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a b s t r a c t 

Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a non- 

linear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte 

Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two 

types of noise are considered —uncorrelated noise resulting in one stochastic dimension for each element 

of the spatial grid and correlated noise parameterized by the Karhunen–Loeve (KL) expansion resulting 

in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are in- 

vestigated for two cases with synthetic data with and without noise, as well as data from a laboratory 

experiment. While it is observed that all algorithms perform reasonably well in matching the target so- 

lution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms 

that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble 

members for comparable accuracy. In the case of SC methods, this is due to improved approximation 

in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization 

of the noise results in a stochastic space of smaller dimension. The most efficient method is the one 

combining SC and KL expansion. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Parameter estimation is an important field in the area of mod-

ling physical or biological processes [21] . The set of parameters

hat maximize the model’s agreement with experimental data can

e used to yield important insight into a given system. It can help

cientists more clearly describe the behavior of the system, pre-

ict behavioral changes in the system during pathological situa-

ions, and assess the efficacy of various treatment options [6,26] .

n addition, once those optimal parameters have been found, other

athematical techniques can be used to obtain further insight into

he system’s behavior. Local sensitivity analysis [5] at the optimal

arameter set can be used to assess the local importance of the pa-

ameters. Also, the optimal parameter set can be used as a starting

oint for obtaining, via, e.g., Markov-Chain Monte Carlo (MCMC)

ethods, distributions of the parameters that produce computa-
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ional estimates that agree reasonably well with experiment. These

istributions can be used to assess the global importance of each

arameter. 

As computational models become more complex in order to de-

cribe systems in more detail, parameter estimation can become

ore difficult and costly because of increased numbers of param-

ters and simulation runtime. Obtaining parameter estimates in a

easonable amount of time has begun to depend more and more

n efficient methods of parameter estimation. 

Traditional approaches to obtaining ideal parameter sets in-

lude least-squares or maximum likelihood approaches in which

 cost functional (usually a sum of weighted squared differences

etween model and experimental values) is minimized. Direct

ptimization methods such as the Nelder–Mead simplex method

r the conjugate gradient method are often used to find the cor-

esponding minimum of the cost functional, which serves as the

deal parameter set [20] . Probability based methods, such as the

CMC method, have also been used to explore parameter space

nd search for optimal parameters. Direct optimization techniques

ay get stuck in local minima and may require large amounts of

ime to find minima in high dimensional space. While improved

mplementations of the MCMC algorithms exist, see [2,7,16–18] ,
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Table 1.1 

Parameter estimation techniques used. 

Technique Sequential data Structured Karhunen–Loeve 

assimilation sampling expansion 

DO 

EnKF X 

SCKF X X 

KLEnKF X X 

KLSCKF X X X 
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MCMC generally suffers from the need of a large number of

simulations before optimal parameter sets are obtained. 

Usually, in the above methods, a simulation is run from the

start of an experiment to the end of an experiment before the cost

function is evaluated and the best guess for the optimal parame-

ter set is adjusted. In contrast, sequential data assimilation tech-

niques adjust parameter sets at every time at which experimental

data is available. Adjusting parameters more often usually allows

for quicker convergence to desired parameter estimates. In this pa-

per we study several Kalman filter (KF) techniques [8] that up-

date the parameter estimate multiple times per simulation run and

compare their performance for parameter estimation for a partial

differential equation (PDE) model of cell migration in an in vitro

experiment [1] . 

Kalman filter methods usually take a running temporal model

and periodically update it by using experimental measurements.

While traditionally these methods have been used to update the

values of the dependent variables for a given model of a physical

system, they can also be used to update estimates of the parameter

values of the model if an initial guess for those parameter values

is given [15] . 

The original linear Kalman filter can only be used for models

with linear dynamics. The extended Kalman filter uses the Jaco-

bian to linearize and deal with nonlinear dynamics. Both the lin-

ear and extended Kalman filters track the underlying distributions

of the dependent variables and unknown parameters through time

by evolving and tracking the mean and variance of the variables

in the model. While the extended Kalman filter can be used on

moderately nonlinear problems, it can suffer when presented with

highly nonlinear problems. This is because the Jacobians provide

only local information. 

Other Kalman filters alleviate the problem of potentially mis-

leading local information by using a global sampling of points,

rather than a local mean and Jacobian-derived variance, to rep-

resent the underlying distribution. The ensemble Kalman filter

[8,11] tracks the evolution of the variable distributions by using a

Monte Carlo sampling of the variable space that is evolved through

time. Recently other Kalman filters have been introduced that

use structured samplings of stochastic space that are based upon

quadrature rules [15,23,25] . Our stochastic collocation Kalman filter

(SCKF) is of this type as it uses sparse grid collocation or quadra-

ture in order to estimate the mean and variance resulting when

the model is propagated in time. For moderately sized problems,

filters based on structured sampling can be more efficient than the

ensemble Kalman filter, since they require fewer realizations to ob-

tain comparable accuracy. 

Additional gains can be realized for PDEs if we utilize the fact

that the model errors associated with many PDE-based models

(the errors introduced to the variables when using the model to

evolve the PDE variables in time) tend to be correlated rather

than uncorrelated. If we assume model errors are uncorrelated

then there is one independent degree of freedom for each vari-

able at each grid point/cell and the dimension of the stochastic

space quickly increases when the grid is refined. Usually in PDE

systems, however, the model errors at one grid location is cor-

related with the model error at nearby grid locations. To incor-

porate this correlation, we have assumed that the errors at the

grid cells can be represented by a Karhunen–Loeve (KL) expan-

sion, which is based on an eigenfunction expansion of the covari-

ance [10] . The KL expansion can be truncated due the fast decay of

the eigenvalues [10] . This results in a reduction in the dimension

of the effective stochastic space which corresponds to fewer real-

izations needed for a desired parameter estimation. In particular,

there is one stochastic dimension for each significant KL term and

the dimension of the stochastic space is independent of the spatial

grid. 
In this paper we investigate the efficiency and accuracy of using

equential data assimilation via KF methods, structured sampling

ia SC methods, and the KL expansion for parameter estimation in

 model of intestinal epithelial cell migration. We do this by com-

aring parameter estimates obtained from five different parame-

er estimation techniques (see Table 1.1 ): direct optimization of a

ost functional (DO), ensemble Kalman filter (EnKF), stochastic col-

ocation Kalman filter (SCKF), ensemble Kalman filter with KL ex-

ansion (KLEnKF), and stochastic collocation Kalman filter with KL

xpansion (KLSCKF). In the SC algorithms, a new random ensem-

le is generated after each data assimilation step to avoid adding

oise in the same stochastic direction. We present computational

esults for two cases with synthetic data with and without noise,

s well as experimental data from the lab of David Hackam [1] . We

bserve that all algorithms are able to match the target solution or

xperimental data and to estimate the diffusion coefficient and the

rowth rate. However, the algorithms that employ SC acceleration

nd the KL expansion are computationally more efficient, as they

equire fewer ensemble members for comparable accuracy. 

