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Abstract. This paper presents an efficient multiscale stochastic framework for uncertainty
quantification in modeling of flow through porous media with multiple rock types. The governing
equations are based on Darcy’s law with nonstationary stochastic permeability represented as a sum
of local Karhunen–Loève expansions. The approximation uses stochastic collocation on either a tensor
product or a sparse grid, coupled with a domain decomposition algorithm known as the multiscale
mortar mixed finite element method. The latter method requires solving a coarse scale mortar
interface problem via an iterative procedure. The traditional implementation requires the solution
of local fine scale linear systems on each iteration. We employ a recently developed modification
of this method that precomputes a multiscale flux basis to avoid the need for subdomain solves on
each iteration. In the stochastic setting, the basis is further reused over multiple realizations, leading
to collocation algorithms that are more efficient than the traditional implementation by orders of
magnitude. Error analysis and numerical experiments are presented.
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1. Introduction. Accurately predicting physical phenomena often involves in-
corporating uncertainties into a model’s input, due to both natural randomness and
incomplete knowledge of various physical properties, and then following those uncer-
tainties into the model’s output. In this paper we simulate single-phase flow through
porous media, by modeling the permeability as a spatially random function. As a
result, the equations governing the flow are stochastic. The goal is uncertainty quan-
tification (UQ) via the computation of the expectation and variance of the stochastic
solution. The expectation gives mean solution and the variance gives measure of un-
certainty. Both of these quantities are of interest in stochastic porous media simula-
tion, and higher order moments can also be approximated with our approach. To com-
pute these statistical moments, we employ the stochastic collocation method [8, 39,
28, 19] coupled with the multiscale mortar mixed finite element method (MMMFEM)
[6] implemented with a multiscale flux basis [20].

Stochastic modeling methods can be classified into three groups: (1) sampling
methods [16], (2) moment or perturbation methods [41], and (3) nonperturbative
methods based on either polynomial chaos expansions [40] or stochastic finite elements
[14, 21]. A brief survey of these methods can be found in [34], where an extensive
reference list is given. In this order, these methods range from being nonintrusive to
very intrusive in terms of modifications to the deterministic model. The stochastic

∗Submitted to the journal’s Computational Methods in Science and Engineering section March 31,
2010; accepted for publication (in revised form) May 9, 2011; published electronically June 21, 2011.
This work was partially supported by the NSF grants DMS 0620402 and DMS 0813901 and the DOE
grant DE-FG02-04ER25618.

http://www.siam.org/journals/sisc/33-3/79068.html
†Center for Subsurface Modeling, The Institute for Computational Engineering and Sciences

(ICES), The University of Texas at Austin, Austin, TX 78712 (bganis@ices.utexas.edu).
‡Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260

(yotov@math.pitt.edu, miz17@pitt.edu).

1439



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1440 BENJAMIN GANIS, IVAN YOTOV, AND MING ZHONG

collocation method is a member of the first category along with the well-known Monte
Carlo (MC) method [16]. Whereas MC simulations require generating a large number
of realizations at random points in the stochastic event space, the stochastic collo-
cation method instead performs realizations at specifically chosen collocation points.
This technique obtains better accuracy than MC with fewer realizations. While the
nonsampling methods such as moment or perturbation and stochastic finite elements
are known to be highly accurate, in practice they are only suitable for systems with
relatively small dimensions of random inputs. Their intrusive character complicates
implementation, and the resulting large coupled systems may be difficult to parallelize.
Conversely, sampling methods generate systems of the same size as their determinis-
tic equivalents that are completely decoupled from each other and hence very easy to
parallelize.

In our model, the mean removed log permeability function is parameterized using
independent identically distributed random variables in a truncated Karhunen–Loève
(KL) expansion. The eigenvalues and eigenfunctions forming this series are computed
from a given covariance relationship in which statistical properties such as variance
and correlation lengths are assumed to be experimentally determined. Using KL
expansion for stochastic permeability is a common approach as seen in [41, 42, 38, 27].

This work builds upon the framework for stochastic collocation and mixed finite
elements that was developed in [19]. There, the porous media were assumed to be
stationary, meaning that the statistical properties of the permeability were assumed
to be constant throughout the domain. In this work we follow [27] (see also [38] for
a related perturbation-based approach) in extending this framework to allow non-
stationary porous media with different covariance functions for different parts of the
domain. These statistically independent zones are used to represent multiple rock
types, motivated by geologic features such as stratification. We shall refer to these
zones as KL regions. In this framework for nonstationary porous media, the covari-
ance between any two points within a single KL region depends on their distance only,
but the covariance between any two points that lie in different KL regions is zero; i.e.,
they are uncorrelated.

In porous media problems, resolving fine scale accuracy is oftentimes computa-
tionally infeasible, necessitating multiscale approximations, such as the variational
multiscale method [25, 4] and multiscale finite elements [24, 11, 2]. Both have been
applied to stochastic problems in [7, 18] and [15, 1], respectively.

This paper employs for each stochastic realization the MMMFEM [6], with the
recently proposed multiscale flux basis implementation [20]. As a mixed method, it
provides accurate approximation of both pressure and velocity and elementwise con-
servation of mass, which are advantageous properties for porous media flow. The
MMMFEM uses nonoverlapping domain decomposition to break up the physical do-
main into subdomains controlled by separate computer processors, giving a natural
parallelization within a fixed realization, thereby enabling UQ for very large prob-
lems.1 Within each subdomain, there is a fine scale discretization that may be spa-
tially nonconforming to its neighboring subdomains. On subdomain interfaces, a
coarse scale mortar discretization is used to impose weak continuity of the discrete
normal velocities. Using these varying scales, the global fine scale problem is reduced

1It should be noted that one of the benefits of nonintrusive UQ techniques is the “embarassingly
parallel” nature of stochastic sampling. It is entirely possible to compute several simultaneous real-
izations in parallel, while also utilizing the parallelization in the MMMFEM’s domain decomposition,
but this is not considered in this work.
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to a coarse scale interface problem and solved in parallel using an iterative method.
We present error analysis for the stochastic multiscale approximation of the pressure
and the velocity. We refer the reader to [26] for work on overlapping Schwarz domain
decomposition methods for stochastic partial differential equations.

Notice that the physical domain has two decompositions: KL regions for the sta-
tistical representation of the nonstationary random permeability, and subdomains for
the domain decomposition of the MMMFEM. The former is a physical decomposi-
tion depending on geologic structure, and the latter is a computational decomposition
depending on available computing resources. We specifically choose to have the sub-
domains conform to the KL regions so that each processor only deals with a single
KL expansion, which leads to a more efficient algorithm. We retain proper scalability
because within each KL region, we allow multiple subdomains. Hence, the number
of KL regions NΩ is less than or equal to the number of subdomains ND, and each
KL region can be expressed as a union of one or more disjoint subdomains. This
approach allows for utilizing more processors than the physically dependent number
of KL regions.

In a deterministic setting, the traditional implementation of the interface itera-
tion in the MMMFEM requires solving one Dirichlet-to-Neumann problem on each
subdomain (a linear system) for each interface iteration. Solving these subdomain
problems is the dominant computational cost of the MMMFEM, and therefore this
cost worsens with the condition number of the problem. In [20], a new approach
was proposed called multiscale flux basis implementation, in which one subdomain
problem is solved for each mortar degree of freedom before the interface iteration
begins. The solutions to these problems form a basis of flux responses containing
all the necessary information to solve the subdomain problem. The computational
cost in forming the basis is a fixed and controllable quantity, and therefore does not
worsen with the condition number of the problem. Linear combinations of multiscale
basis functions are used during the interface iteration so that no additional subdomain
problems are required, except for one or more additional solves to recover the local
fine scale information at the completion of the iteration. Therefore the multiscale flux
basis implementation is more efficient in cases where the number of interface itera-
tions strictly exceeds the number of mortar degrees of freedom per subdomain. This
gain in computational efficiency increases with the number of subdomains.

In this paper we propose possible ways that extend the concept of a multiscale
flux basis to the stochastic flow problem, where the permeability is a nonstationary
random field. To this end, we investigate three algorithms that combine stochastic
collocation and the MMMFEM with varying degrees of the multiscale flux basis im-
plementation. The first collocation algorithm uses the MMMFEM with its traditional
implementation, requiring solving one subdomain problem per interface iteration, on
every stochastic realization. The second collocation algorithm forms a deterministic
multiscale basis to solve the MMMFEM on each stochastic realization. These bases
are then discarded and then recomputed with new permeability data for each subse-
quent realization. The third collocation algorithm forms a full stochastic multiscale
basis across all local realizations, containing all the necessary information to perform
the collocation before it begins. With extra “bookkeeping” in the nonstationary case,
we can take advantage of the repeated local structure of the permeability realizations
in both tensor and sparse stochastic collocation. In particular, the multiscale flux
basis for a fixed subdomain and a fixed realization is reused a number of times dur-
ing the stochastic collocation process for all cases with the same local permeability
realization. This increases substantially the gain in computational efficiency from the
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Table 1

Constants used throughout this paper.

Constant Represents number of. . .
ND Subdomains
NΩ KL regions
Nterm Total stochastic dimensions
Nterm(i) Stochastic dimensions in KL region i
Ncoll(i, j) 1-D tensor product collocation points in dimension j of KL region i
Nreal(i) Local permeability realizations in KL region i
Nreal Global permeability realizations
Ndof (i) Mortar degrees of freedom on subdomain i
Niter(i) Conjugate gradient iterations for global collocation index i

multiscale flux basis. We refer the reader to [37] for the use of the multiscale flux
basis as a preconditioner, which provides a different approach for its reuse over many
stochastic realizations and can lead to even larger speedup.

The resulting collocation algorithms are more computationally efficient than the
traditional implementation by orders of magnitude. By limiting the number of sub-
domain solves via the computation of deterministic or stochastic multiscale bases,
we demonstrate that we can lessen the burden of the curse of dimensionality in the
stochastic collocation method. We present a number of computational experiments
that confirm the above statement. Some of the examples show how a posteriori error
estimation and adaptivity for the MMMFEM can be employed in stochastic multi-
scale simulations. We also present numerical convergence studies that confirm the
theoretical a priori error estimates.

1.1. Notation. Let D ⊂ Rd (d = 2 or 3) denote the physical domain. It is
bounded, with Lipschitz boundary ∂D and outer unit normal n. Let Ω denote the
stochastic event space with probability measure P . The expectation and variance of
a random variable ξ(ω) : Ω → R with a probability density function (PDF) ρ(y) are
denoted by

(1) E[ξ] =

∫
Ω

ξ(ω)dP (ω) =

∫
R

yρ(y)dy and var[ξ] = E[ξ2]− (E[ξ])2.

In the following, C denotes a generic positive constant independent of the discretiza-
tion parameters h and H . For a domain G ⊂ Rd, the L2(G) inner product and norm
for scalar and vector valued functions are denoted (·, ·)G and ‖ · ‖G, respectively. We
omit G in the subscript if G = D. The norm in the Sobolev space Hs(G) will be
denoted by ‖ · ‖s,G. For a section of the domain or element boundary S ⊂ Rd−1 we
write 〈·, ·〉S and ‖ · ‖S for the L2(S) inner product (or duality pairing) and norm,
respectively. Dual spaces are denoted by (·)∗. Constants that are frequently used
throughout this paper are given in Table 1.

