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a b s t r a c t

In this paper, we present a consistent spatial formulation for discontinuous Galerkin (DG) methods
applied to solid mechanics problems with finite deformation. This spatial formulation provides a general,
accurate, and efficient DG finite element computational framework for modeling nonlinear solid mechan-
ics problems. To obtain a consistent formulation, we employ the Incomplete Interior Penalty Galerkin
(IIPG) method. Another requirement for achieving a fast convergence rate for Newton’s iterations is
the consistent formulation of material integrators. We show that material integrators that are well devel-
oped and tested in continuous Galerkin (CG) methods can be fully exploited for DG methods by addition-
ally performing stress returning on element interfaces. Finally, for problems with pressure or follower
loading, stiffness contributed from loaded surfaces must also be consistently incorporated. In this work,
we propose the Truesdell objective stress rate for both hypoelastoplastic and hyperelastoplastic prob-
lems. Two formulations based on the co-rotational and multiplicative decomposition-based frameworks
are implemented for hypoelastoplasticity and hyperelastoplasticity, respectively. Two new terminolo-
gies, the so-called standard surface geometry stiffness and the penalty surface geometry stiffness, are
introduced and derived through consistently linearizing the virtual work contributed from interior sur-
face integrals. The performance of our DG formulation has been demonstrated through solving a cantile-
ver beam problem undergoing large rotations, as well as a bipolar void coalescence problem where the
voids grow up to several hundred times of their original volumes. Fast convergence rates for Newton’s
iterations have been achieved in our IIPG implementation.

� 2012 Published by Elsevier B.V.
1. Introduction

It is the objective of this paper to establish a consistent spatial
formulation for discontinuous Galerkin (DG) methods applied to
solid mechanics problems with finite deformation. Several good
DG features such as locking-free for nearly incompressible materi-
als suggest a great potential for DG methods to be used as an alter-
native to CG methods. On the other hand, in general, a full DG
discretization for the entire domain may be expensive. For many
practical applications, the coupled use of CG and DG methods
has CPU advantages through locally employing DG elements. As
shown in [19,45], DG methods provide a natural computational
framework for modeling crack opening and shear band problems.
Obviously, the use of DG elements only in areas near cracks or
shear bands is much more efficient. In such situations, DG methods
Elsevier B.V.
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should be formulated in a framework that is consistent with CG
methods. Furthermore, it is important to do this in both co-rota-
tional and multiplicative decomposition-based frameworks for
solving nonlinear solid mechanics problems with finite deforma-
tion. In this paper we develop a consistent spatial formulation for
the IIPG method. Rather than demonstrating some specific advan-
tages of DG over CG, numerical examples in this paper are selected
to evaluate the performance of the IIPG method for solving large
rotation and large deformation problems in terms of accuracy
and convergence of the Newton’s iteration.

The foundation for modeling finite deformation problems is the
theory of nonlinear continuum mechanics [53,17,32,42]. The dom-
inant finite element frameworks are CG-based. The pioneering CG
nonlinear finite element analysis for nonlinear solid and structure
continua has been developed by Oden in [40]. The work by Hughes
and Pister [24] put forward the consistent linearization concept for
substantially accelerating solutions for nonlinear problems in CG
frameworks. For both hypoelastoplasticity and hyperelastoplastic-
ity, the stress updating schemes and consistent algebraic modulus
systematically obtained from the so-called local material integra-
tors have been developed by [25,36,46,43,47,1,48,49,35] for classic
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J2 and pressure-sensitive plasticity models. The importance of
these consistently formulated material integrators is in that com-
plex practical elastoplasticity problems could be solved in tens or
hundreds of loading steps rather than tens of thousands of loading
steps required by the methods using continuous tangent elasto-
plastic modulus. This has motivated many commercial finite ele-
ment codes to develop and implement consistently formulated
material integrators.

Parallel to the development of CG methods, DG methods
[38,14,4,55,2] have been proposed for reducing the errors induced
by the strong implementation of Dirichlet boundary conditions in
CG methods. A number of DG formulations for fluid problems have
been presented in [9,41,7,10]. For elliptic problems, Arnold et al.
[3] proposed a unified theoretical DG framework. For linear elastic-
ity with small deformation, Hansbo and Larson [18], Riviere and
Wheeler [44], Wihler [56], Lew et al. [26], and Liu et al. [28] dem-
onstrated that DG methods are good alternatives to CG methods in
avoiding volume locking issues. DG methods have been extended
to nonlinear problems in the framework of small deformation by
Wells et al. [54,34] for damage mechanics problems, by Liu et al.
[27,29,30] for poromechanics problems, and by Hansbo [19], Liu
et al. [31], and Djoko et al. [12,13] for classic plasticity problems
with small deformation. For nonlinear solid mechanics with finite
deformation, DG methods have been studied by Noels et al. [39]
and Ten Eyck et al. [50,51] for hyperelasticity and by McBride
et al. [33] for finite gradient plasticity problems.

We now address the contributions of this work. First, the total
Lagrange formulation and the updated Lagrange (spatial) formula-
tion are the two finite element frameworks for solving finite defor-
mation problems. These two methods are theoretically equivalent.
For practical applications, however, the spatial formulation is more
popular in many commercial finite element codes. This is because
the field variables obtained from the total Lagrange formulation
are based on the reference configuration and have to be trans-
formed into variables defined in the current configuration for visu-
alization and data analysis purpose. On the other hand, the field
variables, i.e., the Cauchy stress and the true stress, are naturally
computed in the current configuration and can be directly visual-
ized without any transformation. We therefore adopt a spatial
DG formulation. This approach would also greatly facilitate the
coupling between CG and DG methods. Detailed DG spatial formu-
lations and implementations for solid mechanics problems with fi-
nite deformation are little documented in the literature. In this
work, our DG formulation and linearization are performed on the
current configuration through employing the spatial velocity and
the material time derivative techniques.

Second, the co-rotational formulation [40] for hypoelastoplastic
models and potential energy function-based formulation for
hyperelastoplastic models are two major finite element frame-
works for finite deformation problems. For practical applications,
these two frameworks are equally important. The DG methods in
[39,50,51,33] are formulated and tested on only hyperelasticity
or hyperelastoplasticity. The robust implementation of the co-rota-
tional formulation for finite hypoelasticity has been one of the
most challenging topics for computer programming [21,22,52]. In
this work, our DG methods are formulated and evaluated on both
co-rotational and multiplicative decomposition-based frameworks,
which are critical in many practical applications. Third, our DG spa-
tial formulation for finite deformation problems is based on consis-
tently linearizing nonlinear equations, which provides a fast
convergence rate for Newton’s iterations. In [39], the proposed
DG method is symmetric and only for hyperelasticity. As discussed
in [31], a family of DG methods, except for the Incomplete Interior
Penalty Galerkin [11], have difficulties in achieving a consistent
formulation for plasticity problems even with small deformation.
A consistent DG formulation derived in [31] for classical plasticity
problems is based on IIPG method, but only for problems with
small deformation. In this work, we extend IIPG method to finite
elastoplastic problems. Finally, the stiffness contributed from pres-
sure loadings is also considered in our DG formulation, which is
important for achieving fast convergence rates for Newton’s itera-
tions for modeling pressure vessel problems.

We organize the remaining sections of this paper as follows. In
Section 2, we summarize the fundamentals of nonlinear contin-
uum mechanics. The material time derivatives of a few deforma-
tion-related variables are summarized in this section for
facilitating the linearization of our DG formulation. Mathematical
statements for modeling finite deformation problems are defined
in Section 3. We develop the spatial IIPG formulation in Section 4.
The IIPG nonlinear equations are linearized in Section 5. Section 6
addresses the importance of establishing local material integrators
for achieving consistent DG formulations. The spatial DG imple-
mentation and nonlinear solution procedures are discussed in Sec-
tion 7. In Section 8, we present numerical examples to demonstrate
the performance of our proposed IIPG method. Conclusions are
summarized in Section 9.

2. Fundamentals of nonlinear continuum mechanics

In this section, referring to [32,49], we describe some key vari-
ables in nonlinear continuum mechanics. These include the defor-
mation gradient, polar decomposition of the deformation gradient,
and pairs of stress and strain measurements. More specifically, we
summarize the rate change forms of the deformation gradient,
infinitesimal volume, and infinitesimal surface area, which will
greatly facilitate our linearization of the virtual work in DG frame-
works performed in later sections. Objective stress rates are also
summarized in this section.

