of element E , we have

‖φ‖2
0,e ≤ C

(
h−1

E ‖φ‖2
0,E + hE |φ|21,E

)
, ∀φ ∈ H1(E), (4.2)

and its immediate consequence

‖∇φ · ne‖2
0,e ≤ C

(
h−1

E ‖φ‖2
1,E + hE |φ|22,E

)
, ∀φ ∈ H2(E). (4.3)
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For polynomial functions, we have the trace inequality

‖∇φ · ne‖0,e ≤ Ch−1/2
E |φ|1,E , ∀φ ∈ Pr (E). (4.4)

For φ ∈ (Hs(E))2, 0 ≤ s ≤ 1, with div φ ∈ L2(E) we use Lemma 3.1 from [40]
that gives

‖φ · ne‖2
s− 1

2 ,e
≤ C

(
h−1

E ‖φ‖2
0,E + h2s−1

E ‖φ‖2
s,E + hE‖div φ‖2

0,E

)
. (4.5)

The proof of the following lemma gives a constructive way for building a lifting
operator.

Lemma 4.1 For every element E ∈ �1
h, there exists a lifting operator R1,E satisfying

(L1) and (L2) such that

|R1,E (V1,E )|2m,E ≤ Chd−2m
E ‖V1,E‖2, ∀V1,E , (4.6)

where m = 0, 1. Moreover, the lifted function satisfies the trace inequality (4.4) for
every face e of E.

Proof We consider an auxiliary partition of element E into simplexes. For every face
e of E , we connect its centroid xe with its vertices. This splits boundary ∂ E into pieces
tk that are triangles in 3-D or segments in 2-D. The auxiliary simplicial partition is
obtained by connecting the centroid xE with the points xe and the vertices of E . Due
to the mesh assumptions in Definition 3.1, this is a shape regular partition.

We construct a continuous piecewise linear lifting function R1,E (V1,E ). Property
(L1) gives the following system of linear equations for the values of R1,E (V1,E ) at
the nodes of the auxiliary partition on ∂ E :

∀e ∈ ∂ E,
1

d

∑
tk∈e

|tk |
d∑

i=1

(R1,E (V1,E ))(ai
k) = |e| Ve

1,E ,

where ai
k are the vertices of tk . Since the unknowns associated with vertices xe are

not connected to each other and their number is equal to the number of equations,
the matrix of this system has a full rank. Therefore, there exists a family of solutions,
where the unknowns corresponding to the element centroid xE and the vertices of E
are free parameters.

We populate the free parameters by the values of a vector linear function L(x) that
minimizes the quadratic functional

∑
e∈E

∣∣L(xe) − Ve
1,E

∣∣2 .
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This defines a continuous piecewise linear function R1,E (V1,E )(x). Property (L1)

is satisfied by construction. Property (L2) also holds, since, if Ve
1,E = 1

|e|
∫

e

vL
1 d s

for a linear vector vL
1 , then L(x) = vL

1 is the minimizer of the quadratic functional.
The latter follows from the fact that for all faces e

vL
1 (xe) = 1

|e|
∫

e

vL
1 d s = Ve

1,E .

The shape regularity of E implies that the free parameters are bounded by C‖V1,E‖.
The shape regularity of tk and e implies that |e|/|tk | ≤ C . Thus, the values of the lifted
function at points xe are bounded by the same norm. We have

‖R1,E (V1,E )‖2
0,E ≤ C hd

E max
x∈E

|R1,E (V1,E )(x)|2 ≤ C hd
E ‖V1,E‖2.

The estimate for the gradient of the lifted function follows from the inverse inequal-
ity and the shape regularity of the auxiliary partition.

Finally, the shape regularity of the auxiliary partition implies that the trace inequality
(4.4) holds for every tk and hence for every face e. This proves the assertion of the
lemma. ��
Lemma 4.2 Let v1 ∈ (H1(�1))

d . There exists an interpolant π1
h : (H1(�1))

d → Xh
1

such that

b1

(
π1

h (v1) − v1, qh
)

= 0, ∀qh ∈ Qh
1, (4.7)

∫

e

[
πh

1 v1

]
· w d s = 0, ∀w ∈ (Pr−1(e))

d , (4.8)

for every face e ∈ Eh
1 ∪ �1, and

|‖πh
1 (v1)|‖1,�1 ≤ C‖v1‖1,�1 . (4.9)

The interpolant has optimal approximation properties for v1 ∈ (Hs(�1))
d ,

1 ≤ s ≤ r + 1:

|πh
1 (v1) − v1|m,E ≤ Chs−m

E |v1|s, δ(E), m = 0, 1, (4.10)

where either δ(E) is the union of E with all its closest neighbors in the case of simplices
or δ(E) = E in the case of the lifted DG spaces on polygons and polyhedra.

Furthermore, the following estimates hold for v1 ∈ (Hs(�1))
d , 1 ≤ s ≤ r + 1:

‖π1
h (v1) − v1‖X1 ≤ Chs−1

1 |v1|s,�1 , (4.11)

‖π1
h (v1)‖X1 ≤ C‖v1‖1,�1 . (4.12)
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Proof On triangles for r = 1, 2, 3 and tetrahedra for r = 1 the existence of such an
interpolant is shown in [18,19,25,47,48].

It remains to consider the case of polygonal and polyhedral meshes with r = 1. Let
v1 ∈ (H1(�1))

d and let V1 be the corresponding vector of degrees of freedom. We
introduce the interpolant πh

1 such that πh
1 (v1) = R1(V1). Then, for every qh ∈ Qh

1,
the lifting property (L1) gives

b1

(
πh

1 (v1) − v1, qh
)

=
∑

E∈�h
1

qE

∫

∂ E

(R1,E (V1,E ) − v1) · nE d s = 0. (4.13)

Due to the lifting property (L1), we immediately get condition (4.8) with
w ∈ (P0(e))d .

To show (4.9), let vc
1 be the L2-orthogonal projection of v1 onto the space of

piecewise constant functions on �h
1. Then, we have

‖vc
1‖0,E ≤ ‖v1 − vc

1‖0,E + ‖v1‖0,E ≤ ChE |v1|1,E + ‖v1‖0,E ≤ C‖v1‖1,E .

For every element E , the triangle inequality and the lifting properties (L2) and (4.6)
give

‖πh
1 (v1)‖2

0,E ≤ 2 ‖πh
1 (v1 − vc

1)‖2
0,E + 2 ‖vc

1‖0,E

≤ C

⎛
⎜⎝|E |

∑
e∈∂ E

⎛
⎝ 1

|e|
∫

e

|v1 − vc
1| d s

⎞
⎠

2

+ ‖v1‖2
1,E

⎞
⎟⎠ .

Applying the trace inequality (4.2) to each component of v1 and using the standard
approximation property of the L2-projection, we bound each of the edge integrals:

⎛
⎝
∫

e

|v1 − vc
1| d s

⎞
⎠

2

≤ |e|
∫

e

|v1 − vc
1|2 d s

≤ C |e|
(

h−1
E ‖v1 − vc

1‖2
0,E + hE |v|21,E

)
≤ C |e| hE |v|21,E .

(4.14)
Combining the last two inequalities and using the shape regularity of E (3.1), we

get

‖πh
1 (v1)‖2

0,E ≤ C

(
hE |E |

|e| |v|21,E + ‖v‖2
1,E

)
≤ C‖v‖2

1,E .

To bound the H1-seminorm of πh
1 (v1), we use (4.6) to obtain

|πh
1 (v1) − vc

1|21,E ≤ Chd−2
E ‖V1,E − Vc

1,E‖2 ≤ Chd−2
E

∑
e∈∂ E

⎛
⎝ 1

|e|
∫

e

|v1 − vc
1| d s

⎞
⎠

2

,
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where Vc
1,E is the vector of degrees of freedom for the constant function vc

1. Combining
the above inequality with (4.14), and using the shape regularity of E (3.1), we conclude
that |πh

1 (v1)|1,E ≤ C |v1|1,E , which completes the proof of (4.9).
Since (L2) implies that πh

1 is exact for all linear functions on E , an application of
the Bramble–Hilbert lemma [12] gives (4.10).