The rest of the paper is organized as follows. In section 2 we present the stochastic
model problem and its domain decomposition variational formulations. The stochas-
tic multiscale discretization based on stochastic collocation and the MMMFEM is
described in section 3. The error analysis of the method is given in section 4. In
section 5 we discuss three different algorithms that can be used to solve the fully
discrete problem. A number of computational examples are presented in section 6.

2. Model problem. We consider Darcy’s law for steady-state, single-phase,
incompressible flow through a saturated porous medium in physical domain D. Let
∂D = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. Let the permeability K be a stochastic function
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defined on D × Ω. The Darcy velocity u and the pressure p are stochastic functions
that satisfy P -almost everywhere ω ∈ Ω,

∇ · u = f, in D,(2a)

u = −K(x, ω)∇p, in D,(2b)

p = gD, on ΓD,(2c)

u · n = gN , on ΓN .(2d)

We assume that f(x) ∈ L2(D), gD(x) ∈ H1/2(ΓD), and gN (x) ∈ L2(ΓN ) are deter-
ministic functions. The permeability K(x, ω) is either a scalar or diagonal 2-tensor,
which, for P -almost every ω ∈ Ω, is uniformly positive definite with components in
L∞(D).

In order to guarantee positive permeability almost surely in Ω, we consider its
logarithm Y = ln(K). Let the mean removed log permeability be denoted by Y ′, so
that

Y (x, ω) = E[Y ](x) + Y ′(x, ω).

Following [27], let D be a union of disjoint KL regions, D = ∪NΩ

i=1D
(i)

KL. Strictly within
each KL region, the porous medium is statistically stationary, meaning covariance
between any two points depends only on their distance and not on their location.
The covariance between any two points from different regions is zero. Therefore the
medium is globally nonstationary. As a result the probability space Ω is a product of
NΩ spaces Ω(i). For each event ω ∈ Ω,

ω = (ω(1), . . . , ω(NΩ)) and Y ′(x, ω) =
NΩ∑
i=1

Y (i)(x, ω(i)),

where Y (i)(x, ω(i)) has physical support in D
(i)
KL.

2.1. Karhunen–Loève (KL) expansion. Each Y (i) is assumed to be colored
noise, for which we are given a covariance function. These are symmetric and positive
definite, so they can be decomposed into series expansions

CY (i)(x, x̄) = E[Y (i)(x, ω(i))Y (i)(x̄, ω(i))] =

∞∑
j=1

λ
(i)
j f

(i)
j (x)f

(i)
j (x̄).

The eigenvalues λ
(i)
j and eigenfunctions f

(i)
j are computed by solving the Fredholm

integral equations

(3)

∫
D

(i)
KL

CY (i)(x, x̄)f
(i)
j (x)dx = λ

(i)
j f

(i)
j (x̄).

Since the CY (i) are symmetric and positive definite, the eigenfunctions are mutually
orthogonal and form a complete spanning set. Using these facts, the Karhunen–Loève
expansion for the log permeability can be exactly written as

(4) Y ′(x, ω) =
NΩ∑
i=1

∞∑
j=1

ξ
(i)
j (ω(i))

√
λ
(i)
j f

(i)
j (x),
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where the eigenfunctions f
(i)
j (x) computed in (3) have been extended by zero out-

side of D
(i)
KL and ξ

(i)
j : Ωi → R are independent identically distributed random

variables [21]. In our work we assume Y (i) are Gaussian processes, so each ξ
(i)
j is

a normal random variable with zero mean and unit variance, having PDF ρ
(i)
j (y) =

1/
√
2π exp[−y2/2].
As is typically done at this point, we commit a modeling error that replaces

the stochastic problem by a higher dimensional deterministic approximation. This is

feasible to do as the eigenvalues λ
(i)
j typically decay rapidly [42]. It is beyond the

scope of this paper to address the modeling error associated with truncating the KL
expansion. Some work has been done to quantify the modeling error [28] and it can
be reduced a posteriori [10].

Assumption 2.1 (finite dimensional noise assumption). Each KL expansion Y (i)

is truncated after Nterm(i) terms, which allows us to approximate (4) by

(5) Y ′(x, ω) ≈
NΩ∑
i=1

Nterm(i)∑
j=1

ξ
(i)
j (ω(i))

√
λ
(i)
j f

(i)
j (x).

Globally, this means that we have Nterm =
∑
Nterm(i) terms in Y ′. A low

number of terms leads to a smooth permeability in a KL region. Therefore to model
very heterogeneous noise in a KL region, Nterm(i) should be increased. The images

of the random variables S(i)j = ξ
(i)
j (Ω(i)) make up the finite dimensional vector spaces

S(i) =
Nterm(i)∏

j=1

S(i)j ⊆ RNterm(i) and S =

NΩ∏
i=1

S(i) ⊆ RNterm ,

which are local to each KL region and global, respectively.
To simplify notation, we shall introduce a function κ that provides a natural order-

ing for the global number of stochastic dimensions. Let the jth stochastic parameter
of the ith KL region have a global index in {1, . . . , Nterm} by the function

κ(i, j) =

⎧⎪⎨
⎪⎩
j, if i = 1,

j +

i−1∑
k=1

Nterm(k), if i > 1.

For example, the random vector ξ = (ξ
(i)
j )1≤κ(i,j)≤Nterm

= (ξ
(i)
j )κ is by definition equal

to ⎛
⎜⎜⎝ξ(1)1 , . . . , ξ

(1)
Nterm(1)︸ ︷︷ ︸

KL region 1

, ξ
(2)
1 , . . . , ξ

(2)
Nterm(2)︸ ︷︷ ︸

KL region 2

, . . . , ξ
(i)
j , . . . , ξ

(NΩ)
1 , . . . , ξ

(NΩ)
Nterm(NΩ)︸ ︷︷ ︸

KL region NΩ

⎞
⎟⎟⎠ .

If ρ
(i)
j is the PDF of each ξ

(i)
j , then joint PDF for ξ is defined to be ρ =

∏
i

∏
j ρ

(i)
j .

Then we can write Y (x, ω) ≈ Y (x,y), where y = (ξ
(i)
j (ω(i)))κ.

For the remainder of this paper, we abuse notation by replacing K(x, ω) with
its finite dimensional spectral approximation K(x,y) given by (5). We also identify
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each stochastic subspace Ω(i) with its parameterization S(i). Therefore the modeling
error between the true stochastic solution and its finite dimensional approximation
‖u(x, ω)− u(x,y)‖ is neglected.

2.2. Domain decomposition. We use the domain decomposition approach de-
scribed in [22] to restrict the model problem into nonoverlapping subdomains Di,

i = 1, . . . , ND, D =
⋃ND

i=1Di, and Di ∩Dj = ∅ for i �= j. They may be spatially non-
conforming, but conform to the KL regions. Denote the interface between subdomains
Di and Dj by Γi,j = ∂Di ∩ ∂Dj , the union of all interfaces that touch subdomain
Di by Γi = ∂Di \ ∂D, and the union of all interfaces by Γ =

⋃
i�=j Γi,j . The domain

decomposition can be viewed as a coarse grid on D. Note that subdomains may be
different from KL regions. We assume that each KL region is a union of subdomains.

System (2) holds within each subdomainDi, but additionally the pressure and the
normal velocity components must remain physically continuous across the interfaces.
Equivalently, we seek (ui, pi) such that for i = 1, . . . , ND and for ρ-almost every y ∈ S,

∇ · ui = f in Di,(6a)

ui = −K(x,y)∇pi in Di,(6b)

pi = gD on ∂Di ∩ ΓD,(6c)

ui · n = gN on ∂Di ∩ ΓN ,(6d)

pi = pj on Γi,j , i �= j,(6e)

ui · ni + uj · nj = 0 on Γi,j , i �= j,(6f)

where ni is the outer unit normal to ∂Di.

2.3. Variational formulation. In the physical dimensions, define the space
Vi(Di) = H(div;Di) = {v ∈ (L2(Di))

d | ∇ · v ∈ L2(Di)}. Then the deterministic
spaces for i = 1, . . . , ND are

Wi(Di) = L2(Di), Vγ
i (Di) = {v ∈ H(div;Di) | v · n = γ on ∂Di ∩ ΓN},

and globally: W (D) =

ND⊕
i=1

Wi(Di), Vγ(D) =

ND⊕
i=1

Vγ
i (Di),

where γ ∈ L2(ΓN ).2 The global velocity space Vγ(D) is not continuous in the normal
direction across subdomain interfaces Γ, so it is not a subset of H(div;D). To account
for this, we introduce a Lagrange multiplier space that has a physical meaning of
pressure and is used to weakly impose continuity of the normal velocities:

M(Γ) = {μ ∈ H1/2(Γ) | μ|Γi ∈ (Vi(Di) · ni)
∗, i = 1, . . . , ND}.

In the above, (·)∗ denotes the dual space. Since our goal is to compute statistical
moments, we define the space

L2
ρ(S) =

{
v : S→ Rd |

(∫
S

‖v(y)‖2ρ(y)dy
)1/2

<∞
}
,

2Note that the condition v · n = γ requires slightly higher regularity than the usual for normal
traces of functions in H(div;D).
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and take its tensor product with the aforementioned deterministic spaces to form the
stochastic spaces

W (D, S) =W (D)⊗L2
ρ(S), Vγ(D, S) = Vγ(D)⊗L2

ρ(S), M(Γ, S) =M(Γ)⊗L2
ρ(S).

Whenever the explicit dependence in parentheses is omitted, it is implied that we
mean the stochastic spaces, e.g., W = W (D, S). We equip the stochastic pressure
and velocity spaces with the mean norms

‖v‖2Vi
=

∫
S

(∫
Di

(
v · v + (∇ · v)2

)
dx

)
ρ(y)dy = E

[
‖v‖2H(div;Di)

]
,

‖v‖2V =

ND∑
i=1

‖v‖2Vi
,

‖w‖2W =

∫
S

(∫
D

w2dx

)
ρ(y)dy = E

[
‖w‖2

]
.

Multiplication of system (6a) by appropriate test functions and integration by
parts gives the following stochastic dual mixed variational formulation: Find u ∈ VgN ,
p ∈W , and λ ∈M such that for i = 1, . . . , ND,∫

S

(K−1u,v)Diρ(y)dy =

∫
S

[
(p,∇ · v)Di − 〈v · ni, λ〉Γi

− 〈v · ni, gD〉∂Di∩ΓD

]
ρ(y)dy ∀v ∈ V0

i ,(7a) ∫
S

(∇ · u, w)Diρ(y)dy =

∫
S

(f, w)Diρ(y)dy ∀w ∈ Wi,(7b)

∫
S

ND∑
i=1

〈ui · ni, μ〉Γiρ(y)dy =0 ∀μ ∈M.(7c)

The extra condition (7c) enforces weakly the flux continuity lost across the interfaces
in the domain decomposition.

3. Discretization. We begin with a semidiscrete approximation to the weak so-
lution (u, p, λ) of the stochastic variational formulation (7), based on the MMMFEM
in the physical dimensions. This is a multiscale approach that combines a local fine
scale discretization within each subdomain with a global coarse scale discretization
across subdomain interfaces. We then employ the stochastic collocation method, us-
ing a tensor product or sparse grid Gauss–Hermite quadrature rule in the additional
stochastic dimensions, to form the fully discrete solution. This nonintrusive approach
decouples the (d+Nterm)-dimensional stochastic problem into a sequence of indepen-
dent d-dimensional deterministic problems, which are realizations in stochastic space
and function evaluations in the quadrature rule.