We note that the stability of the Kalman filter algorithms de-

ends on the observability of the dynamical system, i.e., the abil-

ty to determine uniquely the state variables and parameters from

he set of measurements, see e.g. [12] . Although a rigorous math-

matical proof of observability is beyond the scope of this work,

he numerical results indicate that our model and set of measure-

ents give an observable dynamical system. In particular, in the

ost challenging setting of using experimental data, the direct op-

imization algorithm converges to parameter values that are very

lose to those obtained by the four KF methods, and the computed

olutions match the experimental data very well. In addition, In

he simulated data setting, the parameters estimates obtained by

ll four KF algorithms are very close to the true parameter values. 

The remainder of the paper is organized as follows. The meth-

ds and algorithms are presented in Section 2 . The computational

esults are described in Section 3 . The results are discussed in

ection 4 . 

. Methods 

.1. Experiments 

The experimental data was obtained in the Hackam Lab at

he University of Pittsburgh and the experimental procedures have

een presented in [1] . 

.2. Model 

.2.1. Equations 

The mathematical model consists of a two-dimensional domain

epresenting a layer of epithelial cells that evolves in time accord-

ng to the partial differential equation 

∂e c 

∂t 
= D ∇ ·

((
e 2 c 

e 2 c + (e c,max − e c ) 2 

)
∇e c 

)
+ k p e c (e c,max − e c ) . 

(2.1)
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Fig. 1. EnKF random sampling of 2-d stochastic space. 
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his nonlinear diffusion equation for the epithelial cell concentra-

ion e c has been used to model wound closure in necrotizing en-

erocolitis [3] . Here D is the diffusion coefficient, k p is the growth

ate, and e c,max = 1 is the maximum concentration. 

The S-shaped nonlinear diffusion term is chosen from the

uckley–Leverett model of two-phase flow in porous media [4] ).

t produces no cell migration when e c = 0 and maximal migration

hen e c = e c,max . In addition the choice of the S-shape makes it so

hat all regions with low epithelial integrity (small e c ) exhibit near

inimal cell migration (approximately proportional to e 2 c ) while all

egions of high epithelial integrity exhibit nearly maximal migra-

ion rates (approximately proportional to e 2 c,max − (e c,max − e c ) 
2 ; see

3] ). 

.2.2. Computational methods and domain 

A standard cell-centered finite difference method was imple-

ented in MATLAB to discretize this equation on a 10 × 10 grid

100 free state variables) including appropriate upwinding of the

onlinear diffusion term [14] and using Forward Euler in time

ith step sizes that do not violate the CFL condition, see [3] for

etails. The simulation domain is the rectangle [ −0 . 05 , 0 . 05] ×
 −0 . 035 , 0 . 035] discretized on a 10 × 10 spatial mesh. The initial

ondition for all tests is obtained from the initial image from the

xperimental data. It corresponds to an initial wound with irregu-

ar shape that closes during the simulation. We take e c = 0 inside

he wound and e c = 1 outside. 

.3. General overview of Kalman filter methods 

The Kalman filter is a two step process that evolves the state

nd uncertainty/variance associated with a system optimally by us-

ng experimental data corresponding to that system. The first step

prediction or forecast step) uses a computational model and the

ncertainty associated with that model to evolve both the system’s

ean and variance to the next time step at which experimental

ata is available. The second step (the analysis or assimilation step)

ses experimental data and the uncertainty associated with the ex-

eriments (measurement error) to adjust the variable means and

ariances to more closely agree with the experimental data. 

The first step for just the means is given, mathematically, by

he following: 

 

f 
n = f ( x 

a 
n −1 ) + w n . 

ere x 
f 
n and x a 

n −1 
∈ R 

m are vectors of the state variables and pa-

ameters for the given system (state vectors) from the n th fore-

ast and n − 1 st assimilation time steps, respectively, w n ∈ R 

m is a

tochastic normally distributed vector with mean zero and covari-

nce matrix Q n ∈ R 

m ×m representing the noise or uncertainty asso-

iated with using the model over the n th time step, and f ∈ R 

m is

 forecasting model that is used to evolve the state vector in time.

The assimilation step, also known as the adjustment, analysis,

ltering, or model update step, is given by: 

 

a 
n = x 

f 
n + K n ( y n − h ( x 

f 
n )) . 

ere K n ∈ R 

m ×l is the Kalman gain, y n ∈ R 

l is the vector of exper-

mental measurement values available at time t n (measurement

ector), and h ∈ R 

l is a measurement function that returns esti-

ates of the measurement values corresponding to a given state

ector. While not shown explicitly, the measurement vectors, like

he state vectors are also assumed to be stochastic so that they can

e represented by 

 n = ȳ n + v n , 

here ȳ n holds the expected measurement values, and v n ∈ R 

l 

s the measurement noise vector or uncertainty that is normally
istributed with mean zero and covariance matrix R n ∈ R 

l×l . The

alman gain is chosen to minimize the amount of uncertainty in

he new estimate of the state vector for the system, x a n , and de-

ends on the covariances of the forecast state vectors and mea-

urement values. 

