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Abstract
In this paperwe present and analyze a fully-mixed formulation for the coupled problem
arising in the interaction between a free fluid and a poroelastic medium. The flows in
the free fluid and poroelastic regions are governed by the Stokes and Biot equations,
respectively, and the transmission conditions are given by mass conservation, balance
of stresses, and the Beavers-Joseph-Saffman law. We apply dual-mixed formulations
in both domains, where the symmetry of the Stokes and poroelastic stress tensors is
imposed by setting the vorticity and structure rotation tensors as auxiliary unknowns. In
turn, since the transmission conditions become essential, they are imposed weakly by
introducing the traces of the fluid velocity, structure velocity, and the poroelasticmedia
pressure on the interface as the associated Lagrange multipliers. The existence and
uniqueness of a solution are established for the continuousweak formulation, aswell as
a semidiscrete continuous-in-time formulation with non-matching grids, together with
the corresponding stability bounds. In addition, we develop a new multipoint stress-
fluxmixed finite elementmethod by involving the vertex quadrature rule, which allows
for local elimination of the stresses, rotations, and Darcy fluxes. Well-posedness and
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error analysis with corresponding rates of convergence for the fully-discrete scheme
are complemented by several numerical experiments.

Mathematics Subject Classification 76S05 · 76D07 · 74F10 · 35M33 · 65M60 ·
65M12

1 Introduction

The interaction of a free fluid with a deformable porous medium, referred to as fluid-
poroelastic structure interaction (FPSI), is a challenging multiphysics problem. It has
applications to predicting and controlling processes arising in gas and oil extrac-
tion from naturally or hydraulically fractured reservoirs, modeling arterial flows,
and designing industrial filters, to name a few. For this physical phenomenon, the
free fluid region can be modeled by the Stokes (or Navier–Stokes) equations, while
the flow through the deformable porous medium is modeled by the Biot system of
poroelasticity. In the latter, the volumetric deformation of the elastic porous matrix
is complemented with the Darcy equation that describes the average velocity of the
fluid in the pores. The two regions are coupled via dynamic and kinematic interface
conditions, including balance of forces, continuity of normal velocity, and a no slip
or slip with friction tangential velocity condition. The model exhibits features of both
coupled Stokes-Darcy flows and fluid-structure interaction (FSI).

To the authors’ knowledge, one of the first works in analyzing the Stokes-Biot
coupled problem is [56], where well-posedness for the fully dynamic problem is
established by developing an appropriate variational formulation and using semigroup
methods. One of the first numerical studies is presented in [13], where monolithic and
iterative partitioned methods are developed for the solution of the coupled system.
A non-iterative operator splitting scheme with a non-mixed Darcy formulation is
developed in [22]. Finite element methods for mixed Darcy formulations, where the
continuity of normal flux condition becomes essential, are considered in [21] using
Nitsche’s coupling and in [9] using a pressure Lagrange multiplier. More recently, a
nonlinear quasi-static Stokes–Biot model for non-Newtonian fluids is studied in [3].
The authors establish well-posedness of the weak formulation in Banach space setting,
along with stability and convergence of the finite element approximation. In [26], the
fully dynamic coupledNavier-Stokes/Biot systemwith a pressure-basedDarcy formu-
lation is analyzed. Additional works include optimization-based decoupling method
[25], a second order in time split scheme [46], various discretization methods [14, 24,
59], dimensionally reduced model for flow through fractures [23], and coupling with
transport [5]. All of the above mentioned works are based on displacement formu-
lations for the elasticity equation. In a recent work [49], the first mathematical and
numerical study of a stress-displacement mixed elasticity formulation for the Stokes-
Biot model is presented.

The goal of the present paper is to develop a new fully mixed formulation of the
quasi-static Stokes-Biotmodel, which is based on dualmixed formulations for all three
components - Darcy, elasticity, and Stokes. In particular, we use a velocity-pressure
Darcy formulation, a weakly symmetric stress-displacement-rotation elasticity for-
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mulation, and a weakly symmetric stress-velocity-vorticity Stokes formulation. This
formulation exhibits multiple advantages, including local conservation of mass for
the Darcy fluid, local poroelastic and Stokes momentum conservation, and accurate
approximations with continuous normal components across element edges or faces
for the Darcy velocity, the poroelastic stress, and the free fluid stress. In addition, dual
mixed formulations are known for their locking-free properties and robustness with
respect to the physical parameters, including the regimes of almost incompressible
materials, low poroelastic storativity, and low permeability [47, 63]. We note that our
analysis also applies to the dual mixed elasticity and Stokes formulations with strong
stress symmetry, i.e., stress-displacement for elasticity and stress-velocity for Stokes.
However, we focus on the weakly-symmetric formulations, since they allow for finite
element approximations with fewer degrees of freedom, see, e.g., [11, 12]. Moreover,
in certain low-order cases they are suitable for multipoint stress mixed finite element
approximations [6–8], which are discussed below.

Our five-field dual mixed Biot formulation is based on the model developed in [47]
and studied further in [8]. It is also considered in [49] for the Stokes-Biot problem.
Our analysis also extends to the strongly symmetric mixed four-field Biot formula-
tion developed in [62]. Our three-field dual mixed Stokes formulation is based on the
models developed in [36, 37]. In particular, we introduce the stress tensor and sub-
sequently eliminate the pressure unknown, by utilizing the deviatoric stress. In order
to impose the symmetry of the Stokes stress and poroelastic stress tensors, the vor-
ticity and structure rotation, respectively, are introduced as additional unknowns. The
transmission conditions consisting of mass conservation, conservation of momentum,
and the Beavers–Joseph–Saffman slip with friction condition are imposed weakly via
the incorporation of additional Lagrange multipliers: the traces of the fluid velocity,
structure velocity and the poroelastic media pressure on the interface. The resulting
variational system of equations is then ordered so that it shows a twofold saddle point
structure. The well-posedness and uniqueness of both the continuous and semidiscrete
continuous-in-time formulations are proved by employing some classical results for
parabolic problems [55, 57] andmonotone operators, and an abstract theory for twofold
saddle point problems [1, 35]. In the discrete problem, for the three components of the
model we consider suitable stable mixed finite element spaces on non-matching grids
across the interface, coupled through either conforming or non-conforming Lagrange
multiplier discretizations. We develop stability and error analysis, establishing rates
of convergence to the true solution. The estimates we establish are uniform in the limit
of the storativity coefficient going to zero.

Another main contribution of this paper is the development of a new mixed finite
element method for the Stokes-Biot model that can be reduced to a positive definite
cell-centered pressure-velocities-traces system. We recall the multipoint flux mixed
finite element (MFMFE) method for Darcy flow developed in [20, 42, 60, 61], where
the lowest order Brezzi-Douglas-MariniBDM1 velocity spaces [18, 19, 50] and piece-
wise constant pressure space are utilized. An alternative formulation based on a broken
Raviart-Thomas velocity space is developed in [45]. The use of the vertex quadrature
rule for the velocity bilinear form localizes the interaction between velocity degrees
of freedom around mesh vertices and leads to a block-diagonal mass matrix. Conse-
quently, the velocity can be locally eliminated, resulting in a cell-centered pressure
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system. In turn, the multipoint stress mixed finite element (MSMFE) method for elas-
ticity is developed in [6, 7]. It utilizes stable weakly symmetric elasticity finite element
triples with BDM1 stress spaces [7, 11, 12, 17, 32, 48]. Similarly to the MFMFE
method, an application of the vertex quadrature rule for the stress and rotation bilin-
ear forms allows for local stress and rotation elimination, resulting in a cell-centered
displacement system. We also refer the reader to the related finite volume multipoint
stress approximation (MPSA) method for elasticity [43, 51, 52]. Recently, combin-
ing the MSMFE and MFMFE methods, a multipoint stress-flux mixed finite element
(MSFMFE) method for the Biot poroelasticity model is developed in [8]. There, the
dual mixed finite element system is reduced to a cell-centered displacement-pressure
system. The reduced system is comparable in cost to the finite volume method devel-
oped in [53].

In this paper we note for the first time that the MSMFE method for elasticity
can be applied to the weakly symmetric stress-velocity-vorticity Stokes formulation
from [36, 37] when BDM1-based stable finite element triples are utilized. With the
application of the vertex quadrature rule, the fluid stress and vorticity can be locally
eliminated, resulting in a positive definite cell-centered velocity system. To the best
of our knowledge, this is the first such scheme for Stokes in the literature.

Finally, we combine theMFMFEmethod for Darcy flowwith theMSMFEmethods
for the elasticity and Stokes equations to develop a multipoint stress-flux mixed finite
element for the Stokes-Biot system. We analyze the stability and convergence of the
semidiscrete formulation.We further consider the fully discrete systemwith backward
Euler time discretization and show that the algebraic system on each time step can be
reduced to a positive definite cell-centered pressure-velocities-traces system.

The rest of this work is organized as follows. The remainder of this section describes
standard notation and functional spaces to be employed throughout the paper. In Sect. 2
we introduce the model problem and in Sect. 3 we derive a fully-mixed variational
formulation, which is written as a degenerate evolution problem with a twofold saddle
point structure. Next, existence, uniqueness and stability of the solution of the weak
formulation are obtained in Sect. 4. The corresponding semidiscrete continuous-in-
time approximation is introduced and analyzed in Sect. 5, where the discrete analogue
of the theory used in the continuous case is employed to prove its well-posedness. Error
estimates and rates of convergence are also derived there. In Sect. 6, the multipoint
stress-flux mixed finite element method is presented and the corresponding rates of
convergence are provided, along with the analysis of the reduced cell-centered system.
Finally, numerical experiments illustrating the accuracy of our mixed finite element
method and its applications to coupling surface and subsurface flows and flow through
poroelastic medium with a cavity are reported in Sect. 7.

We end this section by introducing some definitions and fixing some notations.
Let O ⊂ Rn , n ∈ {2, 3}, denote a domain with Lipschitz boundary. For s ≥ 0 and
p ∈ [1,+∞], we denote by Lp(O) and Ws,p(O) the usual Lebesgue and Sobolev
spaces endowed with the norms ‖ · ‖Lp(O) and ‖ · ‖Ws,p(O), respectively. Note that
W0,p(O) = Lp(O). If p = 2 we write Hs(O) in place of Ws,2(O), and denote the
corresponding norm by ‖ · ‖Hs(O). Similar notation is used for a section � of the
boundary ofO. ByM andMwe will denote the corresponding vectorial and tensorial
counterparts of a generic scalar functional spaceM.TheL2(O) inner product for scalar,
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vector, or tensor valued functions is denoted by (·, ·)O. The L2(�) inner product or
duality pairing is denoted by 〈·, ·〉� . For any vector field v = (vi )i=1,...,n , we set the
gradient and divergence operators, as

∇v :=
(

∂vi

∂x j

)
i, j=1,...,n

and div(v) :=
n∑
j=1

∂v j

∂x j
.