3.1. Finite element approximation. Each subdomain Di is partitioned into
a local d-dimensional quasi-uniform affine mesh Th,i. The faces (or edges) of these
meshes are spatially conforming within each subdomain, but are allowed to be non-
conforming along subdomain interfaces. Let the maximal element diameter of Th,i be
hi, and let the global characteristic fine scale diameter be h = maxND

i=1 hi. Denote the

global fine mesh by Th =
⋃ND

i=1 Th,i. Let Vh,i(Di)×Wh,i(Di) ⊂ Vi(Di)×Wi(Di) be
a mixed finite element space on the mesh Th,i such that Vh,i(D) contains piecewise
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polynomials of degree k and Wh,i(D) contains piecewise polynomials of degree l.
Examples of mixed finite element spaces can be found in [9]. The numerical tests in
this paper use the lowest order Raviart–Thomas space [31] on rectangular elements
in two dimensions (2-D) and brick elements in three dimensions (3-D). Globally, the

discrete pressure and velocity spaces for this method are Wh(D) =
⊕ND

i=1Wh,i(Di)

and Vh(D) =
⊕ND

i=1 Vh,i(Di). We further define Vγ
h(D) = {v ∈ Vh(D) |v · n =

Qhγ on ΓN}, where Qh is the L2-projection operator onto the normal trace of the
velocity space; see (10).

Each interface Γi,j is partitioned into a coarse (d− 1)-dimensional quasi-uniform
affine mesh denoted TH,i,j . On this mesh we define the mortar space that weakly
enforces continuity of normal fluxes for the discrete velocities across the nonmatch-
ing grids. Let the maximal element diameter of this coarse mesh be Hi,j , and let
the global characteristic coarse scale diameter be H = max1≤i<j≤ND Hi,j . Denote
the global coarse mesh by TH =

⋃
1≤i<j≤ND

TH,i,j . Let MH,i,j(Γi,j) ⊂ L2(Γi,j)
be the mortar space containing continuous or discontinuous piecewise polynomials
of degree r,s where r ≥ k + 1. Globally, the mortar space for this method is
MH(Γ) =

⊕
1≤i<j≤ND

MH,i,j(Γi,j). Notice that this is a nonconforming approxi-

mation, as MH(Γ) �M(Γ).
Under these finite dimensional subspaces, the semidiscrete stochastic multiscale

mortar mixed finite element approximation of (7) is to find uh : S → VgN
h (D),

ph : S → Wh(D), and λH : S → MH(Γ) such that for i = 1, . . . , ND and ρ-almost
every y ∈ S,

(K−1uh,v)Di = (ph,∇ · v)Di − 〈v · ni, λH〉Γi

− 〈v · ni, gD〉∂Di∩ΓD ∀v ∈ V0
h,i(Di),(8a)

(∇ · uh, w)Di = (f, w)Di ∀w ∈ Wh,i(Di),(8b)

ND∑
i=1

〈uh,i · ni, μ〉Γi = 0 ∀μ ∈MH(Γ).(8c)

In this formulation the pressure continuity (6e) is modeled via the mortar pressure
function λH , while the flux continuity (6f) is imposed weakly on the coarse scale via
(8c). For the above method to be well-posed, the two scales must be chosen such
that the mortar space is not too rich compared to the normal traces of the subdomain
velocity spaces.

Assumption 3.1. Assume there exists a constant C independent of h and H such
that

(9) ‖μ‖Γi,j ≤ C(‖Qh,iμ‖Γi,j + ‖Qh,jμ‖Γi,j ) ∀μ ∈MH(Γ), 1 ≤ i < j ≤ ND,

where Qh,i : L
2(Γi)→ Vh,i ·ni|Γi is the L

2-projection operator onto the normal trace
of the velocity space on subdomain i, i.e., for any φ ∈ L2(Γi),

(10) 〈φ−Qh,iφ,v · ni〉Γi = 0 ∀v ∈ Vh,i(Di).

This assumption is easily satisfied in practice and controls the mortar degrees
of freedom by the degrees of freedom on the traces of subdomain velocities. This is
even less restrictive in the multiscale case when the mortar grid is coarser than the
subdomain grids. A more specific characterization of grids that satisfy this assumption
is given in [29, 6].
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3.2. Stochastic collocation. Let m (or m) be a multi-index indicating the de-
sired polynomial degree of accuracy in the stochastic dimensions. The stochastic col-
location method approximates the semidiscrete solution (uh, ph, λH) by an interpolant
Im in the stochastic dimensions. It is uniquely formed on a set of Nreal stochastic
points {yk} that form a Haar set in S, where Nreal is a function of m. More precisely
the fully discrete solution is

uh,m(x,y) = Imuh(x,y), ph,m(x,y) = Imph(x,y), λH,m(x,y) = ImλH(x,y).

Let {L{k}
m (y)} be the Lagrange basis satisfying {L{k}

m (yj)} = δkj . Then the fully
discrete solution has the Lagrange representation

(uh,m, ph,m, λH,m)(x,y) =

Nreal∑
k=1

(u
{k}
h , p

{k}
h , λ

{k}
H )(x)L{k}

m (y),

where (u
{k}
h , p

{k}
h , λ

{k}
H ) is the evaluation of semidiscrete solution (uh, ph, λH) at the

point in stochastic space yk. In other words, for each permeability realization
K{k}(x) = K(x,yk), k = 1, . . . , Nreal, we solve the deterministic problem: find

u
{k}
h ∈ VgN

h (D), p
{k}
h ∈ Wh(D), and λ

{k}
H ∈ MH(Γ) such that for i = 1, . . . , ND,

((K{k})−1u
{k}
h ,v)Di = (p

{k}
h ,∇ · v)Di − 〈v · ni, λ

{k}
H 〉Γi

− 〈v · ni, gD〉∂Di∩ΓD ∀v ∈ V0
h,i(Di),(11a)

(∇ · u{k}
h , w)Di = (f, w)Di ∀w ∈Wh,i(Di),(11b)

ND∑
i=1

〈u{k}
h,i · ni, μ〉Γi = 0 ∀μ ∈MH(Γ).(11c)

The Lagrange representation of the fully discrete solution is plugged into the expec-
tation integral (1) to form a quadrature rule. For example, the pressure expectation
is computed by

E[ph,m](x) =

∫
S

ph,m(x,y)ρ(y)dy =

∫
S

Nreal∑
k=1

p
{k}
h (x)L{k}

m (y)ρ(y)dy

=

Nreal∑
k=1

w{k}
m p

{k}
h (x),

where the weights are given by w
{k}
m =

∫
S
L
{k}
m (y)ρ(y)dy.

The choice of collocation points {yk}, i.e., the type of quadrature rule, produces
different types of stochastic collocation methods. This paper considers two types of
grids: tensor product and sparse grids. Both types of grids are constructed from one-

dimensional rules, where the points in dimension S(i)j are the zeros of orthogonal poly-

nomials with respect to the L2
ρ(S

(i)
j )–inner product. Since we are using Gaussian ran-

dom variables, we choose the zeros of the “probabilist” N(0, 1) Hermite polynomials

Hm(y) = m!

[m/2]∑
k=0

(−1)k (2y)m−2k

k!(m− 2k)!
.
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Denote the sets of one-dimensional weights and abscissae for Hm(y) by

W(m) = {w1
m, . . . , w

m
m} and H(m) = {h1m, . . . , hmm},

and notice that when m = 2k − 1 is odd, the point hkm is the origin. These weights
and abscissae can easily be computed with a symbolic manipulation software package.
Alternatively, one may convert a table of rules for the “physicist” N(0, 1/2) Hermite
polynomials listed in [3] by dividing the weights by a factor of

√
π and multiplying

the abscissae by a factor of
√
2.

3.3. Collocation on tensor product grids. In tensor product collocation, the
polynomial accuracy is prescribed in terms of component degree, i.e., independently in
each stochastic dimension. This allows for very easy construction of anisotropic rules,
accurate to different polynomial degrees in different stochastic dimensions. Unfortu-
nately, the number of points in tensor product rules grow exponentially with both the
polynomial accuracy and the number of dimensions. This is commonly referred to as
the “curse of dimensionality.” Therefore, this inherently limits their usage to problems
with a relatively low number of stochastic dimensions, i.e., about a dozen or less.

If we choose Ncoll(i, j) collocation points in stochastic dimension j of KL region
i, then m = (Ncoll(i, j))κ is the Nterm-dimensional multi-index indicating the desired
component degree of the interpolant in the stochastic space S. The corresponding
anisotropic tensor product Gauss–Hermite interpolant in Nterm dimensions is defined
by

ITG
m f(y) = (Im(1) ⊗ · · · ⊗ Im(Nterm))f(y)

=

m(1)∑
k1=1

· · ·
m(Nterm)∑
kNterm=1

f(hk1

m(1), . . . , h
kNterm

m(Nterm))L
k1

m(1)(y1) · · ·L
kNterm

m(Nterm)(yNterm).

The set of abscissae for this rule is

(12) T (m) =

Nterm⊗
k=1

H(m(k)) =

NΩ⊗
i=1

⎛
⎝Nterm(i)⊗

j=1

H(Ncoll(i, j))

⎞
⎠ ,

which interpolates the semidiscrete solution into the polynomial space Pm =
∏

k Pm(k)

in the stochastic dimensions. The tensor product weight for the point (hk1

m(1), . . . ,

h
kNterm

m(Nterm)) is given by

w(k) =

Nterm∏
i=1

wki

m(i).

In a fixed stochastic dimension, the one-dimensional Gauss–Hermite quadrature rules
are accurate to degree 2m− 1.

Remark 3.1. By (12), the global Nterm-dimensional tensor grid is the tensor
product of NΩ smaller tensor product grids of dimension Nterm(i). Therefore, the
number of permeability realizations local to the KL region i and global to the entire
domain are

Nreal(i) =

Nterm(i)∏
j=1

Ncoll(i, j) and Nreal =

NΩ∏
i=1

Nreal(i), respectively.
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Fig. 1. A Gauss–Hermite sparse grid (left) versus a Gauss–Hermite tensor grid (right) with a

comparable number of points on each axis.

In the case of isotropic tensor product collocation where each stochastic dimension

S(i)j has the same polynomial accuracy m = (m,m, . . . ,m), the tensor grid points are

T (m) =
⊗Nterm

k=1 H(m) and the number of realizations reduces to Nreal(i) = mNterm(i)

and Nreal = mNterm .
Remark 3.2. We index the tensor product collocation points with a natural

ordering. For the tensor grid point (hk1

m(1), . . . , h
kNterm

m(Nterm)), its global collocation index

k ∈ {1, . . . , Nreal} is given by

(13) k = k1 +

Nterm∑
i=2

ki

i−1∏
j=1

m(k).

3.4. Collocation on sparse grids. Sparse grids were first used for high di-
mensional quadrature by Smolyak in 1963 [33] and have been applied to stochastic
collocation in such works as [39, 28]. In sparse grid collocation, the polynomial accu-
racy is prescribed in terms of total degree. Sparse grids rules are known to have the
same asymptotic accuracy as tensor product rules, while requiring far fewer points as
the dimension increases. This property is essential for coping with the curse of dimen-
sionality. Therefore sparse grids are applicable for problems with higher dimensional
noise, i.e., up to several hundred stochastic dimensions. A picture of comparable
sparse grid and tensor grid rules is shown in Figure 1.