There are two primary ways in which the means and variances

f the variables are tracked in the Kalman filter. Traditionally, in

oth the linear and extended Kalman filter, the mean and covari-

nce matrix of the state variables each have their own evolution

quation and are explicitly tracked as time evolves. With the ad-

ent of the ensemble Kalman filter [8,11] it has become common

o instead track the means and variances by evolving each mem-

er of a sampling, or ensemble, of stochastic variable space. In this

atter case, if more specific information such as the mean or co-

ariance of the variables in the actual system is desired, they can

e estimated by calculating the mean and covariance matrix of the

nsemble. Often the two approaches are mixed [15,22,23] , as is the

ase here. 

Finally we mention that while the Kalman filter has tradition-

lly been used to correct just the state variables in a given model,

t has become common to use the Kalman filter in a parameter es-

imation role. By appending guesses for the unknown parameter to

he state vector, evolving those parameters with the identity func-

ion during the predict step, and then allowing the analysis step

o adjust the parameter values so that the state variables more

losely agree with experiment, the parameter values will tend to

volve towards the ideal values for the system, that is, towards a

arameter set that reproduces the experimental data fairly well. In

ddition, it is often, though not always, the case that the first guess

or the parameters need not be close to the ideal parameter set in

rder for the guesses to converge to that set. 

.3.1. Ensemble Kalman filter 

The ensemble Kalman filter [8,11] tracks the underlying distri-

utions of the state variables and measurements by representing

he underlying distributions using an ensemble of state and mea-

urement vectors and advancing those distributions over time by

dvancing each member of the ensemble independently. 

The algorithm, along with a short description of each step, is

isted in Table 2.1 . In this and the other three algorithms, the di-

ension of the state/parameter vector x is m = n c + 2 , where n c 
s the number of grid cells. In particular, we have one free state

ariable per grid cell and two parameters D and k p . In this and

he next algorithm, since the spatial noise is assumed uncorre-

ated, the dimension of the stochastic space is also m . Ensembles

f state vectors, measurement noise, and model noise are of size q

nd are random, rather than structured, samplings of the stochas-

ic space, see Fig. 1 . When q is large enough, the ensembles should
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Table 2.1 

EnKF Algorithm. 

Initialize 

x a 0 Initial best state vector 

P a 0 ,xx Initial best state vector uncertainty 

{ x a 
0 ,k 

} q 
k =1 

Use x a 0 and P a 0 ,xx to obtain a random/unstructured sampling or ensemble of q vectors that 

correspond to/represent the underlying distribution 

For n = 1 , . . . , N

Prediction Step 

x f 
n,k 

= f ( x a 
n −1 ,k 

) + w n,k Predict new state for each ensemble member 

x 
f 
n = 

1 
q 

∑ q 

k =1 
x f 

n,k 
Mean new state, according to model 

y 
f 
n = 

1 
q 

∑ q 

k =1 
h ( x f 

n,k 
) Mean new measurement, according to model 

E f 
x,k 

= x f 
n,k 

− x 
f 
n Deviation of k th forecast ensemble member from mean 

E f 
y,k 

= h ( x f 
n,k 

) − y 
f 
n Deviation of k th forecast measurement of ensemble member from mean measurement 

P f n,xx = 

1 
q −1 

∑ q 

k =1 
E f 

x,k 
(E f 

x,k 
) T New xx -covariance 

P f n,xy = 

1 
q −1 

∑ q 

k =1 
E f 

x,k 
(E f 

y,k 
) T New xy -covariance 

P f n,yy = 

1 
q −1 

∑ q 

k =1 
E f 

y,k 
(E f 

y,k 
) T New yy -covariance 

Adjustment Step 

K n = P f n,xy (P f n,yy ) 
−1 Find Kalman gain 

x a 
n,k 

= x f 
n,k 

+ K n ( y n + v n,k − h ( x f 
n,k 

)) Find analyzed state for each ensemble member 

x 
a 
n = 

1 
q 

∑ q 

k =1 
x a 

n,k 
Mean best estimate state, after measurement adjustment 

E a 
x,k 

= x a 
n,k 

− x 
a 
n Deviation of k th analyzed ensemble member from mean 

P a n,xx = 

1 
q −1 

∑ q 

k =1 
E a 

x,k 
(E a 

x,k 
) T Find new covariance (not needed to continue to next time) 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. SCKF structured sampling of 2-d stochastic space. 
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have a mean and variance that is approximately equal to the mean

and variance of the underlying distributions. The index k corre-

sponds to the k th ensemble member. The ensembles of noise vec-

tors { w n,k } q k =1 
and { v n,k } q k =1 

are drawn from the normal distribu-

tions with covariance matrices Q n and R n , respectively. 

2.3.2. Stochastic collocation Kalman filter 

In the ensemble Kalman filter, the mean and variance of the

ensemble converge to the true mean of the ensemble (according to

Monte Carlo sampling) as 1 / 
√ 

q . Because of this, a large number of

ensemble members is often required if the ensemble Kalman filter

is going to effectively track the true underlying distribution as it

evolves in time. When the model function f is costly to evaluate,

this would result in a slow algorithm. 

To alleviate this problem, it has become practice (unscented

Kalman filter, sigma point Kalman filter, Gaussian filters, stochas-

tic collocation Kalman filter) to build ensembles that consist of

points strategically chosen from the underlying stochastic space

[15,22,23,25] . This is in contrast to the ensemble Kalman filter

where the stochastic space is randomly sampled. When points are

strategically chosen, numerical integration techniques on the cor-

responding structured grid can be used to obtain good estimates

of the evolving mean and covariance of the underlying distribution

( Fig. 2 ). 

The stochastic collocation method builds an interpolant in the

stochastic space using solution values at q SC collocation points.

