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Abstract

We consider a fully-implicit formulation for two-phase flow in a porous medium with capillarity, gravity,
and compressibility in three dimensions. The method is implicit in time and uses the multiscale mortar
mixed finite element method for spatial discretization in a non-overlapping domain decomposition
context. The interface conditions between subdomains are enforced in terms of Lagrange multiplier
variables defined on a mortar space. There are two novelties in our approach: first, we linearize the
coupled system of subdomain and mortar variables simultaneously to form a global Jacobian and
eliminate variables by taking Schur complements; and second, we adapt a two-stage preconditioning
strategy to solve the resulting formulation. The new formulation exploits the local invertibility of mortar
block matrices to obtain a system with subdomain variables as unknowns. The two-stage preconditioner
uses the Householder transformation to decouple the pressure and saturation variables for each grid block.
This allows the elliptic equation for the pressure and hyperbolic equation for the saturation to be solved
in a decoupled manner. The algorithm is fully parallel and numerical tests show the low computational
costs of eliminating the mortar variables to obtain the final Jacobian matrices. We have demonstrated
parallel scalability using our two-stage preconditioner on large-scale heterogeneous two-phase reservoir
simulation problems with over 10 million elements and over 1000 processors.

Introduction
This work deals with a novel approach for solving the two-phase fully implicitly in a domain decompo-
sition framework. Driven by the energy security and environmental implications, there has been an
intensive effort in developing algorithms for accurate simulations for multiphase flow in porous media.
Domain decomposition based methods provide a computationally efficient way to deal with the presence
of multiple scales and heterogeneities present in the geological systems (Toselli and Widlund, 2005). Our
approach develops a new approach to solve the two-phase flow problem using Multiscale Mortar Mixed
Finite Element Method (MMMFEM) (Arbogast, et al. 2000, Arbogast, et al. 2007). This is a non-
overlapping domain decomposition based method and adopts a “divide and conquer” strategy in which a
reservoir domain is divided into subdomains where independent flow equations are solved with the



coupling achieved through the interface (or mortar) variables. The choice of mixed finite element method
allows an accurate computation of flux and ensures local mass conservation (Arbogast et al. 1997, Brezzi
and Fortin 1991, Dawson, et al. 1997). A multiscale mortar method provides an independent but fine
discretization of subdomains coupled to a coarse mesh on interfaces. The flexibility of discretization
allows an adaptive refinement around wells and channels. Moreover, the interfaces may conform to the
geological features such as faults and fractures.

Recently, we have developed a global Jacobian approach for solving nonlinear flow equations for both
single and two-phase flow models for MMMFEM (Ganis, et al. 2014a, Ganis, et al. 2014b). The main idea
in this approach is to linearize the global system in both subdomain and interface variables simultaneously
to yield a single Newton iteration. At this stage, we eliminate the flux variables and interface unknowns
by taking appropriate Schur complements. As it has been shown in our previous work, this algorithm
provides an efficient approach for solving the nonlinear single and two-phase flow equations.

This approach is in contrast with the earlier approach for solving nonlinear flow problems in a
non-overlapping domain decomposition framework, where a coarse scale nonlinear interface problem is
solved. The interface Jacobian is numerically approximated using finite difference (FD) and at each
Newton interface iteration the nonlinear subdomain problem is solved using Newton method (Yotov 2001,
Peszynska, et al. 2002, Ganis, et al. 2012). This leads to a nested Newton approach with four nested linear
iterations and requires selection of five progressively tighter tolerances for convergence.