2.1. Strain and stress measurements

Let B0 � R3 be the reference configuration and let Bt � R3 be the
current deformed configuration. As shown in Fig. 1, a one-to-one
mapping /ðX; tÞ maps a particle X 2 B0 into x 2 Bt:

x ¼ /ðX; tÞ: ð1Þ

The material velocity V and spatial velocity v of the motion / are de-
fined as follows:

VðX; tÞ ¼ @/ðX; tÞ
@t

; vðx; tÞ ¼ VðX; tÞ � /�1ðX; tÞ; ð2Þ

where /�1 is the inverse of the mapping function /. The deforma-
tion gradient F is defined as the partial derivative of the mapping
function / with respective to the reference coordinates as follows:

FðX; tÞ ¼ @/ðX; tÞ
@X

:

The deformation gradient F can be multiplicatively decomposed
into a rotational tensor RðX; tÞ and a stretch tensor UðX; tÞ as
follows:

FðX; tÞ ¼ RðX; tÞUðX; tÞ; ð3Þ

where UðX; tÞ is the right stretch tensor. The above equation is the
polar decomposition of the deformation gradient and the rotational
tensor RðX; tÞ plays a key role in establishing co-rotational finite ele-
ment frameworks for hypoelastoplasticity. The right Cauchy–Green
tensor C and left Cauchy–Green tensor b are defined in terms of the
deformation gradient F as follows:

CðX; tÞ ¼ FT F; bðx; tÞ ¼ FFT ;

where the superscript T indicates the transpose operation of
tensors. Besides of the right Cauchy–Green and left Cauchy–Green



Fig. 1. Reference configuration, current configuration, co-rotational configuration, intermediate configuration, and stress–strain measurements of a continuum body.
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tensors, two other important strain measurements are the Green–
Lagrange (E) and the Almansi strain (e) tensors:

EðX; tÞ ¼ 1
2
ðCðX; tÞ � IÞ; eðx; tÞ ¼ 1

2
ðI � b�1ðx; tÞÞ;

where I is the second order identity tensor and the superscript �1
indicates the inverse operation of second order tensors. The Cauchy
stress r, the first Piola–Kirchhoff stress P, and the second Piola–Kir-
chhoff stress S are most frequently used for stress measurements.
The first and the second Piola–Kirchhoff stresses can be pulled back
using the Cauchy stress as follows:

PðX; tÞ ¼ JF�1rðx; tÞ; SðX; tÞ ¼ JF�1rðx; tÞF�T ;

where J is the determinant of the deformation gradient F. Three
stress–strain conjugate pairs based on the energy power are
grouped as follows:

ðr; eÞ; ðP; FÞ; ðS; EÞ:
2.2. Rates of change in kinematics

The velocity gradient l is the partial derivative of the velocity
with respective to the spatial coordinate x:

lðx; tÞ ¼ @vðx; tÞ
@x

;

where vðx; tÞ is the spatial velocity defined in (2). The rate of the
deformation gradient tensor, d, and the spine tensor, w, can be writ-
ten in terms of l as follows:

d ¼ 1
2
ðlþ lTÞ; w ¼ 1

2
ðl� lTÞ:

Without presenting the proof we simply summarize the material
time derivatives of F; J ¼ detðFÞ; F�1, and infinitesimal volume dv,
as well as the Nanson formula as follows:
_F¼ lF; _J¼ JtraceðlÞ;
_

F�1¼�F�1l; _dv¼ traceðlÞdv ; ds
!
¼ JF�T dS

�!
; ð4Þ
where the dot symbol over the heads of variables indicates the
material time derivative operation and the combined use of the
dot and bar symbols over the heads of variables is to avoid any
confusions in the cases where variables are denoted by composite
symbols. Note that ds

�!
¼ n!ds in (4) is a vector where n! is the nor-

mal vector defined for an infinitesimal surface area ds. We refer to
[23] (Pages 96–104) for the detailed proofs for the formulas in (4).

In the next two lemmas we introduce the so-called Lamb surface
velocity gradient tensor and the rate of change of an infinitesimal
surface area. The two lemmas will be employed to facilitate the lin-
earization of our DG formulation involving face integrals in later
sections.

As shown in Fig. 2, an infinitesimal surface area dS with its nor-
mal vector N

!
in the reference configuration B0 is dragged by the

deformation gradient F into an infinitesimal surface area ds with
its normal vector n! in the current configuration Bt .

Lemma 1. The rate of change of a vector element of an infinitesimal
surface area in the current configuration Bt shown in Fig. 2 satisfies

_
ds
�!
¼ ðtraceðlÞI � lTÞ ds

�!
:

Proof. Using the Nanson formula given in (4) and performing the
material time derivative operation on ds

�!
, we obtain:

_
ds
�!
¼ ð_JF�T þ J

_
F�TÞ dS

�!
¼ ðtraceðlÞJF�T � JlT F�TÞ dS

�!
¼ ðtraceðlÞI � lTÞJF�T dS

�!
¼ ðtraceðlÞI � lTÞ ds

�!
;

where the rates of change in (4) have been used. h

More precisely, Lemma 1 is the Lamb formula. The tensor
traceðlÞI � lT is a strain rate measurement on surfaces in the cur-
rent configuration. As shown in later DG linearization section, it
plays a key role in dealing with the linearization of the virtual
work contributed from surface integrals. Therefore, we call this
tensor the Lamb surface velocity gradient tensor ls defined as
follows:

ls ¼ traceðlÞI � lT : ð5Þ



Fig. 2. Interior continuum surfaces in reference and current configurations.
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Lemma 2. The rate of change of an infinitesimal surface area ds 2 Rþ

in the current configuration Bt shown in Fig. 2 satisfies

_ds ¼ ðls n!Þ � n!ds:
Proof. Decomposing ds
�!

into n! and ds and applying Lemma1, we
obtain:

_
ds
�!
¼ _n!dsþ n! _ds ¼ ðtraceðlÞI � lTÞ ds

�!
¼ ls ds

�!
;

implying

_n!¼ ls n!� n!
_ds

ds
: ð6Þ

Noting that the scalar variable ds can be rewritten as the scalar
product of n! and vector ds

�!
, we obtain:

_ds ¼
_

n!� ds
�!
¼ _n!� ds

�!
þ n!�

_
ds
�!
¼ _n!� n!dsþ n!� ðls n!Þds: ð7Þ

Inserting (6) into (7), we have:

2 _ds ¼ 2 n!� ðls n!Þds: �

In the next sections, we will omit �! from vector n!whenever no
confusion occurs.
2.3. Objective stress rate

For materials with hypoelastoplastic models, constitutive laws
are described in terms of stress rates. The stress rates must be
objective so that the constitutive models are frame-indifferent.
The material time derivative of the Cauchy stress _r resulting from
the linearization of virtual work as shown in a later section is not
objective and cannot be directly applied to enforce constitutive
laws. The Truesdell, Jaumann–Zaremba, and Green–Naghdi stress
rates are the most popular candidates for objective stress rates.
The Truesdell stress rate rO can be written in terms of the Cauchy
stress and the velocity gradient tensors as follows:

rO ¼ _r� lr� rlT þ traceðlÞr; ð8Þ

or

_r ¼ rO þ lrþ rlT � traceðlÞr: ð9Þ

Rather than directly applying the Cauchy stress rate _r, the Truesdell
stress rate rO is selected for enforcing constitutive laws. All other
terms in (9) will eventually contribute to form ’’geometrical stiff-
ness’’ in finite element formulations. In this paper, we adopt the
Truesdell stress rate for the co-rotational formulation for finite hyp-
oelastoplasticity and the formulation based on the intermediate
configuration for hyperelastoplasticity. For other objective stress
rates, we refer to [49].

3. Finite elastoplasticity problem

Problems with finite deformation involve geometrical and
material non-linearities. Hypoelastoplasticity and hyperelastoplas-
ticity are two main and distinctive theories for finite deformation
problems. Despite of several drawbacks and limitations, hypoelas-
toplastic models have been more popular in practical large-scale
inelastic applications than hyperelastoplastic models. On the other
hand, hyperelastoplastic models are derived from micro-mechani-
cal behavior of single-crystal metal plasticity theories, whose
importance and interest are increasing.