For any tensor fields τ := (τi j )i, j=1,...,n and ζ := (ζi j )i, j=1,...,n , we let div(τ ) be the
divergence operator div acting along the rows of τ , and define the transpose, the trace,
the tensor inner product, and the deviatoric tensor, respectively, as

τ t : = (τ j i )i, j=1,...,n, tr(τ ) :=
n∑

i=1

τi i , τ : ζ :=
n∑

i, j=1

τi jζi j ,

and τ d := τ − 1

n
tr(τ ) I,

where I is the identity matrix in Rn×n . In addition, we recall the Hilbert space

H(div;O) :=
{
v ∈ L2(O) : div(v) ∈ L2(O)

}
,

equippedwith the norm‖v‖2H(div;O)
:= ‖v‖2L2(O)

+‖div(v)‖2
L2(O)

. The space ofmatrix
valued functions whose rows belong to H(div;O) will be denoted by H(div;O) and
endowed with the norm ‖τ‖2

H(div;O)
:= ‖τ‖2

L2(O)
+ ‖div(τ )‖2L2(O)

. Finally, given a
separable Banach space V endowed with the norm ‖ · ‖V, we let Lp(0, T ;V) be the
space of classes of functions f : (0, T ) → V that are Bochner measurable and such
that ‖ f ‖Lp(0,T ;V) < ∞, with

‖ f ‖pLp(0,T ;V)
:=

∫ T

0
‖ f (t)‖pV dt, ‖ f ‖L∞(0,T ;V) := ess sup

t∈[0,T ]
‖ f (t)‖V.

2 Themodel problem

Let � ⊂ Rn , n ∈ {2, 3}, be a Lipschitz domain, which is subdivided into two non-
overlapping and possibly non-connected regions: fluid region � f and poroelastic
region �p. Let � f p = ∂� f ∩ ∂�p denote the (nonempty) interface between these
regions and let � f = ∂� f \ � f p and �p = ∂�p \ � f p denote the external parts on
the boundary ∂�. We denote by n f and np the unit normal vectors that point outward
from ∂� f and ∂�p, respectively, noting that n f = −np on � f p. Let (u�, p�) be the
velocity-pressure pair in�� with � ∈ { f , p}, and let ηp be the displacement in�p. Let
μ > 0 be the fluid viscosity, let f� be the body force terms, and let q� be the external
source or sink terms.
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We assume that the flow in � f is governed by the Stokes equations, which are
written in the following stress-velocity-pressure formulation:

σ f = −p f I + 2μ e(u f ), −div(σ f ) = f f , div(u f ) = q f in � f × (0, T ],
σ f n f = 0 on �N

f × (0, T ], u f = 0 on �D
f × (0, T ], (2.1)

where σ f is the stress tensor, e(u f ) := 1

2

(∇u f + (∇u f )
t
)
stands for the deformation

rate tensor, � f = �N
f ∪ �D

f , and T > 0 is the final time. Next, we adopt the approach
from [1, 36], and include as a new variable the vorticity tensor γ f ,

γ f := 1

2

(∇u f − (∇u f )
t) .

In this way, owing to the fact that tr(e(u f )) = div(u f ) = q f , we find that (2.1) can be
rewritten, equivalently, as the set of equations with unknowns σ f , γ f and u f , given
by

1

2μ
σ d

f = ∇u f − γ f − 1

n
q f I, −div(σ f ) = f f in � f × (0, T ],

σ f = σ t
f , p f = −1

n

(
tr(σ f ) − 2μ q f

)
in � f × (0, T ],

σ f n f = 0 on �N
f × (0, T ], u f = 0 on �D

f × (0, T ]. (2.2)

Notice that the fourth equation in (2.2) has allowed us to eliminate the pressure p f from
the system and provides a formula for its approximation through a post-processing
procedure. For simplicity we assume that |�N

f | > 0, which will allow us to control σ f

by σ d
f . The case |�N

f | = 0 can be handled as in [36–38] by introducing an additional
variable corresponding to the mean value of tr(σ f ).

In turn, let σ e and σ p be the elastic and poroelastic stress tensors, respectively,
satisfying

A σ e = e(ηp) and σ p := σ e − αp pp I in �p × (0, T ], (2.3)

where 0 < αp ≤ 1 is the Biot–Willis constant, and A is the symmetric and positive
definite compliance tensor, which in the isotropic case has the form, for all tensors τ ,

A(τ ) := 1

2μp

(
τ − λp

2μp + n λp
tr(τ ) I

)
, with A−1(τ ) = 2μp τ + λp tr(τ ) I,

(2.4)
satisfying

∀ τ ∈ Rn×n,
1

2μmax + n λmax
τ : τ ≤ A(τ ) : τ ≤ 1

2μmin
τ : τ ∀ x ∈ �p.

(2.5)
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In this case, σ e := λp div(ηp) I + 2μp e(ηp), and 0 < λmin ≤ λp(x) ≤ λmax and
0 < μmin ≤ μp(x) ≤ μmax are the Lamé parameters. The poroelasticity region �p is
governed by the quasi-static Biot system [15]:

−div(σ p) = fp, μK−1up + ∇ pp = 0,
∂

∂t

(
s0 pp + αp div(ηp)

) + div(up) = qp in �p × (0, T ],
up · np = 0 on �N

p × (0, T ], pp = 0 on �D
p × (0, T ],

σ pnp = 0 on �̃N
p × (0, T ], ηp = 0 on �̃D

p × (0, T ], (2.6)

where �p = �N
p ∪ �D

p = �̃N
p ∪ �̃D

p , s0 > 0 is a storativity coefficient and K(x) is
the symmetric and uniformly positive definite rock permeability tensor, satisfying, for
some constants 0 < kmin ≤ kmax,

∀w ∈ Rn, kmin w · w ≤ (Kw) · w ≤ kmax w · w ∀ x ∈ �p. (2.7)

To avoid the issue with restricting the mean value of the pressure, we assume that
|�D

p | > 0. We also assume that �D
f , �

D
p , and �̃D

p are not adjacent to the interface � f p,

i.e., ∃ s > 0 such that dist (�D
f , � f p) ≥ s, dist (�D

p , � f p) ≥ s, and dist (�̃D
p , � f p) ≥ s.

This assumption is used to simplify the characterization of the normal trace spaces on
� f p.

Next, we introduce the following transmission conditions on the interface � f p [9,
13, 21, 56]:

u f · n f +
(

∂ ηp

∂t
+ up

)
· np = 0, σ f n f + σ pnp = 0 on � f p × (0, T ],

σ f n f + μ αBJS

n−1∑
j=1

√
K−1

j

{(
u f − ∂ ηp

∂t

)
· t f , j

}
t f , j = −ppn f on � f p × (0, T ],

(2.8)

where t f , j , 1 ≤ j ≤ n − 1, is an orthogonal system of unit tangent vectors on
� f p, K j = (K t f , j ) · t f , j , and αBJS ≥ 0 is an experimentally determined friction
coefficient. The first and second equations in (2.8) correspond to mass conservation
and conservation of momentum on � f p, respectively, whereas the third one can be
decomposed into its normal and tangential components, as follows:

(σ f n f ) · n f = −pp,

(σ f n f ) · t f , j = −μαBJS

√
K−1

j

(
u f − ∂ ηp

∂t

)
· t f , j on � f p × (0, T ],

representing balance of normal stress and the Beaver–Joseph–Saffman (BJS) slip with
friction condition, respectively.

Finally, the above system of equations is complemented by the initial condition
pp(x, 0) = pp,0(x) in �p. In Lemma 4.9 below we will construct compatible initial
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data for the rest of the variables from pp,0 in a way that all equations in the system
(2.2)–(2.8), except for the unsteady conservation of mass equation in the first row of
(2.6), hold at t = 0.

3 The weak formulation

In this section we proceed analogously to [3, Section 3] (see also [36]) and derive a
weak formulation of the coupled problem given by (2.2), (2.3)–(2.6), and (2.8).

3.1 Preliminaries

For the stress tensor, velocity, and vorticity in the Stokes region, we use the following
Hilbert spaces, respectively,

X f :=
{
τ f ∈ H(div;� f ) : τ f n f = 0 on �N

f

}
, V f := L2(� f ),

Q f :=
{
χ f ∈ L

2(� f ) : χ t
f = −χ f

}
,

endowed with the corresponding norms

‖τ f ‖X f := ‖τ f ‖H(div;� f ), ‖v f ‖V f := ‖v f ‖L2(� f )
, ‖χ f ‖Q f := ‖χ f ‖L2(� f )

.

For the unknowns in the Biot region we introduce the following Hilbert spaces:

Xp :=
{
τ p ∈ H(div;�p) : τ pnp = 0 on �̃N

p

}
, Vs := L2(�p),

Qp :=
{
χ p ∈ L

2(�p) : χ t
p = −χ p

}
,

Vp :=
{
vp ∈ H(div;�p) : vp · np = 0 on �N

p

}
, Wp := L2(�p),

endowed with the standard norms

‖τ p‖Xp := ‖τ p‖H(div;�p), ‖vs‖Vs := ‖vs‖L2(�p)
, ‖χ p‖Qp := ‖χ p‖L2(�p)

,

‖vp‖Vp := ‖vp‖H(div;�p), ‖wp‖Wp := ‖wp‖L2(�p)
.

Finally, analogously to [3, 9, 33, 36, 49] we need to introduce the Lagrange mul-
tiplier spaces 
p := (Vp · np|� f p )

′, � f := (X f n f |� f p )
′, and �s := (Xp np|� f p )

′.
According to the normal trace theorem, since vp ∈ Vp ⊂ H(div;�p), then
vp · np ∈ H−1/2(∂�p). It is shown in [33] that, if vp · np = 0 on ∂ �p \ � f p,
then vp · np ∈ H−1/2(� f p). This argument has been modified in [9] for the case
vp · np = 0 on �N

p and dist (�D
p , � f p) ≥ s > 0. In particular, it holds that

〈vp · np, ξ 〉� f p ≤ C‖vp‖H(div;�p)‖ξ‖H1/2(� f p)
, ∀ vp ∈ Vp, ξ ∈ H1/2(� f p). (3.1)
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Similarly,

〈τ � n�,ψ〉� f p ≤ C‖τ �‖H(div;��)‖ψ‖H1/2(� f p)
, ∀ τ � ∈ X�, ψ ∈ H1/2(� f p), � ∈ { f , p}.