This work develops an efficient parallel two-stage based preconditioner for fully-implicit multiphase
flow using a multiscale mortar discretization with the linear system obtained as a result of global
linearization. The existing two-stage preconditioners are applicable for single domain case (Lacroix, et al.
2003, Wallis et al. 1985, Vassilevski 1984, Cao et al. 2005). Therefore, they need to be adapted to our case
when mortar variables are also unknowns. In principle, it is possible to treat the entire Jacobian matrix and
introduce such a preconditioner to work on the entire matrix. However, the most straightforward way to
apply this preconditioner is to take a Schur complement and eliminate the mortar variables and obtain a
global system of pressure and saturation. In Figure 1, we show the sparsity pattern and non-zero elements
of the Jacobian matrix. The elimination of mortar variables requires an inversion of J�� blocks of
matrices. As Figure 1 shows these blocks are small in size and are decoupled and hence, a direct inversion
may seem an attractive option. However, this causes a non-negligible increase in non-zero elements of the
Jacobian resulting matrix. To alleviate this, we use a mass lumping of J��, which provides a diagonal
matrix making the inversion trivial and improving sparsity of the Schur complement. Furthermore,
following Lacroix, et al. 2003, we consider a combinative two-stage preconditioner. A Householder
projection is used to decouple the pressure and saturation variables in each grid block followed by a
decoupling of pressure block. The second stage gets the feedback from first stage and updates both
pressure and saturation by solving the full system with a very loose tolerance.

Figure 1—Sparsity pattern of Jacobian matrices for Example 2. From left to right: J1 matrix for unknowns (�Po, �No, ��1, ��2), J3 matrix for
unknowns (�Po, �No) without mass lumping, and matrix for unknowns (�Po, �No) with mass lumping.
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The contributions of this work are in developing a two-stage based preconditioner and we show its
effectiveness in solving large-scale problems. In terms of formulation, the Schur complement obtained as
a result of eliminating the Lagrange multipliers is a novelty. We perform several numerical experiments
to understand the parameters used in the two stages and we will comment on the insights gained from our
experience. Furthermore, the parallel scalability and efficiency as shown in solving a mega size problem
(20 million unknowns) demonstrates that this is a matured tool for solving multiphase problems in a
domain decomposition framework.

Global Jacobian Algorithms for the Multiscale Mortar Method
We consider flow of two immiscible phases through a porous medium, where phases � � o (oil) and �
� w (water) are both assumed to be slightly compressible fluids. The time interval is [0,T], along with a
spatial domain, � � �d, d � 2 or 3 with boundary ��, and outward unit normal n. The spatial domain
is decomposed into N� non-overlapping subdomains such that and �k � �l �� when k �
l. Subdomain interfaces are denoted by �kl � �lk � ��k � ��l, � � � �kl and nk is the outward unit
normal to �k.

We consider an expanded mixed formulation for a fully-implicit two-phase system. On subdomain
interfaces, Lagrange multipler variables are introduced corresponding to the two phase pressures, and zero
flux jump conditions are enforced. The concentration and mobility for phase � is denoted by n� � ��S�

and m� � ��kr�/��, respectively. The primary unknowns for the multiscale mortar discretization are
subdomain unknowns (po, no) auxiliary velocities , velocities (uo, uw), and Lagrange multipliers
(�o, �w).

For each subdomain �k, let be a conforming quasi-uniform finite element partition consisting of
rectangular elements or bricks with characteristic mesh size h , which may be different for each k thereby
allowing non-matching grids on the subdomain interfaces. Our numerical results use the lowest order
Raviart-Thomas-Nedelec spaces on bricks for the flux and the pressure (Raviart and Thomas,
1977, Nédélec, 1980). For each interface �kl, we choose an independent quasi-uniform finite element
partition with characteristic mesh size H and define the mortar space containing either continuous
or discontinuous piecewise polynomials of degree larger than one.

For each phase � the global velocity, pressure, and mortar spaces are , , and

MH � , respectively. Choose a temporal discretization 0 � t0 � t1 � . . . � tNT � T, with
�tn � tn � tn�1. To simplify notation we suppress subscripts h and H, as well as time index n except for

which denote the known concentrations at the previous time step. Employing the backward Euler
method for time integration with the aforementioned discrete spaces for pressure, mass flux, and mortar
variables to the two-phase flow system gives the following fully-discrete multiscale mortar expanded
mixed finite element system for fully-implicit two-phase flow.

The MMMFEM is stated as follows. For time levels n � 1, . . . ,NT find
such that for subdomains �k, k � 1, . . . , N�,

(1a)

(1b)

(1c)

and for interfaces �kl, 1 	 k � l 	 N�,
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(1d)

for all and This system has been given previously in such works as Yotov,
2001 and Peszynska, et al. 2002.