It remains to show (4.11) and (4.12). Note that (L1) implies that for all faces e of E

∫

e

(
πh

1 v1 − v1

)
d s = 0, ∀ v1 ∈ (H1(E))d .

Therefore we can employ Lemma 3.9 of [47] to conclude that

‖π1
h (v1) − v1‖X1 ≤ C

∥∥∥∇h

(
π1

h (v1) − v1

)∥∥∥
0,�1

,

which, combined with (4.10), implies (4.11). The continuity bound (4.12) follows
from the triangle inequality, (4.11), and the bound ‖v1‖X1 ≤ C‖v1‖1,�1 . This proves
the assertion of the lemma. ��

5 Stability and well-posedness of the discrete problem

In this section we prove a discrete inf-sup condition and show that the discrete problem
(3.22)–(3.23) has a unique solution. Let X = X1×X2 and Q = Q1×Q2. We introduce
the composite norms

∥∥qh
∥∥2

Qh = ∥∥qh
1

∥∥2
0,�1

+ ∥∥qh
2

∥∥
Qh

2
, ∀qh =

(
qh

1 , qh
2

)
∈ Qh,

∥∥vh
∥∥2

Xh = ∥∥vh
1

∥∥2
X1

+ ∣∣∥∥vh
2

∣∣∥∥2
div, ∀vh =

(
vh

1 , vh
2

)
∈ Xh,

where

∣∣∥∥vh
2

∣∣∥∥2
div = ∣∣∥∥vh

2

∣∣∥∥2
Xh

2
+ ∣∣∥∥DIV vh

2

∣∣∥∥2
Qh

2
, ∀vh

2 ∈ Xh
2 .

Lemma 5.1 Let v ∈ (H1(�))d and vi = v|�i , i = 1, 2. Then, there exists an
operator πh : X ∩ (H1(�))d → V h, πh(v) = (πh

1 (v1), πh
2 (v2)), such that

b(πh
(

v) − v, qh
)

= 0, ∀qh ∈ Qh, (5.1)

and ∥∥∥πh
1 (v1)

∥∥∥
X1

≤ C‖v1‖1,�1 ,
∣∣∥∥πh

2 (v2)
∣∣∥∥

Xh
2

≤ C‖v‖1,�. (5.2)

Proof Let πh
1 be the operator defined in Lemma 4.2. The property (4.7) gives (5.1)

for any qh = (qh
1 , 0). Due to (4.12), we get automatically the first inequality in (5.2).

To construct πh
2 (v2), we solve the following boundary value problem:
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�ϕ = 0 in �2,

∇ϕ · n2 = 0 on �2,

∇ϕ · n2 = (v − πh
1 (v1)) · n1 on �I ,

(5.3)

and define πh
2 (v2) = vI

2 + (∇ϕ)I . By elliptic regularity [31,38],

‖∇ϕ‖H θ (�2)
≤ C

∥∥∥(v − πh
1 (v1)) · n1

∥∥∥
H θ−1/2(�I )

, 0 ≤ θ ≤ 1/2. (5.4)

For all qh
2 ∈ Qh

2, using definition of πh
2 and the commutative property (3.16), we get

b2

(
πh

2 (v) − vI
2, qh

2

)
= b2

(
(∇ϕ)I , qh

2

)
= −

[
DIV (∇ϕ)I , qh

2

]
Qh

2

= −
[
(∇ · ∇ϕ)I , qh

2

]
Qh

2

= 0.

To prove the second inequality in (5.2), we start with the triangle inequality

∣∣∥∥πh
2 (v)

∣∣∥∥
Xh

2
≤ ∣∣∥∥vI

2

∣∣∥∥
Xh

2
+ ∣∣∥∥(∇ϕ)I

∣∣∥∥
Xh

2
(5.5)

and bound every term. From the stability estimate (3.18), the trace inequality (4.2),
and the shape regularity estimates (3.1), we obtain

∣∣∥∥vI
2

∣∣∥∥2
Xh

2
=
[
vI

2, vI
2

]
Xh

2

≤ C
∑

E∈�h
2

∣∣∣∣∣E |
∑

e⊂∂ E

|(vI
2)e

E

∣∣∣∣∣
2

≤ C
∑

E∈�h
2

∑
e⊂∂ E

|E |
|e|

(
h−1

E ‖v2‖2
0,E + hE |v2|21,E

)

≤ C
∑

E∈�h
2

(
‖v2‖2

0,E + h2
E |v2|21,E

)

≤ C‖v2‖2
1,�2

. (5.6)

Using the same arguments plus inequality (4.5) with s = 1/2, we get

∣∣∥∥(∇ ϕ)I
∣∣∥∥2

Xh
2

≤ C
∑

E∈�h
2

|E |
∑

e⊂∂ E

⎛
⎝ 1

|e|
∫

e

∇ ϕ · ne d s

⎞
⎠

2

≤ C
∑

E∈�h
2

∑
e⊂∂ E

|E |
|e|

(
h−1

E ‖∇ ϕ‖2
0,E + ‖∇ ϕ‖2

1
2 ,E

)

≤ C
(
‖∇ ϕ‖2

0,�2
+ h2‖∇ ϕ‖2

1
2 ,�2

)
. (5.7)
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To bound the first and the second term on the right hand side in (5.7) we apply (5.4)
with θ = 0 and θ = 1/2, respectively:

∣∣∥∥(∇ ϕ)I
∣∣∥∥2

Xh
2

≤ C

(
‖(v1 − πh

1 (v1)) · n1‖2
− 1

2 ,�I
+ h2‖(v1 − πh

1 (v1)) · n1‖2
0,�I

)

≤ C

∥∥∥∥
(

v1 − πh
1 (v1)

)
· n1

∥∥∥∥
2

0,�I

. (5.8)

Using the trace inequality (4.2) for every e ∈ �h
I and the approximation result (4.10),

we have that
∥∥∥
(

v1 − πh
1 (v1)

)
· n1

∥∥∥
L2(e)

≤ C
(

h−1/2
E ‖v1 − πh

1 (v1)‖0,E + h1/2
E |v1 − πh

1 (v1)|1,E

)

≤ Chs−1/2
E |v1|s,δ(E), 1 ≤ s ≤ r + 1.

Thus, ∣∣∥∥(∇ ϕ)I
∣∣∥∥

Xh
2

≤ Chs−1/2
1 ‖v1‖s,�1 , 1 ≤ s ≤ r + 1. (5.9)

Combining (5.5) with estimates (5.6) and (5.9), we conclude that |‖πh
2 (v)|‖Xh

2
≤

C‖v‖1,�.
It remains to show that πh(v) ∈ V h . Let μh ∈ h

I . From definition of the inner
product (3.14), definition of the interpolant (3.9), the boundary conditions in (5.3),
and the regularity assumption v ∈ (H1(�))d , it follows that

〈
πh

2 v, μh
〉
h

I

=
〈
vI

2, μh
〉
h

I

+
〈
(∇ϕ)I , μh

〉
h

I

=
∑

e∈�h
I

(μh)e
∫

e

v2 · n2 d s +
∑

e∈�h
I

(μh)e
∫

e

∇ϕ · n2 d s

=
∫

�I

v2 · n2 μh d s +
∫

�I

v1 · n1 μh d s −
∫

�I

πh
1 (v1) · n1 μh d s

= −
∫

�I

πh
1 (v1) · n1 μh d s.