Sparse grid rules are linear combinations of tensor products on a family of nested
one-dimensional rules. They are constructed hierarchically to have the property that
the total polynomial degree is a constant independent of dimension. They are de-
scribed in terms of a level �max, where the Nterm-dimensional sparse grid quadrature
rule of level �max is accurate to degree (2 · �max + 1).

Each level between �max and �min = max{0, �max −Nterm + 1} is an integer par-
titioned into Nterm non-negative parts. These partitions form multi-indices p =
(p1, . . . , pNterm), |p| =

∑
pi, denoting the levels of one-dimensional rules to use for

each stochastic dimension. In our paper, the one-dimensional abscissae of level pi are
the Gauss–Hermite points H(2pi+1 − 1). Level 0 starts with a single point, and the
number of points doubles plus one on each subsequent level.

Let the multi-index m = 2p+1 − 1 denote degree for each partition p. The
corresponding isotropic sparse grid Gauss–Hermite interpolant in Nterm dimensions
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is defined by

ISG�max
f(y) =

∑
�min≤|p|≤�max

(−1)�max−|p| ·
(
Nterm − 1

�max − |p|

)
· ITG

m f(y).

The set of abscissae for this rule is

(14) S(�min, �max, Nterm) =
⋃

�min≤|p|≤�max

Nterm⊗
i=1

H(2pi+1 − 1).

Remark 3.3. The set of local permeability realizations on a sparse grid for a
particular KL region satisfies the relationship

S(�min, �max, Nterm) � S(0, �max, Nterm(1))︸ ︷︷ ︸
Projection into S(1)

⊗ · · · ⊗ S(0, �max, Nterm(NΩ))︸ ︷︷ ︸
Projection into S(NΩ)

.

Note that �min = 0 for all the local sparse grids, unlike the global sparse grid.
The points in (14) are weakly nested because the origin is the sole value that

is repeated in each one-dimensional rule. Taking tensor products of one-dimensional
rules produces many repeated points that contain the origin in one or more of its
components. There are both pros and cons to skipping these repeated abscissae.
On the one hand, fewer function evaluations in the quadrature rule means fewer
realizations to solve in (11). On the other hand, extra bookkeeping is necessary for
indexing the points and calculating their collocation weights.

In Algorithm 1, we give an efficient method that provides a natural ordering for
the points in a Gauss–Hermite sparse grid, which skips repeated points.

Algorithm 1. A natural ordering for sparse grid points.

1: input: Global Index g
2: j ← 0
3: for �← �min, . . . , �max do {Loop over levels}
4: for i← 1, . . . ,

(�+Nterm − 1)!

�!(Nterm − 1)!
do {Loop over partitions}

5: part← (p1, . . . , pNterm), m← 2part+1 − 1 {The ith multi-index}
6: if � = �min then add part to PartList
7: for k = 1, . . . ,

∏
α m(α) do {Loop over points}

8: point← (hk1

m(1), . . . , h
kNterm

m(Nterm)) {The jth point using (13)}

9: ˜part← (p̃1, . . . , p̃Nterm) where p̃i =

{
pi, if hki

m(i) �= 0

0, if hki

m(i) = 0

10: if (� = �min and ˜part ∈ PartList) then {Repeated point; skip it}
11: else if (� > �min and ˜part �= part) then {Repeated point; skip it}
12: else j ← j + 1 {Unique point; count it}
13: if (j = g) then return point, part
14: end for
15: end for
16: end for

Suppose that a sparse grid point (hk1

m(1), . . . , h
kNterm

m(Nterm)) occurs in a set of partitions

P . If it is used in a single function evaluation with subsequent occurrences skipped
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by Algorithm 1, then its quadrature weight must be calculated by the formula

∑
p∈P

(−1)�max−|p| ·
(
Nterm − 1

�max − |p|

)Nterm∏
i=1

wki

m(i).

Note that in a sparse grid rule, quadrature weights may become negative.

4. Error analysis. In this section we present a priori error estimates for the
solution to the stochastic MMMFEM. As in previous stochastic collocation papers
(see e.g., [8, 39, 28, 19]), the error is decomposed into deterministic and stochas-
tic errors (see Theorem 4.4). Furthermore, we employ a duality argument to show
superconvergence for the pressure (see Theorem 4.5).

Note that throughout this entire section, we tacitly assume that Assumption 3.1
holds. To avoid technical details for the approximation of the Neumann boundary
condition, we further assume that gN ∈ Vh(D) · n.

We start with some definitions. We define the space of weakly continuous veloci-
ties by

Vh,0(D) =

{
v ∈ Vh(D) |

ND∑
i=1

〈v|Di · ni, μ〉Γi = 0 ∀μ ∈MH(Γ)

}
.

Recall that for any of the standard mixed spaces, ∇ ·Vh,i(D) = Wh,i(D). Let, for
ε > 0, Πi : (Hε(Di))

d ∩ Vi(D) → Vh,i(D), Πq|Di = Πiq, be the standard MFE
projection operators. A projection operator Π0 : (H1/2+ε(D))d ∩V(D) → Vh,0(D)
is defined in [5, 6], satisfying

(15a) (∇ · (Π0q− q), w)Di = 0 ∀w ∈ Wh,i(Di),

‖Π0q−Πq‖ ≤ C
ND∑
i=1

‖q‖r+1/2,Di
hrH1/2 0 ≤ r ≤ k + 1,(15b)

‖Π0q− q‖ ≤ C
ND∑
i=1

‖q‖r,Dih
r−1/2H1/2 1 ≤ r ≤ k + 1 ,(15c)

(
ND∑
i=1

‖Π0q‖2H(div,Di)

)1/2

≤ C
ND∑
i=1

‖q‖1,Di .(15d)

Note that (15d) is not explicitly stated in [5, 6], but follows easily from the results
there.

For any ϕ ∈ L2(D), define its L2(D) projection ϕ̂ onto Wh(D) by

(ϕ− ϕ̂, w) = 0 ∀w ∈ Wh(D).

Similarly, let PH denote the L2(Γ) projection onto MH(Γ). Let IcH be the nodal
interpolant operator into the spaceM c

H(Γ), which is the subset of continuous functions
in MH(Γ), where we use the Scott–Zhang operator [32] to define the nodal values of
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ψ if it does not have pointwise values. We will make use of the following inequalities:

‖ψ − IcHψ‖t,Γi ≤ C‖ψ‖s,ΓiH
s−t 0 ≤ s ≤ r + 1, 0 ≤ t ≤ 1,(16a)

‖ψ − PHψ‖−t,Γi ≤ C‖ψ‖s,ΓiH
s+t 0 ≤ s ≤ r + 1, 0 ≤ t ≤ 1,(16b)

‖ϕ− ϕ̂‖ ≤ C‖ϕ‖tht 0 ≤ t ≤ l + 1,(16c)

‖q‖t,Γi ≤ C‖q‖t+1/2,Di
0 < t,(16d)

‖v · n‖Γi ≤ Ch−1/2‖v‖Di ∀v ∈ Vh,i(Di),(16e)

〈ψ,q · n〉Γi ≤ C‖ψ‖1/2,Γi
‖q‖H(div;Di)(16f)

‖(q−Πiq) · ni‖−t,Γi ≤ C‖q‖s,Γih
s+t 0 ≤ s ≤ k + 1, 0 ≤ t ≤ k + 1,(16g)

where ‖ · ‖−t is the norm of H−t, the dual of Ht (not Ht
0). Bound (16a) is found in

[32], the L2-projection approximations (16b), (16c), and (16g) are found in [12], the
nonstandard trace theorem (16d) is found in [23], the trace inequality (16e) is found
in [5], and the bound (16f) follows from the normal trace inequality for H(div;Di)
functions.

It is easy to see that (8) is equivalent to finding uh : S → VgN
h,0(D) and ph : S →

Wh(D) such that for ρ-almost every y ∈ S,

ND∑
i=1

(K−1uh,v)Di =

ND∑
i=1

(ph,∇ · v)Di − 〈v · ni, gD〉ΓD ∀v ∈ V0
h,0(D),(17a)

ND∑
i=1

(∇ · uh, w)Di =

ND∑
i=1

(f, w)Di ∀w ∈Wh(D).(17b)

We form error equations by integrating system (17) in S against the PDF and sub-
tracting it from system (7):∫

S

ND∑
i=1

(K−1(u− uh),v)Diρ(y)dy =

∫
S

[ ND∑
i=1

(p̂− ph,∇ · v)Di

− 〈p,v · ni〉Γi

]
ρ(y)dy ∀v ∈ V0

h,0(D),(18a) ∫
S

ND∑
i=1

(∇ · (u− uh), w)Diρ(y)dy = 0 ∀w ∈ Wh(D).(18b)

Recall that k, l, r, and m denote the polynomial degrees of approximation for the
velocity space, pressure space, mortar space, and collocation interpolant, respectively.
In all mixed methods we consider, l = k or l = k − 1. The next result follows easily
from the deterministic multiscale bound on the velocity, which is originally proved
in Theorem 4.1 in [6] and improved in [35]. Sufficient conditions on the data for the
required smoothness of the solution can be found in [23].

Lemma 4.1. There exists a positive constant C independent of h and H such
that for 0 ≤ q ≤ l + 1, 1 ≤ t ≤ k + 1, 1/2 ≤ t̃ ≤ k + 1, and 1/2 ≤ s ≤ r + 1,

‖u− uh‖L2(D)⊗L2(S) ≤ C(‖p‖Hs+1/2(D)⊗L2(S)H
s−1/2 + ‖u‖Ht(D)⊗L2(S)h

t

+ ‖u‖H t̃+1/2(D)⊗L2(S)h
t̃H1/2),

‖∇ · (u− uh)‖L2(Di)⊗L2(S) ≤ C‖∇ · u‖Hq(Di)⊗L2(S)h
q 1 ≤ i ≤ ND.

For the pressure bound we need the following inf-sup condition.
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Lemma 4.2. There exists a positive constant γ independent of h and H such that
for all w : S→ Wh(D),

sup
v:S→V0

h,0(D)

∫
S

∑ND

i=1(∇ · v, w)Diρ(y)dy

‖v‖V
≥ γ‖w‖W .

Proof. Let w : S → Wh(D). Consider the auxiliary problem, for ρ-almost every
y ∈ S

∇ · ψ(·,y) = w(·,y) in D, ψ(·,y) = g(·,y) on ∂D,

where g ∈ (H1/2(∂D))d is constructed to satisfy
∫
∂D

g ·n =
∫
D
w and g ·n = 0 on ΓN .

More precisely, we take g = (
∫
D w)ϕn, where ϕ ∈ C0(∂D) is such that

∫
∂D ϕ = 1 and

ϕ = 0 on ΓN . Clearly ‖g‖1/2,∂D ≤ C‖w‖. It is known [17] that the above problem
has a solution satisfying

(19) ‖ψ‖1 ≤ C(‖w‖ + ‖g‖1/2,∂D) ≤ C‖w‖.

Then

sup
v:S→V0

h,0(D)

∫
S

∑ND

i=1(∇ · v, w)Diρ(y)dy

‖v‖V
≥

∫
S

∑ND

i=1(∇ ·Π0ψ, w)Diρ(y)dy

‖Π0ψ‖V
≥ γ‖w‖W ,

where we have used (15a), (15d), and (19) for the last inequality.
From Lemma 4.2, we can derive a multiscale bound on the semidiscrete pressure.
Lemma 4.3. There exists a positive constant C independent of h and H such

that for 1 ≤ t ≤ k + 1, 1/2 ≤ t̃ ≤ k + 1, and 1/2 ≤ s ≤ r + 1,

‖p− ph‖W
≤ C(‖p‖Hs+1/2(D)⊗L2(S)H

s−1/2 + ‖u‖Ht(D)⊗L2(S)h
t + ‖u‖H t̃+1/2(D)⊗L2(S)h

t̃H1/2).