We now express the 8 unknowns as linear combinations of finite element and mortar basis functions,
e.g. . This reformulates the problem in terms of unknown coefficient vectors

, , and . Let , , and

count the total number of degrees of freedom in the global velocity, pressure, and mortar

spaces. The discrete system (1a)–(1d) becomes a set of (4Nu 	 2Np 	 2N�)nonlinear equations. Using the
global Jacobian approach, it can be solved by a single Newton iteration. This is in contrast to the earlier
forward difference approach, which required a more expensive algorithm with two nested Newton
iterations.

To form the global Jacobian system, we compute the derivatives of each residual equation with respect
to each type of unknown (Ganis, et al. 2014a, 2014b). Entries with two pressure basis functions are
evaluated using the midpoint rule, entries with one or more velocity basis functions are evaluated using
the trapezoidal midpoint rule (Arbogast, et al. 2007), and entries with mortar basis functions are evaluated
using Newton-Cotes rules with accuracy depending on the polynomial degree of the mortar space. We
drop certain terms from the Jacobian that are multiplied by the small compressibility constants co and cw

as typically done in reservoir simulations with slight compressibility. Terms with phase mobility are
upwinded using the accurate “block to block” upwinding approach (Ganis, et al. 2014b). The final step
is to form a Schur complement system which eliminates the four velocity variables. Under the afore-
mentioned trapezoidal midpoint rule and our assumption of Cartesian subdomain grids, this forms a
cell-centered finite difference method with a two-point flux scheme in the subdomain interior and a larger
stencil adjacent to subdomain interfaces.

We define the vector of subdomain variables as �
 � [�Po, �No] and the vector of mortar variables
as �� � [��1, ��2] Two algorithms have already been described in Ganis, et al. 2014a and Ganis, et al.
2014b: the global Jacobian (GJ) method, and the global Jacobian Schur (GJS) method. In the former
method, the linear system for the Newton step has the structure

(2)

The latter method further eliminates subdomain unknowns to form a matrix with the structure

(3)

This is also known as the linearized interface formulation, and we note that the action of can be
applied by solving linear subdomain problems.

In this work, we describe a new global Jacobian algorithm where mortar variables are eliminated,
referred to as a coupled subdomain formulation. This system has the structure

(4)

The algorithm to solve system (4) is described in Algorithm 1. Here the matrix inverse can be
formed explicitly using sparse LU decomposition since it is extremely small and has completely
decoupled diagonal blocks corresponding to each separate mortar interface and fluid phase. Alternatively,
one may employ mass lumping to form the matrix inverse , which in our experience does not hurt
linear or nonlinear convergence, and makes a big difference in runtime for large scale problems. Figure
1 shows an example sparsity pattern for a non-matching grid problem: matrix J1 shows how subdomain
variables are coupled to mortar variables for elements adjacent to interfaces; matrix J3 shows the new
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Schur complement formulation where subdomains
are directly coupled to each other adjacent to inter-
faces after elimination of the mortar variable; and
matrix shows how the fullness can be decreased
using mass lumping.

A Two-Stage Preconditoner
The goal of this section is to develop a two-stage
preconditioner for system (4). Note the first NP rows
of the matrix J3 group the unknowns for �P0 together by increasing element and then increasing
subdomain. The second set of NP rows follow the same ordering for the variable �N0. We therefore must
introduce the permutation matrix P that reorders unknowns (�P0, �N0)i together for each element i by
order of increasing element then increasing subdomain. Consider the following example in Figure 2. The
row order for matrix J would be , while the row order for matrix PJ would
be .

