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Abstract. We present an efficient approach for preconditioning systems arising in multiphase
flow in a parallel domain decomposition framework known as the mortar mixed finite element method.
Subdomains are coupled together with appropriate interface conditions using mortar finite elements.
These conditions are enforced using an inexact Newton–Krylov method, which traditionally required
the solution of nonlinear subdomain problems on each interface iteration. A new preconditioner is
formed by constructing a multiscale basis on each subdomain for a fixed Jacobian and time step. This
basis contains the solutions of nonlinear subdomain problems for each degree of freedom in the mortar
space and is applied using an efficient linear combination. Numerical experiments demonstrate the
relative computational savings of recomputing the multiscale preconditioner sparingly throughout
the simulation versus the traditional approach.
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1. Introduction. Driven by important applications in energy and the environ-
ment, the accurate simulation of realistic flow through the subsurface involves highly
heterogeneous media on large domains. Even under basic modeling assumptions, these
systems are computationally intensive and require specialized techniques for efficient
solution. Nonoverlapping domain decomposition methods are a popular approach
that allows parallel implementation, physically meaningful interface conditions, and
the possibility of coupling multiple physical and numerical models.

In this work we consider the multiscale mortar mixed finite element method
(MMMFEM) applied to multiphase flow. This type of method was first introduced
for elliptic problems on nonmatching grids in [6], and the analysis was extended to
the multiscale case in [7]. It serves as an alternative to other multiscale methods,
such as the variational multiscale method [19, 20, 4, 1, 5, 3] and multiscale finite
elements [17, 18, 14, 12, 21, 2], which are closely related [5]. In all three methods,
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the domain is decomposed into a series of small subdomains (coarse grid), and the
solution is resolved globally on the coarse grid and locally (on each coarse element) on
a fine grid. All three methods are based on a divide-and-conquer approach: solving
relatively small fine scale subdomain problems that are only coupled together through
a reduced number (coarse scale) of degrees of freedom.

In the MMMFEM, coarse scale mortar finite elements are used to couple subdo-
main grids which may be nonmatching. Algorithmically, the unknowns are consoli-
dated on the interfaces, and the system is solved with an iterative method. In this
way, the interface operator need not be formed since only its action is needed; each
interface iteration requires the solution to subdomain problems which are performed
in parallel.

An alternative algorithm called the multiscale basis implementation was recently
proposed in [15]. Here, a Dirichlet subdomain problem is performed for each mortar
degree of freedom, and the resulting boundary fluxes are stored. When the model
problem is linear, the solution to a subdomain problem may be computed with a
linear combination of these multiscale basis functions. It was shown that in many
cases this algorithm may perform better than a competitive balancing preconditioner
[28]. Two extensions to this algorithm were proposed in [16] and [32] for stochastic
models requiring an ensemble of realizations. In the former approach, a stochastic
multiscale basis was formed that could be used across multiple realizations. In the
latter approach, a deterministic multiscale basis was formed for a training operator
associated with the mean permeability, and used as a very effective preconditioner.
It was shown to be optimal in the sense that the condition number is independent of
the number of subdomains as well as the subdomain and mortar discretizations.

The flow models used in this work have the additional complexity of incorporating
fluid compressibility, multiple phases, gravity, and capillarity, leading to a nonlinear
system of equations. When applying the MMMFEM, a Newton–Krylov method is
used to solve both the subdomain problems and the interface problem. Once again
the interface problem is solved with a matrix-free approach, where the action of the
Jacobian is calculated using a forward difference approximation, as described in [34]
and section 4.1.

The goal of this work is to extend the multiscale basis implementation to the (de-
terministic) nonlinear interface problem for compressible and multiphase flow. The
fact that the model problem is nonlinear eliminates the notion that subdomain prob-
lems can be expressed as a superposition of multiscale basis functions. However, in
this work we modify the multiscale basis implementation to construct a new type of
interface preconditioner for linearized interface operators.

Similar to the training operator approach in [32], a multiscale basis is formed
on each subdomain in parallel for the Jacobian associated with one interface Newton
iteration and is then reused on subsequent Newton iterations. It is for this reason
that we refer to this approach as a frozen Jacobian multiscale preconditioner. Since
these problems are also time-dependent, it can be used over several time steps, or
even throughout the entire simulation. We note that the formation of a multiscale
basis can be costly, and therefore it should be computed sparingly.

We present numerical experiments that illustrate the efficiency of the precondi-
tioner for single-phase and two-phase flow in porous media. The results indicate that
the preconditioner significantly reduces the number of interface iterations. Further-
more, its effectiveness increases with the number of subdomains and the number of
fine grid elements.
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This paper is organized as follows. In section 2, the slightly compressible single-
phase and two-phase flow models are introduced in the domain decomposition frame-
work. In section 3, fully discrete schemes are formulated using the MMMFEM. In
section 4, the problem is reduced to a nonlinear interface operator using an inexact
Newton method. In section 5, we describe the frozen Jacobian multiscale precondi-
tioner. Finally, in section 6 we present two numerical examples with a discussion of
the results.

2. Flow models. We consider a computational domain, Ω ⊂ R
d, d = 2 or 3,

decomposed into a series of nonoverlapping subdomains Ωi, i = 1, 2, . . . , P , with
interfaces denoted by Γij = ∂Ωi ∩ ∂Ωj , Γi =

⋃P
j=1 Γij , and Γ =

⋃
1≤i<j≤P Γij . A dif-

ferent flow model may be used on each subdomain if certain conditions are met along
the interface [34]. For simplicity we assume that for a particular simulation the flow
model is the same for each subdomain. The algorithms developed in this paper will
be extended in a future work, by coupling single- with two- or three-phase models,
similar to the approach in [29].