Therefore, its computational complexity is q SC times that of a de-

terministic problem. Thus, we need to choose a nodal set � with

fewest possible number of points under a prescribed accuracy re-

quirement. There are several choices of such collocation points, us-

ing either tensor products of one-dimensional nodal sets, or sparse

grids constructed by the Smolyak algorithm [19,24] . The Smolyak

approximation is a linear combination of product formulas, and

the linear combination is chosen in such a way that an interpo-

lation property for one-dimensional spaces is preserved for mul-

tidimensional spaces. Only products with a relatively small num-

ber of points are used and the resulting nodal set has significantly

fewer number of nodes compared to the tensor product rule. In

this paper, we use Smolyak formulas that are based on a linear

combination of one-dimensional polynomial interpolants at the ex-

trema of the Hermite polynomials, which are the orthogonal poly-
omials with a weight given by the probability density function

f the normal distribution, i.e., Gaussian abscissas. Other choices,

uch as the extrema of the Chebyshev polynomials, i.e., Clenshaw–

urtis abscissas, can be considered as well. Let q SC be the size of

he ensemble, let { r SC,k } q SC 

k =1 
∈ R 

m be the collocation points, and let

 c SC,k } q SC 

k =1 
be the collocation weights. The algorithm for calculat-

ng { r SC,k } q SC 

k =1 
and { c SC,k } q SC 

k =1 
is given, e.g., in [19,24] . In our imple-

entation we use Smolyak level-one sparse grid, which has two

ollocation points in each dimension plus the origin, resulting in

 sc = 2 m + 1 . The SCKF algorithm is given in Table 2.2 . 

emark 2.1. We note that, since the set of collocation points is

xed, sampling the noise at these points at each data assimilation

tep would result in adding noise to the model and measurements

n the same stochastic direction. To avoid this, at each data assim-

lation step the Kalman gain is used to adjust the mean and a new

nsemble is generated using the new mean, the vector of colloca-

ion points and the new covariance matrix. 

.3.3. Karhunen–Loeve stochastic collocation Kalman filter, 

arhunen–Loeve ensemble Kalman filter 

The most costly portion of the Kalman filter is the functional

valuation of f , which corresponds to advancing the computational

odel in time. As such, the fewer ensemble members a method
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Table 2.2 

SCKF Algorithm. 

Initialize 

x 
a 
0 Initial best state vector (corresponds to a mean) 

P a 0 ,xx Initial best state vector uncertainty/covariance 

{ r SC,k } q SC 

k =1 
Collocation points 

{ c SC,k } q SC 

k =1 
Weights for stochastic collocation 

For n = 1 . . . N

Prediction Step 

x a 
n −1 ,k 

= x 
a 
n −1 + 

√ 

P a 
n −1 ,xx 

r SC,k Use variance associated with each component to create a structured ensemble 

x f 
n,k 

= f ( x a 
n −1 ,k 

) Predict new state 

x 
f 
n = 

∑ q SC 

k =1 
c SC,k x 

f 

n,k 
Mean new state, according to model 

y 
f 
n = 

∑ q SC 

k =1 
c SC,k h ( x 

f 

n,k 
) Mean new measurement, according to model 

E f 
x,k 

= x f 
n,k 

− x 
f 
n Deviation of k th ensemble member from mean 

E f 
y,k 

= h ( x f 
n,k 

) − y 
f 
n Deviation of measurement of k th ensemble member from mean measurement 

P f n,xx = 

∑ q SC 

k =1 
c SC,k E 

f 

x,k 
(E f 

x,k 
) T + Q n Find new covariance 

P f n,xy = 

∑ q SC 

k =1 
c SC,k E 

f 

x,k 
(E f 

y,k 
) T Find new covariance 

P f n,yy = 

∑ q SC 

k =1 
c SC,k E 

f 

y,k 
(E f 

y,k 
) T + R n Find new covariance 

Adjustment Step 

K n = P f n,xy (P f n,yy ) 
−1 Find Kalman gain 

x 
a 
n = x 

f 
n + K n ( y n − y 

f 
n ) Find adjusted mean state 

P a n,xx = P f n,xx − K n P 
f 

n,yy K 
T 
n Find new covariance 

end 
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eeds to obtain satisfactory results, the faster the method is. For

ow-dimensional systems, the stochastic collocation Kalman filter

eeds few ensemble members in its organized ensemble, while

he Ensemble Kalman filter needs many in its randomly chosen

nsemble. As the dimension is increased, however, the stochastic

ollocation Kalman filter suffers from the curse of dimensional-

ty. For instance, for one spatially dependent variable on a coarse

0 × 10 × 10 computational grid, the dimension of the stochas-

ic space is one thousand, therefore over one thousand ensemble

embers are required to run the stochastic collocation Kalman

lter. A 20 × 20 × 20 grid would require over eight thousand

nsemble members. The ensemble Kalman filter often requires

nly around one thousand ensemble members for similarly sized

rids. 

To address this problem, one can explore a parameterized noise

epresentation, such as the Karhunen–Loeve (KL) expansion. The

ncertainties associated with each component of the state vector

re often correlated with each other. This is especially true when

he components correspond to spatially dependent variables on

omputational grids. We use the KL expansion to represent these

patially correlated uncertainties. It is very similar to a Fourier ex-

ansion with the KL eigenfunctions looking somewhat sinusoidal

n shape. On a discrete grid of size p × p × p , one needs p 3 

L eigenfunctions to completely represent a given discrete corre-

ation function on the grid. Like a Fourier series, however, it can

e shown that in continuous space the eigenvalues decay fast and

he KL expansion of a given function converges to that function

s more terms are included in the expansion [10] . As such, us-

ng just the first few terms of the KL expansion in discrete space,

nstead of p 3 terms, should sufficiently represent the distribution

f the possible state of the system. Doing so reduces the effective

tochastic space and allows one to use a much smaller ensemble to

epresent the underlying distributions. This corresponds to fewer

ecessary evaluations of the model function f and faster Kalman

ltering. 

Given a correlation function in two dimensions C v ( � x α, � x β ) for a

tochastic variable v , the corresponding Karhunen–Loeve expansion

or that variable is given by [10] : 

 ( � x , ω) = E[ v ]( � x ) + 

∞ ∑ 

i =1 

ξi (ω) 
√ 

λi f i ( � x ) 
here the corresponding eigenfunctions f i ( � x ) satisfy the following

ntegral equation 

 ∫ 
D 

C( � x α, � x β ) f i ( � x α) d � x α = λi f i ( � x β ) . 

ue to the symmetry and positive definiteness of the covariance

unction, the corresponding eigenfunctions are mutually orthog-

nal. In addition, since we assume the noise being represented

s normally distributed at each point, ξ i ( ω) must be uncorrelated

ormal distributions with mean zero and standard deviation one. 