(3.2)
Therefore we can take 
p := H1/2(� f p), � f := H1/2(� f p), and �s := H1/2(� f p),
endowed with the norms

‖ξ‖
p := ‖ξ‖H1/2(� f p)
, ‖ψ‖� f := ‖ψ‖H1/2(� f p)

, and ‖φ‖�s := ‖φ‖H1/2(� f p)
.

(3.3)

3.2 Lagrangemultiplier formulation

Wenowproceedwith the derivation of our Lagrangemultiplier variational formulation
for the coupling of the Stokes and Biot problems. To this end, and inspired by [3, 37],
we begin by introducing the structure velocity us := ∂t ηp ∈ Vs satisfying us = 0 on
�̃D
p ×(0, T ] (cf. the last equation in (2.6)), and three Lagrangemultipliersmodeling the

Stokes velocity, structure velocity and Darcy pressure on the interface, respectively,

ϕ := u f |� f p ∈ � f , θ := us |� f p ∈ �s, and λ := pp|� f p ∈ 
p.

The reason for introducing these Lagrange multipliers is twofold. First, u f , us , and
pp are all modeled in the L2 space, thus they do not have sufficient regularity for
their traces on � f p to be well defined. Second, the Lagrange multipliers are utilized
to impose weakly the transmission conditions (2.8).

To impose the symmetry condition of σ p in a weak sense we introduce the rotation

operator ρ p := 1

2
(∇ηp − ∇ηtp). Notice that in the weak formulation we will use its

time derivative, that is, the structure rotation velocity

γ p := ∂tρ p = 1

2

(∇us − (∇us)t
) ∈ Qp.

From the definition of the elastic and poroelastic stress tensors σ e, σ p (cf. (2.3)) and
recalling that σ e is connected to the displacement ηp through the relation A(σ e) =
e(ηp), we deduce the identities

div(ηp) = tr(e(ηp)) = tr(Aσ e) = trA(σ p + αp pp I) (3.4)

and
∂t A(σ p + αp pp I) = ∇ us − γ p . (3.5)

Then, similarly to [3, 9, 36, 37], we test the first equation of (2.2), the second equation
of (2.6), and (3.5) with arbitrary τ f ∈ X f , vp ∈ Vp, and τ p ∈ Xp, respectively,
integrate by parts, utilize the fact that σ d

f : τ f = σ d
f : τ d

f , test the third equation of
(2.6) with wp ∈ Wp employing (3.4), impose the remaining equations weakly, and
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utilize the transmission conditions in (2.8) to obtain the following variational problem.
Given

f f : [0, T ] → V′
f , q f : [0, T ] → X

′
f , fp : [0, T ] → V′

s, qp : [0, T ] → W′
p,

find (σ f ,u f , γ f , σ p,us, γ p,up, pp,ϕ, θ , λ) : [0, T ] → X f × V f × Q f × Xp ×
Vs × Qp × Vp × Wp × � f × �s × 
p, such that ∀ τ f ∈ X f , v f ∈ V f , χ f ∈ Q f ,
τ p ∈ Xp, vs ∈ Vs , χ p ∈ Qp, vp ∈ Vp, wp ∈ Wp, ψ ∈ � f , φ ∈ �s , ξ ∈ 
p, and
for a.e. t ∈ (0, T ),

1

2μ
(σ d

f , τ
d
f )� f + (u f , div(τ f ))� f + (γ f , τ f )� f − 〈

τ f n f , ϕ
〉
� f p

= − 1

n
(q f I, τ f )� f ,

(3.6a)

− (v f , div(σ f ))� f = (f f , v f )� f , (3.6b)

− (σ f , χ f )� f = 0, (3.6c)

(∂t A(σ p + αp pp I), τ p)�p + (us , div(τ p))�p + (γ p, τ p)�p − 〈
τ pnp, θ

〉
� f p

= 0,

(3.6d)

− (vs ,div(σ p))�p = (fp, vs)�p , (3.6e)

− (σ p, χ p)�p = 0, (3.6f)

μ (K−1up, vp)�p − (pp, div(vp))�p + 〈
vp · np, λ

〉
� f p

= 0, (3.6g)

(s0 ∂t pp, wp)�p + αp (∂t A(σ p + αp pp I), wp I)�p + (wp, div(up))�p = (qp, wp)�p ,

(3.6h)

− 〈
ϕ · n f + (

θ + up
) · np, ξ

〉
� f p

= 0, (3.6i)

〈
σ f n f , ψ

〉
� f p

+ μ αBJS

n−1∑
j=1

〈√
K−1

j (ϕ − θ) · t f , j , ψ · t f , j
〉
� f p

+ 〈
ψ · n f , λ

〉
� f p

= 0,

(3.6j)

〈
σ pnp, φ

〉
� f p

− μαBJS

n−1∑
j=1

〈√
K−1

j (ϕ − θ) · t f , j , φ · t f , j
〉
� f p

+ 〈
φ · np, λ

〉
� f p

= 0.

(3.6k)

Equations (3.6i)–(3.6k) imposeweakly the transmission conditions (2.8). In particular,
Eq. (3.6i) imposes the mass conservation, Eq. (3.6j) imposes the last equation in (2.8),
which is a combination of balance of normal stress and the BJS condition, while
Eq. (3.6k) imposes the conservation of momentum. We emphasize that this is a new
formulation. To our knowledge, this is the first fully dual-mixed formulation for the
Stokes-Biot problem.

We will discuss the construction of initial conditions for the problem (3.6) later on
in Lemma 4.9.

Remark 3.1 The time differentiated Eq. (3.6d) allows us to eliminate the displacement
variable ηp and obtain a formulation that uses only us . By integrating in time the
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Eq. (3.6d) and using the initial data constructed in Lemma 4.9, we can recover the
original equation

(A(σ p+αp pp I), τ p)�p+(ηp,div(τ p))�p+(ρ p, τ p)�p−
〈
τ pnp,ω

〉
� f p

= 0, (3.7)

where ω := ηp|� f p .

To simplify the notation, we set the following bilinear forms:

a f (σ f , τ f ) := 1

2μ
(σ d

f , τ
d
f )� f , ap(up, vp) := μ (K−1up, vp)�p ,

ae(σ p, pp; τ p, wp) := (A(σ p + αp pp I), τ p + αp wp I)�p ,

b f (τ f , v f ) := (div(τ f ), v f )� f , bs(τ p, vs) := (div(τ p), vs)�p ,

bp(vp, wp) := −(div(vp), wp)�p , b�(vp, ξ) := 〈
vp · np, ξ

〉
� f p

,

bsk,�(τ�, χ�) := (τ�, χ�)��
, bn� (τ�,ψ) := − 〈τ �n�, ψ〉� f p

, with � ∈ {
f , p

}
,

(3.8)

and

cBJS(ϕ, θ;ψ,φ) := μαBJS

n−1∑
j=1

〈√
K−1

j (ϕ − θ) · t f , j , (ψ − φ) · t f , j
〉
� f p

,

c�(ψ,φ; ξ) := 〈
ψ · n f , ξ

〉
� f p

+ 〈
φ · np, ξ

〉
� f p

. (3.9)

There are many different ways of ordering the variables in (3.6). For the sake of
the subsequent analysis, we proceed as in [36] and [3], and adopt one leading to an
evolution problem in a doubly-mixed form. In particular, we combine the equations
for the variables associated with the coercive bilinear forms a f , ap, and ae, namely
σ f , σ p, up, and pp. We further combine the interface Eqs. (3.6i)–(3.6k), and also
combine the remaining equations. Hence, (3.6) results in

a f (σ f , τ f ) + ap(up, vp) + ae(∂t σ p, ∂t pp; τ p, wp) + (s0 ∂t pp, wp)�p

+ bp(vp, pp) − bp(up, wp) + bn f (τ f ,ϕ) + bnp (τ p, θ) + b�(vp, λ)

+ b f (τ f ,u f ) + bs(τ p,us) + bsk, f (τ f , γ f ) + bsk,p(τ p, γ p)

= −1

n
(q f I, τ f )� f + (qp, wp)�p ,

− bn f (σ f ,ψ) − bnp (σ p,φ) − b�(up, ξ) + cBJS(ϕ, θ;ψ,φ)

+ c�(ψ,φ; λ) − c�(ϕ, θ; ξ) = 0,

− b f (σ f , v f ) − bs(σ p, vs) − bsk, f (σ f ,χ f ) − bsk,p(σ p,χ p)

= (f f , v f )� f + (fp, vs)�p , (3.10)
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Now, we group the spaces and test functions as follows:

X := X f × Vp × Xp × Wp, Y := � f × �s × 
p, Z := V f × Vs × Q f × Qp,

σ := (σ f ,up, σ p, pp) ∈ X, ϕ := (ϕ, θ , λ) ∈ Y, u := (u f ,us, γ f , γ p) ∈ Z,

τ := (τ f , vp, τ p, wp) ∈ X, ψ := (ψ,φ, ξ) ∈ Y, v := (v f , vs,χ f ,χ p) ∈ Z,

where the spaces X,Y and Z are endowed, respectively, with the following norms:

‖τ‖X := ‖τ f ‖X f + ‖vp‖Vp + ‖τ p‖Xp + ‖wp‖Wp ,

‖ψ‖Y := ‖ψ‖� f + ‖φ‖�s + ‖ξ‖
p ,

‖v‖Z := ‖v f ‖V f + ‖vs‖Vs + ‖χ f ‖Q f + ‖χ p‖Qp .

