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Summary

We introduce an accurate cell-centered method for modeling Darcy
flow on general quadrilateral, hexahedral, and simplicial grids. We
refer to these discretizations as the multipoint-flux mixed-finite-
element (MFMFE) method. The MFMFE method is locally con-
servative with continuous fluxes and can be viewed within a varia-
tional framework as a mixed finite-element method with special
approximating spaces and quadrature rules. We study two versions
of the method: with a symmetric quadrature rule on smooth grids
and a nonsymmetric quadrature rule on rough grids. The frame-
work allows for handling hexahedral grids with nonplanar faces
defined by trilinear mappings from the reference cube. Moreover,
the MFMFE method allows for local elimination of the velocity,
which leads to a cell-centered pressure system. Theoretical and nu-
merical results demonstrate first-order convergence on rough grids.
Second-order superconvergence is observed on smooth grids. We
also discuss a new splitting scheme for modeling multiphase flows
that can treat higher-order transport discretizations for saturations.
We apply the MFMFE method to obtain physically consistent
approximations to the velocity and a reference pressure on quadri-
lateral or hexahedral grids, and a discontinuous Galerkin method
for saturations. For higher-order saturations, we propose an effi-
cient post-processing technique that gives accurate velocities in the
interior of the gridblocks. Computational results are provided for
flow in highly heterogeneous reservoirs, including different capil-
lary pressures arising from different rock types.

Introduction

Geological media such as aquifers and petroleum reservoirs ex-
hibit a high level of spatial variability at a multiplicity of scales,
from the size of individual grains or pores, to facies, stratigraphic,
and hydrologic units, up to the sizes of formations. In spite of its
importance to a number of scientific disciplines—including the
management and protection of groundwater resources, the reposi-
tion of nuclear wastes, the recovery of hydrocarbons, and the
sequestration of excessive carbon—understanding physical flow
and chemical reactions in heterogeneous geological media and
their interplay remains a challenge. Moreover, in modeling geo-
logical systems, different physical processes need to be consid-
ered on different spatial and temporal scales, and may require
different models and data. The spatial variability in the physical
and geochemical properties of formations, together with measure-
ment limitations, leads to uncertainty in describing medium prop-
erties, which in turn motivates the need for stochastic treatment of
flow and reactive transport in such media. Thus, in modeling com-
plex flow processes in porous media, it is essential for one to be
able to apply accurate and efficient algorithms that can be
enhanced to treat multiscale and stochastic models.

In this paper, we discuss the development of a family of numer-
ical schemes for modeling Darcy flow—the MFMFE methods.
The MFMFE methods allow for an accurate and efficient treatment
of irregular geometries and heterogeneities such as faults, layers,
and pinchouts that require highly distorted grids and discontinuous
coefficients. More precisely, these schemes are shown to be cell-
centered discretizations, and to have convergent pressures and
velocities on general hexahedral and simplicial grids.

The development of the MFMFE methods has been motivated
by the multipoint-flux approximation (MPFA) methods (Aavats-
mark 2002; Aavatsmark et al. 1998a; Edwards and Rogers 1998;
Edwards 2002). In the MPFA finite-volume framework, subedge
(subface) fluxes are introduced, which allows for local flux elimi-
nation and reduction to a cell-centered scheme. Similar elimina-
tion is achieved in the MFMFE variational framework, by
employing appropriate finite-element spaces and special quadra-
ture rules. Our approach is based on the BDM1 (Brezzi et al.
1985) or the BDDF1 (Brezzi et al. 1987) spaces with a trapezoidal
quadrature rule applied on the reference element [see also
Wheeler and Yotov (2006), Ingram et al. (2010), Wheeler et al.
(2012b)]. We refer to Brezzi et al. (2006) for a similar approach
on simplicial grids, as well as to Klausen and Winther (2006a, b)
for a related work on quadrilateral grids using a broken Raviart-
Thomas space, and to Aavatsmark et al. (2007) and Klausen et al.
(2008) for papers using both approaches. There are also papers
studying connections between the MPFA method and the lowest-
order Raviart-Thomas RT0 mixed-finite-element method. In Voh-
ralı́k (2006), it is shown that on triangles the latter can be reduced
to a nonsymmetric MPFA method without numerical quadrature.
In Younes and Fontaine (2008), this method is compared numeri-
cally to our method from Wheeler and Yotov (2006) based on
BDM1 spaces and numerical quadrature, which leads to a sym-
metric and positive definite (SPD) formulation [see also Friis
et al. (2008) for a related SPD finite-volume formulation on trian-
gles]. On quadrilaterals, connections between the MPFA method
and the RT0 mixed-finite-element method with quadrature are
investigated in Edwards (2002) and Edwards and Pal (2008).

We remark that because the MFMFE methods can be viewed in
a variational framework as mixed finite elements, multiscale and
multiphysics extensions such as the mortar mixed-finite-element
methods (Arbogast et al. 2000, 2007; Wheeler et al. 2012c) and the
enhanced-velocity method (Wheeler et al. 2002) allow for multi-
scale approximations, treatment of nonmatching grids, and coupling
of different numerical algorithms and different physics in adjacent
subdomains. The multiblock variational framework is useful in
designing optimal parallel solvers that use efficient interface multi-
scale bases as interface preconditioners and subdomain solvers such
as algebraic multigrid. These approaches have also been shown to
be convergent and efficient when applying stochastic methods for
uncertainty analyses (Ganis and Yotov 2009; Wheeler et al. 2011)
and applying the MFMFE methods for multiscale modeling of non-
linear-flow problems in porous media (Wheeler et al. 2010a).

In this paper, we illustrate the behavior of the MFMFE method on
quadrilateral and hexahedral grids applied to modeling single-phase
and multiphase flow in porous media. Hexahedral grids are typically
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encountered in geological models and can represent highly irregular
geometries with fewer elements than tetrahedral grids. In the case of
steady single-phase Darcy flow, we present examples that indicate
first-order convergence of the face fluxes on rough grids and second-
order convergence on smooth grids. We also show that an effective
post-processing procedure can be employed that gives first-order
velocities in the element interior. The variational formulation of the
MFMFE method allows one to use a posteriori error estimates devel-
oped for mixed-finite-element-type discretizations (Pencheva et al.
2010) in adaptive mesh-refinement simulations. We present an
example illustrating the effectiveness of such an estimator.

We next extend the MFMFE method to single-phase, slightly
compressible Darcy flow and perform a grid refinement study that
confirms convergence of the method for this nonlinear time-
dependent problem. We also illustrate the flexibility of the
MFMFE method to model realistic subsurface geometries by pre-
senting a simulation on the reservoir from the Brugge benchmark
project (Peters et al. 2010).

Finally, we develop a splitting scheme for two-phase flow in
porous media that allows us to apply the MFMFE method for the
pressure equation and a discontinuous Galerkin or a finite-volume
method for the saturation equation [see also Hoteit and Firooza-
badi (2008) and Sun and Wheeler (2011)* for related work on
coupled RT0 mixed finite elements and discontinuous Galerkin].
The postprocessing procedure mentioned previously provides
accurate velocities in the interior of the gridblocks that are needed
for second-order approximation of the saturations. The reader is
referred to Aavatsmark et al. (1998b) and Edwards (2006) for
related approaches to modeling multiphase Darcy flow using con-
trol volume discretizations. We present two-phase flow simula-
tions for highly heterogeneous reservoirs, as well as for coupled
rock types with different capillary pressures.

The remainder of the paper is organized as follows: Formulation
of the MFMFE method, theoretical convergence, and computational
results for single-phase Darcy flow are described in the next section.
Subsequent sections are devoted to extensions of the MFMFE
approach to slightly compressible single-phase flow and multiphase
flow, respectively, before conclusions are presented in a final section.

Accurate Cell-Centered Discretizations on
Hexahedral and Simplicial Grids

Consider a single-phase Darcy flow on a domain X � Rd ,
d ¼ 2; 3, with a Lipschitz continuous boundary

u ¼ �Krp in X; ð1Þ

r � u ¼ f in X; ð2Þ

p ¼ 0 on @X; ð3Þ

where u is the Darcy velocity, p is the pressure, and K is a sym-
metric, uniformly positive definite tensor with L1ðXÞ components
representing the rock permeability divided by the fluid viscosity.
The choice of homogeneous pressure boundary conditions is
made for simplicity of the presentation; other boundary conditions
can also be treated. The weak formulation of Eqs. 1 through 3
reads: find u 2 Hðdiv; XÞ and p 2 L2ðXÞ, such that

ðK�1u; vÞ � ðp;r � vÞ ¼ 0; 8v 2 Hðdiv; XÞ; ð4Þ

ðr � u;wÞ ¼ ð f ;wÞ; 8w 2 L2ðXÞ; ð5Þ

where Hðdiv; XÞ :¼ fv 2 ðL2ðXÞÞd : r � v 2 L2ðXÞg and ð�; �Þ
denotes the inner product in L2ðXÞ.