Therefore πh(v) ∈ V h . This proves the assertion of the lemma. ��
Lemma 5.2 There exists a positive constant β such that

inf
qh∈Qh

sup
vh∈V h

b1(vh
1 , qh

1 ) + b2(vh
2 , qh

2 )

‖vh‖Xh ‖qh‖Qh
≥ β. (5.10)

Proof For a given qh ∈ Qh , let us define w ∈ L2(�) by

w = (w1, w2), where w1 = −qh
1 and w2|E = −(qh

2 )E , ∀E ∈ �h
2 .
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Note that w I
2 = −qh

2 and ‖w2‖0,�2 = |‖qh
2 |‖Qh

2
. We can construct v ∈ (H1(�))d [28]

for which
div v = w and ‖v‖1,� ≤ C‖w‖0,�. (5.11)

Let πh(v) = (πh
1 (v1), πh

2 (v2)) be the interpolant constructed in Lemma 5.1. Using
(5.1) and the commutative property (3.16), we get

b1

(
πh

1 (v1), qh
1

)
+ b2

(
πh

2 (v2), qh
2

)
= b1

(
v1, qh

1

)
+ b2

(
vI

2, qh
2

)

= −
∫

�1

(div v1) qh
1 d x −

[
DIV vI

2, qh
2

]
Qh

2

=
∥∥∥qh

1

∥∥∥
2

0,�1
+ ∣∣∥∥qh

2

∣∣∥∥2
Qh

2
=
∥∥∥qh

∥∥∥
2

Qh
. (5.12)

The definition of πh
2 and (3.16) imply that

DIV
(
πh

2 (v)
)

= DIV
(

vI
2 + (∇ϕ)I

)
= (div v2)

I + (∇ · ∇ϕ)I = −qh
2 .

Using estimate (5.2) from Lemma (5.1), we bound πh(v):

∥∥∥πh(v)

∥∥∥
2

X
=
∥∥∥πh

1 (v1)

∥∥∥
2

X1
+ ∣∣∥∥πh

2 (v2)
∣∣∥∥2

Xh
2

+ ∣∣∥∥DIV (πh
2 (v2))

∣∣∥∥2
Qh

2

≤ C
(
‖v‖2

1,� + |‖qh
2 |‖2

Qh
2

)

≤ C
(
‖qh

1 ‖2
0,� + |‖qh

2 |‖2
Qh

2

)
≤ C‖qh‖2

Q . (5.13)

Combining (5.12) and (5.13) yields

b1

(
πh

1 (v1), qh
1

)
+ b2

(
πh

2 (v2), qh
2

)
≥ C‖πh(v)‖X ‖qh‖Q, (5.14)

which proves the assertion of the lemma. ��

To prove that the method is well-posed we need the coercivity property established
in the next lemma.

Lemma 5.3 Assuming (3.2), there exists a positive constant αc dependent on σ0 but
independent of h1 such that

a1

(
vh

1 , vh
1

)
≥ αc‖vh

1‖Xh
1
, ∀vh

1 ∈ Xh
1 . (5.15)
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Proof Let vh
1 ∈ Xh

1 . From the definition of a1(·, ·) we have

a1

(
vh

1 , vh
1

)
= 2μ

∑

E∈�h
1

∫

E

D(vh
1 ) : D(vh

1 ) d x+
∑

e∈Eh
1 ∪�1

σe

he

∫

e

[vh
1 ] · [vh

1 ]−2μ(1−ε) d s

×
∑

e∈Eh
1 ∪�1

∫

e

{
D(vh

1 ) ne

}
· [vh

1 ] d s+
∑

e∈�I

d−1∑
j=1

μ

G j

∫

e

(
vh

1 · τ j

)(
vh

1 · τ j

)
d s.

Since vh
1 is continuous and piecewise linear on a shape regular auxiliary partition

of E , the following Korn’s holds [11]:

‖∇hvh
1‖2

0,�1
≤ K0

⎛
⎜⎝‖Dh(vh

1)‖2
0,�1

+
∑

e∈Eh
1 ∪�1

1

he
‖[vh

1 ]‖2
0,e

⎞
⎟⎠ , ∀ vh

1 ∈ Xh
1 .,

(5.16)
where Dh(vh

1) is the elementwise deformation tensor. Thus,

a1

(
vh

1 , vh
1

)
≥ 2μ

K0
|‖vh

1 |‖2
1,�1

+
∑

e∈Eh
f ∪�1

σe − 2μ

he
‖[vh

1 ]‖2
0,e

−2μ(1 − ε)
∑

e∈Eh
1 ∪�1

∫

e

{
D(vh

1) ne

}
· [vh

1 ] d s +
∑
e∈�I

d−1∑
j=1

μ

G j
‖vh

1 · τ j‖2
0,e.

Clearly, the coercivity property holds when ε = 1 and σ0 = 2μ/α for some
0 < α < 1. To address the case when ε = −1 or 0, we use the trace inequality (4.4)
and the Young’s inequality (4.1) to estimate the third term. Let Ee be the element with
face e. Then,

∣∣∣∣∣∣

∫

e

{D(vh
1) ne} · [vh

1 ] d s

∣∣∣∣∣∣
≤ C1‖∇vh

1‖Ee‖[vh
1 ]‖0,Ee ≤ C2

2C3
‖∇vh

1‖2
0,Ee

+C2C3

2he
‖[vh

1 ]‖2
0,e.

Then,

a1

(
vh

1 , vh
1

)
≥ μ

(
2

K0
− C2(1 − ε)

C3

)
|‖vh

1 |‖2
1,�1

+(σe − μ(2 + C2C3(1 − ε)))
∑

e∈Eh
1 ∪�1

‖[vh
1 ]‖2

0,e

he
+

∑
e∈�I

d−1∑
j=1

μ

G j
‖vh

1 · τ j‖2
0,e.
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Setting C3 = 2K0C2 ensures that the first term is positive for both ε = 0 and ε = −1.
Then to control the second term it is sufficient to choose σ0 = 2μ(1 + C2C3)/α =
2μ(1 + 2K0C2

2 )/α for some 0 < α < 1. ��
Theorem 5.1 The problem (3.22)–(3.23) has a unique solution.

Proof It is sufficient to show that solution of the homogeneous problem (3.22)–(3.23)
is zero. By choosing vh = uh and qh = ph we get

a1

(
uh

1 , uh
1

)
+ a2

(
uh

2 , uh
2

)
= 0,

which combined with (5.15) and (3.18) implies that uh = 0. The remainder of (3.22)
together with the inf-sup condition (5.10) imply that ph = 0. ��

6 Error analysis

Let the pair (u, p) be the solution to (2.1)–(2.3) and let ui = u|�i , i = 1, 2. We define
functions ũ ∈ V h and p̃ ∈ Qh as follows:

ũ = (ũ1, ũ2) =
(
πh

1 (u1), πh
2 (u2)

)
, p̃ = ( p̃1, p̃2),

where πh is the operator introduced in Lemma (5.1), p̃2 = pI
2 ∈ Qh

2 is the interpolant
of p2 introduced in (3.10) and p̃1 is the L2-projection of p1:

∫

E

( p̃1 − p1) q1 d x = 0, ∀q1 ∈ Pr−1(E), ∀E ∈ �h
1 . (6.1)

For any p1 ∈ Hs(�1) we have the approximation result:

‖p1 − p̃1‖m,E ≤ Chs−m
E |p1|s,E , m = 0, 1, 1 ≤ s ≤ r. (6.2)

We also need the following approximation result [12]: for any φ ∈ Hs(E),
1 ≤ s ≤ 2, there exists a linear function φ1

E such that

‖φ − φ1
E‖m,E ≤ Chs−m

E |φ|s,E , m = 0, 1. (6.3)

Applying (4.2) to φ − φ1
E and using (6.3), we obtain the estimate for face e:

‖φ − φ1
E‖2

0,e ≤ C h2s−1
E |φ|2s,E . (6.4)

Similarly, (4.2) and (4.10) imply that

‖u1 − ũ1‖2
0,e ≤ C h2s−1

E |u1|2s,δ(E), 1 ≤ s ≤ r + 1. (6.5)
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Let K be a piecewise constant tensor equal to KE on element E . Recall that KE is
the mean value of K on E . We assume that K ∈ (W 1,∞(E))d×d , ∀E ∈ �h

2, and that
maxE∈�h

2
‖K‖1,∞,E is uniformly bounded independently of h2, where ||K||1,∞,E =

max1≤i, j≤d ||Ki, j ||W 1,∞(E). From Taylor’s theorem it follows that

max
x∈E

∣∣Ki j (x) − KE,i j
∣∣ ≤ ChE ‖Ki j‖W 1,∞(E). (6.6)

6.1 Error equation

Subtracting the variational equations (3.3)–(3.4) from the discrete equations (3.22)–
(3.23), we obtain

a1

(
uh

1 − u1, vh
1

)
+ b1

(
vh

1 , ph
1 − p1

)
−

∑

e∈�h
I

∫

e

p2 vh
1 · n1 d s

+ a2

(
uh

2 , vh
2

)
+ b2

(
vh

2 , ph
2

)
= 0, ∀vh ∈ V h, (6.7)

b1

(
uh

1 − u1, qh
1

)
+ b2

(
uh

2 , qh
2

)
= −

[
f I
2 , qh

2

]
Qh

2

, ∀qh ∈ Qh .