Hence, we can write (3.10) in an operator notation as a degenerate evolution problem
in a doubly-mixed form:

∂

∂t
E(σ (t)) + A(σ (t)) + B′

1(ϕ(t)) + B′(u(t)) = F(t) in X′,

−B1(σ (t)) + C(ϕ(t)) = 0 in Y′,
−B (σ (t)) = G(t) in Z′, (3.11)

where, according to (3.8)–(3.9), the operators A : X → X′, B1 : X → Y′, C : Y →
Y′, and B : X → Z′, are defined by

A(σ )(τ ) := a f (σ f , τ f ) + ap(up, vp) + bp(vp, pp) − bp(up, wp),

B1(τ )(ψ) := bn f (τ f ,ψ) + bnp (τ p,φ) + b�(vp, ξ),

C(ϕ)(ψ) := cBJS(ϕ, θ;ψ,φ) + c�(ψ,φ; λ) − c�(ϕ, θ; ξ), (3.12)

and

B(τ )(v) := b f (τ f , v f ) + bs(τ p, vs) + bsk, f (τ f ,χ f ) + bsk,p(τ p,χ p), (3.13)

whereas the operator E : X → X′ is given by

E(σ )(τ ) := ae(σ p, pp; τ p, wp) + (s0 pp, wp)�p , (3.14)

and the functionals F ∈ X′, G ∈ Z′ are defined as

F(τ ) := −1

n
(q f I, τ f )� f + (qp, wp)�p and G(v) := (f f , v f )� f + (fp, vs)�p .

(3.15)
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4 Well-posedness of themodel

In this sectionwe establish the solvability of (3.11) (equivalently (3.10)) given suitable
initial data. To that end we first collect some previous results that will be used in the
forthcoming analysis.

4.1 Preliminaries

We begin by recalling the following key result given in [55, Theorem IV.6.1(b)] that
will be used to establish the existence of a solution to (3.11). In what follows, Rg(A)

denotes the range of A.

Theorem 4.1 Let the linear, symmetric and monotone operator N be given from the
real vector space E to its algebraic dual E∗, and let E ′

b be the Hilbert space which is
the dual of E with the seminorm

|x |b = (
N (x)(x)

)1/2
, x ∈ E .

Let M ⊂ E × E ′
b be a relation with domain D =

{
x ∈ E : M(x) �= ∅

}
.

Assume M is monotone and Rg(N + M) = E ′
b. Then, for each u0 ∈ D and for

each f ∈ W1,1(0, T ; E ′
b), there is a solution u of

d

dt

(
N (u(t))

) + M
(
u(t)

) � f (t) a.e. 0 < t < T , (4.1)

with

N (u) ∈ W1,∞(0, T ; E ′
b), u(t) ∈ D, for all 0 ≤ t ≤ T, andN (u(0)) = N (u0).

In addition, in order to show the range condition of Theorem 4.1 in our context,
we will require the following theorem whose proof can be derived similarly to [35,
Theorem 2.2] (see also [1, Theorem 3.13] for a generalized nonlinear Banach version).

Theorem 4.2 Let X ,Y , and Z be Hilbert spaces, and let X ′,Y ′, Z ′ be their respective
duals. Let A : X → X ′, S : Y → Y ′, B1 : X → Y ′, and B : X → Z ′ be linear
bounded operators. We also let B ′

1 : Y → X ′ and B ′ : Z → X ′ be the corresponding
adjoints. Finally, we let V be the kernel of B, that is

V :=
{
τ ∈ X : B(τ )(v) = 0 ∀ v ∈ Z

}
.

Assume that

(i) A|V : V → V ′ is elliptic, that is, there exists a constant α > 0 such that

A(τ )(τ ) ≥ α ‖τ‖2X ∀ τ ∈ V .
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(ii) S is positive semi-definite on Y , that is,

S(ψ)(ψ) ≥ 0 ∀ψ ∈ Y .

(iii) B1 satisfies an inf-sup condition on V × Y , that is, there exists β1 > 0 such that

sup
0 �=τ∈V

B1(τ )(ψ)

‖τ‖X ≥ β1 ‖ψ‖Y ∀ψ ∈ Y .

(iv) B satisfies an inf-sup condition on X × Z, that is, there exists β > 0 such that

sup
0 �=τ∈X

B(τ )(v)
‖τ‖X ≥ β ‖v‖Z ∀ v ∈ Z .

Then, for each (F1, F2,G) ∈ X ′×Y ′×Z ′ there exists a unique (σ ,ϕ,u) ∈ X×Y×Z,
such that

A(σ )(τ ) + B ′
1(ϕ)(τ ) + B ′(u)(τ ) = F1(τ ) ∀ τ ∈ X ,

B1(σ )(ψ) − S(ϕ)(ψ) = F2(ψ) ∀ψ ∈ Y ,

B(σ )(v) = G(v) ∀ v ∈ Z .

Moreover, there exists C > 0, depending only on α, β1, β, ‖A‖, ‖S‖, and ‖B1‖ such
that

‖(σ ,ϕ,u)‖X×Y×Z ≤ C
{
‖F1‖X ′ + ‖F2‖Y ′ + ‖G‖Z ′

}
.

At this point we recall, for later use, that there exist positive constants c1(� f ) and
c2(� f ), such that (see, [19, Proposition IV.3.1] and [34, Lemma 2.5], respectively)

c1(� f ) ‖τ f ,0‖2L2(� f )
≤ ‖τdf ‖2L2(� f )

+‖div(τ f )‖2L2(� f )
∀ τ f = τ f ,0+ I ∈ H(div; � f )

(4.2)
and

c2(� f ) ‖τ f ‖2X f
≤ ‖τ f ,0‖2X f

∀ τ f = τ f ,0 +  I ∈ X f , (4.3)

where τ f ,0 ∈ H0(div;� f ) :=
{
τ f ∈ H(div;� f ) : (tr(τ f ), 1)� f = 0

}
and  ∈ R.

We emphasize that (4.3) holds since each τ f ∈ X f satisfies the boundary condition
τ f n f = 0 on �N

f with |�N
f | > 0.
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4.2 A reduced problem

Now,we proceed to analyze the solvability of (3.11) (equivalently (3.10)). First, recall-
ing the definition of the operators A,B1,B, C, and E (cf. (3.12), (3.13) and (3.14)),
we note that problem (3.11) can be written in the form of (4.1) with

E = X × Y × Z, u =
⎛
⎝ σ

ϕ

u

⎞
⎠,N =

⎛
⎝ E 0 0
0 0 0
0 0 0

⎞
⎠,M =

⎛
⎝A B′

1 B′
−B1 C 0
−B 0 0

⎞
⎠, f =

⎛
⎝F
0
G

⎞
⎠.

(4.4)
In addition, the seminorm induced by the operator E is |τ |2E := s0‖wp‖2L2(�p)

+
‖A1/2(τ p + αpwpI)‖2

L2(�p)
, which is equivalent to ‖τ p‖2

L2(�p)
+ ‖wp‖2L2(�p)

since

s0 > 0. We denote by Xp,2 and Wp,2 the closures of the spaces Xp and Wp,
respectively, with respect to the norms ‖τ p‖Xp,2 := ‖τ p‖L2(�p)

and ‖wp‖Wp,2 :=
‖wp‖L2(�p)

. Note thatXp,2 = L
2(�p) andWp,2 = Wp = L2(�p), thereforeX′

p,2 =
L
2(�p) and W′

p,2 = W′
p = L2(�p). Next, denoting X′

2,0 := 0 × 0 × X
′
p,2 × W′

p,2,
Y′
2,0 := 0× 0× 0, and Z′

2,0 := 0× 0× 0× 0, the Hilbert space E ′
b and domain D in

Theorem 4.1 for our context are

E ′
b := X′

2,0 × Y′
2,0 × Z′

2,0, D :=
{
(σ ,ϕ,u) ∈ X × Y × Z : M(σ ,ϕ,u) ∈ E ′

b

}
.

(4.5)

Remark 4.1 The above definition of the space E ′
b and the corresponding domain D

implies that, in order to apply Theorem 4.1 for our problem (3.11), we need to
restrict f f = 0, q f = 0, and fp = 0. To avoid this restriction we will employ a
translation argument [57] to reduce the existence for (3.11) to existence for the fol-
lowing initial-value problem: Given initial data (σ̂ 0, ϕ̂0

, û0) ∈ D and source terms

(̂fσ p , f̂ pp ) : [0, T ] → X
′
p,2 × W′

p,2, find (σ̂ , ϕ̂, û) ∈ [0, T ] → X × Y × Z such that
(σ̂ p(0), p̂p(0)) = (σ̂ p,0, p̂p,0) and, for a.e. t ∈ (0, T ),

∂

∂t
E(σ̂ (t)) + A(σ̂ (t)) + B′

1(ϕ̂(t)) + B′(̂u(t)) = F̂(t) in X′
2,0,

−B1(σ̂ (t)) + C(ϕ̂(t)) = 0 in Y′
2,0,

−B (σ̂ (t)) = 0 in Z′
2,0, (4.6)

where F̂ = (0, 0, f̂σ p , f̂ pp )
t .

In order to apply Theorem 4.1 for problem (4.6), we need to: (1) establish the
required properties of the operatorsN andM, (2) prove the range condition Rg(N +
M) = E ′

b, and (3) construct compatible initial data (σ̂ 0, ϕ̂0
, û0) ∈ D. We proceed

with a sequence of lemmas establishing these results.
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4.2.1 Operator properties

Lemma 4.3 The linear operatorsN andM defined in (4.4) are continuous and mono-
tone. In addition, N is symmetric.