For finite deformation problems, the stress computation based
on incorporating material laws must satisfy the requirement of
material frame indifference. For hypoelasticity, a popular frame-
work for satisfying this requirement is based on the co-rotational
formulation [40,32]. The essence of this method is in that material
laws are implemented in a rotated configuration, in which the
principle of material frame indifference is preserved. In this frame-
work, the strain rate tensor d is rotated to the co-rotational config-
uration B0t shown in Fig. 1 through applying tensor R, the rotational
tensor obtained from the polar decomposition on F defined in (3):
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_e0 ¼ RT d; ð10Þ

where _e0 is the strain rate in the rotated configuration. The rotated
Cauchy stress r0 is then computed through following the same pro-
cedures as the cases for hypoelastoplasticity with small deforma-
tion. For example, r0 is computed as follows:

r0 ¼ D0 : fe0 � e0pg; ð11Þ

where e0p is the plastic strain in the rotated configuration, and D0 is
the fourth order elasticity tensor. Once the rotated Cauchy stress r0
is updated in the rotated configuration, the Cauchy stress r is ob-
tained through rotating r0 back to the current configuration Bt as
follows:

r ¼ Rr0RT : ð12Þ

We now define a mathematical problem for finite hypoelastoplas-
ticity as follows:

Find u; r; e0e; and e0p that satisfy

r � rþ b ¼ 0;

R ¼ FU�1;

_e0 ¼ RT d;

_e0e ¼ _e0 � _e0p;

k0Yðr0; q0Þ ¼ 0;

_e0p ¼ k0 @f ðr0 ;q0 Þ
@r0 ;

_q0 ¼ �k0hðr0; q0Þ;
r0 ¼ D0 : e0e;
r ¼ Rr0RT

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð13Þ

with prescribed displacement and traction boundary conditions

u ¼ u on Cu;

rn ¼ t on Ct;

�
ð14Þ

where Cu [ Ct ¼ @Bt , and complementary relations

k0 ¼ 0 if Y < 0;

k0 > 0 if Y ¼ 0;

�
ð15Þ

where u is the displacement, b the body force vector, e0e the rotated
elastic stain, Y the material yield function, f the material plastic flow
potential, h the material hardening function, k0 the proportional
plastic scalar, and q0 is the plasticity-related state variable. In (13),
the operator r indicates @

@x, the partial derivative with respective
to the spatial coordinates.

On the other hand, the principle of material frame indifference
is preserved in the most popular framework for finite hyperelasto-
plasticity problems through updating stress measurements in the
so-called intermediate configuration B00t shown in Fig. 1. This inter-
mediate configuration is obtained through multiplicatively decom-
posing the deformation gradient F as follows:

F ¼ FeFp; ð16Þ

where Fe is the elastic contribution to F, and Fp the deformation due
to plastic flow. Using (16), the spatial velocity gradient l can be
additively decomposed into the elastic and plastic parts le and lp

as follows:

l ¼ le þ lp ¼ _FeFe�1 þ Fe _FpFp�1Fe�1
: ð17Þ

The components le and lp can be mapped back to the intermediate
configuration B00t through applying the pull-back operation as
follows:

le 00 ¼ Fe�1 _Fe; lp 00 ¼ _FpFp�1
; ð18Þ

where le 00 and lp 00 are the elastic and plastic velocity gradients de-
fined in the intermediate configuration B00t , respectively. Again, the
plastic velocity gradient lp 00 (plastic strain rate), yield function, flow
function, and hardening function are defined in B00t and in similar
forms as those for plasticity with small deformation. The second
Piola-Kirchhoff stress S00, a stress measurement in the intermediate
configuration B00t , is obtained as follows:

S00 ¼ 2
@WðFeÞ
@Ce 00 ; ð19Þ

where Ce 00 ¼ FeT Fe and W the hyperelastic potential. The corre-
sponding inelastic strain measurements can be defined as
Cp ¼ FpT Fp (defined in the reference configuration B0). The Cauchy
stress r in Bt is obtained through applying the push-forward oper-
ation on S00 as follows:

r ¼ FeS00FeT
=Je

where Je is the determinant of Fe.
Finally, a mathematical problem for finite hyperelastoplasticity

may be defined as follows:
Find u; r; Ce 00; and Cp that satisfy:

r � rþ b ¼ 0;

F ¼ FeFp;

le 00 ¼ Fe�1 _Fe;

k00YðS00; q00Þ ¼ 0;

lp 00 ¼ k00 @f ðS00 ;q00Þ
@S00 ;

_q00 ¼ �k00hðS00; q00Þ;
S00 ¼ 2 @WðFeÞ

@Ce 00 ;

r ¼ FeS00FeT
=Je

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð20Þ

with prescribed displacement and traction boundary conditions

u ¼ u on Cu;

rn ¼ t on Ct

�
ð21Þ

and complementary relations

k00 ¼ 0 if Y < 0;

k00 > 0 if Y ¼ 0;

�
ð22Þ

where Y is the material yield function, f the material plastic flow po-
tential, h the material hardening function, k00 the proportional plas-
tic scalar, and q00 the plasticity-related state variable.

4. DG formulation

In this section we focus on IIPG formulation for nonlinear elasto-
plasticity problems with finite deformation. We first briefly summa-
rize some DG notation, and then present the IIPG formulation. The
importance of the IIPG formulation and its potential alternatives
for efficiently modeling nonlinear solid mechanics problems with
some specific material models are also discussed in this section.

We follow the DG notations introduced in [44,31]. A physical do-
main Bt 2 R3 is discretized into a finite element set:
v ¼ fe1; e2; � � � ; eNg. We categorize surfaces into three subsets, the
interior interfaces, the prescribed displacement boundary surfaces,
and the prescribed traction boundary surfaces. The set of interior
faces in the current configuration Bt is denoted by
Si ¼ fs1; s2; � � � ; smg. Cu denotes the set of the prescribed displace-
ment boundary surfaces and Ct is the set of the described traction
boundary surfaces. The set of all surfaces is S ¼ Si [ Cu [ Ct . The
DG approximation is based on piecewise polynomial functions that
may be discontinuous across the elements. For an interface c, let eL

and eR denote the left and right neighboring elements and let n be
a fixed normal vector on c oriented from eL to eR. For a function w,
let wL and wR denote its values on eL and eR, respectively. We now de-
fine the jump and average quantities as follows:



224 R. Liu et al. / Comput. Methods Appl. Mech. Engrg. 253 (2013) 219–236
½w� ¼ wL �wR; fwg ¼ 1
2
ðwL þwRÞ: ð23Þ

The finite element space of discontinuous piecewise polynomials
for DG methods for general three dimensional problems is defined
as follows:

DrðvÞ ¼ fv : v je 2 ðPrðeÞÞ3 8e 2 vg:

We are now ready to establish a DG framework for nonlinear solid
mechanics problems. We multiply the governing equation
r � rþ b ¼ 0 from the first equation in (13) by a test function du,
integrate by parts over each element, and sum over all elements
to obtain:X
e2v

Z
e
rðuÞ : rðduÞdv �

X
e2v

Z
@e
ðrneÞ � duds�

X
e2v

Z
e

b � dudv ¼ 0;

where ne the outward unit normal to @e. Note that each interior face
integral appears twice, from its left and right neighbors. Decompos-
ing the interface set S into interior faces, prescribed traction bound-
ary faces, and prescribed displacement boundary surfaces, and
moving the traction and body force terms into the right hand side,
we obtain:X
e2v

Z
e
rðuÞ : rðduÞdv �

X
c2Si

Z
c
frng � ½du�ds

¼
X
c2Ct

Z
c

t � dudsþ
X
e2v

Z
e

b � dudv: ð24Þ

It should be mentioned that the prescribed displacement boundary
faces may be also enforced weakly for improving solutions near
boundaries as formulated in [44,18,51]. In this work, we add inter-
face stiffness into a CG program for finite deformation, in which the
displacement boundary conditions are strongly enforced. We only
apply DG to interior element faces, allowing for flexible coupling
of DG and CG. As a result, the integrals representing the virtual
work contributed from the prescribed displacement boundary sur-
faces are not present in (24). The above formulation is, in general,
not stable. To stabilize it, we add a penalty surface integral in terms
of the jump of the solution and the jump of the test function:X
e2v

Z
e
rðuÞ : rðduÞdv �

X
c2Si

Z
c
frng � ½du�dsþ dpG0

h0

X
c2Si

Z
c
½u� � ½du�ds

¼
X
c2Ct

Z
c

t � dudsþ
X
e2v

Z
e

b � dudv; ð25Þ

where dp; G0; h0 are the penalty parameter, the material initial
shear strength, and the square root of the face area, respectively.