As we discretize the model, it is useful to discuss the corre-

ponding discrete version of the KL expansion, which is just an

igenfunction expansion. Recall that we consider a cell-centered fi-

ite difference method on a two-dimensional rectangular grid with

 c grid cells. Let C ∈ R 

n c ×n c be the covariance matrix where C i j is

he covariance between the noise at the two cell centers ( x i , y i )

nd ( x j , y j ). The corresponding expansion is 

  (ω) = E[ � v ] + 

n c ∑ 

i =1 

ξi (ω) 
√ 

λi � e i 

here C the eigenvectors � e i ∈ R 

n c satisfy 

 

�
 e i = λi � e i 

ince the λi decay to zero relatively rapidly as i grows, there are

nly a few dominant eigenvectors. The eigenvectors are mutually

rthogonal because of the symmetry and positive definiteness of

he covariance matrix. In our computations we use the covariance

atrix [9] 

 i j = σ 2 e −| x i −x j | /L x −| y i −y j | /L y , 

here σ is the variance and L x , L y are the correlation lengths. The

bove function is widely used for modeling diffusion processes in

orous media [9,27] . We assume that it is also suitable for cell mi-

ration processes. The better our estimate of the covariance func-

ion/matrix of the process, the better the corresponding estimate

f the KL expansion for the process will be and the better the

L version of the KF will perform [27,28] . We also note that the

ariance σ above and the corresponding 
√ 

λi ’s may evolve as time

volves and are easily rescaled as appropriate. 
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Table 2.3 

KLSCKF Algorithm. 

Initialize 

x 
a 
0 Initial best state vector 

P a 0 ,xx Initial best state vector uncertainty 

E Matrix of orthonormalized eigenvectors 

{ r KL,k } q KL 

k =1 
Collocation points 

{ c KL,k } q KL 

k =1 
Weights for stochastic collocation 

For n = 1 . . . N

Prediction Step 

P E = E T P a n −1 ,xx E Project covariance onto the KL eigenspace 

x a 
n −1 ,k 

= x 
a 
n −1 + E 

√ 

P E r KL,k Use projected covariance to create a structured ensemble 

x f 
n,k 

= f ( x a 
n −1 ,k 

) Predict new state 

x 
f 
n = 

∑ q KL 

k =1 
c KL,k x 

f 

n,k 
Mean new state, according to model 

y 
f 
n = 

∑ q KL 

k =1 
c KL,k h ( x 

f 

n,k 
) Mean new measurement, according to model 

E f 
x,k 

= x f 
n,k 

− x 
f 
n Deviation of k th ensemble member from mean 

E f 
y,k 

= h ( x f 
n,k 

) − y 
f 
n Deviation of measurement of k th ensemble member from mean measurement 

P f n,xx = 

∑ q KL 

k =1 
c KL,k E 

f 

x,k 
(E f 

x,k 
) T + Q n Find new covariance 

P f n,xy = 

∑ q KL 

k =1 
c KL,k E 

f 

x,k 
(E f 

y,k 
) T Find new covariance 

P f n,yy = 

∑ q KL 

k =1 
c KL,k E 

f 

y,k 
(E f 

y,k 
) T + R n Find new covariance 

Adjustment Step 

K n = P f n,xy (P f n,yy ) 
−1 Find Kalman gain 

x 
a 
n = x 

f 
n + K n ( y n − y 

f 
n ) Find adjusted mean state 

P a n,xx = P f n,xx − K n P 
f 

n,yy K 
T 
n Find new covariance 

end 

Table 2.4 

KLEnKF Algorithm. 

Initialize 

x a 0 Initial best state vector 

P a 0 ,xx Initial best state vector uncertainty 

{ x a 
0 ,k 

} q 
k =1 

Use x a 0 and P a 0 ,xx to obtain a sampling or ensemble of q vectors that correspond to/represent the underlying distribution 

For n = 1 , . . . , N

Prediction Step 

x a 
n −1 ,k 

= x 
a 
n −1 + E E T ( x a 

n −1 ,k 
− x 

a 
n −1 ) Project the ensemble’s distance from the mean onto the KL eigenspace and use this to construct an ensemble 

x f 
n,k 

= f ( x a 
n −1 ,k 

) + w n,k Predict new state for each ensemble member 

x 
f 
n = 

1 
q 

∑ q 

k =1 
x f 

n,k 
Mean new state, according to model 

y 
f 
n = 

1 
q 

∑ q 

k =1 
h ( x f 

n,k 
) Mean new measurement, according to model 

E f 
x,k 

= x f 
n,k 

− x 
f 
n Deviation of k th forecast ensemble member from mean 

E f 
y,k 

= h ( x f 
n,k 

) − y 
f 
n Deviation of k th forecast measurement of ensemble member from mean measurement 

P f n,xx = 

1 
q −1 

∑ q 

k =1 
E f 

x,k 
(E f 

x,k 
) T New xx -covariance 

P f n,xy = 

1 
q −1 

∑ q 

k =1 
E f 

x,k 
(E f 

y,k 
) T New xy -covariance 

P f n,yy = 

1 
q −1 

∑ q 

k =1 
E f 

y,k 
(E f 

y,k 
) T New yy -covariance 

Adjustment Step 

K n = P f n,xy (P f n,yy ) 
−1 Find Kalman gain 

x a 
n,k 

= x f 
n,k 

+ K n ( y n + v n,k − h ( x f 
n,k 

)) Find analyzed state for each ensemble member 

x 
a 
n = 

1 
q 

∑ q 

k =1 
x a 

n,k 
Mean best estimate state, after measurement adjustment 

E a 
x,k 

= x a 
n,k 

− x 
a 
n Deviation of k th analyzed ensemble member from mean 

P a n,xx = 

1 
q −1 

∑ q 

k =1 
E a 

x,k 
(E a 

x,k 
) T Find new covariance (not needed to continue to next time) 

end 
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The algorithm in Table 2.3 shows how the stochastic collocation

Kalman filter is altered when a truncated set of n KL KL eigenvec-

tors are used to represent the stochastic space. Note that in this

case the dimension of the stochastic space is m KL = n KL + 2 , where

we have included the two parameters D and k p . We use the same

Smolyak level-one sparse grid algorithm as in SCKF, described in

Section 2.3.2 , but in a smaller stochastic space of dimension m KL .