If we take qh
1 = 0 in the second equation, we recover the weak form of the mass

balance equation for the Darcy region (3.20). Using this, plus adding and subtracting
ũ1, p̃1, and uI

2 in the appropriate terms of (6.7), we obtain

a1

(
uh

1 − ũ1, vh
1

)
+ b1

(
vh

1 , ph
1 − p̃1

)
+ a2

(
uh

2 − uI
2, vh

2

)
+ b2

(
vh

2 , ph
2

)

= a1

(
u1 − ũ1, vh

1

)
+ b1

(
vh

1 , p1 − p̃1

)

+
∑

e∈�h
I

∫

e

p2vh
1 · n1 d s − a2

(
uI

2, vh
2

)
, ∀vh ∈ V h,

b1

(
uh

1 − ũ1, qh
1

)
= b1

(
u1 − ũ1, qh

1

)
, ∀qh ∈ Qh . (6.8)

6.2 Velocity estimate

Theorem 6.1 Let (u, p) be the solution to (2.1)–(2.5) and (uh, ph) be the solution to
(3.22)–(3.23). Furthermore, let u1 ∈ (Hr+1(�1))

d , p1 ∈ Hr (�1), u2 ∈ (H1(�2))
d ,

and p2 ∈ H2(�2). Then, the following error bound holds

∥∥∥uh
1 − u1

∥∥∥
X1

+ ∣∣∥∥uh
2 − uI

2

∣∣∥∥
Xh

2
≤ C (ε1 + ε2) , (6.9)

where

ε1 = hr
1(|u1|r+1,�1 + |p1|r,�1)

ε2 = h2 (|p2|1,�2 + |p2|2,�2 + |u2|1,�2) + h1/2
2

(
h2h−1/2

1 + h1/2
1

)
‖p2‖1,�2 .
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Proof We choose the test functions in (6.8) to be vh = uh − ũ and qh = ph − p̃. The
definition of πh

1 (u1) implies that the right-hand side of the second equation in (6.8) is
zero:

b1

(
uh

1 − ũ1, ph
1 − p̃1

)
= 0.

Using the commutative property (3.16) and (5.3) we conclude that

DIV
(

uh
2 − ũ2

)
= DIV

(
uh

2 − uI
2 − (∇ϕ)I

)

= DIV uh
2 − (div u2)

I − (∇ · ∇ϕ)I = f I
2 − f I

2 − 0 = 0.

Inserting the last two results into the first equation in (6.8), we eliminate the terms
in the left-hand side that contain the bilinear forms b1 and b2. Using the definition of
ũ2, we break the third term in the left-hand side into three pieces:

a1

(
uh

1 − ũ1, uh
1 − ũ1

)
+ a2

(
uh

2 − uI
2, uh

2 − uI
2

)

= a1

(
u1 − ũ1, uh

1 − ũ1

)
+ b1

(
uh

1 − ũ1, p1 − p̃1

)

+
∑

e∈�h
I

∫

e

p2

(
uh

1 − ũ1

)
· n1 d s − a2

(
uI

2, uh
2 − uI

2

)
+ a2

(
uI

2, (∇ϕ)I
)

+a2

(
uh

2 − uI
2, (∇ϕ)I

)
≡ T1 + T2 + T3 + T4 + T5 + T6. (6.10)

To bound T1, we follow the analysis of a similar term in [48]. We expand it as
follows:

a1

(
u1 − ũ1, uh

1 − ũ1

)
= 2μ

∑

E∈�h
1

∫

E

D
(

u1 − ũ1

)
: D

(
uh

1 − ũ1

)
d x

−2μ
∑

e∈Eh
1 ∪�h

1

∫

e

{D
(

u1 − ũ1

)
}ne ·

[
uh

1 − ũ1

]
d s

+2με
∑

e∈Eh
1 ∪�h

1

∫

e

{D
(

uh
1 − ũ1

)
}ne ·

[
u1 − ũ1

]
d s

+
∑

e∈Eh
1 ∪�h

1

σe

he

∫

e

[
u1 − ũ1] · [uh

1 − ũ1

]
d s

+
∑

e∈�h
I

d−1∑
j=1

μ

G j

∫

e

(u1 − ũ1) · τ j

(
uh

1 − ũ1

)
· τ j d s

≡ T11 + T12 + T13 + T14 + T15. (6.11)
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To estimate T11, we apply the Cauchy–Schwarz inequality, the Young inequality
(4.1), and the approximation property (4.11):

|T11| ≤ 2μ
∑

E∈�1
h

‖∇(u1 − ũ1)‖0,E

∥∥∥∇
(

uh
1 − ũ1

)∥∥∥
0,E

≤ C ‖∇h(u1 − ũ1)‖2
0,�1

+ 1

8

∥∥∥∇h

(
uh

1 − ũ1

)∥∥∥
2

0,�1

≤ C h2r
1 |u1|2r+1,�1

+ 1

8

∥∥∥∇h

(
uh

1 − ũ1

)∥∥∥
2

0,�1
. (6.12)

To bound T12, we introduce the Lagrange interpolant Lh(u1) of degree r satisfying

|u1 − Lh(u1)|m,E ≤ C hs−m
E |u1|s,E , 2 ≤ s ≤ r + 1, m = 0, 1, 2. (6.13)

Let δ(e) be the union of elements having the face e. We split T12 in two pieces
T a

12 and T b
12 by adding and subtracting Lh(u1) inside the average factor {·}. Using the

Cauchy–Schwarz inequality, the Young inequality (4.1), the trace inequality (4.4), and
(6.13), we obtain

|T a
12| =

∣∣∣
∑

e∈Eh
1 ∪�h

1

∫

e

{
D(Lh(u1) − ũ1)

}
ne · [uh

1 − ũ1] d s
∣∣∣

≤
∑

e∈Eh
1 ∪�h

1

h1/2
e

σ
1/2
e

∥∥∥
{

D(Lh(u1) − ũ1)
}

ne

∥∥∥
0,e

σ
1/2
e

h1/2
e

∥∥∥
[
uh

1 − ũ1

]∥∥∥
0,e

≤ C
∑

e∈Eh
1 ∪�h

1

|Lh(u1) − ũ1|21,δ(e) + 1

8

∑

e∈Eh
1 ∪�h

1

σe

he

∥∥∥
[
uh

1 − ũ1

]∥∥∥
2

0,e

≤ Ch2r
1 |u1|2r+1,�1

+ 1

8

∑

e∈Eh
1 ∪�h

1

σe

he

∥∥∥
[
uh

1 − ũ1

]∥∥∥
2

0,e
. (6.14)

The other term is estimated similarly using the trace inequality (4.3):

|T b
12| =

∣∣∣∣
∑

e∈Eh
1 ∪�h

1

∫

e

{
D(u1 − Lh(u1))

}
ne · [uh

1 − ũ1] d s

∣∣∣∣

≤ C
∑

e∈Eh
1 ∪�h

1

he

σe

(
h−1

e |u1 − Lh(u1)|21,δ(e) + he |u1 − Lh(u1)|22,δ(e)

)

+ 1

8

∑

e∈Eh
1 ∪�h

1

σe

he

∥∥∥
[
uh

1 − ũ1

]∥∥∥
2

0,e

≤ C h2r
1 |u1|2r+1,�1

+ 1

8

∑

e∈Eh
1 ∪�h

1

σe

he

∥∥∥
[
uh

1 − ũ1

]∥∥∥
2

0,e
. (6.15)
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We conclude that

|T12| ≤ C h2r
1 |u1|2r+1,�1

+ 1

4

∑

e∈Eh
1 ∪�h

1

σe

he

∥∥∥[uh
1 − ũ1]

∥∥∥
2

0,e
. (6.16)

For simplicial meshes, the third term in (6.11) is zero, T13 = 0, due to the continuity
of u1 and the property (4.8). For polygonal and polyhedral meshes, we use the Cauchy–
Schwarz inequality, the Young inequality (4.1), the trace inequality (4.4), and the
approximation result (6.5) to obtain

|T13| ≤ 2μ
∑

e∈Eh
1 ∪�h

1

∥∥∥D
(

uh
1 − ũ1

)
· ne

∥∥∥
0,e

‖[u1 − ũ1]‖0,e

≤ 2μ
∑

e∈Eh
1 ∪�h

1

(
he

C

∥∥∥D
(

uh
1 − ũ1

)
· ne

∥∥∥
2

0,e
+ C

he
‖[u1 − ũ1]‖2

0,e

)

≤ 1

8

∥∥∥∇h

(
uh

1 − ũ1

)∥∥∥
2

0,�1
+ Ch2

E |u1|22,�1
.