Proof. Taking w = p̂− ph in Lemma 4.2 and using (18a) gives

‖p̂− ph‖W ≤
1

γ
sup

v:S→V0
h,0(D)

∫
S

∑ND

i=1(∇ · v, p̂− ph)Diρ(y)dy

‖v‖V

=
1

γ
sup

v:S→V0
h,0

(D)

∫
S

∑ND

i=1

[
(K−1(u− uh),v)Di + 〈p− IcHp,v · ni〉Γi

]
ρ(y)dy

‖v‖V

≤ C
(
‖u− uh‖L2(D)⊗L2(S) + ‖p‖Hs+1/2(D)⊗L2(S)H

s−1/2
)
,

where we have used (16a) and (16d) in the last inequality. The proof is completed
using Lemma 4.1, the triangle inequality, and (16c).

Theorem 4.4. Assume that the solution (u, p) to (2) is sufficiently smooth,
so that the norms that appear in Lemma 4.1 are well defined. Then there exists a
positive constant C independent of h and H such that for 0 ≤ q ≤ l+1, 1 ≤ t ≤ k+1,
1/2 ≤ t̃ ≤ k + 1, and 1/2 ≤ s ≤ r + 1,

(20a) ‖u− uh,m‖V + ‖p− ph,m‖W ≤ C(Hs−1/2 + hq + ht + ht̃H1/2) + η.
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For tensor product grid collocation,

(20b) η ≤ C
NΩ∑
i=1

exp (−ci
√
mi) ,

For sparse grid collocation,

(20c) η ≤ C(σ)
{
exp(−σNterm2

�max/Nterm), for large �max,
exp(−σe log2(�max)), for large Nterm.

In the above ci and σ are positive constants that depend on the smoothness of u and
p in S.3

Proof. The left-hand side of (20a) can be decomposed into deterministic and
stochastic errors:

‖u− uh,m‖V + ‖p− ph,m‖W
≤ (‖u− uh‖V + ‖p− ph‖W ) + (‖uh − Imuh‖V + ‖ph − Imph‖W ) .

The deterministic error, represented by the first two terms, is bounded in Lemmas 4.1
and 4.3. Assuming K is smooth enough in S, which is true for the KL expansion (5),
the estimate of the stochastic error in the case of tensor product grid collocation (20b)
can be found in [8], and in the case of sparse grid collocation (20c) can be found in
[28].

In the next theorem we establish superconvergence for the pressure.
Theorem 4.5. Assume that the problem (2) is H2-elliptic regular. Under the

assumptions of Theorem 4.4, there exists a positive constant C independent of h and
H such that for 0 ≤ q ≤ l+ 1, 1 ≤ t ≤ k + 1, 1/2 ≤ t̃ ≤ k + 1, and 1/2 ≤ s ≤ r + 1,

(21) ‖p̂− ph,m‖W ≤ C(Hs+1/2 + hqH + htH + ht̃H3/2) + η,

where η is defined in Theorem 4.4.
Proof. Consider the following auxiliary problem in mixed form. For ρ-almost

every y ∈ S,

ψ(·,y) = −K(·,y)∇ϕ(·,y) in D,(22a)

∇ · ψ(·,y) = p̂− ph,m in D,(22b)

ϕ(·,y) = 0 on ΓD(22c)

ψ(·,y) · n = 0 on ΓN .(22d)

The H2-elliptic regularity implies

(22e) ‖ϕ(·,y)‖2 ≤ C‖p̂− ph,m‖.

We have

‖p̂− ph,m‖2W =

∫
S

(p̂− ph,m, p̂− ph,m)ρ(y)dy

=

∫
S

[(∇ ·ψ, p̂− ph) + (p̂− ph,m, ph − Imph)] ρ(y)dy

= I + II.

3The precise statement on the smoothness requirement is given in [8] for tensor grid and [28] for
sparse grid.
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Applying the Cauchy–Schwarz inequality,

|II| ≤ ‖p̂− ph,m‖W ‖ph − Imph‖W = ‖p̂− ph,m‖W η.

Taking v = Π0ψ ∈ V0
h,0(D) in (18a) and using (15a), we have

I =

∫
S

ND∑
i=1

(∇ ·Π0ψ, p̂− ph)Diρ(y)dy

=

∫
S

ND∑
i=1

[
(K−1(u− uh),Π0ψ)Di + 〈p− PHp,Π0ψ · ni〉Γi

]
ρ(y)dy by (18b)

= I1 + I2.

We can break up I1 into three terms by

I1 =

∫
S

ND∑
i=1

[
(K−1(u− uh),Π0ψ −ψ)Di − (u− uh,∇ϕ)Di

]
ρ(y)dy

=

∫
S

ND∑
i=1

[
(K−1(u− uh),Π0ψ −ψ)Di + (∇ · (u− uh), ϕ− ϕ̂)Di

−〈(u− uh) · ni, ϕ− IcHϕ〉Γi

]
ρ(y)dy

= I11 + I12 − I13.

Upper bounds for I11, I12, and I13 can be obtained using the Cauchy–Schwarz in-
equality.

I11 ≤ C
(∫

S

‖u− uh‖2ρ(y)dy
)1/2 (∫

S

‖Π0ψ − ψ‖2ρ(y)dy
)1/2

≤ C
√
hH ‖u− uh‖V

(∫
S

‖ψ‖21ρ(y)dy
)1/2

by (15c)

≤ C
√
hH ‖u− uh‖V ‖p̂− ph,m‖W by (22e), (22a).

I12 ≤ C
(∫

S

ND∑
i=1

‖∇ · (u− uh)‖2Di
ρ(y)dy

)1/2 (∫
S

‖ϕ− ϕ̂‖2ρ(y)dy
)1/2

≤ Ch‖u− uh‖V ‖p̂− ph,m‖W by (16c), (22e).

I13 ≤ C
(∫

S

ND∑
i=1

‖u− uh‖2H(div,Di)
ρ(y)dy

)1/2

(∫
S

ND∑
i=1

‖ϕ− IcHϕ‖21/2,Γi
ρ(y)dy

)1/2

by (16f)

≤ CH‖u− uh‖V ‖p̂− ph,m‖W by (16a), (16d), (22e).
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We bound I2 as follows:

I2 =

∫
S

ND∑
i=1

[
〈p− PHp, (Π0ψ −Πiψ) · ni + (Πiψ −ψ) · ni +ψ · ni〉Γi

]
ρ(y)dy

≤
∫
S

ND∑
i=1

[
‖p− PHp‖Γi

(
‖(Π0ψ −Πiψ) · ni‖Γi + ‖(Πiψ −ψ) · ni‖Γi

)
+ ‖p− PHp‖−1/2,Γi

‖ψ · ni‖1/2,Γi

]
ρ(y)dy by (16f)

≤ C

∫
S

ND∑
i=1

[
‖p‖s,ΓiH

s
(
‖Π0ψ −Πiψ‖Dih

−1/2 + ‖ψ‖1/2,Γi
h1/2

)
+ ‖p‖s,ΓiH

s+1/2‖ψ‖1/2,Γi

]
ρ(y)dy by (16b), (16e), (16g)

≤ C

∫
S

ND∑
i=1

[
‖p‖s+1/2,Di

Hs
(
‖ψ‖1,DiH

1/2 + ‖ψ‖1,Dih
1/2

)
+ ‖p‖s+1/2,Di

Hs+1/2‖ψ‖1,Di

]
ρ(y)dy by (16d), (15b)

≤ CHs+1/2

(∫
S

ND∑
i=1

‖p‖2s+1/2,Di
ρ(y)dy

)1/2

‖p̂− ph,m‖W .

The proof is completed by combining the above inequalities and using
Theorem 4.4.

5. Collocation-MMMFEM algorithms. To form the fully discrete stochastic
solution to (11), each realization requires solving a deterministic problem using the
MMMFEM. For these we employ a parallel substructuring domain decomposition
algorithm [22, 5, 6] that reduces the global problem to a coarse scale interface problem
for a mortar pressure. In this section we present three algorithms based on combining
stochastic collocation with different implementations of the solution of the interface
problem.

We begin by describing the reduction to an interface problem. We decompose the
solutions into two parts

u
{k}
h = u

∗,{k}
h (λH) + u

{k}
h and p

{k}
h = p

∗,{k}
h (λH) + p

{k}
h .

For each realization k = 1, . . . , Nreal, the pair (u
∗,{k}
h , p

∗,{k}
h ) ∈ V0

h(D)×Wh(D) solves

subdomain problems with zero source and outside boundary conditions, and has λ
{k}
H

as a Dirichlet boundary condition along Γ; i.e., for i = 1, . . . , ND,

((K{k})−1u
∗,{k}
h ,v)Di − (p

∗,{k}
h ,∇ · v)Di = −〈v · ni, λ

{k}
H 〉Γi ∀v ∈ V0

h,i(D),(23a)

(∇ · u∗,{k}
h , w)Di = 0 ∀w ∈Wh,i(D),(23b)

and the pair (u
{k}
h , p

{k}
h ) ∈ VgN

h (D)×Wh(D) solves subdomain problems with source
f , boundary conditions gD and gN on ∂D, and zero Dirichlet boundary conditions
along Γ; i.e., for i = 1, . . . , ND,

((K{k})−1u
{k}
h ,v)Di − (p

{k}
h ,∇ · v)Di = −〈v · ni, gD〉∂Di∩ΓD ∀v ∈ V0

h,i(D),

(24a)

(∇ · u{k}
h , w)Di = (f, w)Di ∀w ∈Wh,i(D).(24b)
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Notice that systems (23a)–(23b) and (24a)–(24b) are completely decoupled from

each other across all subdomains. The former requires a mortar function λ
{k}
H while

the latter does not. Their sum equals (11a)–(11b), so what remains is to enforce
equation (11c), which couples the subdomains together. This leads to the variational

interface problem: find λ
{k}
H ∈MH(Γ) such that for all k = 1, . . . , Nreal,

(25) b
{k}
H (λ

{k}
H , μ) = g

{k}
H (μ) ∀μ ∈MH(Γ),

where the bilinear forms b
{k}
H :L2(Γ) × L2(Γ) → R, b

{k}
H,i :L

2(Γi) × L2(Γi) → R, and
linear functional g

{k}
H :L2(Γ)→ R are defined by

b
{k}
H (λ, μ) =

ND∑
i=1

b
{k}
H,i (λ, μ), b

{k}
H,i (λ, μ) = 〈−u

∗,{k}
h,i (λ) · ni, μ〉Γi ,

g
{k}
H (μ) =

ND∑
i=1

〈u{k}
h,i · ni, μ〉Γi .

Note that b
{k}
H measures the jump in flux across subdomain boundaries and requires

interprocess communication, while b
{k}
H,i measures the flux on a single subdomain.