Remark 1. More precisely, the formulation in (25) follows the IIPG
formulation proposed in [31]. Other DG formulations such as the
SIPG and NIPG methods that have been successfully applied to
linear elasticity with small deformation [18,44,26,28] could also be
formulated for finite deformation problems through adding the
term �

P
c2Si

R
cfrðduÞng � ½u�ds. For example, a symmetric stiffness

matrix may be obtained if SIPG is adopted. As addressed in [31],
however, this extra term, causes a difficulty in evaluating the
internal force contributed from this term, which will be eventually
used to compute the residual force. This is because the internal
force f I has to be expressed as f I ¼ �

P
c2Si

R
cf�g½u�ds where ½u� is

the jump on solution. For plasticity problems, an explicit or simple
format for f�g in terms of kinematic measurements is unavailable.
On the other hand, f I ¼ �

P
c2Si

R
c½B

T �frgds is always valid for the
primary interface term �

P
c2Si

R
cfrng � ½du�ds in (25) no matter

what the material behavior is. This is because B is only related to
the kinematic measurements (strain and normal direction n). Since
the IIPG method doesn’t have the term �

P
c2Si

R
cfrðduÞng � ½u�ds,
the difficulty is naturally avoided. In the cases of associative
plasticity models, a consistent CG formulation always results in a
symmetric tangent modulus, which has an advantage in CPU time.
However, the IIPG method always results in a non-symmetric
stiffness matrix even for associative plasticity models. This IIPG
drawback may be circumvented using lifting-type DG formula-
tions, which have been successfully applied to nonlinear elasticity
problems with finite deformation by Ten Eyck and Lew [50]. The
essence of these lifting DG methods is to transform jumps on faces
into equivalent strain fields on element interiors, by which
symmetric formulations may be preserved. We point out that
future research effort is needed for consistently linearizing lifting
operators in finite elastoplastic problems.
5. Linearization

Let dW be the difference of the left and right hand sides of (25)
in the previous section, i.e., the virtual work in the DG method.
Note that dW is nonlinear in terms of the displacement u and
the virtual displacement du. In general, the Newton–Raphson iter-
ation method is applied for solving this nonlinear equation, which
requires linearization of (25). More precisely, we must perform
the directional derivative (Gateaux derivative) of dW along du
as follows: DdudWðuÞ ¼ d

dg dWðuþ gduÞjg!0 for obtaining the tan-

gent modulus. A standard Gateaux’s derivative procedure for lin-
earizing the virtual work derived for spatial CG framework is well
documented in the work of Holzapfel [23]. In this procedure, the
linearization on the virtual work derived in the spatial formula-
tion is actually performed in the reference configuration B0

through transferring all spatial measurements into measurements
defined in the reference configuration. The linearized measure-
ments in B0 are then transferred back to the current configuration
Bt .

However, the Gateaux’s derivative procedure involves exten-
sive and complex pull-back and push-forward operations for fi-
nite deformation problems. To avoid these complex pull-back
and push-forward operations, a technique based on material
time derivatives of stress and strain measurements for lineariz-
ing the virtual work defined in the spatial formulation was
developed by Holzapfel [23]. In this technique, performing the
material derivative for the virtual work derived in the current
configuration is equivalent to performing Gateaux’s derivative
in the reference configuration and is able to save the work of
pull-back and push-forward operations. The material time deriv-
ative is performed in the spatial configuration and a complete
linearization for the virtual work derived in the spatial formula-
tion is obtained through simply replacing the velocity by the
incremental displacement. A detailed procedure based on the
material time derivative for linearizing the nonlinear equations
resulting from CG spatial formulations for finite deformation
problems is also summarized in [23] (see pages 399–401). It
would be even more cumbersome to perform standard Gateaux
derivative for DG formulations because several extra face inte-
grals also have to be linearized. In this paper, to keep a concise
derivation, we adopt the material time derivative technique
developed in [23] to linearize Eq. (25).

The material time derivatives of volume, surface area, stress,
and strain variables introduced in Section 2 are available to use
in the linearization via the material time derivative technique.
However, we still need two more material time derivatives, _du
and _rðduÞ.

The material time derivatives of test functions or virtual dis-
placements du satisfy _du ¼ 0. However, _rðduÞ ¼ _ð@du

@x Þ does not van-
ish since the spatial coordinate x depends on solution u, but it can
be shown that
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_rdu ¼ �rdul: ð26Þ

To prove (26), we note that

rdu ¼ @du
@x
¼ @du
@X

@X
@x
¼ @du
@X

@x
@X

� ��1

¼ @du
@X

F�1 ð27Þ

and

_rdu ¼
_@du

@X
F�1 ¼ � @du

@X
F�1l ¼ � @du

@x
l ¼ �rdul; ð28Þ

where
_

F�1 ¼ �F�1l in (4) has been utilized.
We are now ready to linearize (25). Denoting the first term in

(25) by dW1, its material time derivative is

_dW1 ¼
X
e2v

Z
e

_rðuÞ : rdudv þ rðuÞ : _rdudv þ rðuÞ : rdu _dv
� �

:

ð29Þ

Inserting (9) for _r, (28) for _rdu, and (4) for _dv into (29) and simpli-

fying the result, we obtain the linearized _dW1:

_dW1 ¼
X
e2v

Z
e

rO : rduþ lrðuÞ : rdu
� �

dv : ð30Þ

Material constitutive laws will be enforced through the first term on
the right hand side of (30). The second term on the right hand side
of (30) represents the volume geometric stiffness. We note that (30)
is just the spatial formulation for traditional displacement-based CG
methods for finite deformation problems, which deals with only
element volume integrals.

For the second term in (25), denoted by dW2, we perform the
material time derivative operation for this surface integral as fol-
lows, using ds

�!
¼ nds:

_dW2 ¼
_

�
X
c2Si

Z
c
frng � ½du�ds ¼

_
�
X
c2Si

Z
c
fr ds
�!
g � ½du�

¼ �
X
c2Si

Z
c
f _r ds
�!
þ r

_
ds
�!
g � ½du�: ð31Þ

Inserting (9) for _r and applying Lemma1 for
_

ds
�!

, we obtain

_dW2 ¼ �
X
c2Si

Z
c

rO þ lrþ rlT � traceðlÞrþ rðtraceðlÞI � lTÞ
n o

ds
�!
� ½du�: ð32Þ

Simplifying and applying ds
�!
¼ nds to (32) again, we obtain:

_dW2 ¼ �
X
c2Si

Z
c

rO þ lr
	 


n � ½du�ds: ð33Þ

In (33), the material contribution to surface stiffness is obtained
through utilizing the objective stress rate rO. The term lr in (33)
represents a new geometric stiffness contribution from surface inte-
grals. We call it the surface geometric stiffness.

We now linearize the third term in (25). Denoting this term by
dW3 and noting that dp;G0, and h0 are assumed to be constant, we
have:

_dW3 ¼
X
c2Si

dpG0

h0

Z
c
½ _u� � ½du�dsþ ½u� � ½du� _ds
� �

: ð34Þ

Inserting the formula in Lemma 2 for _ds into (34), we complete the
linearization of dW3:

_dW3 ¼
X
c2Si

dpG0

h0

Z
c
½ _u� � ½du� þ fðlsnÞ � ng½u� � ½du�ð Þds: ð35Þ
It is evident from (35) that the stabilization term in the IIPG method
also contributes to the geometric stiffness, which is related to the
Lamb surface velocity gradient tensor ls. We call this contribution
the surface penalty geometric stiffness.

Similar to CG formulations, for the case b ¼ qg with constant
gravity, there is no stiffness contribution from the second term
on the right hand side in (25). This can be verified as follows:

_dW4 ¼
_X

e2v

Z
e
qg � dudv ¼

_X
e2v

Z
e

q0

J
g � dudv

¼
X
e2v

Z
e
q0g

_1
J

� �
dv þ 1

J
_dv

 !
� du ¼ 0 ð36Þ

where the material time derivatives of J and dv in (4) are utilized.
Finally, we work on the traction-related term, which is the first

term on the right hand side in (25). In finite element frameworks,
there would be no contribution to the stiffness from this term if the
traction is converted to constant nodal forces at the stage of load-
ing input. However, if the traction is a function of the deformation
of the body or belongs to ’’follower’’ loading, the stiffness contrib-
uted from this traction term must be taken into account. Here we
consider more general cases where the traction may be described
as a function of deformation. In this case it is necessary to linearize
the traction-related term in (25). Consequently, the stiffness con-
tribution from loaded surfaces is obtained through applying the
material time derivative to the first right hand side term in (25)
as follows:

_dW5 ¼
X
c2Ct

Z
c

_t � duþ ððlsnÞ � nÞt � du
� �

ds: ð37Þ

In the case of structures under pressure loading, the traction is de-
fined in terms of the normal direction of pressured surfaces:

t ¼ �pn; ð38Þ

where n is the outward normal vector of loaded surfaces and p a
scalar. A positive p value indicates a compressive loading behavior.
For pressure loading, we obtain:

_dW6 ¼
_

�
X
c2Cp

Z
c

pn � duds ¼ �
X
c2Cp

Z
c

p
_

ds
�!
� du

¼ �
X
c2Cp

Z
c

pls ds
�!
� du ¼ �

X
c2Cp

Z
c

plsn � duds; ð39Þ

where Cp # Ct is defined for pressure boundary surfaces, scalar p it-
self is independent of the deformation of the body, and Lemma 1 is
used.