Definition of the MFMFE Method. MFMFE methods have
been developed and analyzed in Wheeler and Yotov (2006),
Ingram et al. (2010), and Wheeler et al. (2012b, c) for simplicial,
quadrilateral, and hexahedral grids. The method is defined as fol-
lows: find uh 2 Vh and ph 2 Wh such that

ðK�1uh; vÞQ � ðph;r � vÞ ¼ 0; 8v 2 Vh; ð6Þ

ðr � uh;wÞ ¼ ð f ;wÞ; 8w 2 Wh; ð7Þ

There are two key ingredients in the method. The first is an appro-
priate choice of mixed-finite-element spaces (Vh and Wh) and
degrees of freedom. The second is a specific choice of the numeri-
cal integration rules for ð�; �ÞQ in Eq. 6. These two choices allow
for a flux variable defined at a vertex to be expressed by gridblock
pressures surrounding the vertex. This results in a nine-point or
27-point pressure stencil in logically rectangular 2D or 3D grids.

The quadrature rule (Eq. 15) can be symmetric or nonsymmet-
ric. We call the method a symmetric or nonsymmetric MFMFE
method based on the quadrature rule. The symmetric and nonsym-
metric MFMFE methods are closely related to the reference and
physical space MPFA methods, respectively (Aavatsmark 2002;
Aavatsmark et al. 2007; Edwards and Pal 2008). On smooth hexa-
hedral grids, both the symmetric and nonsymmetric MFMFE
methods give first-order accurate velocities and pressures, as well
as second-order accurate face fluxes and pressures at the cell cen-
ters (Wheeler and Yotov 2006; Ingram et al. 2010; Wheeler et al.
2012b). On highly distorted hexahedral grids with nonplanar faces
(Wheeler et al. 2012b), the convergence of the symmetric
MFMFE can deteriorate while the nonsymmetric MFMFE still
gives a first-order accuracy. On simplicial grids, the two quadra-
ture rules in Eq. 15 are the same because the Jacobian is a con-
stant matrix, and the method gives first-order accuracy for the
velocity and pressure. The nonsymmetric quadrature rule was first
proposed in Klausen and Winther (2006b) for quadrilateral grids.

In the remaining subsection, we discuss the two ingredients in
details.

Finite-Element Spaces. Let X be a polyhedral domain parti-
tioned into a union of finite elements (gridblocks) of characteristic
size h. The elements can be triangles or quadrilaterals in 2D, or
tetrahedra or hexahedra in 3D. In the following, we present the
method in 3D. Let us denote the partition by Th and assume that it
is shape-regular and quasiuniform (Ciarlet 2002). The velocity
and pressure finite-element spaces on any physical gridblock E
are defined, respectively, by the Piola transformation,

v$ v̂ : v ¼ 1

JE
DFEv̂ � F�1

E ;

and the scalar transformation,

w$ ŵ : w ¼ ŵ � F�1
E ;

where Ê is the reference cube or tetrahedron; FE denotes a trilin-
ear mapping or an affine mapping from Ê to E in the case of hexa-
hedral and simplicial grids, respectively; DFE is the Jacobian of
FE; and JE is its determinant. The Piola transformation preserves
the normal components of the vectors. The finite-element spaces
Vh and Wh on T h are given by

Vh ¼ fv 2 Hðdiv; XÞ : vjE $ v̂; v̂ 2 V̂ðÊÞ; 8E 2 T hg
Wh ¼ fw 2 L2ðXÞ : wjE $ ŵ; ŵ 2 ŴðÊÞ; 8E 2 T hg

� � � � � � � � � � � � � � � � � � � ð8Þ

where V̂ðÊÞ and ŴðÊÞ are finite-element spaces on the reference
element Ê.

On the reference cube, the spaces are defined by enhancing the
BDDF1 spaces (Ingram et al. 2010):

V̂ðÊÞ ¼ BDDF1ðÊÞ þ r2curlð0; 0; x̂2ẑÞT
þ r3curlð0; 0; x̂2ŷẑÞT

þ s2curlðx̂ŷ2; 0; 0ÞT
þ s3curlðx̂ŷ2ẑ; 0; 0ÞT
þ t2curlð0; ŷẑ2; 0ÞT
þ t3curlð0; x̂ŷẑ2; 0ÞT ;

ŴðÊÞ ¼ P0ðÊÞ;

ð9Þ
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where the BDDF1ðÊÞ space is defined as (Brezzi et al. 1987)

BDDF1ðÊÞ ¼ P1ðÊÞ3 þ r0curlð0; 0; x̂ŷẑÞT
þr1curlð0; 0; x̂ŷ2ÞT
þs0curlðx̂ŷẑ; 0; 0ÞT ;
þs1curlðŷẑ2; 0; 0ÞT
þt0curlð0; x̂ŷẑ; 0ÞT
þt1curlð0; x̂2ẑ; 0ÞT :

ð10Þ

In these equations, ri; si; tiði ¼ 0;…; 3Þ are real constants, Pk

denotes polynomials of degree at most k, and ðx̂; ŷ; ẑÞT denotes a
point in the reference element. The enhancement of the BDDF1

space is needed to obtain a space with four degrees of freedom
per face, rather than three in the original formulation. This allows
one to associate a degree of freedom with each vertex of the face,
which is needed in the reduction to a cell-centered pressure sten-
cil, as described later in this section.

On the reference tetrahedron, the spaces are chosen as the
BDM1 spaces (Brezzi et al. 1985):

V̂ðÊÞ ¼ P1ðÊÞ3;
ŴðÊÞ ¼ P0ðÊÞ:

ð11Þ

On the reference cube or tetrahedron, there are four or three
degrees of freedom (DOFs) per face, respectively. The DOFs are
chosen to be the normal components at the vertices. This choice
of DOF guarantees continuity of the normal component of the
velocity vector across element faces, which is needed for an
Hðdiv; XÞ-conforming velocity space, as required by Eq. 8.

A Quadrature Rule. The integration on a physical element is
performed by mapping to the reference element and choosing a
quadrature rule on Ê. Using the Piola transformation, we write
ðK�1�; �Þ in Eq. 4 as

ðK�1q; vÞE ¼
1

JE
DFT

EK�1ðFEðx̂ÞÞDFEq̂;v̂

� �
Ê

� ðMEq̂;v̂ÞÊ ;

where

ME ¼
1

JE
DFT

EK�1ðFEðx̂ÞÞDFE: ð12Þ

Define a perturbed fME as

fME ¼
1

JE
DFT

Eðr̂c;ÊÞK
�1

E DFE; ð13Þ

where r̂c;Ê is the centroid of Ê and KE denotes the mean of K on
E. In addition, denote the trapezoidal rule on Ê by Trapð�; �ÞÊ :

Trapðq̂;v̂ÞÊ �
jÊj
k

Xk

i¼1

q̂ðr̂iÞ � v̂ðr̂iÞ; ð14Þ

where fr̂igk
i¼1 are the vertices of Ê:

The symmetric quadrature rule is based on the original ME;
while the nonsymmetric one is based on the perturbed fME: The
quadrature rule on an element E is defined as

K�1q; v
� �

Q;E
�

Trap MEq̂; v̂ð ÞÊ¼
Êj j
k

Pk
i¼1ME r̂ið Þq̂ r̂ið Þ � v̂ r̂ið Þ;

symmetric;

Trap fMEq̂; v̂
� �

Ê
¼ Êj j

k

Pk
i¼1

fME r̂ið Þq̂ r̂ið Þ � v̂ r̂ið Þ;

nonsymmetric:

8>>>>><>>>>>:
� � � � � � � � � � � � � � � � � � � ð15Þ

Mapping back to the physical element E, we have the quadrature
rule on E as

K�1q;v
� �

Q;E �

1
k

Pk
i¼1 JE r̂ið ÞK�1

E q rið Þ � v rið Þ;
symmetric;

1
k

Pk
i¼1 JE r̂ið Þ DF�1

E

� �T
r̂ið ÞDFT

E r̂c;Ê

� �
K
�1

E q rið Þ � v rið Þ;
nonsymmetric:

8>>>>>>><>>>>>>>:
� � � � � � � � � � � � � � � � � � � ð16Þ

The nonsymmetric quadrature rule has certain critical properties
on the physical elements that lead to a convergent method on
rough hexahedra (Wheeler et al. 2012b).