We first transform (4) using the Householder decoupling technique. For the fully-implicit two-phase
system, consider the 2 � 2 diagonal blocks of the matrix PJ3. Since variables are grouped together by
element, call this matrix A � blockdiag(Ai), for i � 1, . . ., NP. We perform a QL factorization on these
blocks to decouple primary phase pressure from the other variables on the element level such that

, where Qi is an orthogonal matrix and Li is a lower triangular matrix. Then we define matrix
Q � blockdiag(Qi), and note that (QTP J3) will have lower triangular matrices (Li) on its block diagonal.
To complete the Householder step, we permute the matrix rows back to their original order by

(5)

The two-stage preconditioned system will seek to solve M�1 H �
 � M�1 b with GMRES (Saad and
Schultz, 1986). The action of M�1 is summarized in Algorithm 2. Note the Householder transformed
matrix H was specially formed to decouple the �P0 unknown from the �N0 unknown along the main
diagonal of 2 � 2 blocks. The off-diagonal coupling of �P0 to �N0 still remains, but has been observed
to be very weak in a single domain system (Lacroix, et al. 2003). Step 1 of the preconditioner solves the
decoupled pressure system using preconditioner , which is generally taken to be quite strong using
e.g. algebraic multigrid with an incomplete LU smoother. Step 2 of the preconditioner computes a new

Algorithm 1.—A global Jacobian method to solve the MMMFEM using a Schur complement system for the �� variable.

Figure 2.—Example of an element ordering for two subdomains with
non-matching grids in two dimensions.
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residual R using the solution from Step 1 to have a combinative effect, as opposed to a purely decoupled
two-stage preconditioner. Finally, Step 3 solves the second stage system with the new residual R using the
preconditioner , which is generally taken to be quite weak using e.g. several Gauss-Seidel iterations.
This is because a weak second stage solution usually does not drastically hurt the convergence of the outer
GMRES iteration in Algorithm 1.

Numerical Results
The numerical results obtained in this paper were generated on the stampede supercomputer at Texas
Advanced Computing Center. The parallelism is implemented using MPI where each subdomain is
assigned to a separate CPU core. Our convention is that the positive x –coordinate represents the vertical
direction, and gravitational acceleration is taken into account. All wells are oriented in the vertical
direction, completed through the entire reservoir depth, and have diameter 0.5 [ft]. Unless otherwise
specified, the capillary pressure, relative oil permeability, and relative water permeability curves use the
following J-Leverett and Brooks-Corey relationships

(6a)

(6b)

(6c)

where the effective saturation se 
(0,1) is defined as

(6d)

Example 1. Parallel Scaling for the SPE10 Benchmark Problem.
In this example, we show our method is capable of simulating two-phase flow with data from the
challenging SPE10 benchmark problem (Christie and Blunt, 2001).

The domain size is 170 � 1200 � 2200 [ft] at a depth of 12000 [ft]. This domain is divided into N�

subdomains of roughly the same size. The mortar grids are piecewise constant, coincident with the trace
of both adjacent subdomains. The final simulation time is T � 5 [days] and an adaptive time step is taken
as follows: the initial time step size is �t1 � 1e �2 [days], the time step multipler is 1.25, the time step
cut factor is 0.75, the minimum time step is �tmin � 1e � 6 [days], and the maximum time step size is
tmin � 1e � 1 [days]. The absolute permeability, porosity, and relative permeability curves are taken from
the SPE10 dataset (Christie and Blunt, 2001). The fluid compressibilities are co � 4.2e �5 [1/psi] and cw

� 3.1e �6 [1/psi], the fluid densities are � 53 [lb/ft3] and � 64 [lb/ft3], and fluid viscosities are
�o � 3 [cp] and �w � 0.3 [cp]. The capillary pressure is zero in this case. A hydrostatic initial condition
is assumed with initial oil pressure po(0) � 6000 [psi] and initial water saturation sw(0) � 0.201 at a
reference depth of 12170 [ft]. No-flow boundary conditions are assumed on ��. There is one injection and
one production well in a quarter five-spot well pattern, with bottom hole pressures specified at 8000 [psi]
and 4000 [psi], respectively.

Algorithm 2.—Computing the action of two-stage preconditioner Y � M	1Z. This is used inside the outer preconditioned GMRES iteration given in
Algorithm 1.
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The Newton tolerance is 1e �4 with a maximum
of 5 iterations, and the outer GMRES tolerance is 1e
�5 , has a maximum of 20 iterations with no
restarts, and uses the two-stage preconditioner. The
pressure solve uses GMRES with tolerance 1e �6,
has a maximum of 100 iterations with a restart every
20 iterations. is an algebraic multigrid V-cycle
with an ILU(0) smoother with 1 sweep, and the
coarsest level has size less than or equal to 1000 � 1000 and uses a Sparse LU direct solver. The second
stage solve uses GMRES with tolerance 1e �3 , has a maximum of 20 iterations no restarts. is an
algebraic multigrid V-cycle with an ILU(0) smoother with 1 sweep, and the coarsest level has size less
than or equal to 1000 � 1000 and uses a Sparse LU direct solver.