To complete the linearization on IIPG formulation, we now col-
lect the linearized dW1 through dW6 to obtain:

_W ¼
X6

i¼1

_dWi ¼
X
e2v

Z
e

l : c : rduþ lr : rduð Þdv

�
X
c2Si

Z
c
fc : lþ lrgn � ½du�dsþ

X
c2Si

dpG0

h0

Z
c
½ _u� � ½du�ð

þ ls : n	 ng½u� � ½du�f Þds�
X

c2Ct=Cp

Z
c

_t � duþ ðls : n	 nÞt � du
� �

ds

þ
X
c2Cp

Z
c

plsn � duds; ð40Þ

where material constitutive laws are incorporated into the formula-
tion through rO ¼ c : d as this stress rate is now objective, and the
property d : c : rdu ¼ l : c : rdu and the minor symmetry of c have
been used (see [23] page 400 for a CG-based spatial formulation).
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As the linearized results in (40) are written in terms of the spa-
tial velocity gradient l, we next discuss the discretization and inte-
gration in the time domain. We simply follow the scheme
introduced in [23] (page 401) and replace the spatial velocity v
by the incremental displacement:

Du ¼
Z tnþ1

tn
v dt 
 vðxnþ1ÞDt ¼ vðxn þ DuÞDt;

where Du is the incremental displacement from time tn to time tnþ1

and xn the previous known spatial coordinate at time tn. More pre-
cisely, this is the Euler backward integration scheme as xnþ1, the
current coordinate of a point, is continuously updated through
xnþ1 ¼ xn þ Du during each Newton’s iteration for a given load step.
Correspondingly, for the time discretization the material time
derivative of displacement _u, the velocity gradient l, the Lamb sur-
face velocity gradient ls, and _�t are replaced by:

Du; gradðDuÞ; gDu ¼ traceðgradðDuÞÞI

� gradTðDuÞ; and WðDuÞ; ð41Þ

where grad � r and we need to address WðDuÞ for replacing _�t in
(41). Depending on material properties on surfaces, _�t could be for-
mulated in terms of either gradðDuÞ or Du itself. Here, W, a vector
function of Du, is understood. Substituting (41) into (40), we obtain
the following incremental form of linearized virtual work:

DW ¼
X6

i¼1

DWi ¼
X
e2v

Z
e
ðgradDu : c : gradduþ gradDur : gradduÞdv

�
X
c2Si

Z
c
fc : gradDuþ gradDurgn � ½du�ds

þ
X
c2Si

dpG0

h0

Z
c
½Du� � ½du� þ gDu : n	 n

� �
½u� � ½du�

� �
ds

�
X

c2Ct=Cp

Z
c

WðDuÞ � duþ gDu : n	 n
� �

t � du
� �

ds

þ
X
c2Cp

Z
c

pgDun � duds: ð42Þ
Remark 2. In CG spatial formulations, the geometric stiffness is
obtained through performing only volume integrations. As expected,
besides the geometric stiffness from volume integration, interior
surfaces introduced in DG methods also contribute to the geometric
stiffness. More precisely, two additional geometric stiffnesses, one
from the standard face integral and the other from the stabilization
face integral, as shown in (40), are required for consistent spatial DG
formulations. Although the geometric stiffness contribution from the
stabilization face integrals may be negligible for some cases where
the magnitude of the primary solution u is several orders lower than
the Cauchy stress present in other geometric stiffnesses, it should be
always included in DG implementations to avoid slow convergence
rates in solving more general problems.
Remark 3. Through the linearization of the IIPG formulation, we
underline that the so-called Lamb surface velocity gradient tensor,
ls, is very useful in dealing with surface-related rate of change. This
is evident in that the rate of change of infinitesimal surface area
simply satisfies _ds ¼ n � lsnds or _ds ¼ ðn	 nÞ : ls ds, which has been
shown in Lemma2. Consequently, the geometric stiffness resulting
from linearizing the stabilization interior face integrals and distrib-
uted loading boundary face integrals has a simple representation in
terms of ls. It should be noted that the derivation for the geometric
stiffness contributed from ’’follower’’ or pressure loading was
originally proposed in [20]. However, the derivation in [20] may
be relatively complicated for implementation as the natural coor-
dinates are involved and vector cross products are present. Since
the natural coordinates do not appear in (40), the implementation
of all geometric stiffness contributions simply follows well estab-
lished volume and surface integrations in DG frameworks.
Remark 4. For linear elasticity problems with small deformation,
the coercivity of the DG methods proposed in [44,18] is proved
through exploiting the elliptic property of the fourth order elastic-
ity tensor and applying sufficiently large penalty. The OBB DG
method originally proposed in [41] for fluid problems and later
applied to nearly incompressible elasticity [28] is naturally coer-
cive. As shown in [31], for elastoplastic problems with small defor-
mation the coercivity of the IIPG formulation is also satisfied if
associative plasticity models with hardening are assumed. The
coercivity analysis in [31] is solely based on good material proper-
ties, and the geometric stiffness is not taken into account. How-
ever, in addition to the major stiffness contributed from
materials, geometric stiffness in terms of stresses also appears in
linearized formulations of CG methods for finite deformation prob-
lems through volume integration. In our linearized spatial DG for-
mulation for finite deformation problems, besides the volume
geometric contribution, three additional geometric contributions
including the standard, penalty, and traction boundary face inte-
grals are also present. These geometric contributions should also
be taken into account in any coercivity analysis for DG methods
for finite deformation problems. In the case of the deformation of
structures undergoing a compressive buckling dominated mode,
the stiffness is singular, which indicates that the coercivity is lost
in the buckling case. This suggests that the coercivity may not hold
for linearized CG or DG formulations for general finite deformation
problems. As discussed by Ten Eyck and Lew [51], however, the
stability of linearized finite element formulations can be greatly
improved by DG methods through applying appropriate penalty
or stabilization parameters.
6. Material integrator

To achieve fast convergence rates for Newton’s iterations for
solving finite elastoplastic problems, consistent formulations on
both geometric and material stiffnesses are required. The geomet-
ric stiffness contributions have been derived in the previous sec-
tion. It is the focus of this section to address the stiffness
contribution from materials. We first outline the procedures to
implement hypoelastoplastic models in the co-rotational frame-
work. In this framework, the strain rate tensor d in Bt is rotated
to the rotated domain and then additively decomposed into the
rate of elastic strain and plastic strain. The stress is updated in this
rotated configuration (co-rotational domain). For hyperelastoplas-
tic models, the stress updating is performed in the intermediate
configuration. In this section we establish material integrators for
updating stress and providing consistent tangent modulus for the
Gaussian integration points on both elements and surfaces.

In (40), material laws are incorporated through the Truesdell
stress rate. This approach unifies the formulations for both co-rota-
tional and multiplicative decom-position-based frameworks. For
the co-rotational implementation for hypoelastoplasticity, we fol-
low a modified version of the Lie derivative discussed in [6]
(p.260–262):

rO ¼ R _r0RT ;

and r0 can be updated in the rotated configuration B0t . In time step
nþ 1, the deformation gradient Fnþ1 is computed as:
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Fnþ1 ¼ I þ Gradðunþ1Þ;

where the symbol Grad indicates the partial derivative with respect
to the reference coordinate X. The deformation gradient Fnþ1 is
decomposed into the stretch tensor Unþ1 and the rotational tensor
Rnþ1 through the polar decomposition as follows:

Fnþ1 ¼ Rnþ1Unþ1: ð43Þ

The incremental strain is computed using the rate of deformation
tensor d and the backward Euler integration method:

De ¼ Dt d ¼ 1
2
ðgradðDuÞ þ gradTðDuÞÞ:

Using the rotational tensor Rnþ1 obtained from (43), the incremental
strain De defined in the current configuration Bt can be transferred
into an incremental strain De0 in the co-rotational domain through
the pull-back operation:

De0 ¼ Rnþ1T
DeRnþ1: ð44Þ

Having De0 available, we now define the local material integrator
problem for hypoelastoplastic materials in the rotated domain B0t
as follows:

Material integrator I: Given ðr0n; ee 0n ; ep 0n ; q0nÞ at time step n and
the incremental strain De0 for current time step nþ 1 in the rotated
domain B0t , find ðr0nþ1; ee 0nþ1

; ep 0nþ1
; q0nþ1; c0nþ1 ¼ @r0nþ1

@e0nþ1 Þ in the rotated
domain B0t at the current time step nþ 1.

In this problem statement, ee 0, ep 0; q0, and c0 are, respectively,
the elastic strain, plastic strain, plasticity-related state variable,
and tangent modulus defined in the rotated or co-rotational do-
main B0t . It is necessary to derive material integrators in a system-
atic way, in which both the stress returning and the consistent
elastoplasticity tensor are constructed simultaneously. For finite
deformation, many material integrators well developed for small
deformation can be fully exploited through simply performing
stress returning in the rotated configuration. For these material
integrators, we refer to [47]. In this work, J2 and rate-dependent
plasticity with hardening models are implemented by following
procedures reported in [31], where a material integrator for J2 plas-
ticity is proposed for the IIPG method for solving small deforma-
tion problems in the framework of hypoelastoplasticity.