The fourth term is bounded applying the Cauchy–Schwarz inequality, the approx-
imation property (4.10), and the trace inequality (4.2):

|T14| ≤ C
∑

e∈Eh
1 ∪�h

1

σe

he
‖u1 − ũ1‖2

0,e + 1

8

∑

e∈Eh
1 ∪�h

1

σe

he

∥∥∥
[
uh

1 − ũ1

]∥∥∥
2

0,e

≤ C h2r
1 |u1|2r+1,�1

+ 1

8

∑

e∈Eh
1 ∪�h

1

σe

he

∥∥∥
[
uh

1 − ũ1

]∥∥∥
2

0,e
. (6.17)

Using the same arguments, we bound the fifth term:

|T15| ≤
∑

e∈�h
I

d−1∑
j=1

μ

G j
‖u1 − ũ1‖0,e

∥∥∥
(

uh
1 − ũ1

)
· τ

∥∥∥
0,e

≤ C h2r
1 |u1|2r+1,�1

+
∑

e∈�h
I

d−1∑
j=1

μ

2G j

∥∥∥
(

uh
1 − ũ1

)
· τ

∥∥∥
2

0,e
. (6.18)

To handle the term T2, we use the property (6.1) of the L2-projection p̃1:

b1

(
uh

1 − ũ1, p1 − p̃1

)
= −

∑

E∈�h
1

∫

E

(p1 − p̃1) div
(

uh
1 − ũ1

)
d x
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+
∑

e∈Eh
1 ∪�h

1

∫
{p1 − p̃1}

[
uh

1 − ũ1

]
· ne d s

=
∑

e∈Eh
1 ∪�h

1

∫
{p1 − p̃1}

[
uh

1 − ũ1

]
· ne d s. (6.19)

Thus, using the trace inequality (4.2) and the property (6.2) of the L2 projection
p̃1, we get

|T2| ≤ C h2r
1 |p1|2r,�1

+ 1

8

∑

e∈Eh
1 ∪�h

1

σe

he

∥∥∥
[
uh

1 − ũ1

]∥∥∥
2

0,e
. (6.20)

For the remaining terms in the error equation (6.10) we use arguments developed
for the analysis of mimetic discretizations of elliptic equations [14,40]. We use the
piecewise constant tensor K defined at the beginning of this section.

Let p1
2 be a discontinuous piecewise linear function defined on �h

2 such that (6.3)
holds on every element E ∈ �h

2. Then, adding and subtracting K∇ p1
2, we obtain

T4 = a2

(
(u2 + K∇ p1

2)
I , uI

2 − uh
2

)
− a2

(
(K∇ p1

2)
I , uI

2 − uh
2

)
≡ T41 + T42.

(6.21)

Applying the Cauchy–Schwarz inequality, the stability assumption (3.18), and the
trace inequality (4.2), we get

|T41| ≤ ∣∣∥∥(u2 + K∇ p1
2)

I
∣∣∥∥

Xh
2

∣∣∥∥uh
2 − uI

2

∣∣∥∥
Xh

2

≤ C

( ∑

E∈�h
2

|E |
∑

e⊂∂ E

∣∣∣ 1

|e|
∫

e

(u2 + K∇ p1
2) · ne d s

∣∣∣
2
)1/2 ∣∣∥∥uh

2 − uI
2

∣∣∥∥
Xh

2

≤ C

( ∑

E∈�h
2

[
‖u2 + K∇ p1

2‖2
0,E + h2

E |u2|21,E

])1/2∣∣∥∥uh
2 − uI

2

∣∣∥∥
Xh

2
. (6.22)

Using the triangle inequality and then estimates (6.6) and (6.3), we obtain

∥∥∥u2 + K∇ p1
2

∥∥∥
2

0,E
≤
∥∥∥K∇(p2 − p1

2)

∥∥∥
0,E

+
∥∥∥(K − K)∇ p1

2

∥∥∥
0,E

≤ C
(

hE |p2|2,E + hE ‖∇ p1
2‖0,E

)

≤ ChE

(
|p2|2,E + ‖∇ p2‖0,E + ‖∇(p2 − p1

2)‖0,E

)

≤ ChE
(|p2|2,E + |p2|1,E

)
.
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Combining the last two inequalities and applying the Young inequality (4.1), we
obtain

|T41| ≤ C h2
2 (|p2|1,�2 + |p2|2,�2 + |u2|1,�2)

2 + 1

8

∣∣∣
∥∥∥uh

2 − uI
2

∣∣∣
∥∥∥

2

Xh
2

. (6.23)

The consistency condition (3.17) and continuity of p2 allow us to rewrite T42 as
follows:

T42 =
∑

E∈�h
2

∑
e⊂∂ E

χe
E

(
uh

2 −uI
2

)e

E

∫

e

p1
2,E d s

=
∑

E∈�h
2

∑
e⊂∂ E

χe
E

(
uh

2 −uI
2

)e

E

∫

e

(
p1

2,E − p2

)
d s+

∑

e∈�h
I

χe
E

(
uh

2 −uI
2

)e

E

∫

e

p2 d s

≡ T a
42+T b

42. (6.24)

We estimate T a
42 using (6.4) and the stability property (3.18):

|T a
42| ≤

∑

E∈�h
2

∑
e⊂∂ E

|e|1/2 |
(

uh
2 − uI

2

)e

E
| ‖p1

2,E − p2‖0,e

≤ C
∑

E⊂�h
2

hE

(
|E |

∑
e⊂∂ E

|(uh
2 − uI

2)e
E |2

)1/2|p2|2,E

≤ C h2 |p|2,�2 |‖uh
2 − uI

2 |‖Xh
2

≤ C h2
2 |p|22,�2

+ 1

8

∣∣∣
∥∥∥uh

2 − uI
2

∣∣∣
∥∥∥

2

Xh
2

.

(6.25)

The term T b
42 will be combined with other terms later. Now we proceed with the

fifth term in the error equation. Adding and subtracting K∇ p1
2, we get

T5 = a2

(
(u2 + K∇ p1

2)
I , (∇ϕ)I

)
− a2

(
(K∇ p1

2)
I , (∇ϕ)I

)
≡ T51 + T52. (6.26)

The term T51 is similar to T41; therefore, we use the same approach to bound it:

|T51| ≤ C h2

(
|p2|1,�2 + |p2|2,�2 + |u2|1,�2

) ∣∣∣
∥∥∥(∇ϕ)I

∣∣∣
∥∥∥

Xh
2

.

Using estimate (5.9), we conclude that

|T51| ≤ C h2h1 (|p2|1,�2 + |p2|2,�2 + |u2|1,�2) |u1|3/2,�1 . (6.27)
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For the term T52, we apply estimate (6.4) and the consistency condition (3.17):

T52 = −
∑

E∈�h
2

∑
e⊂∂ E

χe
E

(
(∇ϕ)I

)e

E

∫

e

p1
2,E d s

=
∑

E∈�h
2

∑
e⊂∂ E

χe
E

(
(∇ϕ)I

)e

E

∫

e

(
p2 − p1

2,E

)
d s −

∑

e∈�h
I

χe
E

(
(∇ϕ)I

)e

E

∫

e

p2 d s

≡ T a
52 + T b

52. (6.28)

Using the arguments for the terms T a
42 and T51, the term T a

52 is bounded as

|T a
52| ≤ C h2 |p|2,�2

∣∣∣
∥∥∥(∇ϕ)I

∣∣∣
∥∥∥

Xh
2

≤ C h2 h1 |p|2,�2 |u1|3/2,�1 . (6.29)

The term T b
52 will be combined with other terms later.