Table 1 summarizes the statistics on iteration counts and CPU times for Example 1. We have used
algebraic multigrid preconditioners in both pressure and second stage solves because of the highly
heterogeneous nature of the dataset. Strong parallel scaling was achieved upto 64 CPU cores. Note that
since we take 1 CPU core per subdomain, we are actually changing the size and condition number of the
problem as we increase the number of processors. This is in contrast to data decomposition on a single
domain, which would have the same system for varying number of processors. Our domain decomposition
approach in concert with our two-stage preconditioner was stable in this problem upto 32 processors. At
64 processors, the number of Newton steps increased significantly causing an increase in Total CPU time,
although the two-stage preconditioner remained effective.

Example 2. A Multiscale Problem on Non-matching Grids
In this example, we highlight the multiscale modeling capabilities of the MMMFEM on non-matching
grids.

The domain size is 10 � 100 � 100 [ft], divided into N� � 1 � 4 � 4 � 16 subdomains. Each
subdomain has a uniform grid in the areal dimensions with dimensions given in Figure 3 illustrating the
refinement around wells. The number of vertical layers is obtained by dividing by a factor of 3. The mortar
grids are piecewise constant grids taken to be the trace of the adjacent coarsest subdomain. The final
simulation time is T � 100 [days] and a uniform time step of �t � 0.1 [days] is used. The absolute
permeability is K � diag(100,200,200) [md], porosity is � � 0.2, fluid compressibilities are co � 4e�
5 [1/psi] and cw � 3.3e� 6 [1/psi], the fluid densities are � 53 [lb/ft3] and � 64 [lb/ft3], and fluid
viscosities are �o � 2 [cp] and �w � 0.5 [cp]. The capillary pressure and relative permeability curves
follow (6a)–(6c) with residual water saturation srw � 0.2 , residual oil saturation sro � 0.2 , grain size
parameter � � 2, and entry pressure pd � 10[psi]. A hydrostatic initial condition is assumed with initial
oil pressure po(0) � 500 [psi] and initial water saturation sw(0) � 0.22 at a reference depth of 10 [ft].
No-flow boundary conditions are assumed on ��. There is one injection and one production well in a
quarter five-spot well pattern, with bottom hole pressures specified at 520 [psi] and 480 [psi], respectively.

Table 1—Strong parallel scaling results for Example 1.

CPU cores/Subdomains Total CPU time Total Newton Steps Taken Avg. Outer GMRES Iter. per Newton step Time Step Cuts

1 � 1 � 1 � 1 8331.79 51 4.88 0

1 � 1 � 2 � 2 4675.22 51 5.00 0

1 � 1 � 4 � 4 3102.14 52 5.65 1

1 � 2 � 4 � 8 2727.95 51 5.04 0

1 � 2 � 8 � 16 1216.14 52 5.71 1

1 � 4 � 8 � 32 517.69 51 5.02 0

1 � 4 � 16 � 64 618.41 109 5.71 2

Figure 3.—Areal grid dimensions for subdomains in Example 2.
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The Newton tolerance is 1e � 4 with a maximum of 20 iterations, and the outer GMRES tolerance is
1e � 6 , has a maximum of 50 iterations, restarts after every 20 iterations, and uses the two-stage
preconditioner. The pressure solve uses GMRES with tolerance 1e � 3 , has a maximum of 20 iterations
with no restarts. is an algebraic multigrid V-cycle with an ILU(0) smoother with 1 sweep, and the
coarsest level has size less than or equal to 1000 � 1000 and uses a Sparse LU direct solver. The second
stage preconditioner is a simple application of 5 Gauss-Seidel iterations.