It is shown in [5] that if Assumption 3.1 holds and ΓD �= ∅, then b{k}H is symmet-
ric and positive definite on MH(Γ). Therefore we use the conjugate gradient (CG)
algorithm to solve the interface problem (25). It is convenient to rewrite (25) using

an operator notation: find λ
{k}
H ∈MH(Γ) such that for k = 1, . . . , Nreal,

(26) B
{k}
H λ

{k}
H = g

{k}
H ,

where the linear operators B
{k}
H :MH(Γ) → MH(Γ), B

{k}
H,i :MH,i(Γi) → MH,i(Γi),

and the vector g
{k}
H ∈MH(Γ) are defined by

B
{k}
H λ =

ND∑
i=1

B
{k}
H,iλ, 〈B{k}

H,i λ, μ〉Γi = b
{k}
H,i (λ, μ) ∀μ ∈MH,i,

〈g{k}H , μ〉Γ = g
{k}
H (μ) ∀μ ∈MH .

The operator B
{k}
H is known as the Steklov–Poincaré operator [30].

The dominant cost for solving the interface problem (26) in the MMMFEM is the
solution of Dirichlet-to-Neumann subdomain problems (23) on each CG iteration.

The three collocation-MMMFEM algorithms are presented below. We measure
their computational cost in terms of the number of subdomain solves.

5.1. Collocation with traditional MMMFEM. The first method we con-
sider is based on the traditional implementation of the MMMFEM. It requires one
subdomain solve (23) per interface CG iteration. We call this Method S1 and present
it in Algorithm 2.

In step 3 of Algorithm 2, the interface iteration can be summarized as follows.

The vector g
{k}
H is formed by solving system (24). Starting from an initial guess, we
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Algorithm 2 (Method S1). Collocation without a Multiscale Flux Basis.

1: for k = 1, . . . , Nreal do {Collocation Loop}
2: Generate permeability realization K{k} corresponding to global index k
3: Solve interface problem (26) using the Traditional Implementation of the MMM-

FEM
4: Multiply solution by collocation weight and sum to statistical moments
5: end for

iterate until convergence on the value of λ
{k}
H using the conjugate gradient algorithm.

On each CG iteration, the action of the operator B
{k}
H is performed in four steps:

(a) Project mortar data onto subdomain boundaries: γi = Qh,i(λ
{k}
H,i ),

(b) Solve the subdomain problem (23) with Dirichlet boundary data γi,

(c) Project the resulting fluxes onto mortar space: ξi = −QT
h,i(u

∗,{k}
h (γi) · ni),

(d) Compute flux jumps across subdomain interfaces: B
{k}
H λ

{k}
H =

∑ND

i=1 ξi.

Steps (a)–(c) evaluate the action of the flux operator B
{k}
H,i and are done by every

subdomain in parallel. Step (d) evaluates the action of the jump operator B
{k}
H and

requires interprocess communication across every interface.
Note that the number of CG iterations for solving (26) grows with the condition

number of the problem. In the traditional implementation of the MMMFEM, so does
the number of subdomain solves. When this method is coupled with the stochas-
tic collocation method, this cost is multiplied by the number of realizations. The
computational cost for each subdomain is given by

(
Number of solves for

Method S1

)
=

Nreal∑
k=1

(Niter(k) + 3).

The three additional solves at each realization come from solving (24) to form the
right-hand side in (26) and recovering the solution in the interior after the convergence
of the CG iteration.

5.2. Collocation with a deterministic multiscale flux basis. An alter-
native implementation of the MMMFEM was recently presented [20] that forms a
multiscale flux basis. Each subdomain solves a subdomain problem for each one of its
mortar degrees of freedom before the interface iteration begins. The solutions to these
problems form a basis of coarse scale flux responses containing all the necessary infor-
mation to solve a deterministic problem. No interprocess communication is required
in the formation of the basis. Linear combinations of the basis are used to evaluate the
flux operators during the interface iteration so that no additional subdomain solves
are necessary, except one or more additional solves at the conclusion of the iteration
to recover the fine scale solution. The computational cost is a fixed and controllable
quantity, and therefore does not worsen with the condition number of the problem.
Indeed, it was shown to be more efficient than the traditional implementation in most
cases for deterministic problems. This gain in computational efficiency increases with
the number of subdomains, and also in cases where a basis can be computed once and
then reused many times.

This approach can be coupled to stochastic collocation method in a straightfor-
ward way by forming a new deterministic multiscale basis for each realization. We
call this Method S2 and present it in Algorithm 3.
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Algorithm 3 (Method S2). Collocation with a Deterministic Multiscale Flux Basis.

1: for k = 1, . . . , Nreal do {Collocation Loop}
2: Generate permeability realization K{k} corresponding to global index k
3: Compute multiscale flux basis for global index k
4: Solve interface problem (26) with MMMFEM using the basis from Step 3
5: Multiply solution by collocation weight and sum to statistical moments
6: end for

In step 3 of Algorithm 3, the formation of the multiscale flux basis can be sum-

marized as follows. For each subdomain Di, i = 1, . . . , ND, let {φ(j)H,i}
Ndof(i)
j=1 denote a

mortar basis for MH,i(Γi). Their individual flux responses for realization k are com-

puted by evaluating the action of the operator B
{k}
H,i on these functions. This is done

via steps (a)–(c) from the interface iteration, i.e., for j = 1, . . . , Ndof(i),

(a’) Project a mortar basis function onto subdomain boundary: γ
(j)
i = Qh,i(φ

(j)
H,i),

(b’) Solve the subdomain problem (23) with Dirichlet boundary data γ
(j)
i ,

(c’) Project the resulting flux onto mortar space: ψ
(j),{k}
H,i = −QT

h,i(u
∗,{k}
h (γ

(j)
i ) ·

ni).

The functions {ψ(j),{k}
H,i }Ndof(i)

j=1 are saved to form the multiscale flux basis for subdo-
main Di on global realization k. They are discarded and recalculated for realization
k + 1.

In step 4 of Algorithm 3, the multiscale flux basis is used in the interface iteration
as follows. Suppose

λ
{k}
H,i =

Ndof (i)∑
j=1

λ
(j),{k}
H,i φ

(j)
H,i

is the current mortar data on a CG iteration. Since the flux operator B
{k}
H,i is linear,

steps (a)–(c) in the traditional implementation are replaced with the linear combina-
tion

ξi = B
{k}
H,i

(
λ
{k}
H,i

)
=

Ndof (i)∑
j=1

λ
(j),{k}
H,i ψ

(j),{k}
H,i .

Then step (d) proceeds as usual.
The computational cost for each subdomain Di is given by(

Number of solves for
Method S2

)
= (Ndof(i) + 2) ∗ (Nreal).

Note that each subdomain performs a different number of solves because each one
may have a different number of mortar degrees of freedom.

5.3. Collocation with a stochastic multiscale flux basis. The main idea
behind the multiscale flux basis implementation is to form a basis containing all the
necessary information to solve the interface problem by solving as few linear systems
as possible. In Method S2, if each realization saves just a few solves, then when
performing several thousand realizations the overall savings will be great compared
to Method S1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A STOCHASTIC MORTAR MIXED METHOD 1461

The dominant cost in Method S2 is computing the multiscale flux basis for each
global realization. In the setting of nonstationary random porous media with localized
KL regions throughout the domain, one can get even greater computational savings
with the formation of a stochastic multiscale flux basis. Recalling Remarks 3.1 and 3.3,
both tensor product and sparse grids have a repeated local structure in the KL regions.
A stochastic multiscale flux basis can be formed by looping over all local realizations
of a subdomain’s KL region in a precomputation loop before the stochastic collocation
begins. We call this Method S3 and present it in Algorithm 4.

Algorithm 4 (Method S3). Collocation with a Stochastic Multiscale Flux Basis.

1: for k′ = 1, . . . , Nreal(j) do {Precomputation Loop}
2: Generate permeability realization corresponding to local index k′

3: Compute and store multiscale flux basis for local index k′

4: end for
5: for k = 1, . . . , Nreal do {Collocation Loop}
6: Generate permeability realization corresponding to global index k
7: Convert global index k to local index k′ {Using Algorithm 5 or 6}
8: Solve interface problem (26) with MMMFEM using the basis with local index

k′ from Precomputation Loop
9: Multiply solution by collocation weight and sum to statistical moments

10: end for

While the memory required for Method S3 is more than for Method S2, it is still
not significantly large due to the following three reasons. First, the multiscale basis
functions are stored only on the boundaries of the subdomains; second, each processor
stores only the basis for its subdomain; and third, each processor stores only the bases
for the stochastic realizations for its KL region.

The computational cost for a subdomain Di that belongs to a KL region D
(j)
KL is

given by (
Number of solves for

Method S3

)
= (Ndof(i) ∗Nreal(j)) + (2 ∗Nreal).

Each subdomain performs a different number of solves because each one may have a
different number of mortar degrees of freedom and may belong to different KL regions
with different numbers of local realizations. Note that the dominant cost is in the
first term and it is proportional to the number of local realizations Nreal(j), while
the dominant cost in Method S2 is proportional to the number of global realizations
Nreal.

In step 7 of Algorithm 4, the global to local collocation index conversion is the key
step in being able to perform Method S3. Any algorithm developed for this purpose
would depend on the ordering of the points. For a tensor product grid, recall from
(13) that we chose to follow the natural ordering by one-dimensional (1-D) point first,
local dimension next, and KL region last. In Algorithm 5, we give a global to local
index conversion algorithm for this ordering. It is very similar to the algorithm one
uses to convert an integer from one base into another, with the modification that each
digit has a different base.

For a sparse grid, the indexing of the points is far more complicated than a tensor
product grid due to its hierarchical construction and skipping of repeated points.
Nevertheless, it is still possible to formulate a global to local index conversion that is
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more efficient than a brute force approach. Recall from Algorithm 1 that we chose
to follow the natural ordering by level first, followed by a partition of that level into
NΩ parts, followed by 1-D point, and global dimension last. In Algorithm 6, we give
the global to local index conversion algorithm for this ordering. It is a modification
of Algorithm 5, where the global point and partition are truncated, and the indexing
scheme is applied to the local dimensions.

Algorithm 5. Global to Local Index Conversion for a Tensor Product Grid.

1: input: Global Index g, KL region r
2: remainder← g
3: for i = 1, . . . , NΩ do
4: modulus← 1
5: for j = 1, . . . , NΩ − i− 1 do
6: modulus← modulus ∗Nreal(j)
7: end for
8: if (NΩ− i+1 = r) then return remainder/modulus {Return Local Index}
9: remainder← mod(remainder,modulus)

10: end for

Algorithm 6. Global to Local Index Conversion for a Sparse Grid.

1: input: Global Index g, KL region r
2: point← (h1, . . . , hNterm)
3: part← (p1, . . . , pNterm) {Using Algorithm 1 with index g}
4: subpoint← (hκ(r,1), . . . , hκ(r,Nterm(r))
5: subpart← (pκ(r,1), . . . , pκ(r,Nterm(r)) {Truncate to local dimensions}
6: l ← 1
7: if (subpoint = 0) then return l {Special case for 0 partition}
8: for � = 1, . . . , �max do {Loop over sublevels}
9: for i = 1, . . . ,

(� +Nterm(r) − 1)!