2.1. Single-phase model. If only a slightly compressible water phase is present,
then the subsurface flow is characterized by the conservation-of-mass equation,

(1)
∂

∂t
(φρ) +∇ · u = q,

where φ is the porosity, q is the source term, and u is the Darcy velocity given by

(2) u = −K

μ
ρ (∇p− ρg) .

Here K is the permeability tensor, p is the pressure, μ is the viscosity, and g is the
gravitational acceleration vector. The density, ρ = ρ(p), satisfies the equation of state,

(3) ρ = ρrefec(p−pref),

where ρref is the reference density, pref is the reference pressure, and c is the com-
pressibility. The nonlinearity of this model is rather modest since the compressibility
is usually small. For simplicity, we assume no-flow boundary conditions u · n = 0 on
∂Ω, where n is the outward unit normal, and note that the extension to more general
boundary conditions is straightforward.

2.2. Two-phase model. In the case of two-phase flow, we let the lowercase
scripts w and o denote the water and oil phases, respectively. The corresponding
phase saturations are denoted by Sw and So, the phase pressures by pw and po, and
the well injection/production rates by qw and qo.

We consider the two-phase immiscible slightly compressible oil-water flow model
in which the densities of oil and water are given by the equation of state,

(4) ρα = ρrefα ecα(pα−pref
α ),

where ρrefα is the reference density, prefα is the reference pressure, and cα is the com-
pressibility for α = w, o. The mass conservation equation and Darcy’s law are

(5)
∂

∂t
(φNα) +∇ · uα = qα,
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(6) uα = −kαK

μα
ρα (∇p− ραg),

whereNα = Sαρα is the phase concentration, kα = kα(Sw) is the relative permeability,
and μα is the density for α = w, o. The above variables are subject to the constitutive
constraints

So + Sw = 1, pc(Sw) = po − pw.

The well injection and production rates are defined using the Peaceman well model
[27] extended to multiphase and multicomponent flow, and they describe typical well
conditions for pressure or rate specified wells. No-flow boundary conditions on ∂Ω
are taken for each phase.

2.3. Interface conditions. To couple the subdomain models, we impose the
physically meaningful interface conditions,

(7) pα|Ωi = pα|Ωj on Γij ,

(8) [uα · n]ij := uα|Ωi · ni + uα|Ωj · nj = 0 on Γij ,

where ni denotes the unit outward normal on ∂Ωi. These conditions represent con-
tinuity of pressure and continuity of normal flux for each phase and are the basis for
the domain decomposition algorithm to follow.

3. A fully discrete scheme. Let (·, ·)Ωi
denote the L2 inner product over Ωi,

and 〈·, ·〉 the usual duality pairing on Γij . Let Th,i be a conforming quasi-uniform
affine finite element partition of Ωi, 1 ≤ i ≤ P , of maximal element diameter hi. Note
that we need quasi uniformity and conformity only on each subdomain. Our method
allows for spatially varying hi, but to simplify the discussion, we let h = max1≤i≤P hi

and analyze the method in terms of this single value h. We allow for the possibility
that Th,i and Th,j need not align on Γij , and we define Th = ∪P

i=1Th,i. Let

Vh,i ×Wh,i ⊂ H(div; Ωi)× L2(Ωi)

be any of the usual mixed finite element spaces (e.g., those of [9, 10, 26, 11, 30]), and
let Vh or, equivalently, Vh · n contain the polynomials of degree k. Then let

Vh =

P⊕
i=1

Vh,i, Wh =

P⊕
i=1

Wh,i.

Note that the normal components of vectors in Vh are continuous between elements
within each block Ωi but not across Γ. We also define the subspaces

Vh,i,0 = {v ∈ Vh,i | v · ni = 0 on ∂Ωi ∩ ∂Ω} and Vh,0 =

P⊕
i=1

Vh,i,0.

Let the mortar interface mesh TH,ij be a quasi-uniform finite element partition
of Γij with maximal element diameter Hij . Let H = max1≤i,j≤P Hij . Define T Γ,H =
∪1≤i<j≤P TH,ij . Denote by MH,ij ⊂ L2(Γij) the mortar space on Γij containing either
the continuous or discontinuous piecewise polynomials of degree m on TH,ij , where m
is at least k + 1 if nonmatching grids are used. In the case of matching grids we may
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take m = k. We remark that TH,ij need not be conforming if MH,ij is discontinuous.
Now let

MH,i =
⊕

1≤j≤P,

Γij �=∅

MH,ij and MH =
⊕

1≤i<j≤P

MH,ij

be the mortar finite element spaces on Γi and Γ, respectively. For each subdomain Ωi

define a projection Qh,i : L
2(Γi) → Vh,i · ni|Γi such that, for any ϕ ∈ L2(Γi),

(9) 〈ϕ−Qh,iϕ,v · ni〉Γi
= 0, v ∈ Vh,i.

The only restriction on the mortar spaces is that for any η ∈ MH,ij ,

Qh,iη = Qh,jη = 0 =⇒ η = 0.

As noted in [6, 7, 33, 34], this condition is not very restrictive since the mortar space
is usually much coarser than the trace of the subdomain grids.

Following [8, 34, 29], we use a variant of the mixed finite element method: the
expanded method. This modified version allows for the proper treatment of the linear
system in the degenerate case where one of the relative permeabilities is zero. For
α = w, o let

ũα = −K(∇pα − ραg).

Then

uα = λαũα, where λα =
kαρα
μα

.