Figure 4 shows the simulation results at the final time, and Table 2 shows statistics on iteration counts
and CPU times. The effect of the two-stage preconditioner caused the outer GMRES iteration to take on
average 14.44 iterations per Newton step. We note that this number can be reduced to 2–3 iterations with
a stronger preconditioner, but Total CPU time would increase. For optimal CPU time, the best
practice is to choose the weakest second stage as possible, which still allows the outer GMRES iteration
to converge.

Example 3. Simulation of a Heterogeneous 10 Million Element Problem Using 1024 Processors
In this example, we show numerical results for a large scale problem with 10 million elements, and show
the efficiency of our two-stage preconditioner when using 1024 processors.

The absolute permeability field K is heterogeneous, where each vertical layer is generated from
independent realizations of a scalar 2D stochastic geostatistical model. A Karhunen-Loève (KL) expan-
sion for the mean removed log permeability Y is computed from the specified covariance function

(7)

Figure 4.—Simulation results at time t � 100 days showing four independent solution variables: subdomain variable Po (top left), subdomain variable
No (top right), mortar variable �1 (bottom left), and mortar variable �2 bottom right).

Table 2—Iteration counts (left) and timing statistics (right) for Example 2.

Matrix assembly time 18.72

Total time steps 1001 Outer GMRES time 91.68

Total Newton iterations 1013 Householder decoupling time 3.51

Total outer GMRES iterations 14867 Pressure solve GMRES time 45.94

Average GMRES iterations per Newton step 14.68 Second stage GMRES time 32.26

Average Newton iterations per time step 1.01 Mass lumping time 0.06

Total time step cuts 0 Matrix-matrix multiply time 0.54

Total CPU time 118.89
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The parameters are correlation lengths �1 � 17 [ft] and �2 � 30 [ft], variance �Y � 5 [log(md)], mean
� 2.1 [log(md)], and the series was truncated after 400 terms. For complete details on the calculation

of eigenvalues and eigenfunctions for this series, see e.g. Zhang and Lu 2004. The exponential of this
series becomes the x component of the diagonal permeability tensor, and the y and z permeability
components are multiplied by a factor of 2.

The domain size is 100 � 1700 � 3000 [ft] with a uniform grid of 80 � 272 � 480 � 10.44 million
elements, evenly divided into N� � 4 � 16 � 16 � 1024 subdomains. The mortar grids are piecewise
constant, coincident with the trace of both adjacent subdomains. The final simulation time is T � 100
[days] and an adaptive time step is taken as follows: the initial time step size is �t1 � 0.1 [days], the time
step multipler is 1.25, the time step cut factor is 0.75, the minimum time step is �tmin � 1e �8 [days],
and the maximum time step size is tmin � 1e �1 [days]. The porosity is � � 0.2; , fluid compressibilities
are co � 4e � 5 [1/psi] and cw � 3.3e � 6 [1/psi], the fluid densities are � 56.03 [lb/ft3] and �
62.34 [lb/ft3], and fluid viscosities are �o � 2 [cp] and �w � 0.5 [cp]. The capillary pressure and relative
permeability curves follow (6a)–(6c) with residual water saturation srw � 0.2 , residual oil saturation sro

� 0.2 , grain size parameter � � 2, and entry pressure pd � 10 [psi]. A hydrostatic initial condition is
assumed with initial oil pressure po(0) � 6000 [psi] and initial water saturation sw(0) � 0.22 at a reference
depth of 20 [ft]. No-flow boundary conditions are assumed on ��. There is one injection and one
production well in a quarter five-spot well pattern, with bottom hole pressures specified at 8000 [psi] and
4000 [psi], respectively.

The Newton tolerance is 1e � 4 with a maximum of 5 iterations, and the outer GMRES tolerance is
1e � 5 , has a maximum of 5 iterations with no restarts, and uses the two-stage preconditioner. The
pressure solve uses GMRES with tolerance 1e � 3, has a maximum of 20 iterations with no restarts. is
an algebraic multigrid V-cycle with an ILU(0) smoother with 1 sweep, and the coarsest level has size less
than or equal to 1000 � 1000 and uses a Sparse LU direct solver. In this case, the second stage solve and

preconditoner are taken to be the same as the pressure solve and preconditioner.
Table 3 summarizes the statistics on iteration counts and CPU times for Example 3. The effect of the

two-stage preconditioner caused the outer GMRES iteration to take on average 2.43 iterations per Newton
step. This number is much smaller than Example 2 because the second stage solve was taken to be much
stronger. It was necessary to do this for this problem, because convergence for the outer GMRES iteration
was lost when using a weaker second stage. We have found this behavior to be typical for very large scale
heterogeneous problems.