The sixth term in the error equation is bounded using the Cauchy–Schwarz inequal-
ity and estimate (5.9):

|T6| ≤
∣∣∣
∥∥∥uh

2 −uI
2

∣∣∣
∥∥∥

Xh
2

∣∣∣
∥∥∥(∇ϕ)I

∣∣∣
∥∥∥

Xh
2

≤ 1

8

∣∣∣
∥∥∥uh

2 −uI
2

∣∣∣
∥∥∥

2

Xh
2

+ C h2
1 |u1|23/2,�1

. (6.30)

Finally, the third term in the error equation (6.10) is combined with T b
42 and T b

52.
Let p∗

2 ∈ h
I such that (p∗

2)e is the L2-projection of p2 on P0(e) and let p̄∗
2 be the

piecewise constant function on �h
I satisfying

p̄∗
2 |e = (p∗

2)e, ∀e ∈ �h
I .

Because uh − ũh ∈ V h ,

∫

�I

p̄∗
2

(
uh

1 − ũ1

)
· n1 d s +

〈
p∗

2, uh
2 − ũ2

〉
h

I

= 0.

Using the above equation, the definition of operator πh
2 and the property of the L2

projection, we obtain

T3+T b
42+T b

52 =
∑

e∈�h
I

(∫

e

p2

(
uh

1 −ũ1

)
· n1 d s+χe

E

(
uh

2 −uI
2 −(∇ ϕ)I

)e

E

∫

e

p2 d s

)

=
∑

e∈�h
I

(∫

e

p2(uh
1 −ũ1) · n1 d s+(uh

2 −ũ2)
e
E

∫

e

p2 d s

)
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=
∑

e∈�h
I

(∫

e

(p2 − p̄∗
2)(uh

1 −ũ1) · n1 d s+(uh
2 −ũ2)

e
E

∫

e

(p2−(p∗
2)e) d s

)

=
∑

e∈�h
I

∫

e

(p2 − p̄∗
2)(uh

1 −ũ1) · n1 d s.

For each face e ∈ �h
I we define ce to be the L2-projection of uh − ũ on P0(e). Let us

assume that e = Ee
2

⋂⋃ne
i=1 Ee

1,i , where Ee
2 ∈ �h

2, and Ee
1,i ∈ �h

1 for i = 1, ..., ne.

Using the orthogonality and approximation properties of the L2-projection, and the
trace inequality (4.2), we obtain

∣∣∣T3 + T b
42 + T b

52

∣∣∣ =
∑

e∈�h
I

∫

e

(p2 − p̄∗
2 |e)

(
uh

1 − ũ1 − ce
)

· n1 d s

≤ C
∑

e∈�h
I

h1/2
2 ‖p2‖1,Ee

2

ne∑
i=1

(
h−1/2

1

∥∥∥uh
1 − ũ1 − ce

∥∥∥
0,Ee

1,i

+h1/2
1 |uh

1 − ũ1|1,Ee
1,i

)

≤ C
∑

e∈�h
I

h1/2
2 ‖p2‖1,Ee

2

ne∑
i=1

(
h∗ h−1/2

1 + h1/2
1

)
|uh

1 − ũ1|1,Ee
1,i

≤ Ch2

(
h∗h−1/2

1 + h1/2
1

)2‖p2‖2
1,�2

+ 1

8

∥∥∥∇h

(
uh

1 − ũ1

)∥∥∥
2

0,�1
,

(6.31)

where

h∗ = max(h1, h2).

If h∗ = h1, then the terms h∗h−1/2
1 and h1/2

1 can be combined. Otherwise, we

have the extra term h2h−1/2
1 . Collecting the estimates of all terms in the right hand

side of error equation (6.10), using coercivity Lemma 5.3, then the triangle inequality
‖uh

1 − u1‖X1 ≤ ‖uh
1 − ũ1‖X1 + ‖ũ1 − u1‖X1 , and finally the interpolant property

(4.11), we prove the assertion of the theorem. ��

6.3 Pressure estimates

Theorem 6.2 Under the assumptions of Theorem 6.1, the following error bound holds:

‖ph − p‖Qh ≤ C(ε1 + ε2) (6.32)
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where

ε1 = hr
1 (|p1|r,�1 + |u1|r+1,�1),

ε2 = h2(|p2|1,�2 + |p2|2,�2 + |u2|1,�2) + h1/2
2

(
h2h−1/2

1 + h1/2
1

)
‖p2‖1,�2 .

Proof Taking qh = (ph
1 − p̃1, ph

2 − p̃2) in the inf-sup condition (5.10), we get

∥∥∥ph − p̃
∥∥∥

Q
≤ 1

β
sup

vh∈V h

b1(vh
1 , ph

1 − p̃1) + b2(vh
2 , ph

2 − p̃2)

‖vh‖Xh
. (6.33)

From (6.8), we get

b1

(
vh

1 , ph
1 − p̃1

)
+ b2

(
vh

2 , ph
2 − p̃2

)
= a1

(
u1−uh

1 , vh
1

)
+b1

(
vh

1 , p1− p̃1

)

+
∑

e∈�h
I

∫

e

p2 vh
1 · n1 d s−a2

(
uh

2 , vh
2

)
−b2

(
vh

2 , p̃2

)

≡ J1 + J2 + J3 + J4 + J5.

By adding and subtracting terms, and using the consistency condition (3.17), we
obtain

J4 + J5 = −a2

(
(u2 + K∇ p1

2)
I , vh

2

)
+ a2

(
(K∇ p1

2)
I , vh

2

)

+
[
DIV vh

2 , (p2 − p1
2)

I
]

Qh
2

+
[
DIV vh

2 , (p1
2)

I
]

Qh
2

− a2

(
uh

2 − uI
2, vh

2

)

= −a2

(
(u2 + K∇ p1

2)
I , vh

2

)
+

∑
e⊂∂ E

χe
E (vh

2)e
E

∫

e

p1
2 d s

+
[
DIV vh

2 , (p2 − p1
2)

I
]

Qh
2

− a2

(
uh

2 − uI
2, vh

2

)

= J6 + J7 + J8 + J9. (6.34)

Thus, we need to estimate seven terms. We expand J1 as follows:

J1 = a1(u1 − uh
1 , vh

1) = 2μ
∑

E∈�h
1

∫

E

D(u1 − uh
1) : D(vh

1) d x

−2μ
∑

e∈Eh
1 ∪�h

1

∫

e

{
D(u1 − uh

1)
}

ne · [vh
1 ] d s

+2με
∑

e∈Eh
1 ∪�h

1

∫

e

{
D(vh

1)
}

ne ·
[
u1 − uh

1

]
d s

+
∑

e∈Eh
1 ∪�h

1

σe

he

∫

e

[
u1 − uh

1

]
·
[
vh

1

]
d s
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+
∑

e∈�h
I

d−1∑
j=1

μ

G j

∫

e

(
u1 − uh

1

)
· τ vh

1 · τ d s

= J11 + J12 + J13 + J14 + J15. (6.35)

From Cauchy–Schwarz inequality, we immediately get bounds for three terms:

|J11 + J14 + J15| ≤ C ‖u1 − uh
1‖X1 ‖vh

1‖X1 . (6.36)

We bound J12 by taking similar approach as the one used for T12,

|J12| ≤ C
∑

e∈Eh
1 ∪�h

1

(
he

σe

)1/2

‖∇(u1 − uh
1)‖0,e

(
σe

he

)1/2

‖[vh
1 ]‖0,e

≤ C

⎛
⎜⎝

∑

e∈Eh
1 ∪�h

1

he

σe

(
‖∇(u1 − ũ1)‖2

0,e + ‖∇(ũ1 − uh
1)‖2

0,e

)
⎞
⎟⎠

1/2

‖vh
1‖X1

≤ C
(

h2r
1 |u1|2r+1,�1

+ ‖ũ1 − uh
1‖2

X1

)1/2‖vh
1‖X1 . (6.37)