Define 0 = t0 < t1 < · · · , Δtn = tn − tn−1, and fn = f(tn) for any suffi-
ciently smooth function f . The backward Euler expanded mortar mixed finite ele-
ment method for the two-phase system (5)–(6) seeks ũn

α,h,i ∈ Vh,i, u
n
α,h,i ∈ Vh,i,0,

pnα,h,i ∈ Wh,i, N
n
α,h,i ∈ Wh,i, and pnα,H,i ∈ MH,i such that

(10)

(
φ
Nn

α,h,i −Nn−1
α,h,i

Δtn
, w

)
Ωi

+
(
∇ · un

α,h,i, w
)
Ωi

= (qnα, w)Ωi
, w ∈ Wh,i,

(11)(
K−1ũn

α,h,i,v
)
Ωi

=
(
pnα,h,i,∇ · v

)
Ωi

+ (ραg,v)Ωi −
〈
pnα,H,i,v · ni

〉
Γi

, v ∈ Vh,i,0,

(12)
(
un
α,h,i, z

)
Ωi

=
(
λαũ

n
α,h,i, z

)
Ωi

, z ∈ Vh,i.

This system is completed by the weak interface condition,

(13)
∑

1≤i<j≤P

〈[
un
α,h · n

]
ij
, μ
〉
Γij

= 0, μ ∈ MH,ij .
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4. Reduction to a nonlinear interface operator. To simplify the notation
we let

MH =
⊗
α

MH

and define the nonlinear bivariate form bn :MH ×MH → R as

bn(ϕ,μ) :=

P∑
i=1

〈
un
α,h(ϕ) · n,μ

〉
Γi

=
∑

1≤i<j≤P

〈[
un
α,h(ϕ) · n

]
ij
,μ
〉
Γij

for ϕ,μ ∈MH . For a given ϕ, [un
α,h(ϕ) · n] is the jump in the normal flux obtained

by solving nonlinear subdomain problems (10)–(12) with boundary data pnα,H,i(ϕ).
For single-phase flow, there is only one interface variable, and we take ϕ = pnw,H .

On the other hand, for two-phase flow there are several choices for primary mortar
variables. The most natural choice is ϕ = (pw,H , po,H). However, as discussed in [34],
the interface operator will not be well defined if the problem becomes degenerate. A
more suitable choice is to take ϕ = (pw,H , No,H) or ϕ = (po,H , No,H). The missing
pressure in each of these choices can be determined by the capillary pressure relation-
ship, and the resulting interface form will be well defined. For more details on the
choice of interface variables, see section 4.1 in [34]. For each subdomain i we define
the nonlinear flux operator Bn

i :MH,i →MH,i by

〈Bn
i ϕ,μ〉Γi

=
〈
un
α,h(ϕ) · ni,μ

〉
Γi
,

and globally we define the nonlinear interface operator Bn :MH →MH by

〈Bnϕ,μ〉Γ =

P∑
i=1

〈Bn
i ϕ,μ〉Γi

= bn(ϕ,μ) ∀μ ∈MH ,

which measures the total flux jump. In [34] it is shown that if ϕ solves

(14) Bn(ϕ) = 0,

then (pnα,h,i, N
n
α,h,i,u

n
α,h,i, ũ

n
α,h,i) solves (10)–(13). We summarize the evaluation of

the interface operator in Algorithm 1. Note that lines 1–4 compute the action of the
subdomain flux operators Bn

i and can be performed in parallel, and line 5 computes
the action of the interface operator Bn requiring interprocess communication.

Algorithm 1. Evaluation of the nonlinear interface operator.

1. Given interface data ϕ.
2. Project pnα,H,i(ϕ) onto subdomain boundaries.
3. Solve independent nonlinear subdomain problems (10)–(12).
4. Project resulting flux un

α,h,i · ni onto the mortar space.
5. Sum fluxes over subdomains Ωi to compute flux jump Bn(ϕ).

4.1. An inexact Newton method. In the following we may suppress the time
index superscript n. Since an analytic expression for the Jacobian of a nonlinear
interface operator would require the exact expressions of the nonlinear Dirichlet-to-
Neumann maps, we use an inexact Newton method to solve the nonlinear interface
equation (14). The inexact Newton step s{k} = ϕ{k+1}−ϕ{k} is computed by solving

(15) DδB(ϕ{k}; s{k}) = −B(ϕ{k}),
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where the forward difference operator,

(16) DδB(ϕ;μ) =

⎧⎪⎪⎨
⎪⎪⎩
0, μ = 0,

‖μ‖B(ϕ+δ‖ϕ‖μ/‖μ‖)−B(ϕ)
δ‖ϕ‖ , μ �= 0,ϕ �= 0,

‖μ‖B(δμ/‖μ‖)−B(0)
δ , μ �= 0,ϕ = 0,

is an approximation of the Jacobian B′(ϕ) in the direction μ, following the approach
used in [22] and [34]. Similarly, we can also define the local subdomain contributions
DδBi(ϕ;μ) by replacing B with Bi in (16), and we note that DδB =

∑
i DδBi.

The interface Newton update (15) is solved with a GMRES algorithm, where the
action of the Jacobian is evaluated using (16) and the interface operator is evalu-
ated using Algorithm 1. In most traditional implementations, only the action of the
Jacobian is required, and the Jacobian itself is never constructed.