The global quadrature rule on X is then given as

ðK�1q; vÞQ �
X
E2T h

ðK�1q; vÞQ;E:

Reduction to a Cell-Centered Pressure System. The choice of
trapezoidal quadrature rule implies that on each element, the ve-
locity DOFs associated with a vertex become decoupled from the
rest of the DOFs. As a result, the assembled velocity mass matrix
in Eq. 6 has a block-diagonal structure with one block per grid
vertex. The dimension of each block equals the number of veloc-
ity DOFs associated with the vertex. For example, this dimension
is 12 for logically rectangular hexahedral grids (see Fig. 1).
Inverting each local block in the mass matrix in Eq. 6 allows for
expressing the velocity DOF associated with a vertex in terms of
the pressures at the centers of the elements that share the vertex
(there are eight such elements in Fig. 1). Substituting these
expressions into the mass-conservation equation (Eq. 7) leads to a
cell-centered system for the pressures. The stencil is 27 points on
logically rectangular hexahedral grids. The local linear systems
and the resulting global pressure system are positive-definite and
therefore invertible for the symmetric MFMFE method and, under
a mild restriction on the shape regularity of the grids and/or the
anisotropy of the permeability, for the nonsymmetric MFMFE
method; see Eq. 21. The reader is referred to Wheeler and Yotov
(2006), Ingram et al. (2010), and Wheeler et al. (2010b) for fur-
ther details on the reduction to a cell-centered pressure system.

Convergence of the Symmetric MFMFE. We first introduce
some notations. Let Wk;1

T h
consist of functions / such that /jE 2

Wk;1ðEÞ for all E 2 T h. Here, k is a multiindex with integer com-
ponents and Wk;1ðEÞ denotes the Sobolev space of functions
whose derivatives of order k belong to L1ðEÞ. In addition, let

. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .

Fig. 1—Interactions of the velocity DOFs in the MFMFE method.
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k � kk be the norm in the Hilbert space HkðXÞ with functions
whose derivatives of order k belong to L2ðXÞ: The norm in L2ðXÞ
is denoted by k � k: Let X.ðZÞY denote that there exists a con-
stant C; independent of the mesh size h; such that X � ð�ÞCY:
The notation X�	Y means that both X.Y and XZY hold.

On simplicial grids, h2-perturbed parallelograms, and h2-per-
turbed parallelepipeds, the following convergence results have
been established for the symmetric MFMFE method.

Theorem 1 (Wheeler and Yotov 2006; Ingram et al. 2010). If

K�1 2 W1;1
T h

, then, the velocity uh and pressure ph of the symmet-

ric MFMFE method (Eqs. 6 and 7) satisfy

ku� uhk.hkuk1; ð17Þ

kr � ðu� uhÞk.hkr � uk1; ð18Þ

kp� phk.hðkuk1 þ kpk1Þ: ð19Þ

Convergence of the Nonsymmetric MFMFE. On simplicial grids,
h2-perturbed parallelograms, and h2-perturbed parallelepipeds, the
nonsymmetric MFMFE method has same order of accuracy as the
symmetric method. In addition, the nonsymmetric method has
first-order convergence for the velocity and pressure on general
quadrilaterals and for the face flux and pressure on general hexa-
hedra with nonplanar faces.

For the analysis of the nonsymmetric MFMFE method, we
require some properties of the bilinear form ðK�1�; �ÞQ defined on
the space Vh: Note that

ðK�1q; vÞQ ¼
X
E2T h

ðK�1q; vÞQ;E ¼
X
c2Ch

vT
c Mcqc; ð20Þ

where Ch denotes the set of corner or vertex points in T h,
vc :¼ fðv � neÞðxcÞgnc

e¼1, xc is the coordinate vector of Point c, and
nc is the number of faces (or edges in 2D) that share the vertex
Point c.

Lemma 1 (Wheeler et al. 2012b). Assume that Mc is uni-
formly positive definite for all c 2 Ch:

hdnTn.nTMcn; 8n 2 Rnc : ð21Þ

Then the bilinear form ðK�1�; �ÞQ is coercive in Vh and induces a
norm in Vh equivalent to the L2-norm:

ðK�1v; vÞQ�	kvk
2; 8v 2 Vh: ð22Þ

If in addition

nTMT
c Mcn.h2dnTn; 8n 2 Rnc ; ð23Þ

then the following Cauchy-Schwarz type inequality holds:

ðK�1q; vÞQ.kqkkvk; 8q; v 2 Vh; ð24Þ

Conditions in Eqs. 21 and 23 impose certain restrictions on the
element geometry and the anisotropy of the permeability tensor K
(Klausen and Winther 2006b; Lipnikov et al. 2009). We explore
these restrictions in our numerical experiments.

Theorem 2 (Wheeler et al. 2012b). Let K 2 W1;1
T h
ðXÞ and

K�1 2 W0;1ðXÞ: If Eqs. 21 and 23 hold, then the velocity uh and
the pressure ph of the nonsymmetric MFMFE method in Eqs. 6
and 7 satisfy

kPu� uhk þ kQhp� phk.hðjuj1 þ kpk2Þ; ð25Þ

where P is the canonical interpolation operator onto Vh and Qh is
the L2-orthogonal projection onto Wh:

This result further implies convergence of the computed nor-
mal velocity to the true normal velocity on the element faces.

First, define a norm for vectors in X based on the normal compo-
nents on the faces of T h:

kvk2
F h

:¼
X
E2T h

X
e2@E

jEj
jej kv � nek2

e ; ð26Þ

where jEj is the volume of E and jej is the area of e: This norm

gives an appropriate scaling of jXj1=2
for a unit vector.

Theorem 3 (Wheeler et al. 2012b). Let K 2 W1;1
T h
ðXÞ and

K�1 2 W0;1
T h
ðXÞ: If Eqs. 21 and 23 hold, then the velocity uh of

the nonsymmetric MFMFE method in Eqs. 6 and 7 satisfies

ku� uhkF h
.hðkuk1 þ kpk2Þ: ð27Þ

Numerical experiments confirming the theories are presented
in the Convergence Tests subsection.

Accurate Velocity Inside Hexahedra by Post-Processing. On
smooth hexahedra, the interpolation error ku�Puk is first-order
convergent (Ingram et al. 2010), which gives first-order accuracy
of ku� uhk also. On highly distorted hexahedra, the interpolation
error ku�Puk is not convergent (Naff et al. 2002; Wheeler et al.
2012a). A numerical example in the Convergence Tests subsec-
tion indicates that in such a case, ku� uhk does not have first-
order convergence. The nonsymmetric MFMFE method gives
accurate face velocities on general hexahedral grids—namely,
ku� uhkF h

has first-order convergence.
In multiphase-flow simulations, if one uses a finite-volume

method with a piecewise constant approximation for the satura-
tion equation, accurate face velocities are sufficient to give first-
order accurate saturations. For higher-order methods, for the satu-
ration equation such as the discontinuous Galerkin method with
piecewise linears, one needs accurate velocity in the interior of
the gridblocks—namely, the accuracy of ku� uhk (Lamine and
Edwards 2010). To achieve first-order accuracy for the velocity
inside hexahedra, we have introduced a post-processing technique
(Wheeler et al. 2012a). The extra computational cost is very
small, solving a 3
 3 local system in each gridblock.

Post-Processing. Theorem 3 states that the nonsymmetric
MFMFE method gives first-order accurate face velocities. We use
these face velocities as Neumann boundary conditions and solve
Eqs. 1 and 2 in each hexahedron E:

eu ¼ �Krep; in E; ð28Þ

r � eu ¼ f ; in E; ð29Þ

eu � nE ¼ uh � nE; on @E: ð30Þ

This problem is solvable because ofð
E

fdx ¼
ð
@E

uh � nEds; ð31Þ

which follows from the local conservation property (Eq. 7) of the
MFMFE method. We use the following mixed-finite-element
method to solve Eqs. 28 through 30.