Finally, the updated stress r0nþ1 together with the tangent mod-
ulus c0nþ1 are transferred to the current configuration Bt through the
push forward operation:

rnþ1 ¼ Rnþ1r0nþ1RT nþ1
; cnþ1

ijkl ¼ RimRjnRkpRlqcprimenþ1
mnpq : ð45Þ

The updated Cauchy stress rnþ1 and the consistent tangent modulus
cnþ1 are now spatially defined in the current configuration Bt and
can be applied to form the stiffness and the residual force by follow-
ing the spatial formulation in (48) and (49) for the next global non-
linear iteration.

We now focus on the hyperelastoplastic case. As discussed in
Section 3, the total stress can be directly computed through taking
the partial derivative of potential functions with respective to
strain measurements. For the multiplicative framework, the strain
energy W may be defined in terms of the elastic right Cauchy–
Green strain tensor Ce 00 defined in the intermediate configuration
B00t shown in Fig. 1 and the elasticity tensor in this intermediate
configuration is obtained as follows:

ce 00 ¼ 4
@2WðCe 00Þ
@Ce 002

: ð46Þ

Material yield, flow, and hardening functions are all defined in B00t as
previously discussed in Section 3. A typical construction of local
material integrators based on the intermediate configuration can
be found in [35]. The updated stress and tangent modulus obtained
from such integrators have to be further pushed forward into the
current configuration Bt for the spatial finite element formulation.

However, for the case where the elastic potential, yield, flow,
and hardening functions are defined in terms of strain measure-
ments in the current configuration Bt , the Cauchy stress and the
tangent modulus can be directly constructed in the current config-
uration Bt as shown in [49]. Moreover, in the cases of isotropic
hyperelastoplastic materials with elastic potentials in terms of
stretches, a complete and efficient spatial-based material integra-
tor can be found in Bonet and Wood [8]. In this paper, we simply
follow the constructing procedures documented in [8] for neo-
Hookean’s materials with J2 plasticity. The strain potential is de-
fined as a function of the logarithmic stretches:

Wðke
1; k

e
2; k

e
3Þ ¼

k
2
ðln JeÞ þ l½ðln ke

1Þ
2 þ ðln ke

2Þ
2 þ ðln ke

3Þ
2�;

where Je ¼ ke
1k

e
2k

e
3 and k and l are the Lame constant and shear

modulus. The quantities ke
i ði ¼ 1;2;3Þ are the principle stretches

of the elastic finger tensor be defined in the current configuration
Bt as follows:

be ¼ FCp�1FT :

The yield and flow functions are written in terms of the Cauchy
stress as follows:

Yðr;r0ð�epÞÞ ¼ f ðr;r0ð�epÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

devðrÞ : devðrÞ
r

� r0ð�epÞ;

where devðrÞ is the deviatoric stress tensor, r0 the yield stress, and
�ep the equivalent plastic strain. A bilinear hardening model is imple-
mented in this paper. We are now ready to define the local material
integrator problem for hyperelastoplastic materials as follows:

Material integrator II: Given ðCpn
; �epnÞ at time step n and the

deformation gradient Fnþ1 at the current time step nþ 1, find
ðrnþ1;Cpnþ1

; cnþ1Þ at the current time step nþ 1.
In the above, cnþ1 is the spatial consistent tangent modulus. For

a detailed procedure for constructing Material Integrator II, we re-
fer to [8] (p.212–214).

7. DG implementation and nonlinear procedure

The objective of this section is to describe the DG implementa-
tion based on the linearized results in the previous sections, as well
as the global nonlinear Newton iteration. We present the DG tan-
gent stiffness matrix and residual force vector. The consistent
implementation for solving nonlinear problems via the Newton
method requires not only to form the tangent stiffness matrix
through consistently linearizing nonlinear equations, but also to
correctly compute the residual force vector without dropping any
of the terms in the DG formulation. Letting DU be the nodal dis-
placement incremental vector, then the incremental displacement
Du, the spatial gradient gradDu, its transpose gradTDu, its trace
traceðgradDuÞ and the Lamb surface gradient gDu for an element
interior point or a point on a surface can be interpolated in terms
of DU:

Du ¼ NDU;

gradDu ¼ LDU;

gradTDu ¼ LT DU;

traceðgradDuÞI ¼ L0 DU;

gDu ¼ ðL0 � LTÞDU;

WDu ¼ W
�t DU;

8>>>>>>>>><
>>>>>>>>>:

ð47Þ

where N; L; LT; L0; and W
�t are interpolation matrices. It should be

noted that LT is not the same as L or its transpose LT due to the non-
symmetry of the spatial displacement gradient tensor gradDu.



Table 1
DG nonlinear procedures for finite deformation problems.

Step 1: Initialize variables:
Loop over all Gauss integration points on both elements and surfaces

unþ1 ¼ un;
xnþ1 ¼ xn;
rnþ1 ¼ rn;

if hypo

e0p
nþ1
¼ e0p

n
;

q0nþ1 ¼ q0n:
if hyper

Cpnþ1 ¼ Cpn;
�qnþ1 ¼ �qn:

Step 2: Predict incremental displacement:

Compute : K and RF ¼ �DFext

ðK ¼ Ke ðelasticÞ or K ¼ KnÞ;
solve : Du ¼ �K�1RF ;

update : xnþ1 ¼ xn þ Du;
update : unþ1 ¼ un þ Du;

obtain : Fnþ1 ¼ I þ Gradðunþ1Þ.
Step 3: Return stress

if hypo:

Compute : Rnþ1 according to Eq. (43);
Pull back : De0 according to Eq. (44);

Return mapping : ðr0nþ1; e0e
nþ1; e0p

nþ1; q0nþ1; c0nþ1 Þ;
ðaccording to material integrator I documented in ½32�Þ;
Push forward : ðr0nþ1; c0nþ1 Þ ! ðrnþ1; cnþ1Þ according to Eq. (45).

if hyper:

Return Mapping : ðrnþ1;Cpnþ1
; cnþ1Þ

ðaccording to material integrator II documented in ½8�;
ðPage : 212��214ÞÞ.

Step 4: Update Du:

compute : K and RF according to Eq:ð48Þ and Eq:ð49Þ;
correct : Du ¼ Du� K�1RF ;
update : xnþ1 ¼ xn þ Du;
update : unþ1 ¼ un þ Du;

obtain : Fnþ1 ¼ I þ Gradðunþ1Þ.
Step 5: Check residual:

if L2ðRF ÞP TOL; go to Step 3.
if nþ 1 ¼ nmax; Exit or go to Step 1 for next load step.
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Inserting the interpolated variables from (47) into (42), we obtain
the tangent stiffness matrix K:

K ¼
X
e2v

Z
e

LTðCþKrÞL dv �
X
c2Si

Z
c
½NT�nfðCþ KrÞLgds

þ
X
c2Si

dpG0

h0

Z
c
ð½NT �½N� þ ½NT �K½u�nT nfL0 � LTgÞds

�
X

c2Ct=Cp

Z
c

NTðW�t þKtnT nðL0 � LTÞÞds

þ
X
c2Cp

Z
c

pNTnðL0 � LTÞds; ð48Þ

where Kr;K½u�, K
�t, and n are geometric matrices written in terms of

stress, jump displacement, prescribed traction, and face normal
directional components, respectively. In (48), C is the matrix form
of the fourth-order consistent tangent modulus and a constant pres-
sure loading case is assumed. The residual force vector RF that ap-
pears on the right hand side of the linearized system on each
Newton iteration can be written in terms of the currently known
displacement and Cauchy stress:

RF ¼
X
e2v

Z
e

LTrdv �
X
c2Si

Z
c
½NT�nfrgdsþ

X
c2Si

dpG0

h0

Z
c
½NT�

� ½u�ds�
X
e2v

Z
E

NTbdv �
X
c2Ct

Z
c

NT t ds

þ
X
c2Cp

Z
c

pNT n!ds; ð49Þ

where r in (49) is now written as an algebraic vector, n is the ma-
trix form of the normal vector, and n! is the vector form of the nor-
mal vector.