4.2. Preconditioning the Jacobian. A well-known drawback of iterative al-
gorithms for interface operators is that the number of iterations, and therefore the
number of subdomain solves, depends strongly on the subdomain and mortar dis-
cretizations, as well as the heterogeneities in the permeability. A good preconditioner
is usually required to reduce the number of iterations to a reasonable level. A left-
preconditioned GMRES strategy is based on solving

(17) M−1DδB(ϕ{k}; s{k}) = −M−1B(ϕ{k}),

where M is an easily invertible approximation to the Jacobian.
Physically, the interface operator B(ϕ) is a Dirichlet-to-Neumann operator, while

the preconditioner M represents a Neumann-to-Dirichlet operator. Thus, including a
preconditioner in the GMRES algorithm means that consecutive Krylov vectors have
the same physical interpretation.

The Neumann–Neumann [24] and balancing preconditioners [25, 28] are popular
choices for linear interface operators due to their physical interpretation and ease of
parallelization. To the best of our knowledge, the only preconditioner developed for
the Jacobian of a nonlinear interface operator is the approximate Neumann–Neumann
preconditioner described in [34]. Although this preconditioner is simple to apply, the
reduction in the number of interface iterations is relatively small since it is essentially
an approximate Jacobi preconditioner.

4.3. Construction of the interface Jacobian. We consider an alternative to
the matrix-free method by constructing an approximation of the Jacobian based on the
construction of a multiscale mortar flux basis [15, 32]. While the nonlinearity of the
model problems eliminates the superposition property of multiscale basis functions, we
use the multiscale basis to construct an approximation of the interface Jacobian. Let

{ψ{m}
H,i } for m = 1, 2, . . . , nH,i denote a basis for the mortar spaceMH,i, where nH,i is

the number of degrees of freedom associated withMH,i. For each ψ
{m}
H,i , we compute

a resulting flux χ
{m}
H,i using Algorithm 2. We refer to {χ{m}

H,i } as the multiscale flux
basis for subdomain Ωi. Note that the multiscale basis functions depend on the chosen
interface variables, ϕ{k}, and the Newton difference, δ. For each basis function, we
then compute

(18) ζ
{m}
H,i =

⎧⎪⎨
⎪⎩
‖ψ{m}

H,i ‖
χ

{m}
H,i −Bi(ϕ)

δ‖ϕ‖ , ϕ �= 0,

‖ψ{m}
H,i ‖

χ
{m}
H,i −Bi(0)

δ , ϕ = 0,
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which we refer to as the multiscale Jacobian basis.

Algorithm 2. Construction of a multiscale flux basis {χ{m}
H,i }.

for i = 1, 2, . . . , P do
Given ϕ{k} and δ.
for m = 1, 2, . . . , nH,i do
Update the boundary data

pnα,H,i

(
ϕ{k} + δ‖ϕ{k}‖ψ{m}

H,i /‖ψ
{m}
H,i ‖

)
.

Solve the nonlinear subdomain problem (10)–(12).
Project the resulting flux into the mortar space.

end for
end for

The multiscale Jacobian functions are stored on the subdomain level on different
processors, so that the global Jacobian need not be assembled. Instead, a Krylov
method is used to solve for the Newton update in (15), which requires only the action
of the Jacobian on each Krylov vector. This matrix-vector product is computed in
parallel using the fact that each Krylov vector vH is a linear combination of mortar
basis functions, i.e.,

(19) vH =

P∑
1=1

vH,i =

P∑
1=1

nH,i∑
m=1

c
{m}
i ψ

{m}
H,i .

This allows us to compute

(20) DδB(ϕ{k};vH) ≈
P∑
i=1

nH,i∑
m=1

c
{m}
i DδBi(ϕ

{k};ψ{m}
H,i ) =

P∑
i=1

nH,i∑
m=1

c
{m}
i ζ

{m}
H,i

without assembling the global Jacobian. Note that, although DδB(ϕ{k};μ) is in
general nonlinear in μ, it is a good approximation to the linear operator B′(ϕ{k}) in
the direction μ.

Since the Jacobian is a coarse scale operator, the cost in solving the problem
is typically much smaller than the cost of solving subdomain problems. The cost
associated with constructing the Jacobian directly depends on the number of de-
grees of freedom on each mortar, but only peripherally on the heterogeneities of the
porous media. This is because the number of multiscale basis functions depends only
on the mortar discretization, but computing each multiscale basis function requires
subdomain solves, which are affected by heterogeneities. Therefore, this approach
is favorable in the case of highly heterogeneous media with relatively few degrees of
freedom in the mortar space and in the absence of a reasonable preconditioner. As
mentioned in [7], a coarse mortar space can be used without sacrificing accuracy by
taking higher order mortars if the problem is sufficiently regular.

5. A frozen Jacobian multiscale preconditioner. The two approaches for
solving the linearized equation (15) for the Newton update, namely the matrix-free
algorithm described in section 4.1 and the direct construction approach in section
4.3, have advantages and disadvantages depending on the size of the problem, the
heterogeneities, and the availability of an adequate preconditioner. In Algorithm



A FROZEN JACOBIAN MULTISCALE PRECONDITIONER 861

Algorithm 3. Applying the frozen Jacobian multiscale preconditioner.

Given a multiscale Jacobian basis Mi = [ζ
{m}
H,i ]

nH,i

m=1 for each subdomain Ωi associ-
ated with a fixed state ϕ̂.

Solve the preconditioned interface Newton step (17) using an outer GMRES itera-
tion.

...
Given an outer Krylov vector vH .
Compute action gH := DδB(ϕ{k};vH) by solving (10)–(12).
Solve MwH = gH with an inner GMRES iteration.