Finite-Element Spaces on Hexahedra. The global finite-
element spaces are defined as in Eq. 8. It is sufficient to specify
the finite-element spaces on the reference element Ê: Choose the
velocity space V̂

�ðÊÞ as (Wheeler et al. 2012a)

V̂
�ðÊÞ ¼ BDDF1ðÊÞ

þR1

2
curlðx̂ŷ2; 0; 0ÞT þ R2

2
curlð0; ŷẑ2; 0ÞT

þR3

2
curlð0; 0; x̂2ẑÞT þ S1curlðx̂ŷ2ẑ; 0; 0ÞT

þ S2curlð0; x̂ŷẑ2; 0ÞT þ S3curlð0; 0; x̂2ŷẑÞT

þH1

2
curlðŷ2ẑ2; 0; 0ÞT þ H2

2
curlð0; x̂2ẑ2; 0ÞT

þH3

2
curlð0; 0; x̂2ŷ2ÞT ; � � � � � � � � ð32Þ
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. . . . . . . . . . . . . . .
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where Ri; Si; Hi; i ¼ 1;…; 3, are real constants. The DOFs for
û 2V̂

�ðÊÞ are
� ðû � n̂; q̂Þê ; 8q̂ 2 Q1ðêÞ
� ðû;r̂ÞÊ , 8r̂ 2R̂, where R̂ denotes the span of the vectors:

r̂1 :¼ ð0; 1=2� ẑ; ŷ � 1=2ÞT ;
r̂2 :¼ ð1=2� ẑ; 0; x̂ � 1=2ÞT ;
r̂3 :¼ ð1=2� ŷ; x̂ � 1=2; 0ÞT :

In addition to four velocity DOFs per face as in the space V̂ðÊÞ in an
earlier subsection, three DOFs inside the element are added to gain
accuracy in the L2 norm. In fact, the space V̂

�ðÊÞ is constructed by
adding one velocity DOF per face to the space developed in Falk
et al. (2011). For this reason, we call our space an enhanced FGM
space. For the pressure, the constant space ŴðÊÞ is employed.

We use the enhanced FGM finite-element method to solve
the problem in Eqs. 28 through 30: find PðuhÞ :¼ euh 2 V�h witheuh � n ¼ uh � n on @E and eph 2 WhðEÞ such that

ðK�1euh;vÞE � ðeph;r � vÞE ¼ 0; 8v 2 V�h;0ðEÞ; ð33Þ

ðr � euh;wÞE ¼ ð f ;wÞE; 8w 2 WhðEÞ; ð34Þ

where

V�h;0ðEÞ :¼ fv 2 V�hðEÞ j v � n ¼ 0 on @Eg: ð35Þ

By Eqs. 30, 31, and 35, the previous equations are equivalent to

ðK�1euh;vÞE ¼ 0; 8v 2 V�h;0ðEÞ; ð36Þ

which amounts to solving a 3
 3 linear system for the three
DOFs inside each hexahedral element E.

Theorem 4 (Wheeler et al. 2012a). The post-processed veloc-
ity PðuhÞ of Eqs. 33 and 34 satisfies

ku� PðuhÞk.hðjuj1 þ kpk2Þ: ð37Þ

Convergence Tests. We consider the problem in Eqs. 1 through
3 with a given analytical solution:

pðx; y; zÞ ¼ x2ðx� 1Þ2y2ðy� 1Þ2z3ð1� zÞ3;

and a full permeability tensor,

K ¼
2 1 1

1 2 1

1 1 x

0B@
1CA:

The computational domain is the unit cube ½0; 1
3. We take
x ¼ 10; 100; 1000 in order to explore the limitations of the non-
symmetric MFMFE method on distorted hexahedra and highly
anisotropic full-tensor permeabilities. We test both smooth and
rough grids in Examples 1 and 2, described later. We observed
that the coercivity condition (Eq. 21) was violated in some cases,
resulting in a singular algebraic problem. For each mesh, we
report results for the largest value of x among the three tested, for
which the nonsymmetric MFMFE method was positive definite.
The symmetric method was coercive in all cases, but exhibited
deterioration in the convergence on rough grids, as predicted by
the theory of Ingram et al. (2010). There have been a number of
studies in the literature on the limitations of the closely related
MPFA method on anisotropic grids and permeabilities. Some
modifications of the MPFA method with improved coercivity and
monotonicity properties have been developed, including methods
with compact stencils (Aavatsmark et al. 2008, 2010) or increased
pressure support (Edwards and Zheng 2008, 2010, 2011). These
approaches, as well as grid-smoothing techniques (https://www.
gridpro.com/) or adaptive grid refinement (Pencheva et al. 2010)
could be applied to the MFMFE method.

Example 1: Smooth Grids. We test convergence of face
velocities on smooth hexahedral grids. The sequence of hexahe-
dral meshes is generated using a smooth map of a uniform grid
given by

x ¼ x̂ þ 0:03sinð3px̂Þcosð3pŷÞcosð3pẑÞ;

y ¼ ŷ � 0:04cosð3px̂Þsinð3pŷÞcosð3pẑÞ;

z ¼ ẑ þ 0:05cosð3px̂Þcosð3pŷÞsinð3pẑÞ:

This mapping yields an h2-parallelepiped mesh, as shown in
Fig. 2. The face-velocity error ku� uhkF h

is plotted vs. the num-
ber of gridblocks for both the symmetric and the nonsymmetric
MFMFE methods. As the theory predicts, both methods give first-
order accuracy. In addition, we also report the convergence in the
discrete flux error

jku� uhjk2
F h
�
X
E2T h

X
e2@E

jEj 1

jej

ð
e

u � ne �
1

jej

ð
e

uh � ne

� �2

:

With this discrete face-velocity norm, we observe second-order
superconvergence, as shown in Fig. 2. Because of the smoothness
of the grid, the symmetric and the nonsymmetric MFMFE meth-
ods give very similar solution accuracy.

Example 2: Rough Grids. We test convergence of the face
velocities on rough hexahedral grids. Consider a sequence of hex-
ahedral meshes as shown in Fig. 3. The meshes are generated by
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10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

Number of elements

E
rr

or

Rate is 1
↓

Rate is 2 →

sym. face vel.
non-sym. face vel.
sym. aver. face vel.
non-sym. aver. face vel.

Fig. 2—Example 1: An h2-perturbed hexahedral mesh (left), and the convergence (right) of the face-velocity error ku� uhkFh
and

the average face-velocity error jku� uhkjFh
for the symmetric and nonsymmetric MFMFE methods (x5100).
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randomly perturbing each gridpoint (from uniform refinements)
within a cube with edge length 0:5h centered at the gridpoint.
This results in highly distorted nonconvex elements with nonpla-
nar faces. We test the convergence of the face velocities of both
the symmetric and the nonsymmetric MFMFE methods. In Fig. 3,
we plot ku� uhkF h

vs. the number of gridblocks. Clearly the con-
vergence of the symmetric method deteriorates. As Theorem 3
indicates, the face velocity of the nonsymmetric MFMFE method
has first-order convergence.

Example 3: Post-Processed Velocity. We test the convergence
of the post-processed cell velocity on rough hexahedral grids. Con-
sider a sequence of hexahedral meshes as shown in Fig. 4. These
meshes are considered in Falk et al. (2011) to find the smallest ve-
locity space that gives first-order approximation of the canonical
interpolation on a general hexahedra. We plot the following two
errors, ku� uhk and ku� PðuhÞk; with respect to the number of
gridblocks. As Theorem 4 predicts, we observe first-order conver-
gence for the post-processed velocity PðuhÞ. The convergence
ku� uhk deteriorates because of the missing three DOFs inside
each hexahedron.

Example 4: A Posteriori Error Estimation. The MFMFE
method can be used with an a posteriori error estimator that
guides an adaptive mesh-refinement algorithm. Such a strategy
leads to efficient and accurate approximations by resolving local

features of the solution, such as sharp gradients or singularities,
using a locally refined mesh.

We consider the a posterior error estimator developed in Pen-
cheva et al. (2010) for any locally conservative velocity field uh;

ku� uhka � inf
q2H1

0

kuh þ Krqka þ gR;

where kvka :¼ ðK�1v; vÞ1=2
and gR :¼

X
E2T h

CPh2
E

cK;E
kf �r�

n
uhk2

Eg
1=2: This estimator is fully computable without any hidden

constants. Here, CP is the Poincaré constant with respect to the ele-

ment E. For example, CP ¼
1

p2
on simplices and rectangular paral-

lelepipeds. cK;E is the smallest eigenvalue of the tensor K on E. In
practice, q is chosen as the Oswald interpolation of a post-processed
pressure eph; denoted IOSðephÞ: Computation of eph involves solving
a small linear algebraic system in each element. Here, we test the
accuracy of the error estimator by considering the same sequence of
meshes as in Example 1 with a full-tensor permeability:

K ¼
2 1:25 1:5

1:25 3 2

1:5 2 4

0B@
1CA;
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Fig. 3—Example 2: A randomly h-perturbed hexahedral mesh (left) and error (right) ku� uhkFh
in the symmetric and the nonsym-

metric MFMFE methods (x510).
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and a given analytic solution

pðx; y; zÞ ¼ sinðpxÞsinðpyÞsinðpzÞ:

In Fig. 5, we plot the exact error ku� uhka and the estimator
kuh þ KrðIOSðephÞÞka þ gR vs. the number of gridblocks. The
convergence rate of both the actual and estimated error is one.
The estimator is larger than the actual error, and the effective
index is measured by the ratio of the two. As the mesh is refined,
the effective index approaches 2.5, which indicates the robustness
of the estimator.