On each Newton’s iteration we solve the algebraic system of
equations

KDU ¼ �RF:

For DG implementation and programming, we follow the nodal-
based DG implementation documented in detail in [28,31]. This no-
dal-based DG implementation is able to fully exploit existing popu-
lar CG finite element programs for finite deformation problems
through simply breaking continuous elements and adding addi-
tional stiffness and internal force contributed from interior face
and boundary face integrals. Three dimensional isoparametric ele-
ments are implemented in our IIPG computer code. For traditional
spatial CG finite element framework and the updated Lagrange for-
mulations for finite deformation problems, we refer to [5,8] for iso-
parametric element technology, stiffness and residual computation,
implementation on pressure loading, and updating on geometry
and state variables. In our spatial DG implementation, an initial
meshing or initial nodal coordinate (X ¼ x0) is first obtained in the
reference configuration. The deformed mesh is obtained at any
Newton’s iteration through simply updating current nodal coordi-
nates as xnþ1 ¼ x0 þ unþ1 where unþ1 is the total displacement vector
of the node at time step nþ 1. A node id, once assigned at the initial
configuration, will not change (like material point in the sense of
Lagrange). Once the displacement is known, all measurements can
be updated through the deformation gradient F. It should be noted
that as DG is still Galerkin-based method, the space of test function
is the same as the solution. In this paper, trilinear functions are
implemented for displacement interpolations in the 8-node hexa-
hedral elements. Finally, we discuss nonlinear iteration procedures
for solving finite deformation problems with DG methods. Similar
to CG methods for finite deformation problems, solution procedures
for DG methods also involve the initialization of field variables for
starting the Newton–Raphson iterations, updating stress, comput-
ing consistent tangent modulus in the local material level, assem-
bling the stiffness matrix and the residual force vector, and
updating the spatial configuration. To avoid non-convergent runs
due to the use of linear iterative solvers and large and constant
loading steps, a sparse direct solver and an automatic loading
reduction and increase scheme are implemented in this work. For
example, if the number of iterations within a load step exceeds
10, the incremental load will be reduced by 50% and the nonlinear
iteration will restart for this load step. We describe the nonlinear
solution procedure for DG methods in Table 1. Three key ingredi-
ents deserve to be highlighted: (a) Nonlinear procedures for both
hypoelastoplasticity and hyperelastoplasticity are addressed; (b)
Co-rotational implementation for hypoelastoplasticity and multipli-
cative decomposition and implementation for hyperelastoplasticity
are treated separately; and (c) Compared with CG methods, addi-
tional stress returning and updating work on face Gaussian integra-
tion points required for DG methods are underlined.

8. Numerical examples

In this section, we first derive an analytical solution for a sim-
ple hyperelastic bar problem undergoing finite deformation with
the gravity load. We then compare the IIPG solution with this ex-
act solution for the bar problem to verify the IIPG formulation and
implementation. we further select two more complex problems
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suitable to evaluate the performance of our IIPG method for solv-
ing both hypoelastoplastic and hyperelastoplastic problems. For
testing hypoelastoplastic problems, in addition to the plasticity
factor, the effect of large rotation on convergence rates should
also be evaluated. A cantilever beam problem designed to have
less stress-concentration on its boundaries and being able to un-
dergo large rotation is selected to serve such a purpose. This beam
is also resolved by using a hyperelastoplastic model and by apply-
ing pressure loading. The DG performance is further evaluated
using a bipolar void growth and coalescence problem, which
was first solved in [35] for evaluating the formulation of the im-
plicit finite element methods for multiplicative plasticity in the
framework of CG methods. It should me mentioned that as only
(a)
Fig. 3. A hyperelastic bar under gravity load: (a) bar geometry an

Fig. 4. Displacement error of the IIPG method versus element numbers for hyperelastic b
10) scale for both axes.
isoparametric hexahedral elements are implemented in our com-
puter code, all plain strain problems presented in this paper are
solved through restraining the degree of freedom in a specified
direction.

8.1. A hyperelastic bar with gravity load

In this section, we verify the IIPG formulation and implementa-
tion through developing an analytical solution for a hyperelastic
bar problem subjected to a gravity load. The convergence rate of
the IIPG method towards the exact solution in terms of the total
number of meshed elements is studied. The convergence for New-
ton’s iterations is also presented.
(b)
d (b) exact and IIPG consolidated heights versus gravity load.

ar problem: error defined by jhIIPG � h0j=h0; load level at g ¼ 10 m=s2; and log (base



Fig. 5. Norms of force residual versus iteration number: curves from the left to the right are corresponding to 5, 10, 50, 100, and 500 elements at last load step (g ¼ 10 m=s2);
curves are technically shifted; convergence tolerance is 1.0e�3.

YX

Z

Fig. 6. Profile and finite element mesh of cantilever beam problem.

Fig. 7. Contour of equivalent plastic strain for cantilever beam problem with
hypoelastoplastic materials at full loading level.
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A quarter model of the bar with square cross-section is plotted
in Fig. 3. In Fig. 3, the initial height and material initial density for
the bar, defined at the condition of the gravity g ¼ 0, are denoted
by h0 and q0. The material is assumed to follow the neo-Hookean
law: r ¼ lðb� IÞ=J þ klnJ

=J where l and k are material shear
modulus and Lame constant. We further assume that k ¼ 0, which
substantially simplifies this problem into a one dimensional prob-
lem. More precisely, only vertical displacement component in dis-
placement field is non-zero. Hence, the vertical component of the
deformation gradient F, the left Cauchy–Green strain tensor, and
the Jacobian of the deformation gradient F can be simply written
in terms of the vertical displacement uðZÞ as follows:

FZ ¼ 1þ duðZÞ
dZ

; bz ¼ 1þ duðZÞ
dZ

� �2

; J ¼ 1þ duðZÞ
dZ

:

The unknown uðZÞ is obtained through solving a second-order or-
dinary differential equation formulated in the reference configura-
tion B0 as follows:
dPZ
dZ þ q0g ¼ 0 ðEquilibrium EquationÞ;
PZ ¼ Jrz=FZ ðStress Pull� BackÞ;
rz ¼ lðbz � 1Þ=J ðMaterial LawÞ;

8><
>: ð50Þ

with boundary conditions:

uðZÞjZ¼0 ¼ 0;
duðZÞ

dZ jZ¼h0
¼ 0;

(
ð51Þ



Fig. 8. Norms of residual forces in global Newton–Raphson iterations for cantilever problem with hypoelastoplastic model: curves from the left to the right are corresponding
to load levels at percent, 10%, 50%, and 100%; curves are technically shifted; convergence tolerance is 1.0e�2.

6.56 159 312 YX

Z

Fig. 9. Contour of von Mises stress for cantilever beam problem with hyperelas-
toplastic materials and under pressure loading at full loading level.
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where PZ and rz are the normal components in the vertical direction
of the first Piola–Kirchhoff stress and the Cauchy stress tensors,
respectively.
Finally, the displacement solution uðZÞ for this bar problem is
given by:

uðZÞ ¼ Z � h0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðZ � h0Þ2 þ 4

q
þ 1

b
ln bðZ�h0Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðZ�h0Þ2þ4
p	 


þ h0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2h2

0 þ 4
q

� 1
b

ln
ffiffiffiffiffiffiffiffiffiffiffiffi
b2h2

0þ4
p

�bh0

	 

þ bðZ � h0Þ2

4

� bh2
0

4
� Z; ð52Þ

where b ¼ q0g=l and has a unit of the inverse of length. Inserting
Z ¼ h0 into (52), we obtain h ¼ h0 þ uðZ ¼ h0Þ, the consolidated
height of the bar, as follows:

h ¼ 1
b

ln
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 ðZ�h0 Þ
2þ4

p
�bh0

� �
þ h0

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2h2

0 þ 4
q

þ bh2
0

4
: ð53Þ

The quarter model of the bar shown in Fig. 3(a) is constrained at
X ¼ 0 for X-direction displacement, at Y ¼ 0 for Y-direction dis-
placement, and at Z ¼ 0 for Z-direction displacement. The initial
height, initial density, material shear modulus, and maximum grav-
ity load are given by h0 ¼ 10 m, q ¼ 1500 kg=m3; l ¼ 20000 N=m2,
and g ¼ 10 m=s2. The bar is uniformly meshed into 5; 10; 50; 100,
and 500 discontinuous segments along the vertical direction. The
gravity load is equally divided by 50 load steps. In Fig. 3(b), the con-
solidated height versus the increase in gravity load predicted from
the IIPG method with 100 elements is compared with the exact
solution. In detail, IIPG predicts h ¼ 3:364700 m and the exact solu-
tion gives h ¼ 3:364851 m at gravity load g ¼ 10 m=s2. This shows
that the IIPG method predicts very accurate results. To further study
the convergence rate towards the exact solution for the IIPG meth-
od, we run other four different meshes mentioned above. Fig. 4 pre-
sents the error of relative consolidated height in terms of the
number of elements. The error is defined by jhIIPG � h0j=h0 and the
logarithmic scale with base 10 for both axes is used. We observe
a strict linear convergence rate for the IIPG method for solving this
hyperelastic bar problem with gravity load. To study convergence
patterns for Newton’s iterations, we present the norms of residual
force in Fig. 5. In Fig. 5, the five curves are corresponding to five dif-
ferent meshes at the last load step (towards g ¼ 10 m=s2). It should
be noted that last four curves in Fig. 5 are technically shifted so that



Fig. 10. Norms of residual forces in global Newton–Raphson iterations for cantilever problem with hyperelastoplastic model: curves from the left to the right are
corresponding to load levels at 1%, 10%, 50%, and 100%; curves are technically shifted; convergent tolerance is 1.0e�3.
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Fig. 11. Profile and initial mesh configuration of bipolar void growth and
coalescence problem.