...
Given an inner Krylov vector yH .
for i = 1, . . . , P do
Compute the linear combination zH,i := Mi yH,i, where yH,i := yH |Ωi .

end for
Sum zH,i over subdomains Ωi to compute MyH .
...

end inner GMRES
...

end outer GMRES

3, we describe a way to combine these two approaches to solve the preconditioned
Newton step (17).

The preconditioner M for the outer GMRES loop is not formed directly, so each
application of M−1 requires an inner GMRES loop. Each inner GMRES iteration
requires two steps. First, a linear combination is performed on the subdomain level
with a matrix-vector product using Mi. Second, these products are summed across
the subdomains using parallel communication. This procedure circumvents the need
to solve any subdomain problems in the inner GMRES iteration. However, the parallel
communication may lead to a nontrivial cost in runtime. In section 6, we see that
this communication cost does indeed factor into the total simulation time, but the
computational savings due to a reduced number of subdomain problems typically
outweigh this cost.

Clearly, the performance of the preconditioner depends on how closely the Jaco-
bian for ϕ̂ models the Jacobian for the current state. In many subsurface applications,
the heterogeneity of the permeability field, which is captured by the initial Jacobian,
dominates the characteristic features of the flow variables. Therefore, we expect the
variance between the Jacobians to be relatively minor and to evolve slowly in time.
The performance of the preconditioner can be monitored throughout the simulation,
and a new preconditioner may be constructed based on the current state at any time.

A practical approach to determining at what time steps to recompute the mul-
tiscale preconditioner must effectively balance the overhead cost of constructing the
current Jacobian using Algorithm 2 with its potential reduction in the number of
interface iterations. We outline one such heuristic approach in the following section.

5.1. A heuristic for multiscale preconditioner recomputation. In both
the slightly compressible single-phase and two-phase models, the subdomain prob-
lems are nonlinear and may vary in difficulty due to many factors related to the
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current state of the system. However, let us assume that solving a typical subdomain
problem has roughly the same computational cost. Under this assumption, a good
heuristic will seek to minimize the number of subdomain problems that we must solve
throughout the entire simulation. First recall that each interface GMRES iteration
requires the solution to one subdomain problem, as well as an extra subdomain prob-
lem to form the right-hand side of each Newton update (15). We make the following
definitions:

Nprob = subdomain problems throughout entire simulation,
Nms = subdomain problems to recompute preconditioner,

T = {1, 2, . . . , Ntime}, the total set of time indices,
R = {t1, . . . , tk}, the set of k recomputation time indices,

t̃(n) = max{r ∈ R | r ≤ n}, the previous recomputation time,
Nunprec(n) = unpreconditioned number of interface iterations at time n,

Nprec(n, t̃(n)) = preconditioned number of interface iterations at time n,
Nbase(n, t̃(n)) = min{Nprec(k, t̃(n)) | k = t̃(n), t̃(n) + 1, . . . , n},

Nnewt(n) = number of Newton steps at time n.

Each time we recompute the multiscale preconditioner, we must solve Nms sub-
domain problems, equal to the number of mortar degrees of freedom times the number
of phase variables. If we perform a simulation in parallel, then this number is local to
each processor, determined by the number of subdomains which are “owned” by that
processor.

When the preconditioner is applied to the interface problem at time n, it should
dramatically reduce the number of interface iterations from Nunprec to Nprec for the
current Jacobian. As the interface Jacobians change for subsequent Newton steps and
time steps, the effectiveness of the preconditioner will degrade; i.e., Nprec increases as
n gets further from t̃(n). Therefore, there should be some baseline number of interface
iterations, Nbase, defined as the minimum number of interface iterations performed
per time step since the last recomputation.

The problem is to find a set of recomputation times R ⊂ T such that the number
of total subdomain problems,

(21) Nprob = kNms︸ ︷︷ ︸
recomputation

+

Ntime∑
n=1

[
Nprec(n, t̃(n)) +Nnewt(n)

]
,

is minimized. If k is too large, then it is clear that the overhead from the recompu-
tation term will be too great. Conversely, if k is too small, then Nprec will grow as n
gets further from t̃(n). To strike a balance between these extremes, we dynamically
keep track of the cumulative number of iterations above the baseline, Nbase. As soon
as this number exceeds the cost to compute a new preconditioner, Nms, there should
be a predicted benefit to recomputing at this time. We illustrate this approach in
Figure 1.

6. Numerical examples. The following numerical examples seek to demon-
strate the relative efficiency of the multiscale preconditioner with and without recom-
putation versus the nonpreconditioned interface problem. We shall compare three
methods:

• Method P1—No interface preconditioner.
• Method P2—Multiscale preconditioner, computed once at initial time.
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Fig. 1. Heuristic for multiscale preconditioner recomputation.
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Fig. 2. Flow charts for Methods P1, P2, and P3.

• Method P3—Multiscale preconditioner, computed periodically using the
heuristic described in section 5.1.

To illustrate the steps that each of these methods require, flow charts are given in
Figure 2. Steps which may be parallelized appear in the right-most columns.

The reason for comparing our method to the unpreconditioned scheme (Method
P1) is that, to the best of our knowledge, no efficient interface preconditioner has
been developed for nonlinear problems such as single-phase slightly compressible flow
or two-phase flow.