Proof First, from the definition of the operators E,A,B1, C and B (cf. (3.12), (3.13),
(3.14)) it is clear that both N and M (cf. (4.4)) are linear and continuous, using the
trace inequalities (3.1)–(3.2) for the continuity of B1. In turn,N is symmetric since E
is. Finally, using (2.7), we have

E(τ )(τ ) = s0‖wp‖2L2(�p)
+ ‖A1/2(τ p + αpwpI)‖2L2(�p)

,

A(τ )(τ ) ≥ 1

2μ
‖τ d

f ‖2L2(� f )
+ μ k−1

max‖vp‖2L2(�p)
∀ τ ∈ X, (4.7)

and recalling the definition of the operator C (cf. (3.9), (3.12)), we obtain

C(ψ)(ψ) = μαBJS

n−1∑
j=1

〈√
K−1

j (ψ − φ) · t f , j , (ψ − φ) · t f , j
〉
� f p

≥ μαBJS√
kmax

|ψ − φ|2BJS ,

(4.8)
for allψ = (ψ,φ, ξ) ∈ Y, where |ψ −φ|2BJS := ∑n−1

j=1 ‖(ψ −φ) · t f , j‖2L2(� f p)
. Thus,

combining (4.7) and (4.8), and the fact that the operators E,A, C are linear, we deduce
the monotonicity of the operators N and M completing the proof. ��

4.2.2 The range condition

Next, we establish the range condition Rg(N +M) = E ′
b, which is done by solving

the related resolvent system (N +M(v)) = f in E ′
b for v ∈ D. In fact, we will show

a stronger result by considering a resolvent system where all source terms in F and
G may be non-zero. This stronger result will be used in the translation argument for
proving existence of the original problem (3.11). More precisely, let

X2 := X f × Vp × Xp,2 × Wp,2 ⊃ X

and note thatX′
2 = X

′
f ×V′

p×X
′
p,2×W′

p,2 ⊂ X′.We consider the following resolvent
system:

(E + A)(σ ) + B′
1(ϕ) + B′(u) = F̂ in X′

2,

−B1(σ ) + C(ϕ) = 0 in Y′,
−B (σ ) = Ĝ in Z′, (4.9)

where F̂ ∈ X′
2 and Ĝ ∈ Z′ are such that

F̂(τ ) := (̂fσ f , τ f )� f + (̂fup , vp)�p + (̂fσ p , τ p)�p + ( f̂ pp , wp)�p ,

Ĝ(v) := (̂fu f , v f )� f + (̂fus , vs)�p + (̂fγ f
,χ f )� f + (̂fγ p

,χ p)�p .
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We next focus on proving that the resolvent system (4.9) is well-posed. We start with
the following preliminary lemma.

Lemma 4.4 Let (σ ,ϕ,u) ∈ X × Y × Z be a solution to (4.9). Then, for any positive
constant κ , it satisfies

(E + Ã)(σ ) + B′
1(ϕ) + B′(u) = F̃ in X′

2,

B1(σ ) − C(ϕ) = 0 in Y′,
B (σ ) = −Ĝ in Z′, (4.10)

where

Ã(σ )(τ ) := A(σ )(τ )

+κ
{
(div(up), div(vp))�p + (

s0 pp + αp tr
(
A(σ p + αp pp I)

)
, div(vp)

)
�p

}
,

(4.11)

and
F̃(τ ) := F̂(τ ) + κ

(
f̂ pp , div(vp)

)
�p

.

Conversely, if (σ ,ϕ,u) ∈ X ×Y × Z is a solution to (4.10), then it is also a solution
to (4.9).

Proof Let (σ ,ϕ,u) ∈ X×Y×Z be a solution to (4.9). Using that divVp = Wp, we
take τ = (0, wp) = (0, div(vp)) ∈ X in the first row of (4.9), multiply by a positive
constant κ and add that term to (4.9), to obtain (4.10). Conversely, if (σ ,ϕ,u) ∈
X × Y × Z satisfies (4.10) we employ similar arguments, but now subtracting, to
recover (4.9). ��

Problem (4.10) has the same structure as the one in Theorem 4.2. Therefore, in
what follows we apply this result to establish the well-posedness of (4.10). To that
end, we first observe that the kernel of the operator B, cf. (3.13), can be written as

V :=
{
τ ∈ X : B(τ )(v) = 0 ∀ v ∈ Z

}
= X̃ f × Vp × X̃p × Wp, (4.12)

where

X̃� :=
{
τ � ∈ X� : τ � = τ t

� and div(τ �) = 0 in ��

}
, � ∈ { f , p}.

We next verify the hypotheses of Theorem 4.2. We begin by noting that the operators
Ã,B1, C,B, and E are linear and continuous. Next, we proceed with the ellipticity of
the operator E + Ã on V.

Lemma 4.5 Assume that

κ ∈
(
0, 2 min

{
δ1,

δ2

αp

})
with δ1 ∈

(
0,

2

s0

)
and δ2 ∈

(
0,

4μmin

n αp

(
1 − s0

2
δ1

))
.

Then, the operator E + Ã is elliptic on V.
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Proof From the definition of Ã, cf. (4.11), and considering τ ∈ V we get

(E + Ã)(τ )(τ ) = 1

2μ
‖τ d

f ‖2L2(� f )
+ μ‖K−1/2vp‖2L2(�p)

+ s0 ‖wp‖2Wp

+‖A1/2(τ p + αp wp I)‖2L2(�p)
+ κ ‖div(vp)‖2L2(�p)

+ s0 κ (wp, div(vp))�p

+αp κ (A1/2(τ p + αp wp I), A1/2(div(vp) I))�p .

Hence, using the Cauchy–Schwarz andYoung’s inequalities, (2.7), (2.5), and (4.2)–
(4.3), we obtain

(E + Ã)(τ )(τ ) ≥ Cd

2μ
‖τ f ‖2X f

+ μ k−1
max‖vp‖2L2(�p)

+κ

((
1− s0

2
δ1

)
− n αp

4μmin
δ2

)
‖div(vp)‖2L2(�p)

+
(
1 − αp

2 δ2
κ

)
‖A1/2 (τ p + αp wp I)‖2

L2(�p)
+ s0

(
1 − κ

2 δ1

)
‖wp‖2Wp

,

where Cd := C1(� f )C2(� f ). Then, using the stipulated hypotheses on δ1, δ2 and κ ,
we can define the positive constants

α1(� f ) := Cd

2μ
, α2(�p) := min

{
μ k−1

max, κ

((
1 − s0

2
δ1

)
− n αp

4μmin
δ2

)}
,

α3(�p) := s0
2

(
1 − κ

2 δ1

)
, α4(�p) := min

{(
1 − αp

2 δ2
κ

)
, α3(�p)

}

which allow us to obtain

(E + Ã)(τ )(τ ) ≥ α1(� f ) ‖τ f ‖2X f
+ α2(�p) ‖vp‖2Vp

+ α3(�p) ‖wp‖2Wp

+α4(�p)
(
‖A1/2(τ p + αp wp I)‖2L2(�p)

+ ‖wp‖2Wp

)
. (4.13)

In turn, from (2.5) and using the triangle inequality, we deduce

‖τ p‖2L2(�p)
≤ (2μmax + n λmax)

(
‖A1/2(τ p + αp wp I)‖2L2(�p)

+ ‖A1/2(αp wp I)‖2L2(�p)

)

≤ Cp

(
‖A1/2(τ p + αp wp I)‖2L2(�p)

+ ‖wp‖2Wp

)
, (4.14)

where Cp := (2μmax + n λmax)max
{
1,

n α2
p

2μmin

}
. A combination of (4.13) and (4.14),

and the fact that div(τ p) = 0 in �p, implies

(E + Ã)(τ )(τ ) ≥ α(� f ,�p) ‖τ‖2X ∀ τ ∈ V,

with α(� f ,�p) := min
{
α1(� f ), α2(�p), α3(�p), α4(�p)/Cp

}
, hence E + Ã is

elliptic on V. ��
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Remark 4.2 Tomaximize the ellipticity constant α(� f ,�p), we can choose explicitly
the parameter κ by taking the parameters δ1 and δ2 as themiddle points of their feasible
ranges. More precisely, we can simply take

δ1 = 1

s0
, δ2 = μmin

n αp
, κ = min

{
1

s0
,
μmin

n α2
p

}
.

We continue with the verification of the hypotheses of Theorem 4.2.

Lemma 4.6 There exist positive constants β1 and β, such that

sup
0 �=τ∈V

B1(τ )(ψ)

‖τ‖X ≥ β1 ‖ψ‖Y ∀ψ ∈ Y, (4.15)

and

sup
0 �=τ∈X

B(τ )(v)
‖τ‖X ≥ β ‖v‖Z ∀ v ∈ Z. (4.16)

Proof Webegin with the proof of (4.15). Due the diagonal character of operatorB1, cf.
(3.12), we need to show individual inf-sup conditions for bn f , bnp , and b� . The inf-sup
condition for b� follows from a slight adaptation of the argument in [31, Lemma 3.2] to
account for the presence of Dirichlet boundary�D

p , using that dist (�
D
p , � f p) ≥ s > 0.

The inf-sup conditions for bn f and bnp follow in a similar way. Since the kernel space
V consists of symmetric and divergence-free tensors, the argument in [31, Lemma 3.2]
must be modified to account for that. For example, in � f we solve a problem

div(e(v f )) = 0 in � f , e(v f )n f = ξ on � f p ∪ �N
f , v f = 0 on �D

f , (4.17)

for given datum ξ ∈ H−1/2(� f p ∪ �N
f ) such that ξ = 0 on �N

f . We recall that �N
f

is adjacent to � f p. Furthermore, |�D
f | > 0, which guarantees the solvability of the

problem. We refer to [31, Lemma 3.2] for further details.
Finally, proceeding as above, using the diagonal character of operator B, cf. (3.13),

and employing the theory developed in [34, Section 2.4.3] to our context, we can
deduce (4.16). ��

Now, we are in a position to establish that the resolvent system associated to (4.6)
is well-posed.

Lemma 4.7 ForN ,M and E ′
b defined in (4.4)–(4.5), it holds that Rg(N +M) = E ′

b,
that is, given f ∈ E ′

b, there exists v ∈ D such that (N + M)(v) = f .

Proof Let us consider F̂ = (0, 0, f̂σ p , f̂ pp )
t and Ĝ = 0 in (4.9)–(4.10) and κ as in

Lemma 4.5. The well-posedness of (4.10) follows from (4.8), Lemmas 4.5 and 4.6,
and a straightforward application of Theorem 4.2 with A = E + Ã, B1 = B1, S = C,
and B = B. Then, employing Lemma 4.4 we conclude that there exists a unique
solution of the resolvent system of (4.6), implying the range condition. ��
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4.2.3 Existence of a solution of the reduced problem

We are now ready to establish existence for the auxiliary initial value problem (4.6),
assuming compatible initial data.

Lemma 4.8 For each compatible initial data (σ̂ 0, ϕ̂0
, û0) ∈ D and each (̂fp, q̂p) ∈

W1,1(0, T ;X′
p,2) × W1,1(0, T ;W′

p,2), the problem (4.6) has a solution (σ̂ , ϕ̂, û) :
[0, T ] → X×Y×Z such that (σ̂ p, p̂p) ∈ W1,∞(0, T ;L2(�p))×W1,∞(0, T ;Wp)

and (σ̂ p(0), p̂p(0)) = (σ̂ p,0, p̂p,0).

Proof The assertion of the lemma follows by applying Theorem 4.1 with E,N ,M
defined in (4.4), using Lemmas 4.3 and 4.7. ��

Wewill employ Lemma 4.8 to obtain existence of a solution to our problem (3.11).
To that end, we first construct compatible initial data (σ 0,ϕ0

,u0).