Fig. 12. Deformation and equivalent plastic strain contour for bipolar void growth
and coalescence problem (Loading Level: 2.5 Percent).
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the five curves for different meshes can be compactly plotted in one
graph. Strict quadratic convergence rates for Newton’s iterations are
observed in these IIPG runs for this relatively simple bar problem. In
the next subsections, two more problems with more complex
geometries, material models, and load conditions are selected to
further evaluate the performance of the IIPG method.

8.2. A cantilever beam under finite deformation

A cantilever beam with a length of 55 mm and a height
of 10 mm is shown in Fig. 6. It is constrained in the horizontal
direction (y-axis) at its left end, in the vertical direction at the
top and bottom surfaces of the left end, and in the x-direction on
the surface at x ¼ 0. The beam is meshed into 170 hexahedral ele-
ments and 1360 nodes. We first solve this beam problem with
hypoelastoplastic materials to evaluate the performance of the IIPG
method. In this run, we apply a displacement controlled load up to
du ¼ 40 mm at the nodes on the tip top line, which implies that the
beam will undergo both large strain and large rotation. The mate-
rial elastic constants are: E ¼ 210 Mpa (the Young Modulus) and



Fig. 13. Deformation and equivalent plastic strain contour for bipolar void growth
and coalescence problem (Loading level: 10%).

Fig. 14. Deformation and equivalent plastic strain contour for bipolar void growth
and coalescence problem (Loading level: 20%).

Fig. 15. Deformation and equivalent plastic strain contour for bipolar void growth
and coalescence problem (Loading level: 40%).

Fig. 16. Deformation and equivalent plastic strain contour for bipolar void growth
and coalescence problem (Loading level: 80%).
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l ¼ 0:499 (the Poison ratio). Classic J2 plasticity with bilinear hard-
ening behavior is assumed for the beam material.
The yield stress is r0 ¼ 200 Mpa. The hardening modulus is
H ¼ 210 Mpa. The loading is initially divided into 200 load steps
but the actual load steps is up to 382 for a complete run. Fig. 7



Fig. 17. Deformation and equivalent plastic strain contour for bipolar void growth
and coalescence problem (Loading level: 100%).

Fig. 18. Deformation and equivalent plastic strain contour for bipolar void growth
and coalescence problem (Loading level: 100%; Ligament stretching profile).
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shows the deformation configuration of the beam. The equivalent
plastic strain with maximum value up to 0:21 is also contoured
in Fig. 7. The L2 norms of the force residual vector at the selected
four load levels are presented in Fig. 8. We conclude that a qua-
dratic convergence rate for Newton’s iterations is observed at
low load levels but the convergence deteriorates at the stages
where large deformation or rotation substantially develops. How-
ever, the deteriorated convergence rates are still fast as each load
step is finished within 8 iterations. To our knowledge this conver-
gence pattern for DG methods in the co-rotational framework for
hypoelastoplasticity undergoing large deformation is similar to
the tradition CG methods where strict quadratic convergence rates
are often lost when deformation is large.

This beam problem is resolved to test the DG performance in
the framework of multiplicative formulation for materials with
hyperelastoplastic models. The material constants for the nearly
incompressible neo-Hookean material model are: k ¼ 0:7eþ 7 Mpa
and l ¼ 0:7eþ 5 Mpa. The plasticity parameters are assumed to be
the same as the previous hypoelastoplastic case. Moreover, in this
study we apply pressure loading p ¼ 12:5 Mpa on the top surface
of the beam so that the DG formulation taking into account the
pressure effect will be also tested in the multiplicative framework.
It should be noted that in this pressure load case the beam local
stress paths are highly non-proportional due to the follower load
and the large rotation of the structure. The loading is initially di-
vided by 200 steps and the actual number of loading steps is
229. The deformation and the Von Mises stress of the beam with
hyperelastoplastic materials are presented and contoured in
Fig. 9. Fig. 10 shows the L2 norms of the residual force for the se-
lected load levels. From this Figure we see that strict quadratic con-
vergence rates are observed for all load steps.

8.3. A bipolar void growth and coalescence problem

In this section, we apply the IIPG method to solve void growth
and coalescence problems, which are important in material dam-
age and failure research and applications. On microscopic scale lev-
els, the damage and ductile fracture of metal materials result from
the nucleation, growth, and coalescence of voids embedded in me-
tal solid matrices [16,37,15]. Even though structures undergo only
a small deformation from the point of macroscopic view, the local
strain developed near voids may be several thousand times over
the global strain. This brings a challenge for the study of the void
growth through employing necessary computational approaches
as the phenomenon of the void growth is an inherently finite defor-
mation problem in microscopic scales. As a pioneering example,
the detailed growth and coalescence profile for two bipolar voids
was first investigated by Moran, Ortiz, and Shih in [35] through
applying their proposed CG-based multiplicative formulation to fi-
nite hyperelastoplastic problems. We use this problem to further
demonstrate the performance of our proposed IIPG method for
solving hyperelastoplastic problems.

As shown in Fig. 11, the structure has two voids modeled by two
identical hollow cylinders with circular sections embedded in a
metal solid matrix. The plane strain condition is assumed in our
analysis. The initial distance between the two centers of the voids
is 2 mm, the diameter of the void 0.1733 mm, and the length of the
squared cross-section of the solid matrix 5 mm. The neo-Hookean
hyperelastic material constants are: k ¼ 9:396eþ 4 Mpa and
l ¼ 7:047eþ 4 Mpa. The J2 plasticity parameters are
r0 ¼ 35:235 Mpa and H ¼ 0:35235, which indicates that a nearly
ideal plasticity is assumed for solid matrix materials in this study.
We apply a displacement-controlled loading du ¼ 0:5 mm on the
remote surfaces. To avoid any potential needs on re-meshing due
to serious distortions of the original mesh in the case of very large
strain developed at higher loading levels, we follow the idea
described in [35] and design an initially orthogonal mesh using
bipolar coordinates. Eventually, a total of 397 8-node hexahedral
elements and 3176 nodes are produced in the quarter model



Fig. 19. Norms of residual forces in Global Newton–Raphson iterations for bipolar void coalescence problem with hyperelastoplastic model: curves from the left to the right
are corresponding to load levels at 1%, 10%, 50%, and 100%; curves are technically shifted; convergence tolerance is 1.0e�3.
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shown in Fig. 11. As the plane strain is assumed in the analysis, all
the degrees of freedom in the z-direction are constrained. A total of
400 initial loading steps are predefined in the run but the final
loading stage of the deformation is successfully finished in 440
load steps through employing an automatic loading step adjust-
ment strategy.

Figs. 12–17 present the details of the void growth correspond-
ing to six different loading levels. The initial volume of each void
is 0.024136 mm3 and the final volume of the void is 10.4 mm3,
which indicates that the void grows 431 times. On the other hand,
the wall thickness between the two voids shrinks from 1.8343 mm
to 0.1295 mm, 93% in thickness reduction. Because of the whole
cross-section of the structure and the solid matrix material with
nearly ideal plasticity, the 0.1295 mm residual thickness of the lig-
ament between the two voids may have little contribution to the
capacity change of the whole structure. From this point of view,
this ligament could be removed and the two voids would coalesce
into a larger single void. Another strong evidence for the removal
of this narrowed ligament is the equivalent plastic strain contour
shown in Fig. 18. From Fig. 18, we see that the maximum equiva-
lent plastic strain develops in the narrowed ligament and reaches a
value of 453%. The distribution of the plastic strain is uniform over
almost the whole ligament between the two voids. Moreover, a
new larger coalesced void with an elliptic cross-section may be ex-
pected from the removal of the narrowed ligament between the
two growing voids. Finally, Fig. 19 presents the profile of the con-
vergence for Newton’s iterations for the void growth problem
solved by the IIPG method. We conclude that quadratic conver-
gence rates are achieved for our IIPG implementation for this bipo-
lar void problem undergoing very large deformation.
9. Conclusions

A spatial formulation of the IIPG method has been established
for solving both hypoelastoplastic and hyperelastoplastic problems
with finite deformation. The formulation of the IIPG method has
been derived in the co-rotational framework and in the intermedi-
ate configuration through consistently linearizing DG weak formu-
lation for general nonlinear solid mechanics problems including
the pressure loading case. Two new terms, the surface geometric
stiffness and surface penalty geometric stiffness, have been intro-
duced in this DG spatial formulation. The performance of the IIPG
method is demonstrated through solving a beam problem and a
bipolar void growth problem with finite elastoplastic deformation.
Fast convergence rates for Newton’s iteration are observed in our
IIPG formulation.
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