Since the multiscale mortar method allows a varying number of mortar degrees
of freedom, the numerical results reported in this work utilize both matching and
nonmatching interface grids. The former results in a discrete solution that is numer-
ically equivalent to the single-domain formulation, given sufficient iterations of the
domain decomposition. The latter results in an easier algebraic interface problem to
solve if coarse mortars are chosen. Methods P1–P3 are equivalent algorithms for com-
puting the given interface problems up to specified linear and nonlinear tolerances.
In all cases, plots for pressure and saturation fields were virtually indistinguishable.
In porous media applications, the quantity of interest is typically measured in well
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Fig. 3. Comparison of injection well rates for the examples in sections 6.1 and 6.2 with matching
and nonmatching grids.
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Fig. 4. Upscaled SPE10 permeability Kx component (left) and porosity φ (right) for Example 6.1.

production rates. Figure 3 shows that these rates are also nearly identical for match-
ing and nonmatching grids. In the two-phase example, the water breakthrough time
was at 36 days for all simulations. This evidence supports the assertion that solution
quality is not drastically impacted when we weakly impose the interface conditions
with relatively few mortar degrees of freedom.

Experiments were performed using the research code IPARS (implicit parallel
accurate reservoir simulator) [23, 31], which was modified to implement the multi-
scale preconditioner. Our coordinate scheme follows the convention that x represents
depth, and y and z represent arial directions. Runtimes are recorded by compiling
the code without optimization, using Intel’s ifort compiler and MKL library, and run
in parallel using OpenMPI on a parallel cluster with hex core 2.93 GHz Intel Xeon
X5670 processors.

6.1. Single phase: Heterogeneous case. In the first example we model
slightly compressible single-phase flow using a heterogeneous permeability and poros-
ity field that was taken from the SPE10 benchmark problem [13] on a domain Ω of
size 168× 1200× 2000 (ft) at a depth of 12000 (ft). It was upscaled to a 21× 15× 55
grid, and decomposed into either P = 4 or P = 8 subdomains. The two choices
are made to investigate the dependence of the behavior of the preconditioner on the
number of processors. In general, the choice of number of subdomains (coarse scale)
for practical problems is oftentimes driven by the physics of the problem. The domain
decomposition may also be motivated by the need for different resolution in different
parts of the domain through the use of nonmatching grids. Figure 4 shows the per-
meability and porosity on four subdomains. Other constants include fluid viscosity
μ = 2 (cp) and compressibility cw = 4E−5 (1/psi). The initial fluid pressure is taken
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to be p(0) = 5000 (psi). We model one injection well at 6000 (psi) and one production
well at 4000 (psi) bottom hole pressure in a quarter five spot configuration, and use
no-flow boundary conditions. We take constant time steps with Δt = 10 (days) and
run the simulation until a steady state is reached after T = 500 (days). The resulting
pressure field on four subdomains is shown in Figure 5.
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Fig. 5. Pressure (psi) after t = 10 (left) and after t = 500 (right) days for Example 6.1 with
matching grids. Plots for the multiscale solution were nearly identical.

In our simulator, the interface and subdomain problems are solved with nested
Newton-GMRES iterations. The innermost subdomain GMRES iterations are ef-
ficiently solved using a Line SOR preconditioner with 10 Gauss–Seidel smoothing
steps (see [22]). Interface GMRES iterations will either be unpreconditioned or use
the multiscale preconditioner. As seen in Figure 2, every application of the multi-
scale preconditioner requires an additional GMRES iteration wrapped around each
Interface GMRES step. The tolerances which were chosen for these iterations are
summarized in Table 1.

Table 1

Tolerances chosen for Example 6.1.

Finite difference Jacobian approximation 1E−4
Interface Newton tolerance 1E−4

Multiscale preconditioner GMRES tolerance 1E−6
Interface GMRES tolerance 1E−6

Subdomain Newton tolerance 1E−6
Subdomain GMRES tolerance 1E−9

We assign one processor to each subdomain, so that the multiscale preconditioner
can be formed by solving a fixed number of subdomain problems in parallel. We run
the test such that all interfaces have either discontinuous linear mortars with 3 × 3
elements or piecewise constant mortars on an interface grid that matches the traces of
the subdomain grids. The latter results in a solution equivalent to the solution on fine
scale matching grids with no mortars. We use both P = 4 and P = 8 subdomains,
for a total of four tests. With P = 4 subdomains, the maximum number of interface
degrees of freedom per subdomain is 72 for the mortar case and 756 for the matching
grid case. With P = 8 subdomains, these numbers are 108 and 630. Note that with
relatively few degrees of freedom, the interface problem is relatively easy to solve,
and we compute a multiscale solution. With matching grids, the interface problem
is much more difficult, and we compute a nonmultiscale solution. In the four tests,
we run the simulation with and without the multiscale preconditioner and report the
number of Interface GMRES iterations needed per time step in Figure 6.

In the multiscale simulation, the average number of Interface GMRES iterations
was reduced from 79.7 to 3.8 for P = 4 subdomains, and from 151.7 to 3.9 for P = 8
subdomains. In the more challenging matching grid interface problem, the average
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Fig. 6. Interface GMRES iterations per time step for Example 6.1.

Table 2

Runtimes for Example 6.1 in seconds.

4 subdomains 8 subdomains
3× 3 disc. Matching 3× 3 disc. Matching
lin. mortar grids lin. mortar grids

Method P1 Total time 1,226.1 11,672.6 1,876.2 8,344.3
Method P2 Total time 287.5 836.6 251.5 1,379.6

Computing multiscale basis 16.8 161.4 8.9 42.4
Applying preconditioner 122.7 553.0 145.9 1,231.7
Linear combinations 10.6 146.2 12.7 158.0

number was reduced from 889.1 to 3.8 for P = 4 subdomains, and from 1004.9 to
4.1 for P = 8 subdomains. Note that the number of iterations for the preconditioned
system did not increase with the number of subdomains, but the number of iterations
for the unpreconditioned system did increase. As a result, the effectiveness of the
preconditioner increased with the number of subdomains. In all four cases, no re-
computation of the multiscale preconditioner was necessary, because its effectiveness
remained constant throughout the simulation. This is most likely due to the relatively
mild nonlinearity of the dynamics in the slightly compressible single-phase problem.