4.3 Compatible initial data

Lemma 4.9 Assume that the initial condition pp,0 ∈ Hp, where

Hp :=
{
wp ∈ H1(�p) : K∇ wp ∈ H1(�p), K∇ wp · np = 0 on �N

p , wp = 0 on �D
p

}
.

(4.18)
Then, there exist σ 0 := (σ f ,0,up,0, σ p,0, pp,0) ∈ X, ϕ

0
:= (ϕ0, θ0, λ0) ∈ Y, and

u0 := (u f ,0,us,0, γ f ,0, γ p,0) ∈ Z such that

A(σ 0) + B′
1(ϕ0

) + B′(u0) = F̂0 in X′
2,

−B1(σ 0) + C(ϕ
0
) = 0 in Y′,

−B (σ 0) = G(0) in Z′, (4.19)

where F̂0 = (1
n
q f (0)I, 0, f̂σ p,0, f̂ pp,0

)t ∈ X′
2, with some (̂fσ p,0, f̂ pp,0) ∈ X

′
p,2 ×

W′
p,2.

Proof Following the approach from [3, Lemma 4.15], the initial data are constructed
by solving a sequence of well-defined subproblems. We take the following steps.

1. Define up,0 := − 1

μ
K∇ pp,0, with pp,0 ∈ Hp, cf. (4.18). It follows that up,0 ∈

H(div;�p) and

μK−1up,0 = −∇ pp,0, div(up,0) = − 1

μ
div(K∇ pp,0) in �p, up,0·np = 0 on �N

p .

(4.20)
Next, defining λ0 := pp,0|� f p ∈ 
p, (4.20) implies

ap(up,0, vp) + bp(vp, pp,0) + b�(vp, λ0) = 0 ∀ vp ∈ Vp. (4.21)
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2. Define (σ f ,0,ϕ0,u f ,0, γ f ,0) ∈ X f × � f ×V f ×Q f as the unique solution of
the problem

a f (σ f ,0, τ f ) + bn f (τ f , ϕ0) + b f (τ f , u f ,0) + bsk, f (τ f , γ f ,0) = − 1

n
(q f (0) I, τ f )� f ,

−bn f (σ f ,0, ψ) = −μ αBJS

n−1∑
j=1

〈√
K−1

j up,0 · t f , j ,ψ · t f , j
〉
� f p

− 〈
ψ · n f , λ0

〉
� f p

,

−b f (σ f ,0, v f ) − bsk, f (σ f ,0,χ f ) = (f f (0), v f )� f , (4.22)

for all (τ f ,ψ, v f ,χ f ) ∈ X f ×� f ×V f ×Q f . Note that (4.22) is well-posed, since
it corresponds to the weak solution of the Stokes problem in a mixed formulation and
its solvability can be shown using classical Babuška-Brezzi theory. Note also that up,0
and λ0 are data for this problem.

3. Define (σ p,0,ω0, ηp,0, ρ p,0) ∈ Xp × �s × Vs × Qp, as the unique solution of
the problem

(A(σ p,0), τ p)�p + bnp (τ p,ω0) + bs(τ p, ηp,0) + bsk,p(τ p, ρ p,0)

= −(A(αp pp,0 I), τ p)�p

−bnp (σ p,0,φ) = μαBJS

n−1∑
j=1

〈√
K−1

j up,0 · t f , j ,φ · t f , j
〉
� f p

− 〈
φ · np, λ0

〉
� f p

−bs(σ p,0, vs) − bsk,p(σ p,0,χ p) = (fp(0), vs)�p , (4.23)

for all (τ p,φ, vs,χ p) ∈ Xp × �s × Vs × Qp. Problem (4.23) corresponds to the
weak solution of the elasticity problem in a mixed formulation and its solvability can
be shown using classical Babuška-Brezzi theory. Note that pp,0,up,0, and λ0 are data
for this problem. Here ηp,0, ρ p,0, and ω0 are auxiliary variables that are not part of
the constructed initial data. However, they can be used to recover the variables ηp, ρ p,
and ω that satisfy the non-differentiated Eq. (3.7).

4. Define θ0 ∈ �s as
θ0 := ϕ0 − up,0 on � f p, (4.24)

where ϕ0 and up,0 are data obtained in the previous steps. Note that (4.24) implies that
the BJS terms in (4.22) and (4.23) can be rewritten with up,0 · t f , j = (ϕ0 − θ0) · t f , j
and that the Eq. (3.6i) holds for the initial data, that is,

− 〈
ϕ0 · n f + (θ0 + up,0) · np, ξ

〉
� f p

= 0 ∀ ξ ∈ 
p. (4.25)

5. Finally, define (σ̂ p,0,us,0, γ p,0) ∈ Xp ×Vs ×Qp, as the unique solution of the
problem

(A(σ̂ p,0), τ p)�p + bs(τ p,us,0) + bsk,p(τ p, γ p,0) = −bnp (τ p, θ0)

−bs(σ̂ p,0, vs) − bsk,p(σ̂ p,0,χ p) = 0, (4.26)

for all (τ p, vs,χ p) ∈ Xp×Vs ×Qp. Problem (4.26) corresponds to the weak solution
of the elasticity problem in �p with Dirichlet datum θ0 on � f p.
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Combining (4.21), (4.22), the second and third equations in (4.23), (4.25), and the
first equation in (4.26), we obtain (σ 0,ϕ0

,u0) ∈ X × Y × Z satisfying (4.19) with

(̂fσ p,0, τ p)�p = −(A(σ̂ p,0), τ p)�p and ( f̂ pp,0, wp)�p = −bp(up,0, wp).

(4.27)
The above equations imply

‖̂fσ p,0‖L2(�p)
+ ‖ f̂ pp,0‖L2(�p)

≤ C
(
‖σ̂ p,0‖L2(�p)

+ ‖div(up,0)‖L2(�p)

)
.

Standard stability arguments for (4.22) and (4.26), together with the definition (4.24)
of θ0, imply that ‖σ̂ p,0‖L2(�p)

≤ C(‖q f (0)‖L2(� f )
+‖f f (0)‖L2(� f )

+‖up,0‖H1(�p)
+

‖λ0‖H1/2(� f p)
). Hence (̂fσ p,0, f̂ pp,0) ∈ X

′
p,2 × W′

p,2, completing the proof. ��

4.4 Themain result

We are now ready to prove existence and uniqueness of a solution of the problem
(3.11).

Theorem 4.10 For each pp,0 ∈ Hp and compatible initial data (σ 0,ϕ0
,u0) con-

structed in Lemma 4.9 and each

f f ∈ W1,1(0, T ;V′
f ), fp ∈ W1,1(0, T ;V′

s), q f ∈ W1,1(0, T ;X′
f ),

qp ∈ W1,1(0, T ;W′
p),

there exists a unique solution of (3.11), (σ ,ϕ,u) : [0, T ] → X × Y × Z, such
that (σ p, pp) ∈ W1,∞(0, T ;L2(�p)) × W1,∞(0, T ;Wp) and (σ p(0), pp(0)) =
(σ p,0, pp,0).

Proof For each fixed time t ∈ [0, T ], Lemma 4.7 implies that there exists a solution
to the resolvent system (4.9) with F̂ = F(t) and Ĝ = G(t) defined in (3.15). More
precisely, there exist (σ̃ (t), ϕ̃(t), ũ(t)) such that

(
E + A

)
(σ̃ (t)) + B′

1(ϕ̃(t)) + B′(̃u(t)) = F(t) in X′
2,

−B1(σ̃ (t)) + C(ϕ̃(t)) = 0 in Y′,
−B (σ̃ (t)) = G(t) in Z′. (4.28)

We look for a solution to (3.11) in the form σ (t) = σ̃ (t) + σ̂ (t), ϕ(t) = ϕ̃(t) + ϕ̂(t),
and u(t) = ũ(t) + û(t). Subtracting (4.28) from (3.11) leads to the reduced evolution
problem for (σ̂ (t), ϕ̂(t), û(t)):

∂tE(σ̂ (t)) + A(σ̂ (t)) + B′
1(ϕ̂(t)) + B′(̂u(t)) = E(σ̃ (t)) − ∂tE(σ̃ (t)) in X′

2,0,

−B1(σ̂ (t)) + C(ϕ̂(t)) = 0 in Y′
2,0,

−B (σ̂ (t)) = 0 in Z′
2,0,(4.29)
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with initial condition σ̂ (0) = σ 0 − σ̃ (0), ϕ̂(0) = ϕ
0
− ϕ̃(0), and û(0) = u0 − ũ(0).

Subtracting (4.28) at t = 0 from (4.19) gives

A(σ̂ (0)) + B′
1(ϕ̂(0)) + B′(̂u(0)) = E(σ̃ (0)) + F̂0 − F(0) in X′

2,0,

−B1(σ̂ (0)) + C(ϕ̂(0)) = 0 in Y′
2,0,

−B (σ̂ (0)) = 0 in Z′
2,0. (4.30)

We emphasize that in (4.30), F̂0 − F(0) = (0, 0, f̂σ p,0, f̂ pp,0 − qp(0))t ∈ X′
2,0.

Thus, M(σ̂ (0), ϕ̂(0), û(0)) ∈ E ′
b, i.e., (σ̂ (0), ϕ̂(0), û(0)) ∈ D (cf. (4.5)). Thus, the

reduced evolution problem (4.29) is in the form of (4.6). According to Lemma 4.8, it
has a solution, which establishes the existence of a solution to (3.11) with the stated
regularity satisfying (σ p(0), pp(0)) = (σ p,0, pp,0).

We next show that the solution of (3.11) is unique. Since the problem is linear, it is
sufficient to prove that the problem with zero data has only the zero solution. Taking
F = G = 0 in (3.11) and testing it with the solution (σ ,ϕ,u) yields

1

2
∂t

(
‖A1/2 (σ p + αp pp I)‖2L2(�p)

+ s0 ‖pp‖2Wp

)

+ 1

2μ
‖σ d

f ‖2L2(� f )
+ ap(up,up) + C(ϕ)(ϕ) = 0,

which together with (4.14), (2.7) to bound ap (cf. (3.8)), the semi-definite positive
property of C (cf. (4.8)), integrating in time from 0 to t ∈ (0, T ], and using that the
initial data are zero, implies

‖σ p‖2L2(�p)
+ ‖pp‖2Wp

+
∫ t

0

(
‖σ d

f ‖2L2(� f )
+ ‖up‖2L2(�p)

)
ds ≤ 0. (4.31)

It follows from (4.31) that σ d
f (t) = 0,up(t) = 0, σ p(t) = 0, and pp(t) = 0 for all

t ∈ (0, T ].
Now, taking τ ∈ V (cf. (4.12)) in the first equation of (3.11) and employing the

inf-sup condition of B1 (cf. (4.15)), with ψ = ϕ = (ϕ, θ , λ) ∈ Y, yields

β̃ ‖ϕ‖Y ≤ sup
0 �=τ∈V

B1(τ )(ϕ)

‖τ‖X = − sup
0 �=τ∈V

(∂t E + A)(σ )(τ )

‖τ‖X = 0.