�!(Nterm(r) − 1)!
do {Loop over subpartitions}

10: newpart← (q1, . . . , qNterm(r)) {The ith multi-index}
11: m = 2newpart+1 − 1

12: for j = 1, . . . ,
∏

α m(α) do {Loop over subpoints}
13: newpoint← (kj1m(1), . . . , k

jNterm(r)

m(Nterm)) {The jth point using (13)}

14: ˜newpart← (p̃1, . . . , p̃Nterm(r)) where p̃i =

{
pκ(r,i), if kjim(i) �= 0

0, if kjim(i) = 0

15: if ( ˜newpart = newpart) then
16: l ← l + 1
17: if (newpoint = subpoint) then return l {Return Local Index}
18: else
19: {Repeated point; skip it}
20: end if
21: end for
22: end for
23: end for
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S(1) S(2)

S(3) S(4)

S(1)

S(2)

S(1) S(2)S(2)

S(1)

Fig. 2. Subdomain and KL region layouts for Examples 1–4. Dashed lines represent subdomain
boundaries and shading distinguishes between KL regions.

6. Numerical examples. In this section we present four computational exam-
ples that illustrate the behavior of the stochastic collocation Methods S1, S2, and S3
for various nonstationary porous media; see Figure 2. In each case we test both tensor
product and sparse grid collocations. Example 1 is in 2-D with two KL regions and a
highly heterogeneous L-shape inclusion. Example 2 is a 2-D checkerboard with four
KL regions and demonstrates a procedure for adaptive mesh refinement in the spatial
grid. Example 3 is a 3-D benchmark test with either two or twenty KL regions, and
is a much more computationally intensive problem to solve than Examples 1 and 2.
In these three examples we compare the relative computational efficiency of Methods
S1, S2, and S3 in terms of the maximum number of subdomain linear systems and
the maximum total runtime per processor. Finally, Example 4 is a 2-D physical and
stochastic space convergence test with two equally sized KL regions.

The numerical experiments use the covariance function listed in [42]. In three
dimensions it is given by

C
(i)
Y (x, x̄) =

(
σ
(i)
Y

)2

exp

[
−|x1 − x̄1|

η
(i)
1

− |x2 − x̄2|
η
(i)
2

− |x3 − x̄3|
η
(i)
3

]
.

Here σ
(i)
Y and η

(i)
j denote the variance and the correlation length in the jth spatial

dimension, respectively, for KL region D
(i)
KL. Since it is separable, (3) can be solved

in each KL region semianalytically. Details can be found in [42, Appendix A].4

The numerical experiments were programmed using a parallel FORTRAN flow
simulator named PARCEL [13]. The spatial discretization uses the lowest order
Raviart–Thomas elements on rectangles or bricks. Physical discretizations were cho-
sen to satisfy Assumption 3.1. The runtimes were recorded by compiling the code
without optimization using Intel’s ifort compiler and MKL library, and run with
MVAPICH2 on a parallel cluster of Xeon E5430 2.66GHz processors.

6.1. Example 1: L shape.
Description. This example has NΩ = 2 KL regions in the domain (0, 1)2. We test

a low number of KL terms with an isotropic tensor product grid and a large number
of KL terms with a level �max = 1 sparse grid. KL region S1 is an L-shaped inclusion
with a mean value of E[Y (1)] = 3.0, Nterm(1) = 3 × 3 = 9 (with tensor grid) and

14× 14 = 196 terms (with sparse grid), correlation lengths η
(1)
j = 0.01, and variance

(σ(1))2 = 1.0. KL region S2 is the remainder of the domain with a mean value of
E[Y (2)] = 0.0, Nterm(2) = 2 × 1 = 2 (with tensor grid) and Nterm(2) = 2 × 2 = 4

4These eigenvalue or eigenfunction computations are performed in each 1-D spatial dimension
separately, and then multiplied together in a nondecreasing series. For this reason, in the numerical
results we report the number of terms in each spatial dimension separately.
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Table 2

Runtime and linear systems with the three collocation algorithms for Example 1. Values in
parenthesis denote the cost of the precomputation loop.

Nterm = 11, Tensor product collocation, Ncoll = 2: degree = 3 (2048 realizations)
Method S1 Method S2 Method S3

Max. linear systems 542,498 208,896 55,296 (51,200)
Runtime in seconds 301.8 202.5 166.6 (11.5)

Nterm = 200, sparse grid collocation, �max = 1: degree = 3 (401 realizations)
Method S1 Method S2 Method S3

Max. linear systems 35,082 26,466 25,954 (25,152)
Runtime in seconds 34.7 33.4 32.5 (5.5)

(with sparse grid) terms, correlation lengths η
(2)
j = 0.1, and variance (σ(2))2 = 1.0.

Flow is induced from left to right with Dirichlet boundary conditions gD = 1 on face
{x = 0} and gD = 0 on face {x = 1}, and no-flow homogeneous Neumann boundary
conditions on the other two edges.

The domain for Example 1 is divided into ND = 4× 4 = 16 subdomains. Tensor
product collocation uses a uniform spatial grid, with all subdomains containing 25×25
elements, and continuous linear mortars with 10 elements on all interfaces. Sparse
grid collocation uses a nonuniform spatial grid such that subdomains in KL region
S1 have 20 × 20 elements, and subdomains in KL region S2 have 4 × 4 elements.
The interfaces are discretized with continuous linear mortars, with the number of
elements on S1 − S1, S1 − S2, and S2 − S2 interfaces being 10, 4, and 2 elements,
respectively.

Discussion. First we test isotropic tensor product collocation with a low number
of terms. Using Ncoll = 2 collocation points in Nterm = 9 + 2 = 11 stochastic
dimensions requires a total of Nreal = 211 = 2048 global realizations and a maximum
number of Nreal(i) = 29 = 512 local realizations, giving a global to local ratio of 4.0.
Table 2 shows that the number of linear systems is reduced by 61% with a deterministic
multiscale basis and by 90% with a stochastic multiscale basis. However, the runtime
is reduced only by 33% and 45%, respectively. This is because the use of a multiscale
basis in Methods S2 and S3 does nothing to reduce the interprocess communication
during the CG iterations at each realization of the stochastic collocation loop. Notice
that Method S3 took only 11.5 seconds to compute the stochastic multiscale basis,
because the local systems are relatively small and easy to solve. Plots of the calculated
statistics are shown in Figure 3.

Next we test sparse grid collocation with a large number of terms. Using a level
�max = 1 sparse grid in Nterm = 196 + 4 = 200 stochastic dimensions requires a total
of Nreal = 401 global realizations and a maximum number of Nreal(i) = 393 local
realizations, giving the much smaller global to local ratio of 1.02. In this case the
number of linear systems is reduced by 25% with a deterministic multiscale basis and
by 26% with a stochastic multiscale basis. The runtimes, however, remain nearly
constant, since the interprocessor communication dominated the cost for solving the
small subdoman problems. Plots of the calculated statistics are shown in Figure 4.

This example shows that for both tensor product and sparse grid collocation,
the number of subdomain solves is reduced significantly by the deterministic mul-
tiscale basis in Method S2 and even further by the stochastic multiscale flux basis
in Method S3. The gain from Method S3 is smaller for sparse grid collocation, due
to smaller global to local ratio. In both cases the runtime is not reduced as much,
since the communication cost is significant relative to the cost of solving subdomain
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Fig. 3. Realization of permeability (top left), mean pressure (top middle), mean velocity magni-
tude (top right), variance of pressure (bottom left), variance of horizontal velocity (bottom middle),
and variance of vertical velocity (bottom right) for tensor product collocation in Example 1.
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Fig. 4. Realization of permeability (top left), mean pressure (top middle), mean velocity magni-
tude (top right), variance of pressure (bottom left), variance of horizontal velocity (bottom middle),
and variance of vertical velocity (bottom right) for level �max = 1 sparse grid collocation in Exam-
ple 1.

problems, which are rather small in this example. One way to reduce the time spent
on communication would be to use a preconditioner for the interface problem, which
could be done in conjunction with the multiscale basis implementation.

Another observation is that third order accuracy with a tensor product grid on
10 stochastic dimensions requires 2048 realizations, while third order accuracy with a
sparse grid on 200 stochastic dimensions requires only 401 realizations. It would not
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Table 3

Runtime and linear systems across refinement levels 1–4 with the three collocation algorithms
for Example 2. Values in parentheses denote the cost of the precomputation loop.

Nterm = 12, Tensor product collocation, Ncoll = 2: degree = 3 (4096 realizations)
Method S1 Method S2 Method S3

Max. linear systems 3,722,250 655,360 35,200 (1,152)
Runtime in seconds 5,353 5,409 5,280 (0.2)

Nterm = 12, sparse grid collocation, �max = 2: degree = 5 (361 realizations)
Method S1 Method S2 Method S3

Max. linear systems 341,836 57,760 11,552 (4,104)
Runtime in seconds 493.7 493.4 487.0 (0.5)

be possible to perform tensor product collocation in 200 dimensions because it would
require over 1.6E60 realizations.

6.2. Example 2: Checkerboard.
Description. This example demonstrates an adaptive procedure used to refine the

spatial grid. There are NΩ = 4 KL regions on the domain (0, 1)2. The bottom-left
and upper-right KL regions S(i), i = 1, 4 each have a mean value of E[Y (i)] = 4.6,

Nterm(i) = 2× 1 = 2 terms, correlation lengths η
(i)
j = 0.1, and variance (σ(i))2 = 1.0.

The top-left and bottom-right KL regions S(i), i = 2, 3 each have a mean value of
E[Y (i)] = 0.0, Nterm(i) = 2 × 2 = 4 terms, correlation lengths η

(i)
j = 0.01, and

variance (σ(i))2 = 100.0. Tensor product collocation with Ncoll = 2 and sparse grid
collocation with level �max = 2 are performed in Nterm = 2+4+4+2 = 12 stochastic
dimensions, requiring 4096 and 361 global realizations, and 16 and 57 maximum local
realizations, respectively, giving global to local ratios of 256.0 and 6.33, per mesh
adaptation. Flow is induced from left to right with the same boundary conditions as
in Example 1.

The adaptive procedure is as follows. The domain is divided into ND = 8×8 = 64
subdomains, and all interfaces are discretized with continuous linear mortars. On the
coarsest level each subdomain has a 2 × 2 local grid, and each mortar has a single
element. The stochastic collocation method is performed with Methods S1, S2, or
S3 using this spatial grid. Upon completion of the collocation, a residual-based a
posteriori error indicator developed in [36, 6] is computed using the expectation of the
pressure together with the mean permeability. The spatial grids of subdomains that
contain errors beyond a given tolerance are refined, as well as the mortars that touch
those refined subdomains. At this point, the entire collocation is performed again
using the new spatial grid. The procedure stops when no subdomain needs refinement.

Discussion. The low number of random dimensions allowed running both tensor
product and sparse grid collocation on the same test. Table 3 shows their computa-
tional cost. Method S2 results in an 82%–83% decrease and Method S3 leads to a
93%–99% decrease in the number of linear systems required to solve the collocation
on refinement levels 1–4 when compared to Method S1. Once again, the runtimes re-
main almost constant, because the small size of the linear systems keeps the problems
communication bound.

Figure 5 shows the first four levels of spatial grid refinement in the adaptive
procedure. The grids are similar to what one expects for a deterministic problem
with the given mean permeability. Figures 6 and 7 demonstrate how both expectation
and variance of pressure and velocity magnitude are improved on progressively finer
spatial grids in the case of sparse grid collocation.
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Fig. 5. Spatial grids for refinement levels 1–4 with �max = 2 sparse grid in Example 2.
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Fig. 6. Mean pressure (top) and pressure variance (bottom) for refinement levels 1–4 with
�max = 2 sparse grid in Example 2.
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Fig. 7. Mean velocity magnitude (top) and velocity magnitude variance (bottom) for refinement
levels 1–4 with �max = 2 sparse grid in Example 2.