Table 2 shows that the reduction in Interface GMRES iterations has a significant
impact on runtime. Each Interface GMRES iteration requires computing the solution
to one nonlinear subdomain problem, so there are far fewer subdomain problems to be
solved with Method P2 than with P1. However, Method P2 requires extra nonlinear
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subdomain problems to be solved for each mortar degree of freedom when forming the
multiscale basis. In time-dependent problems when computing the multiscale basis
sparingly, this cost is small compared to the overall simulation time. Note that with
roughly 10 (or 6) times as many interface degrees of freedom, the time to compute
the multiscale basis is observed to increase by this amount in the matching grid case
compared to the multiscale case.

Each time the multiscale preconditioner is applied, there are linear combinations
to be performed, and the remainder of the time goes to interprocess communication.
We can see that the linear combinations are a mere fraction of the time spent applying
the preconditioner. For P = 4 subdomains, the average number of GMRES iterations
required to apply the preconditioner was 60.7 in the multiscale case and 463.6 in the
matching grid case. For P = 8 subdomains, this average was 77.1 in the multiscale
case and 525.9 in the matching grid case. The linear combinations will also be 10 or 6
times as expensive due to the number of degrees of freedom. Together these two facts
help to explain the increase in time for applying the preconditioner when comparing
multiscale to matching grid.

Overall, this simulation shows that the multiscale preconditioner was highly ef-
fective for single-phase slightly compressible flow. For P = 4 subdomains, the total
time was reduced by a factor of 4.26 in the multiscale case, and 13.95 in the matching
grid case. For P = 8 subdomains, the total time was reduced by a factor of 7.45 in
the multiscale case, and 6.04 in the matching grid case.

6.2. Two-phase: Flow around a barrier. In the second example we simulate
flow around a low permeability barrier with the two-phase fully implicit model. The
domain Ω is size 20×200×100 (ft), and we run a total of five tests with Methods P1–
P3. We split the domain into either P = 2 or P = 4 subdomains in the y direction.
In addition, we compare two levels of fine scale resolution: 10 × 20 × 10 elements
and 10 × 40 × 20 elements, as shown in Figure 7. The absolute permeability is a
diagonal tensor, starting with Kx = 50 (md) for {y < 100} and Kx = 70 (md) for
{y ≥ 100}. It is then modified by adding a staggered highly permeable channel with
Kx = 1000 (md) and two low permeability barriers with Kx = 1 (md). The remaining
components Ky and Kz are obtained by multiplying the Kx component by a factor
of 2.

Other data includes fluid viscocities μw = 0.5 and μo = 2.0 (cp), fluid compress-
ibilities cw = 3.3E−4 and co = 4.0E−3 (1/psi), and the two relative permeability
and one capillary pressure curves shown in Figure 8. The initial conditions are taken
to be oil pressure po(0) = 500 (psi) and water saturation Sw = 0.22.

From an aerial perspective, water is injected at a well in the upper-left corner,
and fluid is produced at a well in the lower-right corner, for a quarter five spot test
with no-flow boundary conditions. Both wells are bottom hole pressure specified, with
water injection starting at 505 (psi) and oil production starting at 495 (psi). These
rates change linearly to 510 (psi) and 490 (psi), respectively, after t = 30 (days), after
which both well rates remain constant. We take constant time steps with Δt = 1
(days) and run the simulation until a final time of T = 400 (days). The resulting oil
concentration and water saturation fields are shown in Figure 9.

The setup for this simulation is much like the previous example; the same model
tolerances were chosen as are listed in Table 1, and the type of parallelism employed
is one processor per subdomain. On the 10× 20× 10 grid, we use P = 2 subdomains,
and the interface has either 2× 2 discontinuous linear mortar or matching grids. The
number of interface degrees of freedom per subdomain is 16 in the former and 100
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10× 40× 20 with four subdomains.
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Fig. 8. Oil relative permeability (left), water relative permeability (center), and capillary pres-
sure (right) used for Example 6.2.

in the latter. We compare computational results with and without the multiscale
preconditioner, and note that in the two-phase simulation, the effectiveness of the
multiscale preconditioner is observed to deteriorate as the interface Jacobians evolve
in time. Hence, in this example we also employ Method P3 as described in section
5.1 and compare all three approaches. The number of Interface GMRES iterations
per time step is reported in Figure 10.

In the multiscale simulation, the average number of interface GMRES iterations
is 86.1 for the unpreconditioned problem. With Method P2, computing a single
multiscale basis at the initial time step and reusing it as the multiscale preconditioner
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Fig. 9. Oil concentration in lb/cu-ft (left) and water saturation (right) after T = 400 days for
Example 6.2.
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Fig. 10. Interface GMRES iterations per time step for Example 6.2 on the 10× 20 × 10 grid.

throughout the simulation brings the average number of interface GMRES iterations
down to 21.2. With Method P3, a new multiscale basis is computed a total of 25 times
throughout the simulation. These times are determined by when the total number
of cumulative interface GMRES iterations above baseline preconditioning exceeds
Nms = 16. This brings the average number of interface GMRES iterations down to
9.7.