In this case the size of the ensemble is q KL = 2 m KL + 1 . The vectors

{ r KL,k } q KL 

k =1 
∈ R 

m KL contain the collocation points, and { c KL,k } q KL 

k =1 
are

the collocation weights. The matrix E ∈ R 

m ×m KL is a 2 × 2 block-

diagonal matrix with diagonal blocks [ � e 1 , . . . , � e n KL 
] ∈ R 

n c ×n KL and

the 2 × 2 identity matrix. At each assimilation step the covari-

ance matrix P a 
n −1 ,xx 

∈ R 

m ×m is projected onto the KL eigenspace via

E 

T P a 
n −1 ,xx 

E ∈ R 

m KL ×m KL . 

d  
Finally, Table 2.4 presents the KL version of the EnKF algorithm.

he only difference is that the ensemble is projected onto the KL

igenspace at each assimilation step. We have included this KF for

omparison with its En and KL cohorts. 

.4. Measurements 

To compare the efficiency and accuracy of the four methods

or this particular model, we consider three separate sets of mea-

urements for the given system. The first set of measurements is

anufactured by running the model for 3.75 h with k p = 1 / h and

 = 3 × 10 −6 cm 

2 /h. The second set of measurements is obtained

y adding white noise with variance 3 × 10 −3 to the values in the

rst set of measurements. The third set of measurements is taken

irectly from the in vitro experiment mentioned in Section 2 . We
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se a time series of images in order to determine the edge of the

ound, see Fig. 9 , and the measured value of e c in a grid cell is

qual to the fraction of the cell that resides outside the wound

dge yielding 0 for cells entirely inside the wound edge and 1

or those entirely outside the edge. We refer to the three sets of

easurements as noiseless simulated measurements, noisy simu-

ated measurements, and real measurements. Both the simulated

nd real measurements are assimilated every fifteen minutes. 

.5. Comparisons 

For both the noiseless and noisy simulated measurements, we

alculate the parameters errors, i.e., the difference between the ac-

ual value of the parameter and the estimated value. For the real

easurements case, we compare the parameter values obtained

ia the KF methods with parameter values obtained using a direct

ptimization simplex method [20] . The latter is based on minimiz-

ng the residual error 

 (t) = 

√ ∫ 


( � m 

model (t) − �
 m 

experiment (t)) 2 d xd y , 

here � m 

model is the vector of estimated measurements of state

ariables and parameters according to the model and 

�
 m 

experiment 

s the vector of actual measurements. D 

Direct Opt imizat ion (t n +1 ) and

 

Direct Opt imizat ion 
p (t n +1 ) are defined as the values of D and k p that

inimize R (t n +1 ) when we start with 

�
 m 

model (t n ) = 

�
 m 

experiment (t n ) .

he direct optimization solution is used as a reference solution, i.e.,

he closer a KF result is to the direct optimization result, the more

ccurately the KF method estimates the parameters. 

. Results 

The parameter values used for producing the simulated mea-

urements are D = 3 × 10 −6 for the diffusion coefficient and k p =
 . 0 for the growth rate. The parameter estimation methods for all

hree measurement types are ran with initial guesses D = 1 . 5 ×
0 −6 and k p = . 5 . In addition, in Section 3.6 we present a study

n the sensitivity of the results to the choice of initial parameter

uesses. For each of the three types of aforementioned measure-

ents, we use each of the four parameter estimation techniques

resented in Section 2 : the EnKF, SCKF, KLSCKF and KLEnKF meth-

ds. We take the model covariance matrix Q n ∈ R 

m ×m to be a di-

gonal matrix. Recall that m = n c + 2 , where n c is the number of

tate variables, one per each grid cell, and there are two parame-

ers. The diagonal elements of Q n corresponding to the state vari-

bles are 0 . 003 · s 2 max , where s max is an estimated maximal state

ariable value, which in our case is s max = e c,max = 1 . Because there

re no measurements of the actual parameter values, we assume a

lightly larger relative uncertainty for the parameter values, set-

ing the diagonal elements of Q n corresponding to the parameters

o 0 . 01 · p 2 
init 

, where p init is the initial parameter value. Similarly,

he measurement covariance matrix R n ∈ R 

l×l is taken to be diag-

nal. We have measurements for all state variables, so l = n c . For

 n we use the same covariance values as for the state variables

n Q n , 0 . 003 · s 2 max . We note that the choice of covariance values

s problem dependent and it is related to the uncertainty in the

odel and the measurements. In practice one often performs off-

ine parameter tuning by computing converged values of the error

ovariance P n for a range of Q n and R n values, see e.g. [13] . 

.1. Computational cost estimates 

Since the function evaluation to advance the model in the pre-

iction step is the dominant computational cost, and each ensem-

le member requires one function evaluation at each data assim-

lation step, for comparison purpose we define the computational
ost to be the size of the ensemble. Recall that for the EnKF the

imension of the stochastic space is m = n c + 2 , where n c is the

umber of grid cells. Here n c = 10 × 10 = 100 , so m = 102 . We

hoose for the size of the ensemble q = 10 0 0 , which corresponds

o 10 ensemble members per grid cell. In the SCKF, the dimension

f the stochastic space is also m = n c + 2 = 102 , but the size of the

nsemble for level one Smolyak sparse grid is q SC = 2 m + 1 = 205 .

n the KL-based methods the dimension of the stochastic space is

ndependent of the number of cell in the physical grid, but de-

ends on the number of terms in the KL expansion. In our sim-

lations we choose n KL = 7 × 7 = 49 KL terms, using 7 eigenfunc-

ions in each x and y directions. Since the KL eigenvalues decay

xponentially fast, the truncated series provides a highly accurate

pproximation of the full one, see Section 2.3.3 . The dimension of

he stochastic space is m KL = n KL + 2 = 51 and the size of the SC

nsemble is q KL = 2 m KL + 1 = 103 . Finally, in the KLEnKF, the di-

ension of the stochastic space is as in the KLSCKF, m KL = 51 , but

he size of the ensemble needs to be chosen to provide an accurate

onte Carlo sampling. For a fair comparison to the EnKF where

 = 10 n c , we choose here q = 10 n KL = 10 × 49 = 490 . These dimen-

ions are summarized in Table 3.1 . Note that the ensemble size of

nKF is approximately twice the cost of the KLEnKF, five times the

ost of the SCKF, and ten times the cost of KLSCKF. In Table 3.1 we

lso report the CPU times for the real data simulations using a

our core 1.73 GHz processor and note that they scale roughly lin-

arly with ensemble number, as expected. As model complexity in-

reases, the CPU time-ensemble number relationship will become

ore linear. 