Example 5: Discontinuous Permeability. We consider a con-
vergence test on a benchmark problem (3D Benchmark, Finite
Volumes for Complex Applications VI) with a discontinuous per-
meability. The domain is a unit cube divided into the following
four regions:

I ¼ fðx; y; zÞ 2 ½0; 1
3 y � 0:5 and z � 0:5g;

II ¼ fðx; y; zÞ 2 ½0; 1
3 y > 0:5 and z � 0:5g;

III ¼ fðx; y; zÞ 2 ½0; 1
3 y > 0:5 and z > 0:5g;

IV ¼ fðx; y; zÞ 2 ½0; 1
3 y � 0:5 and z > 0:5g:

The permeability and pressure, respectively, are given as

K ¼

diagð1; 10; 0:01Þ in I

diagð1; 0:1; 100Þ in II

diagð1; 0:01; 10Þ in III

diagð1; 100; 0:1Þ in IV

8>>><>>>:
pðx; y; zÞ ¼

0:1sinð2pxÞsinð2pyÞsinð2pzÞ in I

10sinð2pxÞsinð2pyÞsinð2pzÞ in II

100sinð2pxÞsinð2pyÞsinð2pzÞ in III

0:01sinð2pxÞsinð2pyÞsinð2pzÞ in IV

8>>><>>>:
It is easy to check that the normal component of the velocity u ¼
�Krp is continuous across the interfaces. As in Example 1, the
hexahedral meshes are generated by the following map:

x ¼ x̂ þ 0:05 sinð2px̂Þcosð2pŷÞcosð2pẑÞ;
y ¼ ŷ � 0:06 cosð2px̂Þsinð2pŷÞcosð2pẑÞ;

z ¼ ẑ þ 0:07 cosð2px̂Þcosð2pŷÞsinð2pẑÞ:

Fig. 6 presents such a mesh. As the theory predicts, we
observe first-order convergence for both the face velocity and
pressure in Fig. 6.
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Computational Results for Slightly Compressible
Single-Phase Flow

Slightly compressible single-phase flow in porous media is gov-
erned by the mass-conservation equation,

@

@t
ð/qÞ þ r � u ¼ f ; ð38Þ

and Darcy’s law,

u ¼ �q
K

l
ðrp� qgÞ; ð39Þ

where u is the Darcy velocity, / is the porosity, f is the source
term, p is the pressure, K is the rock permeability, l is the kine-
matic viscosity, and g is the gravitational vector. The density q ¼
qðpÞ is given by

q ¼ qrefecðp�pref Þ; ð40Þ

where qref and pref are the reference density and pressure, respec-
tively, and c is the compressibility constant. For convenience, we
assume no-flow boundary conditions. The velocity space V0

h � Vh

is defined by

V0
h ¼ fv 2 Vhjv � n ¼ 0 on @Xg: ð41Þ

The source term is treated using the Peaceman correction
(1978).

Let 0 ¼ t0 < t1 < …; and sm ¼ tmþ1 � tm: We apply the back-
ward Euler implicit time scheme and the nonsymmetric MFMFE
for the space discretization. At time tmþ1, find umþ1

h 2 V0
h and

pmþ1
h 2 Wh such that

/
qðpmþ1

h Þ � qðpm
h Þ

sm
þ ðr � umþ1

h ;whÞ
¼ ðqmþ1;whÞ; w 2 Wh;

ð42Þ

l
qmþ1

K�1umþ1
h ; vh

� �
Q

� ðpmþ1
h ;r � vhÞ

� ðqmþ1g; vhÞ ¼ 0; 8v 2 V0
h :

ð43Þ

Newton’s method is used to solve the nonlinear system of equa-
tions arising from Eqs. 42 and 43. The x-axis is along the vertical
direction.

Example 1. The reservoir has a dimension of 300
900
900 ft.
An injection well with a bottomhole pressure of 1,600 psi is placed
between the coordinates ð0; 150; 150Þ and ð300; 150; 150Þ; and a
production well with a bottomhole pressure of 1,000 psi is placed
between the coordinates ð0; 750; 750Þ and ð300; 750; 750Þ. The
wells are all fully perforated in each layer. The permeability is
given as a diagonal tensor with values 50, 200, and 200 md in each
direction. Initially, the reservoir pressure is given by a hydrostatic
computation based on a pressure of 1,200 psi at the top.

We consider a sequence of mesh refinements given in Fig. 7.
The initial mesh has 1
 3
 3 gridblocks. We refine each ele-
ment by a half along the x-axis and by a third in the other two
directions. The finest level has approximately one million grid-
blocks ð16
 243
 243Þ: The gridpoints around the two wells are
generated by uniform refinements along the y- and z-axis. For the
remaining points, the y–z coordinates are generated by randomly
perturbing the gridpoints from uniform refinements. The x-coordi-
nates of the gridpoints are generated by a smooth mapping:

x ¼ x̂ þ 30cos
py

450

� �
cos

pz

450

� �
;

where x̂ is the x-coordinate of the gridpoint from the uniform
refinement. Because the resulting hexahedral meshes are highly
distorted, we employ the nonsymmetric MFMFE method intro-
duced in the second section. Fig. 8 shows the pressure and veloc-
ity field at Day 10 computed on a mesh with 3
21
21
gridblocks.

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . .

Fig. 7—Refinements of hexahedral gridblocks.

Fig. 8—Pressure (left) and velocity field (right) at Day 10.
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In Fig. 9, we report the total production rates under the differ-
ent mesh refinements. We use the total production rate obtained
on the finest level (16
243
243) as a reference solution. As the
grids are refined, we clearly observe convergence of the total pro-
duction rates to the reference curve.

The resulting linear algebraic system is solved using the soft-
ware HYPRE (high-performance preconditioners) developed by
researchers at Lawrence Livermore National Laboratory (https://
computation.llnl.gov/casc/hypre/software.html). Specifically, we
use the generalized minimum residual (GMRES) method with an
algebraic multigrid method as a preconditioner. The stopping cri-
teria for GMRES is relative residual less than 10�9: The numbers
of iterations reported in Table 1 indicate the robustness of the
solver with respect to refining the mesh.

Example 2. In this example, we illustrate the ability of the
MFMFE method to simulate flow on realistic irregular geometries
and heterogeneous media. We consider a hexahedral mesh; poros-
ity; and x-, y-, and z- permeability fields from the Brugge bench-
mark project (Peters et al. 2010) (Fig. 10). Both the permeabilities
and the porosity are highly heterogeneous. As with Example 1,
the pressure is initially given by the hydrostatic computation with
1,500 psi at the top of the reservoir. We specify three injection

wells with bottomhole pressure of 2,600 psi and eight production
wells with bottomhole pressure of 1,000 psi. The well locations
are indicated in Fig. 11. The pressure field for Days 10 and 100 is
also shown in Fig. 11.

Computational Results for Two-Phase Flow

We describe the incompressible two-phase-flow equations. Let a
denote either a wetting phase w or a nonwetting phase n. The
mass-conservation equation for the phase a reads

@

@t
ð/saÞ þ r � ua ¼ qa; a ¼ w; n; ð44Þ

where / is the porosity, sa is the phase saturation, and qa is a
source or sink term. The phase velocity ua is given by Darcy’s
law:

ua ¼ �kaKðrpa � qagÞ; ð45Þ

where K is the permeability, pa is the phase pressure, and qa is the
phase density. The phase mobility ka is defined as

kaðsaÞ ¼
kraðsaÞ

la
; ð46Þ

where la is the dynamic viscosity and kra is the relative perme-
ability. Also, the saturations satisfy the volume-balance equation,

sw þ sn ¼ 1; ð47Þ

and the capillary pressure is defined by

pc ¼ pn � pw: ð48Þ

The capillary pressure is usually a function of the wetting-phase
saturation determined by experiments.

Define the total velocity ut and the total mobility kt as

ut ¼ uw þ un; kt ¼ kw þ kn: ð49Þ

Using Eq. 45, the total velocity can be expressed as

ut ¼ �ktK rpw � qwgþ kn

kt
ðrpc � ðqn � qwÞgÞ

� �
:

� � � � � � � � � � � � � � � � � � � ð50Þ
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Fig. 9—Convergence of total production rate.