To bound the term J13, we use the trace inequality (4.4), and the shape regularity
of element Ee with face e:

|J13| ≤ C
∑

e∈Eh
1 ∪�h

1

∥∥∥
{

D(vh
1)
}

ne

∥∥∥
0,e

∥∥∥
[
u1 − uh

1

]∥∥∥
0,e

≤ C
∑

e∈Eh
1 ∪�h

1

h−1/2
Ee

(
he

σe

)1/2

‖∇vh
1‖0,Ee

(
σe

he

)1/2 ∥∥∥
[
u1 − uh

1

]∥∥∥
0,e

≤ C‖vh
1‖Xh

1
‖u1 − uh

1‖X1 . (6.38)

We proceed with J2 by applying the trace inequality (4.2) and the property (6.2) of
the L2 projection:

|J2| =
∣∣∣b1

(
vh

1 , p1 − p̃1

)∣∣∣ =
∣∣∣∣

∑

e∈Eh
1 ∪�h

1

∫

e

{p1 − p̃1} [vh
1 ] · ne d s

∣∣∣∣

≤
∑

e∈Eh
1 ∪�h

1

(
he

σe

)1/2

‖{p1 − p̃1}‖0,e

(
σe

he

)1/2

‖vh
1‖0,e

≤ Chr
1|p|r,�1 ‖vh

1‖X1 . (6.39)
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By combining J3 with J7 and repeating the steps we followed to bound T3 and T42,
we get

|J3+ J7| ≤ C
(

h2 |p2|2,�2 |‖vh
2 |‖Xh

2
+h1/2

2

(
h2h−1/2

1 +h1/2
1

)
‖p2‖1,�2 ‖∇hvh

1‖0,�1

)
.

Since J6 is similar to T51, we can write:

|J6| ≤ C h2
(|p2|1,�2 + |p2|2,�2 + |u2|1,�2

) |‖vh
2 |‖Xh

2
. (6.40)

The term J8 is estimated by using the Cauchy–Schwartz inequality and the approx-
imation properties (6.3):

|J8| ≤ C h2
2 |‖vh

2 |‖div |p2|2,�2 . (6.41)

Next, for the term J9, using the Cauchy–Schwarz inequality and the velocity estimates,
we find that

|J9| ≤ C
(

h1(|u1|2,�1 + |p1|1,�1) + h2(|p2|1,�2 + |p2|2,�2 + |u2|1,�2)

+ h1/2
2

(
h2h−1/2

1 + h1/2
1

)
‖p2‖1,�1

)
|‖vh

2 |‖Xh
2
. (6.42)

Combining all the bounds and dividing by ‖vh‖X yields the assertion of the theorem.
��

7 Numerical experiments

7.1 Implementation details

The global velocity space V h , which embeds the interface continuity constraint, is not
convenient for a computer program. Instead, the continuity constraints on the velocity
are imposed weakly and additional variables, the Lagrange multipliers are added to
the system.

For the efficient solution of Darcy’s law we employ hybridization [3]. We relax
the flux continuity condition on all mesh faces in the Darcy region. Two flux degrees
of freedom U e

2,E1
and U e

2,E2
are prescribed to every interior face e and the explicit

continuity condition

U e
2,E1

+ U e
2,E2

= 0

is added to the system. The new system is algebraically equivalent to the original
system; however, it has a special structure that allows to eliminate efficiently the
primary pressure and velocity unknowns in the Darcy region.

Each continuity constraint results in one Lagrange multiplier. We collect the
Lagrange multipliers in a single vector L = (λe1, ..., λeJ ), where J is the number
of the mesh edges in �h

2.
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Let us define the block-diagonal matrix M2 = diag {M2,E1 , . . . , M2,EN } and the
velocity continuity matrix C2 = diag {|e1|, ..., |eJ |}. Let A1 and B1 be the matri-
ces associated with the bilinear forms a1(·, ·) and b1(·, ·), respectively. The matrix
associated with the interface term is denoted by C1. The matrix equations are

⎛
⎜⎜⎜⎜⎝

A1 B1 0 0 C1

BT
1 0 0 0 0

0 0 M2 B2 C2

0 0 BT
2 0 0

CT
1 0 CT

2 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

U1
P1
U2
P2
L

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

F1
0
0

−F2
0

⎞
⎟⎟⎟⎟⎠

, (7.1)

where F2 is a vector of size N consisting of the cell averages of the source term.
The first pair of equations is the matrix form of discrete Stokes problem. The second

pair of equations represents elemental equations for the Darcy region. The last block
equation represents continuity of Darcy velocities and no-slip boundary conditions.

The matrix of system (7.1) is symmetric. The hybridization procedure results in a
block-diagonal matrix B2 with as many small blocks as the number of elements in �h

2.
Thus, the unknowns U2 and P2 may be eliminated explicitly. Changing the order of
the remaining unknowns, we get the following saddle point problem:

⎛
⎝

A1 C1 B1

CT
1 −A2 0

BT
1 0 0

⎞
⎠
⎛
⎝

U1
L
P1

⎞
⎠ =

⎛
⎝

F1
G2
0

⎞
⎠ , (7.2)

where

A2 = CT
2

(
M−1

2 − M−1
2 B2 (BT

2 M−1
2 B2)

−1 BT
2 M−1

2

)
C2

is a symmetric positive definite (SPD) matrix. This matrix is a special approximation
of the elliptic operator in the Darcy region. Note, that only M−1

2 is used in the above
formula which suggests its direct calculation as described in [16].

Block-diagonal preconditioners for saddle point problems are discussed in [35,50].
A proper candidate for a preconditioner in our case could be

H =
⎛
⎝

A1 0 0
0 A2 0
0 0 S

⎞
⎠ , (7.3)

where S is a suitable diagonal matrix. The analysis that Krylov space iterative methods
with a preconditioner (7.3) have mesh independent convergence is beyond the scope
of this article. The inversion of A1 and A2 can be performed by using one V-cycle of
algebraic multigrid [53].
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7.2 Three test problems

We present three computer experiments, the first two of which confirm the convergence
rate of the method. The third test demonstrates the ability of the method to be applied
to surface-subsurface flow problems with realistic geometries. In the first two tests
the computational domain is � = �1 ∩ �2, where �1 = [0, 1] × [ 1

2 , 1] and �2 =
[0, 1] × [0, 1

2 ]. In the Stokes equation the stress tensor is taken to be

T(u1, p1) = −p1I + μ∇u1.

It is easy to show that the theoretical analysis from the previous sections still applies
with this choice of T(u1, p1). Each convergence test uses a manufactured solution
that satisfies the coupled system (2.1)–(2.3) with Dirichlet boundary conditions on
∂�. We consider the scalar permeability field K = K I. To verify the convergence
rate of the method, we solve the problem on a sequence of grids with decreasing
maximum element size, using both structured and unstructured grids. We use trian-
gles with piecewise linear velocities in the Stokes region and polygons (rectangles if
structured) in the Darcy region. The grids are chosen to match on the interface. The
unstructured grids are not nested - they are generated independently on each level. The
structured grids are obtained by first partitioning � into rectangles and then dividing
each rectangle in �1 along its diagonal into two triangles.

In Test 1, the normal velocity is continuous, but the tangential velocity is discon-
tinuous, across the interface:

u1 =
⎡
⎣

(2 − x)(1.5 − y)(y − ξ)

− y3

3
+ y2

2
(ξ + 1.5) − 1.5ξ y − 0.5 + sin(ωx)

⎤
⎦ ,

u2 =
[

ω cos(ωx)y
χ(y + 0.5) + sin(ωx)

]
,

p1 =− sin(ωx)+χ

2K
+μ(0.5−ξ)+cos(πy), p2 =− χ

K

(y+0.5)2

2
− sin(ωx)y

K
,

where

μ=0.1, K = 1, α0 =0.5, G =
√

μK

α0
, ξ = 1−G

2(1+G)
, χ = −30ξ−17

48
, ω = 6.