.2. Noiseless simulated measurements 

Fig. 3 shows a time sequence of surfaces obtained by running

he model using SCKF and noiseless simulated data. The plots for

he other three versions of the KF algorithm are similar and are not

ncluded. Fig. 4 a and c show the Kalman filter parameter estimates

s a function of time for noiseless simulated measurements. It can

e seen that as time goes on, all methods converge to the actual

arameter values (horizontal lines) used to produce the noiseless

imulated measurements. Fig. 4 b and d show the error associated

ith the parameter estimates. The most accurate parameter esti-

ate is produced by the SCKF (green), but overall the accuracy in

ll four methods is comparable. This is also evident from the time-

veraged estimates and relative errors for the parameters k p and D

iven in Table 3.2 . Note that the averaging is done over the time

nterval [2,3] in order to minimize the effect of the incorrect initial

uess and the possible singular behavior at the end of the simula-

ion when the wound is closing. 

.3. Noisy simulated measurements 

The time sequences of surfaces obtained by the four KF algo-

ithms using the noisy simulated data are similar to those obtained

sing the noiseless simulated data shown in Fig. 3 and are not in-

luded. Fig. 5 a and c show the Kalman filter parameter estimates

s a function of time for the noisy simulated measurements. All

ethods converge to the actual parameter values used. The conver-

ence, however, is not nearly as tight as in the cases with noiseless

imulated measurements, Fig. 5 b and d show the error associated

ith the parameter estimates. The errors for all Kalman filter tech-

iques are approximately the same. In this case, the accuracy of

he parameter estimation techniques is limited by the noise in the

easurements. As it can be seen in Table 3.3 , the relative errors in

he time-averaged mean estimates are slightly larger than in the

oiseless measurement case. 
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Table 3.1 

Number of parameters, stochastic space dimension, ensemble size, and CPU time for real data 

simulations for the four methods. 

Number of spatial Dimension of Ensemble CPU time 

parameters stochastic space size 

EnKF n c = 10 × 10 = 100 m = n c + 2 = 102 q = 10 n c = 10 0 0 4.41 s 

SCKF n c = 10 × 10 = 100 m = n c + 2 = 102 q SC = 2 m + 1 = 205 1.27 s 

KLSCKF n KL = 7 × 7 = 49 m KL = n KL + 2 = 51 q KL = 2 m KL + 1 = 103 0.95 s 

KLEnKF n KL = 7 × 7 = 49 m KL = n KL + 2 = 51 q = 10 n KL = 490 2.44 s 

Fig. 3. Time sequence of surfaces obtained by running the model using SCKF and noiseless simulated data. 

Fig. 4. Parameter estimates and errors using noiseless simulated data for the EnKF(red), SCKF(green), KLSCKF(blue) and KLEnKF(magenta). (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this article). 

Table 3.2 

Time-averaged estimates on interval [2,3] for k p and D using noiseless simulated data. 

k p D 

Mean Rel.Error Std.Dev. Mean Rel.Error Std.Dev. 

EnKF 0.9990 0.10% 0.0028 2.9999e-06 0.003% 1.9551e-08 

SCKF 1.0 0 01 0.01% 9.2122e-06 2.9995e-06 0.010% 3.8195e-10 

KLSCKF 1.0018 0.18% 6.1535e-04 2.9759e-06 0.803% 8.0139e-09 

KLEnKF 1.0 0 06 0.06% 0.0052 3.0128e-06 0.426% 3.1334e-08 
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Fig. 5. Parameter estimates and errors using noisy simulated data for the EnKF(red), SCKF(green), KLSCKF(blue) and KLEnKF(magenta). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3.3 

Time-averaged estimates on interval [2,3] for k p and D using noisy simulated data. 

k p D 

Mean Rel.Error Std.Dev. Mean Rel.Error Std.Dev. 

EnKF 0.9963 0.37 % 0.0046 2.9930e-06 0.23 % 1.8997e-08 

SCKF 1.0 0 02 0.02 % 0.0017 3.0098e-06 0.32 % 1.1484e-08 

KLSCKF 1.0015 0.15 % 0.0016 2.9817e-06 0.61 % 2.3084e-08 

KLEnKF 0.9997 0.03 % 0.0063 3.0149e-06 0.49 % 3.7723e-08 

Fig. 6. Time sequence of surfaces obtained by running the model using SCKF and real data. 
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.4. Real measurements 

Fig. 6 shows a time sequence of surfaces obtained by running

he model using SCKF and real data. We note that the wound

loses faster when compared to using simulated data, see Fig. 3 .

his is consistent with the higher estimated values of the growth

ate k p and the diffusion coefficient D , as seen in Fig. 7 and

able 3.4 . In particular, Fig. 7 a and b show the Kalman filter param-
ter estimates as a function of time for real data measurements.

or comparison we have used the parameters obtained by direct

ptimization (dashed line) as a best estimate. The time-averaged

stimates over time interval [2,3] for all five techniques are given

n Table 3.4 . 

We observe that the KL techniques are able to obtain param-

ter estimates that are in agreement with the direct parame-

er estimation technique for both the proliferation rate and the
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Fig. 7. Parameter estimation using real data for the EnKF(red), SCKF(green), 

KLSCKF(blue), KLEnKF(magenta), and Direct Optimization (dashed line). (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Table 3.4 

Time-averaged estimates on interval [2,3] for k p and D using real data. 

k p D 

Mean Std.Dev. Mean Std.Dev. 

En KF 2.0275 0.2511 5.2521e-06 2.0617e-06 

SC KF 2.0848 0.2230 3.6097e-06 2.3661e-06 

KL SC KF 1.7446 0.2261 1.2520e-05 2.7342e-06 

KL En KF 2.0176 0.2258 5.9341e-06 2.9548e-06 

Direct optimization 2.0077 0.1715 3.6211e-06 2.5226e-06 
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effective diffusion rate. As opposed to the two previous simulated

measurement cases, the parameter estimates obtained using the

parameter estimation techniques with the real measurements do

not converge to one value. Rather, they appear to depend on time.