TABLE 1—AVERAGE NUMBERS OF GMRES ITERATIONS WITH AMG PRECONDITIONER

Mesh 2
9
9 4
27
27 8
81
81 16
243
243

Iterations 5 6 7 8

Fig. 10—Brugge data set: mesh, porosity, and permeabilities.

September 2012 SPE Journal 787



Summing Eq. 44 for the two phases gives

r � ut ¼ qw þ qn: ð51Þ

The primary variables are chosen to be the wetting-phase pressure
pw and the wetting-phase saturation sw: Then, Eq. 51 and the wet-
ting-phase equation (Eq. 44) give a closed system of equations
with an initial condition,

swðx; 0Þ ¼ s0; ð52Þ

and a no-flow boundary condition for the total velocity,

ut � n ¼ 0 on @X: ð53Þ

We use an iterative coupling approach (Lu 2008; Wheeler and
Xue 2010) to solve the pressure and saturation equations. At each
timestep, we first solve the wetting-phase pressure equation given
by Eqs. 50 and 51 using the latest saturation values, and then
solve Eq. 44 with a ¼ w: The pressure equation is solved implic-
itly, while the saturation is solved explicitly. The timestep for the
saturation is chosen to satisfy the CFL condition. As a result, the

timestep size for the saturation could be smaller than the pres-
sure’s size. The iteration is then repeated until the relative error of
local mass balances is smaller than a given tolerance. Fig. 12
presents a flow chart of the iterative coupling.

More precisely, at timestep mþ 1 and iterative coupling step
k þ 1,

umþ1;kþ1
t ¼ �kmþ1;k

t K
�
rpmþ1;kþ1

w þ Fðpmþ1;k
w ; smþ1;k

w Þ
�
;

� � � � � � � � � � � � � � � � � � � ð54Þ

r � umþ1;kþ1
t ¼ qmþ1;k

w þ qmþ1;k
n ; ð55Þ

where

Fðpw; swÞ :¼ �qwgþ kn

kt
ðrpc � ðqn � qwÞgÞ:

The saturation equation is solved explicitly; that is, for given

pmþ1;kþ1
w and smþ1;k

w ; smþ1;kþ1
w satisfies

/
smþ1;kþ1

w � sm
w

sm
¼ Gðpmþ1;kþ1

w ; smþ1;k
w Þ; ð56Þ

where

Gðpw; swÞ :¼ qw �r � uw:

We apply the MFMFE method to discretize Eqs. 54 and 55: find

pmþ1;kþ1
w and u

mþ1;kþ1
t ; with given smþ1;k

w ; such that

1

kmþ1;k
t

K�1umþ1;kþ1
t ; v

 !
Q

� ðpmþ1;kþ1
w ;r � vÞ

¼
�

Fðpmþ1;k
w ; smþ1;k

w Þ; v
�
; 8v 2 V0

h ; � � � � � � � � � � ð57Þ

ðr � umþ1;kþ1
t ;wÞ ¼ ðqmþ1;k

w þ qmþ1;k
n ;wÞ; 8w 2 Wh: ð58Þ

Recall that the MFMFE method gives a cell-centered scheme for
the pressure, because u

mþ1;kþ1
t has a local flux representation in

terms of pmþ1;kþ1
w : Thus, one does not need to solve a saddle-point

system.
Next, on the basis of pmþ1;kþ1

w ; umþ1;kþ1
w ; and smþ1;k

w ; we apply a
discontinuous Galerkin (DG) method and explicit forward Euler
method for the wetting-phase saturation (Eq. 56). The timestep
size is chosen to satisfy the CFL condition. In the numerical
experiments discussed in earlier subsections, the lowest-order DG
method, equivalent to a finite-volume method, with upwinding is
used.
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Fig. 12—Flow chart of iterative coupling.

Fig. 11—Well locations (left), pressure at Day 10 (middle), and pressure at Day 100 (right).
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In the following examples, the relative permeability of the
wetting and nonwetting phases is given as

Krw ¼ 0:9s2
e ; krn ¼ 0:5ð1� seÞ2;

where se is the effective saturation,

se ¼
sw � srw

1� srw � srn
; srw � sw � 1� srn:

Here, srw is the residual wetting-phase saturation and srn is the re-
sidual nonwetting-phase saturation.

In the following examples, the residual saturations are chosen
as srw ¼ 0:2 and srn ¼ 0:05: The iterative coupling stopping crite-
ria is that the local mass-balance errors for both the wetting and
nonwetting phases are smaller than 10�4: A uniform porosity is
chosen as 20%. The x-axis is along the vertical direction.

Example 1: Upscaled SPE10 Permeability on a Hexahedral

Mesh. This example is a 3D two-phase oil-/water-flow problem
with general hexahedral gridblocks and with upscaled SPE10 per-
meability. The maximum dimensions of the reservoir are
96
400
400 ft. The computational grid is 6
20
20. Harmonic
average is used in the upscaling of the permeability (see Fig. 13
for the permeability in the three directions). The permeability is
highly heterogeneous, with six-order-of-magnitude jumps.

Four injection wells are located at the four corner gridblocks.
A production well is placed at the center of the reservoir. The bot-

tomhole pressures at the injection wells and the production well
are kept constant at 1,600 psi and 1,000 psi, respectively.

Initially, the reservoir has constant water-phase saturation
sw ¼ 0:2: Given this initial saturation, the pressure field at t ¼ 0 is
determined by solving the nonlinear steady equation (Eqs. 50 and
51) with a no-flow boundary condition (Eq. 53). In this example,
the gravity and capillary effects are ignored.

The total simulation time is 200 days. Figs. 14 and 15 show
the pressure and saturation profiles, repectively, at Days 50, 100,
and 200. Clearly the flow is directed from the four corners to the
center with preferential directions within the high-permeability
zones.

Example 2: Heterogeneous Capillary Effect. In this example,
we consider a heterogeneous capillary effect in two-phase flow.
The reservoir consists of two different rock types (see Fig. 16).
Rock Type 1 has a low permeability of 52.6 md. Rock Type 2 has
a high permeability of 504 md. We employ a modified Brooks-
Corey function for modeling heterogeneous capillary pressures:

pcðseÞ ¼
pds
�1

k
c1 if 0 � se < sc1;

pds
�1

k
e if sc1 � se � sc2;

pds
�1

k
c2

1� se

1� sc2

if sc2 < se � 1;

8>>><>>>: ð59Þ

where the cutoff saturations sc1 and sc2 are chosen as 0:01 and
0:9; respectively. The displacement pressure pd and the pore-size-
distribution index k are given in Table 2. See Fig. 16 for the

. . . . . . . .

Fig. 13—Upscaled SPE10 permeability along the x-direction (left), the y-direction (middle), and the z-direction (right).

Fig. 14—Pressure field at Days 50, 100, and 200.

Fig. 15—Water-saturation field at Days 50, 100, and 200.
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capillary pressure curves for different rock types. In this example,
the gravity effect is ignored.

The computational domain is 700
500 ft. The origin of the x–y
coordinate system is located at the bottom left corner. The problem
consists of 3,500 gridblocks, with 70 gridblocks along the x-direc-
tion and 50 along the y-direction. There are two injection wells
and 10 production wells. The injection wells are located near the
top of the reservoir at coordinates ð345; 495Þ and ð355; 495Þ: Five
production wells are located along each side. The x-coordinates of

the left- and the right-side wells are 25 and 675, respectively. The
y-coordinates for each side are 25, 125, 225, 325, and 425. The res-
ervoir contains water and oil. Initially, the water saturation is 20%.
Water is injected at bottomhole pressure of 1,600 psi. The bottom-
hole pressure at the production wells is 1,000 psi.

We run simulations for two cases—with and without capillary
effects. Fig. 17 shows the water-saturation profiles when ignoring
the capillary pressure. In this case, the front is very diffused.
Fig. 18 shows strong capillary effects. Water is injected from the
low-permeability rock. When the water front first reaches the inter-
face between low- and high-permeability rocks, it cannot penetrate
into the high-permeability rock. This is because of the dominance
of the capillary pressure at low water saturation. As water builds
up at the interface, the capillary pressures become smaller and the
water starts to invade the high-permeability zone. Similarly, the
capillary pressure causes water in the high-permeability zone to
invade easily the low-permeability zone. Note that the saturation is
discontinuous across the interfaces because of the different capil-
lary pressure curves in the two rocks.

20 40 60 80 100
0

200

400

600

800

% Saturation

C
ap

ill
ar

y 
pr

es
su

re

type 1
type 2

Fig. 16—Permeability (left) and capillary pressure curves (right).