Thus, ϕ(t) = 0, θ(t) = 0, and λ(t) = 0 for all t ∈ (0, T ]. In turn, from the inf-sup
condition of B (cf. (4.16)), with v = u = (u f ,us, γ f , γ p) ∈ Z, we get

β ‖u‖Z ≤ sup
0 �=τ∈X

B(τ )(u)

‖τ‖X = − sup
0 �=τ∈X

(∂t E + A)(σ )(τ ) + B1(τ )(ϕ)

‖τ‖X = 0.
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Therefore, u f (t) = 0,us(t) = 0, γ f (t) = 0, and γ p(t) = 0 for all t ∈ (0, T ].
Finally, from the third row in (3.10), we have the identity

b f (σ f , v f ) = 0 ∀ v f ∈ V f .

Taking v f = div(σ f ) ∈ V f , we deduce that div(σ f (t)) = 0 for all t ∈ (0, T ], which
combined with the fact that σ d

f (t) = 0 for all t ∈ (0, T ], and estimates (4.2)–(4.3)
yields σ f (t) = 0 for all t ∈ (0, T ]. Then, (3.11) has a unique solution. ��
Corollary 4.11 The solution of (3.11) established in Theorem 4.10 satisfies σ f (0) =
σ f ,0,u f (0) = u f ,0, γ f (0) = γ f ,0,up(0) = up,0,ϕ(0) = ϕ0, λ(0) = λ0, and
θ(0) = θ0.

Proof Let σ f := σ f (0) − σ f ,0, with a similar definition and notation for the rest of
the variables. Since Theorem 4.1 implies that M(u) ∈ L∞(0, T ; E ′

b), we can take
t → 0 in all equations without time derivatives in (4.29), and therefore also in (3.11).
Using that the initial data (σ 0,ϕ0

,u0) satisfy the same equations at t = 0 (cf. (4.19)),
and that σ p = 0 and pp = 0, we obtain

1

2μ
(σ d

f , τ
d
f )� f + (u f , div(τ f ))� f + (γ f , τ f )� f − 〈

τ f n f , ϕ
〉
� f p

= 0, (4.32a)

μ (K−1up, vp)�p + 〈
vp · np, λ

〉
� f p

= 0, (4.32b)

− (v f , div(σ f ))� f = 0, (4.32c)

− (σ f , χ f )� f = 0, (4.32d)

−
〈
ϕ · n f +

(
θ + up

)
· np, ξ

〉
� f p

= 0, (4.32e)

〈
σ f n f , ψ

〉
� f p

+ μ αBJS

n−1∑
j=1

〈√
K−1

j

(
ϕ − θ

)
· t f , j , ψ · t f , j

〉
� f p

+ 〈
ψ · n f , λ

〉
� f p

= 0,

(4.32f)

− μαBJS

n−1∑
j=1

〈√
K−1

j

(
ϕ − θ

)
· t f , j , φ · t f , j

〉
� f p

+ 〈
φ · np, λ

〉
� f p

= 0. (4.32g)

Taking (τ f , vp, v f ,χ f , ξ,ψ,φ) = (σ f ,up,u f , γ f , λ,ϕ, θ) and combining the
equations results in

‖σ d
f ‖2L2(� f )

+ ‖up‖2L2(�p)
+ |ϕ − θ |2BJS ≤ 0 , (4.33)

implying σ d
f = 0,up = 0, and (ϕ − θ) · t f , j = 0. The inf-sup conditions (4.15)–

(4.16), together with (4.32), imply that u f = 0, γ f = 0,ϕ = 0, and λ = 0. Then

(4.33) yields θ · t f , j = 0. In turn, Eq. (4.32e) implies that
〈
θ · np, ξ

〉
� f p

= 0 for all

ξ ∈ H1/2(� f p). Note that np may be discontinuous on � f p, thus θ · np ∈ L2(� f p).
Since H1/2(� f p) is dense in L2(� f p), then θ ·np = 0, and we conclude that θ = 0. In
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addition, taking v f = div(σ f ) ∈ V f in (4.32c) we deduce that div(σ f ) = 0, which,
combined with (4.2)–(4.3), yields σ f = 0, completing the proof. ��
Remark 4.3 As we noted in Remark 3.1, the Eq. (3.6d) can be used to recover the non-
differentiated Eq. (3.7). In particular, recalling the initial data construction (4.23),
let

∀ t ∈ [0, T ], ηp(t) = ηp,0 +
∫ t

0
us(s) ds, ρ p(t) = ρ p,0 +

∫ t

0
γ p(s) ds,

ω(t) = ω0 +
∫ t

0
θ(s) ds.

Then (3.7) follows from integrating (3.6d) from 0 to t ∈ (0, T ] and using the first
equation in (4.23).

We end this section with a stability bound for the solution of (3.11). We will use
the inf-sup condition

‖pp‖Wp + ‖λ‖
p ≤ c sup
0 �=vp∈Vp

bp(vp, pp) + b�(vp, λ)

‖vp‖Vp

, (4.34)

which follows from a slight adaptation of [38, Lemma 3.3]. In addition, recalling the
definition of the seminorm |ψ − φ|BJS for ψ ∈ � f , φ ∈ �s , cf. (4.8), we define

|ψ−φ|2L2(0,T ;BJS)
:=

∫ T

0
|(ψ−φ)(t)|2BJS dt, |ψ−φ|L∞(0,T ;BJS) := ess sup

t∈[0,T ]
|(ψ−φ)(t)|BJS.

Theorem 4.12 For the solution of (3.11) established in Theorem 4.10, assuming suf-
ficient regularity of the data, there exists a positive constant C independent of s0 such
that

‖σ f ‖L∞(0,T ;X f ) + ‖σ f ‖L2(0,T ;X f )
+ ‖up‖L∞(0,T ;L2(�p))

+ ‖up‖L2(0,T ;Vp)

+ |ϕ − θ |L∞(0,T ;BJS) + |ϕ − θ |L2(0,T ;BJS) + ‖λ‖L∞(0,T ;
p)

+ ‖ϕ‖L2(0,T ;Y) + ‖u‖L2(0,T ;Z) + ‖A1/2(σ p)‖L∞(0,T ;L2(�p))

+ ‖div(σ p)‖L∞(0,T ;L2(�p))
+ ‖div(σ p)‖L2(0,T ;L2(�p))

+ ‖pp‖L∞(0,T ;Wp) + ‖pp‖L2(0,T ;Wp)

+ ‖∂t A1/2(σ p + αp ppI)‖L2(0,T ;L2(�p))
+ √

s0‖∂t pp‖L2(0,T ;Wp)

≤ C
(
‖f f ‖H1(0,T ;V′

f )
+ ‖fp‖H1(0,T ;V′

s )
+ ‖q f ‖H1(0,T ;X′

f )
+ ‖qp‖H1(0,T ;W′

p)

+ (1 + √
s0)‖pp,0‖Wp + ‖K∇ pp,0‖H1(�p)

)
. (4.35)
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Proof We begin by choosing (τ ,ψ, v) = (σ ,ϕ,u) in (3.10) to get

1

2
∂t

(
‖A1/2(σ p + αp pp I)‖2L2(�p)

+ s0 ‖pp‖2Wp

)

+ 1

2μ
‖σ d

f ‖2L2(� f )
+ ap(up,up) + cBJS(ϕ, θ;ϕ, θ)

= −1

n
(q f I, σ f )� f + (qp, pp)�p + (f f ,u f )� f + (fp,us)�p . (4.36)

Next, we integrate (4.36) from 0 to t ∈ (0, T ], use the coercivity bounds (4.7)–(4.8),
and apply the Cauchy–Schwarz and Young’s inequalities, to find

‖A1/2(σ p + αp pp I)(t)‖2L2(�p)
+ s0‖pp(t)‖2Wp

+
∫ t

0

(
‖σ d

f ‖2L2(� f )
+ ‖up‖2L2(�p)

+ |ϕ − θ |2BJS
)
ds

≤ C

( ∫ t

0

(
‖f f ‖2V′

f
+ ‖fp‖2V′

s
+ ‖q f ‖2X′

f
+ ‖qp‖2W′

p

)
ds

+ ‖A1/2(σ p(0) + αp pp(0)I)‖2L2(�p)
+ s0 ‖pp(0)‖2Wp

)

+ δ

∫ t

0

(
‖σ f ‖2X f

+ ‖pp‖2Wp
+ ‖u f ‖2V f

+ ‖us‖2Vs

)
ds, (4.37)

where δ > 0 will be suitably chosen. In addition, (4.34) and the first equation in (3.10),
yields

‖pp‖Wp + ‖λ‖
p ≤ c sup
0 �=vp∈Vp

bp(vp, pp) + b�(vp, λ)

‖vp‖Vp

= −c sup
0 �=vp∈Vp

ap(up, vp)
‖vp‖Vp

≤ C ‖up‖L2(�p)
. (4.38)

Taking τ ∈ V (cf. (4.12)) in the first equation of (3.11), using the continuity of the
operators E and A in Lemma 4.3, and the inf-sup condition of B1 for ϕ ∈ Y (cf.
(4.15)), we deduce

β1 ‖ϕ‖Y ≤ sup
0 �=τ∈V

B1(τ )(ϕ)

‖τ‖X = − sup
0 �=τ∈V

(∂t E + A)(σ )(τ ) − F(τ )

‖τ‖X
≤ C

(
‖σ f ‖X f + ‖up‖Vp + ‖∂t A1/2(σ p + αp ppI)‖L2(�p)

+√
s0‖∂t pp‖Wp + ‖q f ‖X′

f
+ ‖qp‖W′

p

)
. (4.39)
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In turn, from the first equation in (3.11), applying the inf-sup condition ofB (cf. (4.16))
for u = (u f ,us, γ f , γ p) ∈ Z, and (4.39), we obtain