In Test 2, the velocity field is chosen to be smooth across the interface:

u1 = u2 =
[

sin( x
G + ω)ey/G

− cos( x
G + ω)ey/G

]
,

p1 =
(

G

K
− μ

G

)
cos

( x

G
+ ω

)
e1/(2G) + y − 0.5, p2 = G

K
cos

( x

G
+ ω

)
ey/G ,

where ω = 1.05 and μ, K , α0, G are the same as in the Test 1.

123



Discontinuous Galerkin and mimetic finite difference methods 355

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

P

0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2

2
Ref.
vector

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

P_err

0.02
0

-0.02
-0.04
-0.06
-0.08

0.1
Ref.
vector

Fig. 2 Test 1 computed solution (left) and error (right) on a mesh with h1 = 0.0662, h2 = 0.0530

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P

0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1

2
Ref.
vector

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

P_err

0.06
0.04
0.02
0

-0.02
-0.04

0.1
Ref.
vector

Fig. 3 Test 2 computed solution (left) and error (right) on a mesh with h1 = 0.0662, h2 = 0.0530

The computed solution along with the associated numerical error on the third level
of unstructured grids for the two tests are plotted in Figs. 2 and 3, respectively. The
convergence rates on the unstructured grids are reported in Tables 1 and 3, respec-
tively. The convergence rates on the structured grids are reported in Tables 2 and 4,
respectively. These experimental results verify the theoretically predicted convergence
rates of order one for the velocity and the pressure. The slight discrepancy in the con-
vergence rate for the pressure in the Stokes region (Tables 1, 3) may be attributed to
different shape regularity constants of the unstructured triangular meshes. Tables 1
and 3 show superconvergence of the pressure in �2. Tables 2 and 4 show supercon-
vergence of both the velocity and the pressure in �2 when a rectangular mesh is used
in the porous medium. It is well known that the MFD and the MFE methods for the
Darcy equation alone are superconvergent on rectangular grids [10,49]. Investigation
of the similar behavior for the coupled Stokes–Darcy problem is a possible topic of
future work.

In Test 3, we present a more realistic model of coupled surface and subsurface
flows. The flow domain is decomposed into two subdomains as shown on Fig. 4. The
top half represents a lake or a slow flowing river (the Stokes region) and the bottom
half represents an aquifer (the Darcy region). The surface fluid flows from left to right,
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Table 1 Numerical errors and
convergence rates for Test 1 on
unstructured grids

Elements h1 |‖u1 − uh
1 |‖1,�1 Rate ‖p1 − ph

1 ‖0,�1 Rate

Stokes region

44 0.2170 6.5442e−01 1.4657e−01

164 0.1330 3.5368e−01 1.26 8.7418e−02 1.06

652 0.0662 1.8798e−01 0.91 5.5335e−02 0.66

2,468 0.0363 9.8347e−02 1.08 2.9591e−02 1.04

Elements h2 |‖uI
2 − uh

2 |‖Xh
2

Rate |‖pI
2 − ph

2 |‖Qh
2

Rate

Darcy region
32 0.2489 1.4530e−01 2.1906e−02

128 0.1111 5.3651e−02 1.24 5.3156e−03 1.76

512 0.0530 2.4535e−02 1.06 1.2140e−03 2.00

2,048 0.0259 1.1917e−02 1.01 2.9045e−04 2.00

Table 2 Numerical errors and
convergence rates for Test 1 on
structured grids

Elements h1 |‖u1 − uh
1 |‖1,�1 Rate ‖p1 − ph

1 ‖0,�1 Rate

Stokes region

36 0.2357 8.4380e−01 2.8244e−01

100 0.1414 5.0922e−01 0.99 1.7391e−01 0.95

576 0.0589 2.1303e−01 1.00 7.3116e−02 0.99

2,304 0.0295 1.0664e−01 1.00 3.6566e−02 1.00

Elements h2 |‖uI
2 − uh

2 |‖Xh
2

Rate |‖pI
2 − ph

2 |‖Qh
2

Rate

Darcy region

18 0.2357 7.2054e−02 8.8162e−03

50 0.1414 2.6670e−02 1.95 3.2124e−03 1.98

288 0.0589 4.6994e−03 1.98 5.5936e−04 2.00

1,152 0.0295 1.1785e−03 2.00 1.3966e−04 2.01

Table 3 Numerical errors and
convergence rates for Test 2 on
unstructured grids

Elements h1 |‖u1 − uh
1 |‖1,�1 Rate ‖p − ph

1 ‖0,�1 Rate

Stokes region

44 0.2170 5.4501e-01 1.5488e-01

164 0.1330 2.9432e-01 1.26 6.5413e-02 1.76

652 0.0662 1.4152e-01 1.05 4.1093e-02 0.67

2,468 0.0363 7.2480e-02 1.11 2.3073e-02 0.96

Elements h2 |‖uI
2 − uh

2 |‖Xh
2

Rate |‖pI
2 − ph

2 |‖Qh
2

Rate

Darcy region

32 0.2489 5.9883e−02 2.1452e−03

128 0.1111 2.0731e−02 1.32 5.2424e−04 1.75

512 0.0530 9.6960e−03 1.03 1.2789e−04 1.91

2,048 0.0259 4.8383e−03 0.98 3.4431e−05 1.83

123



Discontinuous Galerkin and mimetic finite difference methods 357

Table 4 Numerical errors and
convergence rates for Test 2 on
structured grids

Elements h1 |‖u1 − uh
1 |‖1,�1 Rate ‖p1 − ph

1 ‖0,�1 Rate

Stokes region

36 0.2357 6.0192e−01 1.6431e−01

100 0.1414 3.6005e−01 1.01 1.1073e−01 0.77

576 0.0589 1.4896e−01 1.01 5.1783e−02 0.87

2,304 0.0295 7.4275e−02 1.01 2.7083e−02 0.94

Elements h2 |‖uI
2 − uh

2 |‖Xh
2

Rate |‖pI
2 − ph

2 |‖Qh
2

Rate

Darcy region

18 0.2357 3.2312e−02 3.0839e−03

50 0.1414 1.2691e−02 1.83 1.1787e−03 1.88

288 0.0589 2.4612e−03 1.87 2.0925e−04 1.97

1,152 0.0295 6.5882e−04 1.91 5.2467e−05 2.00

Fig. 4 Test 3 Computational
domain and mesh
(h1 = 0.0566, h2 = 0.0556)
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Fig. 5 Test 3 computed solution (left) and permeability field (right)
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with a parabolic inflow condition on the left boundary, no flow on the top, and zero
stress on the right (outflow) boundary. No flow condition is imposed on the left and
right boundaries of the aquifer. A pressure boundary condition is specified on the
bottom to simulate gravity. The permeability of the porous media is heterogeneous
and is shown in Fig. 5 (right). The computed pressure and velocity are shown in Fig. 5
(left). As expected, the pressure and the tangential velocity are discontinuous across
the interface, while the normal velocity is continuous. After the surface fluid enters
the aquifer, it does not move as fast in the tangential direction, but percolates toward
the bottom.

8 Conclusion

We presented and analyzed a locally mass conservative discretization scheme for the
coupled Stokes–Darcy flow problem, using the DG method and the MFD method to
approximate the Stokes and Darcy equations, respectively. Traditional DG schemes
employ simplicial meshes. In our approach by constructing lifting operators mapping
from MFD degrees of freedom to functional spaces, we view the DG method as a
MFD method, which enables us to formulate the discretization scheme in the entire
domain on polygonal or polyhedral meshes. The meshes in the two regions do not
have to match on the interface �I and may have elements that are non-convex. To
impose continuity of the normal fluxes across the interface �I we defined a Lagrange
multiplier space on a mesh, which was assumed to be the trace of �h

2 on �I . It is also
possible to remove the latter assumption and use mortars instead [30]. We derived
optimal error estimates, which we verified by carrying out computer experiments. On
unstructured meshes, we observed superconvergence of the Darcy pressure while on
structured meshes we obtain superconvergence for both the pressure and the velocity
in the Darcy region. Our last numerical test demonstrated the capability of the method
to be applied to problems with realistic geometries. In order to take full advantage of
the method, it is crucial to solve the algebraic saddle point problem (7.2) efficiently,
which is a motivation to develop and study a suitable preconditioning technique as the
one proposed in Sect. 7.1.
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