TABLE 2—DISPLACEMENT PRESSURE AND PORE-SIZE

DISTRIBUTION INDEX

Rock Type pd k

Type 1 135 2.49

Type 2 37.7 3.86

Fig. 17—Zero capillary pressure: Water saturation at Days 6, 14, 20, 58, 76, 94, 110, 158, and 178.
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Conclusions

We presented an accurate and efficient cell-centered discretization
method, the MFMFE method, for Darcy flow on general hexahe-
dral and simplicial grids. The method exhibits first-order conver-
gence on rough grids and second-order convergence on smooth
grids. The method has been extended to solving the pressure equa-
tion in a two-phase-flow system, coupled with a DG method for the
saturation equation. Local post-processing can be applied to obtain
accurate velocities in the interior of the gridblocks needed for
higher-order transport. The variational formulation of the method
allows for multiscale and multiphysics extensions. Employing a
posteriori error estimation and efficient preconditioners for the
algebraic system leads to a robust computational framework that
provides accurate approximations of complex flows in highly het-
erogeneous media.

Nomenclature

d ¼ dimension
DFE ¼ Jacobian matrix

e ¼ edge in 2D and face in 3D
E ¼ gridblock

f,q ¼ external source
FE ¼ mapping from reference to physical gridblock

g ¼ gravitational constant vector
JE ¼ determinant of Jacobian matrix
kra ¼ relative permeability of phase a
K ¼ permeability tensor
n ¼ nonwetting phase
n ¼ unit normal vector
p ¼ pressure

pc ¼ capillary pressure
pd ¼ entry pressure

P0,P1 ¼ polynomial spaces of order 0 and 1
P ¼ post-processing operator

Qh ¼ interpolation operator
R ¼ Cartesian space
s ¼ saturation

srn ¼ residual saturation for non-wetting phase n

srw ¼ residual saturation for wetting phase w
t ¼ time

Th ¼ partition of the domain
u ¼ darcy velocity
ut ¼ total velocity

v, q,w ¼ test functions
Vh, Wh ¼ finite-element spaces

w ¼ wetting phase
a ¼ phase

ka ¼ mobility of phase a
kt ¼ total mobility
l ¼ viscosity
P ¼ interpolation operator
q ¼ density
s ¼ timestep size
/ ¼ porosity
X ¼ domain of the problem

Subscripts

F h ¼ face norm
h ¼ characteristic mesh size
n ¼ nonwetting phase
Q ¼ numerical quadrature
w ¼ wetting phase
a ¼ phase

Superscripts

d ¼ dimension
E ¼ gridblock

m, k ¼ integer indicies

Acknowledgments

Mary F. Wheeler is supported by the NSF-CDI under contract
number DMS 0835745, DOE grant DE-FG02-04ER25617, and
the Center for Frontiers of Subsurface Energy Security under
Contract No. DE-SC0001114. Guangri Xue is supported by

Fig. 18—With capillary pressure: Water saturation at Days 6, 14, 20, 58, 76, 94, 110, 158, and 178.

September 2012 SPE Journal 791



Award No. KUS-F1-032-04, made by the King Abdullah Univer-
sity of Science and Technology. Ivan Yotov is partially supported
by the DOE grant DE-FG02-04ER25618, the NSF grant DMS
0813901, and the J. Tinsley Oden Faculty Fellowship, Institute
for Computational Engineering and Sciences, University of Texas
at Austin.

References

Aavatsmark, I. 2002. An Introduction to Multipoint Flux Approximations

for Quadrilateral Grids. Comput. Geosci. 6 (3–4): 405–432. http://

dx.doi.org/10.1023/A:1021291114475.

Aavatsmark, I., Barkve, T., and Mannseth, T. 1998b. Control-Volume Dis-

cretization Methods for 3D Quadrilateral Grids in Inhomogeneous,

Anisotropic Reservoirs. SPE J. 3 (2): 146–154. SPE-38000-PA. http://

dx.doi.org/10.2118/38000-PA.

Aavatsmark, I., Barkve, T., Bøe, Ø., and Mannseth, T. 1998a. Discretiza-

ton on unstructured grids for inhomogeneous, anisotropic media. Part

II: Discussion And Numerical Results. SIAM J. Sci. Comput. 19 (5):

1717–1736. http://dx.doi.org/10.1137/S1064827595293594.

Aavatsmark, I., Eigestad, G.T., Heimsund, B.-O., Mallison, B., Nordbot-

ten, J.M., and Øian, E. 2010. A New Finite-Volume Approach to Effi-

cient Discretization on Challenging Grids. SPE J. 15 (3): 658–669.

SPE-106435-PA. http://dx.doi.org/10.2118/106435-PA.

Aavatsmark, I., Eigestad, G.T., Klausen, R.A., Wheeler, M.F., and Yotov,

I. 2007. Convergence of a symmetric MPFA method on quadrilateral

grids. Comput. Geosci. 11 (4): 333–345. http://dx.doi.org/10.1007/

s10596-007-9056-8.

Aavatsmark, I., Eigestad, G.T., Mallison, B.T., and Nordbotten, J.M.

2008. A compact multipoint flux approximation method with im-

proved robustness. Numerical Methods for Partial Differential Equa-
tions 27 (5): 1329–1360. http://dx.doi.org/10.1002/num.20320.

Arbogast, T., Cowsar, L.C., Wheeler, M.F., and Yotov, I. 2000. Mixed Fi-

nite Element Methods on Nonmatching Multiblock Grids. SIAM J.

Numer. Anal. 37 (4): 1295–1315. http://dx.doi.org/10.1137/

s0036142996308447.

Arbogast, T., Pencheva, G., Wheeler, M.F., and Yotov, I. 2007. A Multi-

scale Mortar Mixed Finite Element Method. Multiscale Modeling &

Simulation 6 (1): 319–346. http://dx.doi.org/10.1137/060662587.

Brezzi, F., Douglas, J., and Marini, L.D. 1985. Two families of mixed fi-

nite elements for second order elliptic problems. Numerische Mathe-
matik 47 (2): 217–235. http://dx.doi.org/10.1007/bf01389710.

Brezzi, F., Douglas, J., Durán, R., and Fortin, M. 1987. Mixed finite ele-

ments for second order elliptic problems in three variables. Numeri-

sche Mathematik 51 (2): 237–250. http://dx.doi.org/10.1007/

bf01396752.

Brezzi, F., Fortin, M. and Marini L. D. 2006. Error analysis of piecewise

constant pressure approximations of Darcy’s law. Comput. Methods

Appl. Mech. Eng. (195), 1547–1559.

Ciarlet, P.G. 2002. The Finite Element Method for Elliptic Problems, sec-

ond edition, No. 40. Philadelphia, Pennsylvania: Classics in Applied

Mathematics, SIAM.

Edwards, M.G. 2002. Unstructured, Control-Volume Distributed, Full-

Tensor Finite Volume Schemes with Flow Based Grids. Comput. Geo-
sci. 6 (3–4): 433–452. http://dx.doi.org/10.1023/A:1021243231313.

Edwards, M.G. 2006. Higher-resolution hyperbolic-coupled-elliptic flux-

continuous CVD schemes on structured and unstructured grids in 3-D.

Int. J. Numer. Methods Fluids 51 (9–10): 1079–1095. http://

dx.doi.org/10.1002/fld.1289.

Edwards, M.G. and Pal, M. 2008. Positive-definite q-families of continu-

ous subcell Darcy-flux CVD(MPFA) finite-volume schemes and the

mixed finite element method. Int. J. Numer. Methods Fluids 57 (4):

355–387. http://dx.doi.org/10.1002/fld.1586.

Edwards, M.G. and Rogers, C.F. 1998. Finite volume discretization with

imposed flux continuity for the general tensor pressure equation.

Comput. Geosci. 2 (4): 259–290. http://dx.doi.org/10.1023/

A:1011510505406.

Edwards, M.G. and Zheng, H. 2008. A quasi-positive family of continuous

Darcy-flux finite-volume schemes with full pressure support. J.

Comput. Phys. 227 (22): 9333–9364. http://dx.doi.org/10.1016/

j.jcp.2008.05.028.

Edwards, M.G. and Zheng, H. 2010. Double-families of quasi-positive

Darcy-flux approximations with highly anisotropic tensors on struc-

tured and unstructured grids. J. Comput. Phys. 229 (3): 594–625.

http://dx.doi.org/10.1016/j.jcp.2009.09.037.

Edwards, M.G. and Zheng, H. 2011. Quasi M-Matrix Multifamily Contin-

uous Darcy-Flux Approximations with Full Pressure Support on Struc-

tured and Unstructured Grids in Three Dimensions. SIAM Journal

on Scientific Computing 33 (2): 455–487. http://dx.doi.org/10.1137/

080745390.