As expected, the interface problem in the matching grid simulation is more dif-
ficult to converge, so the effectiveness of the multiscale preconditioner is more pro-
nounced. The average number of Interface GMRES iterations is 257.1 for the un-
preconditioned problem. Method P2 brings this number down to 32.4. Method P3
further reduces it to 16.4. Note that in this case the multiscale basis is more expensive
to recompute with Nms = 100, and with this criteria it was only recomputed 10 times
throughout the simulation.

Table 3 shows that the reduction in Interface GMRES iterations with the multi-
scale preconditioner does indeed have an effect on runtime in the two-phase simulation,
but it is not nearly as effective as in the single-phase case. There are two reasons for
the reduced effectiveness. First, the approximation of the interface Jacobian with a
linear combination of multiscale basis functions is less effective in the more difficult
two-phase model, so the multiscale preconditioner must be applied a greater number
of times. Second, the cost in applying the multiscale preconditioner may be higher
in highly nonlinear problems. Recall that the action of the preconditioner requires
an interface GMRES iteration of its own; see Algorithm 3 and the discussion follow-
ing it. While performing the linear combinations is relatively cheap, the interprocess
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Table 3

Runtimes for Example 6.2 in seconds on a coarse level.

2 subdomains
2× 2 disc. lin. mortar Matching grids

Method P1 Total time 7,262.8 19,144.2
Method P2 Total time 5,823.7 9,246.6

Computing multiscale basis 4.3 26.8
Applying preconditioner 3,793.8 6,001.1
Linear combinations 153.4 289.5

Method P3 Total time 3,120.0 5,667.3
Computing multiscale basis 124.1 194.9
Applying preconditioner 1,912.2 3,482.2
Linear combinations 73.7 173.2

communication may be expensive, as seen in the table.
In the multiscale simulation, the preconditioner took an average of 29 GMRES

iterations to apply for every interface GMRES iteration. Method P2 reduced the
runtime over Method P1 by a factor of 1.24. Note that in this case the time to
compute a multiscale basis is negligible. With the additional effort of Method P3, the
runtime was reduced over Method P1 by a factor of 2.32.

With a more challenging interface problem in the matching grid case, the results
for the multiscale preconditioner are much better. In this case, the unpreconditioned
problem is significantly more difficult, so the relative effectiveness of the multiscale
preconditioner is more prominent—this despite the fact that it takes an average of 76
GMRES iterations to apply the multiscale preconditioner in this case. Using Method
P2 reduced the total time by a factor of 2.07, and using Method P3 reduced the total
time by a factor of 3.37 over Method P1.

Figure 11 shows the number of Interface GMRES iterations per time step for
Example 6.2 on the 10 × 40 × 20 grid. When comparing to the 10 × 20 × 10 grid
tests, the number of unpreconditoned iterations for Method P1 increases significantly
for the matching grid case. However, the number of iterations for Methods P2 and
P3 essentially remains unchanged. This indicates increased efficiency of the frozen
Jacobian multiscale preconditioner when using finer grids.

Table 4 shows the corresponding effect on runtime for the 10 × 40 × 20 grid
simulations. When comparing to the 10× 20× 10 grid test, runtimes for Method P1
are significantly higher. In contrast, the runtimes for Methods P2 and P3 increase
more slowly, showing that our method is robust. From left to right, the reduction in
runtime for Method P2 versus P1 is 2.81, 10.5, and 3.28. Method P3 has a greater
reduction in runtime with 4.72, 14.1, and 6.49. Moreover, we see that increasing the
number of subdomains for the 10× 40× 20 grid test has a beneficial effect on runtime
for Methods P2 and P3, but has a negative impact on runtime for Method P1.

7. Conclusions. We have demonstrated an effective approach for precondition-
ing the nonlinear interface problems associated with a mortar mixed finite element
method. The frozen Jacobian multiscale preconditioner extends the concept of a
multiscale flux basis, by recomputing it sparingly and reusing it throughout the sim-
ulation. The initial computational results for slightly compressible single-phase and
two-phase flow are promising. This new type of physics-based preconditioner is no-
table because not many other techniques are known to precondition these types of
systems. Although the multiscale preconditioner was extremely effective at reducing
the number of Interface GMRES iterations, the communication overhead in applying
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Fig. 11. Interface GMRES iterations per time step for Example 6.2 on the 10× 40 × 20 grid.

Table 4

Runtimes for Example 6.2 in seconds on the 10× 40× 20 grid.

2 subdomains 4 subdomains
2× 2 disc. Matching 2× 2 disc.
lin. mortar grids lin. mortar

Method P1 Total time 28,755.3 128,138.9 32,341.2
Method P2 Total time 10,225.0 12,197.0 9,840.2

Computing multiscale basis 23.2 264.3 6.7
Applying preconditioner 2,278.8 3,007.0 4,929.6
Linear combinations 34.6 156.0 284.2

Method P3 Total time 6,090.8 9,031.6 4,981.8
Computing multiscale basis 623.4 1,101.2 131.1
Applying preconditioner 1,177.8 1,911.7 2,398.9
Linear combinations 20.3 105.5 149.3

the preconditioner is observed to be very costly. An important extension of this work
could seek to mitigate this cost by combining the multiscale preconditioner with other
preconditioning techniques.

We have focused on the MMMFEM to concisely describe the frozen Jacobian
preconditioner. However, this approach could be extended to any multiscale method
with localized subscale problems where a matrix could be formed that contains the
coarse scale projection of the fine scale responses to each coarse scale degree of freedom
based on the current state of the system. An exact or approximate inverse of this
coarse scale matrix could be stored, or a secondary problem could be solved using
this matrix as a preconditioner. This preconditioner could then be used across several
nonlinear iterations and time steps.
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