There is clearly a significant variation toward the end of the sim-

ulation. This could be explained by the fact that the wound is al-

most closed at the end, see Figs. 8 and 9 , and the parameter es-

timation problem becomes more ill-posed. It also suggests a pos-

sible need to adjust or add terms to the model equation in order

to more closely match dynamics when the wound is nearing full

closure. 

3.5. Matching the experimental results 

Here we demonstrate that, using the estimated parameter val-

ues, the model produces simulation results that match the in

vitro experiment very well. We use the parameters estimated

by the SCKF since the temporal variance of the SCKF estimates

is closest to the temporal variance of the direct optimization

technique. 

We note that the parameter estimate at t = 0 corresponds to

the initial guess for the parameters and does not incorporate any

data information into that parameter estimate. Additionally, as

seen in Fig. 7 , as the wound closes, the parameter estimates begin

to change more rapidly with respect to time. For these reasons, to

obtain a single parameter estimate for the entire time course of

the simulation, we take the time-averaged values of the parameter

estimates appearing in Fig. 7 for 2 ≤ t ≤ 3. This averaging on the

SCKF gives parameter estimates of D = 3 . 30 × 10 −6 ± 1.51 cm 

2 /h

and k p = 1.99 ± 0.25/h. 
The model is then run, without filtering, with D = 3 . 30 ×
0 −6 cm 

2 /h and k p = 1.99/h. The resulting simulation produces

ig. 8 . The figure shows a time sequence of the values of e c ( x, y,

 ). To obtain an estimate of where the wound edge is, we take the

 c = 50% contour and project it into the x − y plane. 

To compare this wound edge estimate with the actual wound

dge seen in experiment, we take the contours obtained and over-

ay them on the images from the in vitro wound healing experi-

ent in Fig. 9 . It can be seen that using the parameter estimates

btained from the SCKF parameter estimation technique produces

esults that are in a very good agreement with the experiment.

urthermore, comparing Fig. 8 to Figs. 3 and 6 , we note that us-

ng the simulated data results in a slower rate of wound closure,

hile the initial SCKF run with real data results in faster rate of

ound closure. Running the unfiltered algorithm with the param-

ters estimated by the SCKF run with real data results in a sim-

lation that best matches the rate of wound closure in the real

ata. 

.6. Sensitivity to initial parameter guesses 

In this section we present a study on the sensitivity of the

esults to the choice of initial parameter guesses. Recall that all

esults in the previous sections are obtained with initial guesses

 = 1 . 5 × 10 −6 and k p = . 5 . In Figs. 10 –12 we present the param-

ter estimates and errors for the four algorithms with the three

ypes of data for four cases of initial parameter guesses: 1) D =
 . 5 × 10 −6 , k p = . 5 , 2) D = 4 . 5 × 10 −6 , k p = . 5 , 3) D = 1 . 5 × 10 −6 ,

 p = 1 . 5 , and 4) D = 4 . 5 × 10 −6 , k p = 1 . 5 . These choices are sym-

etrical with respect to the actual parameter values used in ob-

aining the simulated data, D = 3 × 10 −6 and k p = 1 . 0 . As seen

rom the figures, the results indicate that all four algorithms are

ery robust with respect to variations in the initial parameter

uesses. 

. Discussion and conclusions 

We have developed four Kalman filter algorithms for data as-

imilation and parameter estimation for time dependent nonlin-

ar diffusion equations and compared their performance for a

odel of epithelial cell migration. The methods are based on ei-

her random Monte Carlo sampling (ensemble methods) or struc-

ured stochastic collocation sampling. In addition, either uncor-

elated random noise or correlated noise parameterized by the

arhunen–Loeve expansion is considered. This results in the meth-

ds EnKF, SCKF, KLSCKF, and KLEnKF. The SC methods with sparse

rid collocation points provide improved approximation in stochas-

ic space compared to Monte Carlo sampling, and thus result

n comparable accuracy with a smaller ensemble size. Further-

ore, KL parameterization of the noise results in a stochastic

pace of smaller dimension (one stochastic dimension per KL

erm) compared to uncorrelated noise (one stochastic dimension

er element of the spatial grid). Consequently, the most effi-

ient method is KLSCKF, followed by SCKF, KLEnKF, and EnKF, see

able 3.1 . 

We compared the performance of the four methods for two

ases of simulated measurements, with and without noise, as

ell as data from in vitro experiment of epithelial cell migra-

ion. In all cases the four methods exhibited similar accuracy,

aking the more efficient methods preferable. In the simulated

ata cases, all methods converged to the correct parameter val-

es for the growth rate k p and the diffusion D , with small

elative errors for the time-averaged mean value estimates. In

he real measurements case, all four methods performed com-

arably to a much more expensive direct optimization simplex
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Fig. 8. Time sequence of surfaces obtained by running the model without any filtering using the parameter estimates of D = 3.30e-6 cm 

2 /h and k p = 1.99/h. 

Fig. 9. Overlay of the 50% contours for e c obtained by the model and the experimental images. 

Fig. 10. Parameter estimates and errors for a range of initial parameter guesses using noiseless simulated data for the EnKF(red), SCKF(green), KLSCKF(blue) and 

KLEnKF(magenta). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Parameter estimates and errors for a range of initial parameter guesses using noisy simulated data for the EnKF(red), SCKF(green), KLSCKF(blue) and 

KLEnKF(magenta). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

a

b

Fig. 12. Parameter estimation for a range of initial parameter guesses using real 

data for the EnKF(red), SCKF(green), KLSCKF(blue), KLEnKF(magenta), and Direct 

Optimization (dashed line). (For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of this article.) 
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method. The methods exhibited certain time variation in the es-

timated parameters, especially near the end of the simulation.

This could be due to singularity in the data when the wound

is almost closed, but could also indicate the need to consider a

more complex model. Nevertheless using the estimated parame-

ters provided an excellent match of the computed wound shape

to the experimental data, as evident from the series of images in

Fig. 9 . 
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