Conclusions
In this work we have presented an efficient parallel implementation of a multiscale mortar mixed finite
element method for fully-implicit two-phase flow using a global Jacobian approach, ensuring local mass
conservation and accurate flux. The algorithm eliminates both velocities and Lagrange multiplier vari-
ables. A two-stage precondioning strategy was developed and demonstrated in numerical results. The
two-stage preconditioner decouples the pressure solve and the saturation update for a fully-implicit

Table 3—Iteration counts (left) and timing statistics (right) for Example 3.

Matrix assembly time 86.04

Total time steps 1007 Outer GMRES time 8459.16

Total Newton iterations 1007 Householder decoupling time 42.25

Total outer GMRES iterations 2449 Pressure solve GMRES time 1394.55

Average GMRES iterations per Newton step 2.43 Second stage GMRES time 3340.99

Average Newton iterations per time step 1.00 Mass lumping time 0.05

Total time step cuts 0 Matrix-matrix multiply time 1206.87

Total CPU time 8571.76
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method. These individual components are solved by using appropriate solvers, such as multigrid for
pressure with ILU as a preconditioner and a Gauss-Seidel solver for the second stage with a loose
tolerance. Examples show grid refinement can be done near regions of interest leading to subdomains with
independent non-matching discretizations, and that our method is capable of solving a challenging
industrial benchmark case.

The linear systems arising from mortar discretizations of fully-implicit two-phase flow with gravity,
capillarity, and compressibility in three dimensions are very challenging. The two-stage precondioner that
we have developed provides an efficient way to solve these linear systems. In one of our examples, we
were able to achieve an average of 2.3 GMRES iterations per Newton step for a problem on the order of
20 million unknowns, and were able to utilize over 1000 processors in parallel.
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Nomenclature

FEM : Finite Element Method
RTN : Raviart-Thomas-Nedelec
MMMFEM : Multiscale Mortar Mixed Finite Element Method
FD : Finite Difference
GJ : Global Jacobian
GJS �: Global Jacobian Schur
GMRES �: Generalized Minimum Risidual
� � Phase ��o, w, oil or water
� � Reservoir domain
�� � Reservoir external boundary
�k � k-th Subdomain
�kl � Interface between k-th and l-th subdomains
t � Simulation Time [day]
T � Final Simulation Time [day]
� � Porosity
s� � Saturation of phase �
se � Effective saturation of phase �
p� � Pressure of phase � [psi]
pc � Capillary pressure [psi]
pd � Entry pressure in Brooks-Corey relationship
n� � Concentration of phase � [lb/ft^3]
p� � Density of phase � [lb/ft^3]
Np � Total degrees of freedom for pressure unknowns
N� � Total degrees of freedom for Lagrange multiplier unknowns
Po � Coefficient unknown vector for oil pressure
No � Coefficient unknown vector for oil concentration
�� � Coefficient unknown vector for Lagrange multipliers for phase �
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J1 � Jacobian matrix obtained using global Jacobian
J2 � Jacobian matrix obtained after eliminating subdomain unknowns
J3 � Jacobian matrix obtained after eliminating interface unknowns
�Po � Newton update for oil pressure
�No � Newton update for oil concentration
�� � Newton update for Lagrange multipliers
�
 � Newton update for subdomain unknowns
u� � Darcy flux of phase � [lb/(ft2-day)]

� Auxiliary flux of phase � [lb/ft]
�� � Lagrange multiplier corresponding to phase �
m� � Mobility of phase �
�� � Viscosity of phase[cp] �
c� � Compressibility of phase � [psi�1]
kr� � Relative permeability of phase �
q� � Source or sink term for phase � [lb/(ft3-day)]
K � Absolute permeability [Darcy]
g � Acceleration due to gravity [ft-day�2]
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