Falk, R.S., Gatto, P., and Monk, P. 2011. Hexahedral H(div) and H(curl)

finite elements. ESAIM: Mathematical Modelling and Numerical Anal-

ysis 45 (01): 115–143. http://dx.doi.org/doi:10.1051/m2an/2010034.

Friis, H.A., Edwards, M.G., and Mykkeltveit, J. 2008. Symmetric Positive

Definite Flux-Continuous Full-Tensor Finite-Volume Schemes on

Unstructured Cell-Centered Triangular Grids. SIAM Journal on Scientific
Computing 31 (2): 1192–1220. http://dx.doi.org/10.1137/070692182.

Ganis, B. and Yotov, I. 2009. Implementation of a mortar mixed finite ele-

ment method using a Multiscale Flux Basis. Comput. Meth. Appl.

Mech. Eng. 198 (49–52): 3989–3998. http://dx.doi.org/10.1016/

j.cma.2009.09.009.

Hoteit, H. and Firoozabadi, A. 2008. Numerical modeling of two-phase

flow in heterogeneous permeable media with different capillarity pres-

sures. Adv. Water Resour. 31 (1): 56–73. http://dx.doi.org/10.1016/

j.advwatres.2007.06.006.

Ingram, R., Wheeler, M.F., and Yotov, I. 2010. A Multipoint Flux Mixed

Finite Element Method on Hexahedra. SIAM J. Numer. Anal. 48 (4):

1281–1312. http://dx.doi.org/10.1137/090766176.

Klausen, R.A. and Winther, R. 2006a. Convergence of multipoint flux

approximations on quadrilateral grids. Numerical Methods for Partial
Differential Equations 22 (6): 1438–1454. http://dx.doi.org/10.1002/

num.20158.

Klausen, R.A. and Winther, R. 2006b. Robust convergence of multi point

flux approximation on rough grids. Numerische Mathematik 104 (3):

317–337. http://dx.doi.org/10.1007/s00211-006-0023-4.

Klausen, R.A., Radu, F.A., and Eigestad, G.T. 2008. Convergence of

MPFA on triangulations and for Richards’ equation. Int. J. Numer.
Methods Fluids 58 (12): 1327–1351. http://dx.doi.org/10.1002/

fld.1787.

Lamine, S. and Edwards, M.G. 2010. Higher Order Multidimensional

Upwind Convection Schemes for Flow in Porous Media on Structured

and Unstructured Quadrilateral Grids. SIAM J. Sci. Comput. 32 (3):

1119–1139. http://dx.doi.org/10.1137/080727750.

Lipnikov, K., Shashkov, M., and Yotov, I. 2009. Local flux mimetic finite

difference methods. Numerische Mathematik 112 (1): 115–152. http://

dx.doi.org/10.1007/s00211-008-0203-5.

Lu, B. 2008. Iteratively coupled reservoir simulation for multiphase flow
in porous media. PhD dissertation, The University of Texas at Austin,

Austin, Texas (December 2008).

Naff, R.L., Russell, T.F., and Wilson, J.D. 2002. Shape Functions for Ve-

locity Interpolation in General Hexahedral Cells. Comput. Geosci.

6 (3): 285–314. http://dx.doi.org/10.1023/a:1021218525861.

Peaceman, D.W. 1978. Interpretation of Well-Block Pressures in Numeri-

cal Reservoir Simulation. SPE J. 18 (3): 183–194. SPE-6893-PA.

http://dx.doi.org/10.2118/6893-PA.

Pencheva, G., Vohralı́k, M., Wheeler, M., and Wildey, T. 2010. Robust a

posteriori error control and adaptivity for multiscale, multinumerics,

and mortar coupling. Technical Report 10-15, University of Texas at

Austin, Institute for Computational Engineering and Sciences (ICES),

Austin, Texas.

Peters, L., Arts, R.J., Brouwer, G.K., et al. 2010. Results of the Brugge

Benchmark Study for Flooding Optimization and History Matching.

SPE Res Eval & Eng 13 (3): 391–405. SPE-119094-PA. http://

dx.doi.org/10.2118/119094-PA.

Vohralı́k, M. 2006. Equivalence between lowest-order mixed finite ele-

ment and multi-point finite volume methods on simplicial meshes.

ESAIM: Mathematical Modelling and Numerical Analysis 40 (02):

367–391. http://dx.doi.org/doi:10.1051/m2an:2006013.

Wheeler, J.A., Wheeler, M.F., and Yotov, I. 2002. Enhanced Velocity

Mixed Finite Element Methods for Flow in Multiblock Domains.

Comput. Geosci. 6 (3): 315–332. http://dx.doi.org/10.1023/

a:1021270509932.

792 September 2012 SPE Journal



Wheeler, M., Xue, G., and Yotov, I. 2012a. Local velocity postprocessing

for multipoint flux methods on general hexahedra. Int. J. Numer. Anal.
Model. 9(3): 607–627.

Wheeler, M.F. and Xue, G. 2010. Accurate Locally Conservative Discreti-

zations for Modeling Multiphase Flow in Porous Media on General

Hexahedra Grids. Presented at the 12th European Conference on the

Mathematics of Oil Recovery (ECMOR XII), Oxford, UK, Sep. 6–9.

Wheeler, M.F. and Yotov, I. 2006. A multipoint flux mixed finite element

method. SIAM J. Sci. Comput. 44 (5): 2082–2106. http://dx.doi.org/

10.1137/050638473.

Wheeler, M.F., Wildey, T., and Xue, G. 2010a. Efficient algorithms for

multiscale modeling in porous media. Numerical Linear Algebra with
Applications 17 (5): 771–785. http://dx.doi.org/10.1002/nla.742.

Wheeler, M.F., Wildey, T., and Yotov, I. 2011. A multiscale precondi-

tioner for stochastic mortar mixed finite elements. Comput. Meth.

Appl. Mech. Eng. 200 (9–12): 1251–1262. http://dx.doi.org/10.1016/

j.cma.2010.10.015.

Wheeler, M.F., Xue, G., and Yotov, I. 2012b. A multipoint flux mixed fi-

nite element method on distorted quadrilaterals and hexahedra.

Numerische Mathematik 121 (1): 165-204.

Wheeler, M.F., Xue, G., and Yotov, I. 2012c. A multiscale mortar multi-

point flux mixed finite element method. Mathematical Modeling and
Numerical Analysis 46 (4): 759-796. http://dx.doi.org/10.1051/m2an/

2011064.

Younes, A. and Fontaine, V. 2008. Hybrid and multi-point formulations of the

lowest-order mixed methods for Darcy’s flow on triangles. Int. J. Numer.

Methods Fluids 58 (9): 1041–1062. http://dx.doi.org/10.1002/fld.1785.

Mary Wheeler is a professor of aerospace engineering and en-
gineering mechanics, as well as a professor of petroleum and
geosystems engineering, at the University of Texas, as well as

the Director of the Center for Subsurface Modeling at that
institution. Wheeler’s research interests include numerical solu-
tion of partial differential systems with application to the mod-
eling of subsurface and surface flows and parallel
computation. Wheeler holds BA and MA degrees, both in
mathematics, from the University of Texas at Austin and a PhD
degree in mathematics from Rice University.

Guangri Xue is a research scientist at Shell International Explo-
ration and Production. Prior to joining Shell, he worked at the
Institute for Computational Engineering and Sciences at the
University of Texas at Austin as a research associate, and
worked at the Lawrence Livermore National Laboratory as a
visiting scientist on scalable algebraic multigrid solvers for
computational fuel-cell dynamics. His specialization includes
reservoir simulation, advanced discretization, upscaling and
multiscale modeling, and solvers. He holds a PhD degree in
applied and computational mathematics from the Pennsylva-
nia State University.

Ivan Yotov is Professor and Chair of the Department of Mathe-
matics at the University of Pittsburgh. His research interests
are in numerical analysis of partial differential equations and
large-scale scientific computing with applications to flow in
porous media, computational fluid dynamics, and biomedical
problems. His recent work spans stochastic modeling and
uncertainty quantification, multiscale modeling of multiphysics
systems, advanced discretizations, scalable parallel algo-
rithms, and adaptive mesh-refinement methods. He held a
postdoctoral position at the Institute for Computational Engi-
neering and Sciences at the University of Texas at Austin
before joining the University of Pittsburgh in 1998. He has auth-
ored or co-authored more than 60 scientific papers. Yotov
holds a PhD degree in computational and applied mathe-
matics from Rice University.

September 2012 SPE Journal 793