6.3. Example 3: SPE10 benchmark.
Description. The mean permeability in the third example is a three-dimensional

scalar field of actual geological measurements, obtained from the x component of
the Society of Petroleum Engineers’ (SPE) Comparative Solution Project.5 It is a
challenging benchmark problem with a Cartesian grid of 60× 220× 85, giving a total
of 1,122,000 finite elements; see Figure 8. This data set is part of a Brent sequence,

5For more information, see http://www.spe.org/csp.
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Fig. 8. Permeability realization (left) and its corresponding solution (right) for Example 3a.

with the lower 35 layers representing a prograding Tarbert formation, and the top 50
layers representing a fluvial Upper Ness formation. A flow is induced from front to
back with Dirichlet boundary conditions gD = 1 on face {y = 0}, gD = 0 on face
{y = 220}, and no-flow homogeneous Neumann boundary conditions on the other
four faces.

The fine scale grid is broken up into ND = 2 × 5× 2 = 20 subdomains of nearly
equal size. On the interfaces, the mortar space is composed of faces with linear mortars
with a single 1× 1 element.

In Example 3a, we perform tensor product collocation with NΩ = 2 statistically
independent KL regions, roughly coinciding with the two geologic formations of the
deterministic data. The first region includes the lower 10 subdomains and is described

by the parameters: Nterm(1) = 1 × 4 = 4 terms, correlation lengths η
(1)
j = 6.0, and

variance (σ(1))2 = 1.7. The second region includes the upper 10 subdomains and
is described by the parameters: Nterm(2) = 1 × 6 = 6 terms, correlation lengths

η
(2)
j = 10.0, and variance (σ(2))2 = 1.2. In Example 3b we switch to sparse grid
collocation and increase the number of terms in the bottom and top KL regions to
Nterm(1) = 4×4×4 = 64 and Nterm(2) = 5×5×5 = 125, respectively. In Example 3c
we increase the number of KL regions to NΩ = 20, one in each subdomain, each with
Nterm(i) = 2× 3× 2 = 12 terms.

Discussion. In this 3-D benchmark problem, the size of the subdomain problems is
sufficiently large so that the time spent solving a typical linear system dominates the
time needed to perform interprocessor communication. Tensor product collocation
with Ncoll = 2 in Nterm = 4 + 6 = 10 stochastic dimensions requires a total of
Nreal = 210 = 1024 global realizations, and Nreal(i) = 64 maximum local realizations,
giving a global to local ratio of 16.0. Table 4 shows that the number of linear systems
was reduced by 92% with a deterministic multiscale basis and 99% with a stochastic
multiscale basis. Because of the sheer size of the subdomain problems, the runtime
was also dramatically reduced by 85% and 89%, respectively. Figures 8–12 show the
results of the computations.

In Example 3b, sparse grid collocation with �max = 1 in Nterm = 64 + 125 = 189
stochastic dimensions requires a total ofNreal = 379 global realizations, andNreal(i) =
251 maximum local realizations, giving a global to local ratio of 1.51. The number
of linear systems is reduced by 91% and 94%. The runtime is reduced by 83% with
deterministic multiscale basis, but is slightly worse with a stochastic multiscale basis
with a reduction of 80%. Method S3 is faster than Method S2 in the tensor grid case
but not in the sparse grid case due to different global to local ratios. When this ratio
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Table 4

Runtime and linear systems with the three collocation algorithms for Examples 3a and 3b with
NΩ = 2 KL regions. Values in parentheses denote the cost of the precomputation loop.

Nterm = 10, tensor product collocation, Ncoll = 2 (1024 realizations)
Method S1 Method S2 Method S3

Max. linear systems 236,964 18,432 3,072 (1,024)
Runtime in hours 110.34 16.95 11.72 (0.82)

Nterm = 189, sparse grid collocation, �max = 1 (379 realizations)
Method S1 Method S2 Method S3

Max. linear systems 79,047 6,822 4,774 (4,016)
Runtime in hours 37.16 6.27 7.33 (3.32)

Fig. 9. Mean solution (left) and pressure variance (right) for Example 3a.

Fig. 10. Velocity variance in x direction (left) with several cross sections (right) for Example 3a.

Fig. 11. Velocity variance in y direction (left) with several cross sections (right) for Example 3a.
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Fig. 12. Velocity variance in z direction (left) with several cross sections (right) for Example 3a.

Table 5

Runtime linear systems with the three collocation algorithms for Example 3c with NΩ = 20 KL
regions. Values in parentheses denote the cost of the precomputation loop.

Nterm = 240, sparse grid collocation, �max = 1 (481 realizations)
Method S1 Method S2 Method S3

Max. linear systems 101,826 8,658 1,362 (400)
Runtime in hours 47.8 7.97 5.50 (0.38)

is smaller, the stochastic multiscale basis is reused fewer times and the runtime for
forming it becomes a factor. For instance, in Example 3b the precomputation loop is
over 45% of the total runtime, while in Example 3a it is only 7%. The structure of a
tensor product grid causes this ratio to remain very large, even when the difference
between global and local dimensions is small.

Recall that the main benefit to using a sparse grid is that the number of points
grows more modestly than a tensor grid as dimension increases. Unfortunately this
means the global to local ratio is smaller, so Method S3 is faster than Method S2
only when the difference between global and local dimensions is large. Indeed, in
Example 3c we show this effect, using NΩ = 20 KL regions each having Nterm(i) = 12
dimensions. Sparse grid collocation with �max = 1 in Nterm = 12∗20 = 240 stochastic
dimensions requires a total of Nreal = 481 global realizations, and Nreal(i) = 41 max-
imum local realizations, giving a global to local ratio of 19.0. The results are given in
Table 5, and in this case Method S3 shows an improvement in runtime over Method S2.
Both multiscale basis methods are still far superior to the traditional implementation.

6.4. Example 4: Convergence test.
Description. This example tests convergence rates in both stochastic and physical

space. The goal is to confirm numerically the theoretical convergence rates established
in section 4. There are NΩ = 2 KL regions on the domain (0, 1)2 with ND = 4×4 = 16
subdomains. A mean value of E[Y ] = 5000(1− sin(20x) sin(20y)) is used throughout
the domain. KL region S(1) is the left half of the domain with Nterm(1) = 2 × 1 = 2
terms, correlation length η(1) = 0.13, and variance (σ(1))2 = 1.0. KL region S(2) is the
right half of the domain with Nterm(2) = 2 × 2 = 4 terms, correlation length η(2) =
0.09, and variance (σ(2))2 = 1.1. The norms reported are of the form ‖E[u]‖L2(D),
which is controlled by the norms bounded in the theory, since

‖E[u]‖L2(D) ≤
(
E

[
‖u‖2L2(D)

])1/2

.

Discussion. Figure 13 shows convergence rates in stochastic space for four differ-
ent sampling methods, wherein all tests have a fixed spatial grid. The subdomains
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Fig. 13. Log-log plot of convergence in stochastic space for Example 4. Different types of
sampling methods are shown in absolute L2-error for pressure (left) and H(div)-error for velocity
(right).

Table 6

Convergence in physical space for Example 4. Relative errors reported against finest grid level;
convergence rates given in parentheses.

S(1) Grid Mort. S(2) Grid
|||E[p−ptrue]|||
|||E[ptrue]|||

|||E[u−utrue]|||
|||E[utrue]|||

|||E[∇·(u−utrue)]|||
|||E[∇·utrue]|||

4× 5 2 3× 7 1.04E-02 1.76E-01 2.56E-01
8× 10 4 6× 14 3.93E-03 (1.40) 6.35E-02 (1.47) 1.02E-01 (1.33)
16× 20 8 12× 28 1.39E-03 (1.50) 1.71E-02 (1.89) 3.30E-02 (1.63)
32× 40 16 24× 56 3.74E-04 (1.90) 3.80E-03 (2.17) 1.14E-02 (1.53)
64× 80 32 48× 112 – – –

have 20×20 grids in the first region and 17×15 grids in the second region. Continuous
linear mortars with 10 elements are used on all interfaces. The numerical solution
with level 6 sparse grid is used as a “true” stochastic solution in the computation of
the errors. The figures show log-log plots of absolute errors versus number of stochas-
tic realizations. We compare sparse grid and tensor grid stochastic collocation to
two Monte Carlo simulations with different random seeds. As expected, both collo-
cation methods converge significantly faster than the Monte Carlo simulations, with
the sparse grid being more accurate than the tensor product grid with the same num-
ber of realizations. Furthermore the error graphs for the two stochastic collocation
methods confirm that the errors exhibit exponential convergence in stochastic space,
as predicted by Theorem 4.4. The slight tapering off in the slope of the velocity error
with sparse grid collocation is due to the effect of spatial discretization error.

Table 6 shows convergence rates in physical space. The L2 errors are approxi-
mated by the midpoint rule; i.e., the element errors are evaluated at the cell centers.
This approximation is denoted by ||| · |||. A level �max = 3 sparse grid rule is used
in stochastic dimensions, but we note that these results are within round-off from an
isotropic tensor grid rule with Ncoll = 3. The first three columns show the refine-
ments of spatial grids in each KL region and the mortar grid. Recall that the spatial
discretization uses the lowest order Raviart–Thomas elements and linear mortars;
therefore in Theorem 4.4, q = t = t̃ = 1 and s = 2. Furthermore, H ∼ 2h, so Theo-
rem 4.4 predicts O(h) convergence for the pressure and the velocity, and Theorem 4.5
predicts O(h2) convergence for the pressure at the cell centers. We do observe that
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the convergence for the pressure approaches second order. We also observe O(h2)
convergence for the velocity and O(h3/2) convergence for its divergence. While for
the sake of space we did not present a superconvergence estimate for the velocity, the
results are consistent with Theorem 4.2 in [6] for the deterministic multiscale mortar
mixed method.

7. Conclusions. Three methods are presented to quantify uncertainty for flow
in nonstationary porous media that couple stochastic collocation with a mortar mixed
finite element discretization. These methods are nonintrusive, requiring the solution
of deterministic problems at specified collocation points, and are more efficient than
Monte Carlo simulations. Method S1 uses the traditional implementation of the
MMMFEM on each realization, Method S2 uses a deterministic multiscale flux basis
on each realization, and Method S3 forms a stochastic multiscale flux basis across
local realizations. A tensor product grid is suitable to handle relatively few random
dimensions, while a sparse grid is necessary to handle a larger number of random
dimensions.

We are able to draw three conclusions from the numerical examples. First, the
computational workload in terms of the maximum number of linear systems solved by
every subdomain is reduced by several orders of magnitude via the use of a determin-
istic multiscale basis, and it is further reduced via the use of a stochastic multiscale
basis. Second, these savings do not always reduce runtimes because these techniques
do not reduce the amount of interprocess communication. In order to see an im-
provement in runtime for the multiscale basis methods, the linear systems associated
with the subdomain problems must be large enough to dominate the overhead in run-
time associated with the interprocess communication during the interface iteration.
Unpreconditioned multiscale basis techniques change a processor-laden simulation to
a communication-laden simulation. A preconditioner could be used to reduce the
amount of communication as well as the number of linear systems. Third, the ratio
of global realizations to local realizations influences whether Method S3 is faster than
Method S2. The smaller this ratio is, the larger is the relative cost of the precompu-
tation loop. A tensor product grid inherently has a large ratio, while a sparse grid has
a large ratio only when the difference between global and local dimensions is large.
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