β ‖u‖Z ≤ sup
0 �=τ∈X

B(τ )(u)

‖τ‖X = − sup
0 �=τ∈X

(∂t E + A)(σ )(τ ) + B1(τ )(ϕ) − F(τ )

‖τ‖X
≤ C

(
‖σ f ‖X f + ‖up‖Vp + ‖∂t A1/2(σ p + αp ppI)‖L2(�p)

+√
s0‖∂t pp‖Wp + ‖q f ‖X′

f
+ ‖qp‖W′

p

)
. (4.40)

In addition, taking wp = div(up), v f = div(σ f ), and vs = div(σ p) in the first and
third equations of (3.10), we get

‖div(σ f )‖L2(� f )
≤ ‖f f ‖V′

f
, ‖div(σ p)‖L2(�p)

≤ ‖fp‖V′
s
,

‖div(up)‖L2(�p)
≤ C

(
‖∂t A1/2(σ p + αp ppI)‖L2(�p)

+√
s0‖∂t pp‖Wp + ‖qp‖W′

p

)
. (4.41)

Then, combining (4.37)–(4.41), using (4.2)–(4.3), and choosing δ small enough, we
obtain

‖A1/2(σ p + αp ppI)(t)‖2L2(�p)
+ s0‖pp(t)‖2Wp

+
∫ t

0

(
‖σ f ‖2X f

+ ‖up‖2Vp

+‖div(σ p)‖2L2(�p)
+ ‖pp‖2Wp

+ |ϕ − θ |2BJS + ‖ϕ‖2Y + ‖u‖2Z
)
ds

≤ C

( ∫ t

0

(
‖f f ‖2V′

f
+ ‖fp‖2V′

s
+ ‖q f ‖2X′

f
+ ‖qp‖2W′

p

)
ds

+‖A1/2(σ p(0) + αp pp(0)I)‖2L2(�p)
+ s0 ‖pp(0)‖2Wp

+
∫ t

0

(
‖∂t A1/2(σ p + αp ppI)‖2L2(�p)

+ s0‖∂t pp‖2Wp

)
ds

)
.

(4.42)

Finally, in order to bound the last two terms in (4.42), we test (3.10) with τ =
(∂t σ f ,up, ∂t σ p, ∂t pp) ∈ X, ψ = (ϕ, θ , ∂t λ) ∈ Y, v = (u f ,us, γ f , γ p) ∈ Z
and differentiate in time the rows in (3.10) associated to vp,ψ,φ, v f , vs,χ f and χ p,
to deduce

1

2
∂t

( 1

2μ
‖σ d

f ‖2L2(� f )
+ ap(up,up) + cBJS(ϕ, θ;ϕ, θ)

)

+‖∂t A1/2(σ p + αp pp I)‖2L2(�p)
+ s0 ‖∂t pp‖2Wp

= 1

n
(q f I, ∂t σ f )� f + (qp, ∂t pp)�p + (∂t f f ,u f )� f + (∂t fp,us)�p ,
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which together with the identities

∫ t

0
(q f I, ∂t σ f )� f = (q f I, σ f )� f

∣∣∣t
0
−

∫ t

0
(∂t q f I, σ f )� f ,∫ t

0
(qp, ∂t pp)�p = (qp, pp)�p

∣∣∣t
0
−

∫ t

0
(∂t qp, pp)�p ,

and the positive semi-definite property of C (cf. (4.8)), yields

‖σ d
f (t)‖2L2(� f )

+ ‖up(t)‖2L2(�p)
+ |ϕ(t) − θ(t)|2BJS

+
∫ t

0

(
‖∂t A1/2(σ p + αp ppI)‖2L2(�p)

+ s0‖∂t pp‖2Wp

)
ds

≤ C

( ∫ t

0

(
‖∂t f f ‖2V′

f
+ ‖∂t fp‖2V′

s
+ ‖∂t q f ‖2L2(� f )

+ ‖∂t qp‖2W′
p

)
ds

+ ‖q f (t)‖2X′
f
+ ‖qp(t)‖2W′

p
+ ‖q f (0)‖2X′

f
+ ‖qp(0)‖2W′

p
+ ‖σ f (0)‖2X f

+ ‖up(0)‖2L2(�p)
+ ‖pp(0)‖2Wp

+ |ϕ(0) − θ(0)|2BJS
)

+ δ1

(
‖σ f (t)‖2X f

+ ‖pp(t)‖2Wp

)

+ δ2

∫ t

0

(
‖σ f ‖2L2(� f )

+ ‖pp‖2Wp
+ ‖u f ‖2V f

+ ‖us‖2Vs

)
ds. (4.43)

Using (4.38) and the first two inequalities in (4.41), and choosing δ1 small enough,
we derive from (4.43) and (4.2)–(4.3) that

‖σ f (t)‖2X f
+ ‖up(t)‖2L2(�p)

+ ‖div(σ p(t))‖2L2(�p)
+ |ϕ(t) − θ(t)|2BJS

+ ‖pp(t)‖2Wp
+ ‖λ(t)‖2
p

+
∫ t

0

(
‖∂t A1/2(σ p + αp ppI)‖2L2(�p)

+ s0‖∂t pp‖2Wp

)
ds

≤ C

( ∫ t

0

(
‖∂t f f ‖2V′

f
+ ‖∂t fp‖2V′

s
+ ‖∂t q f ‖2L2(� f )

+ ‖∂t qp‖2W′
p

)
ds

+ ‖f f (t)‖2V′
f
+ ‖fp(t)‖2V′

s
+ ‖q f (t)‖2X′

f
+ ‖qp(t)‖2W′

p

+ ‖q f (0)‖2X′
f
+ ‖qp(0)‖2W′

p
+ ‖σ f (0)‖2X f

+ ‖up(0)‖2L2(�p)
+ ‖pp(0)‖2Wp

+ |ϕ(0) − θ(0)|2BJS
)

+

δ2

∫ t

0

(
‖σ f ‖2X f

+ ‖pp‖2Wp
+ ‖u f ‖2V f

+ ‖us‖2Vs

)
ds. (4.44)

Wenext bound the initial data terms in (4.42) and (4.44). Recalling fromCorollary 4.11
that (σ (0),ϕ(0), θ(0)) = (σ 0,ϕ0, θ0), using the stability of the continuous initial data
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problems (4.20)–(4.23) and the steady-state version of the arguments leading to (4.42),
we obtain

‖σ f (0)‖2X f
+ ‖up(0)‖2L2(�p)

+ ‖A1/2(σ p(0))‖2
L2(�p)

+ ‖pp(0)‖2Wp
+ |ϕ(0) − θ(0)|2BJS

≤ C

(
‖pp,0‖2Wp

+ ‖K∇ pp,0‖2H1(�p)
+ ‖f f (0)‖2V′

f
+ ‖fp(0)‖2V′

s
+ ‖q f (0)‖2X′

f

)
,

(4.45)

Therefore, combining (4.42) with (4.44) and (4.45), choosing δ2 small enough, and
using the estimate (cf. (4.14)):

‖A1/2(σ p(t))‖L2(�p)
≤ C

(
‖A1/2(σ p + αp pp I)(t)‖L2(�p)

+ ‖pp(t)‖Wp

)
,

(4.46)
and the Sobolev embedding of H1(0, T ) into L∞(0, T ), we conclude (4.35). ��

5 Semidiscrete continuous-in-time approximation

In this section we introduce and analyze the semidiscrete continuous-in-time approx-
imation of (3.11). We analyze its solvability by employing the strategy developed in
Sect. 4. In addition, we derive error estimates with rates of convergence.

Let T f
h and T p

h be shape-regular and quasi-uniform affine finite element partitions
of � f and �p, respectively. The two partitions may be non-matching along the inter-
face � f p. For the discretization, we consider the following conforming finite element
spaces:

X f h × V f h × Q f h ⊂ X f × V f × Q f , Xph × Vsh × Qph ⊂ Xp × Vs × Qp,

Vph × Wph ⊂ Vp × Wp.

We take (X f h,V f h,Q f h) and (Xph,Vsh,Qph) to be any stable finite element
spaces for mixed elasticity with weakly imposed stress symmetry, such as the
Amara–Thomas [2], PEERS [10], Stenberg [58], Arnold–Falk–Winther [11, 12], or
Cockburn–Gopalakrishnan–Guzman [28] families of spaces. We choose (Vph,Wph)

to be any stable mixed finite element Darcy spaces, such as the Raviart–Thomas or
Brezzi-Douglas-Marini spaces [19]. For the Lagrange multipliers (� f h,�sh,
ph)

we consider the following two options of discrete spaces.

(S1) Conforming spaces:

� f h ⊂ � f , �sh ⊂ �s, 
ph ⊂ 
p , (5.1)

equipped with H1/2-norms as in (3.3). If the normal traces of the spaces X f h ,
Xph , or Vph contain piecewise polynomials in Pk on simplices or Qk on cubes
with k ≥ 1, where Pk denotes polynomials of total degree k and Qk stands
for polynomials of degree k in each variable, we take the Lagrange multiplier
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spaces to be continuous piecewise polynomials in Pk or Qk on the traces of the
corresponding subdomain grids. In the case of k = 0, we take the Lagrange
multiplier spaces to be continuous piecewise polynomials in P1 or Q1 on grids
obtained by coarsening by two the traces of the subdomain grids. Note that these
choices guarantee the inf-sup conditions given below in Lemma 5.1.

(S2) Non-conforming spaces:

� f h := X f hn f |� f p , �sh := Xphnp|� f p , 
ph := Vph · np|� f p , (5.2)

which consist of discontinuous piecewise polynomials and are equipped with
L2-norms.

It is also possible tomix conforming and non-conforming choices, but wewill focus
on (S1) and (S2) for simplicity of the presentation.

Remark 5.1 The choices (S1) and (S2) result in similar convergence rates, cf. The-
orem 5.4. The conforming case (S1) has fewer degrees of freedom, while the
non-conforming case (S2) provides local continuity of flux across� f p on each element
of the mesh for 
ph , which is the trace of T p

h on � f p.

Remark 5.2 We note that, since H1/2(� f p) is dense in L2(� f p), (3.6i)–(3.6k) in the
continuous weak formulation hold for test functions in L2(� f p), assuming that the
solution is smooth enough so that the traces are well-defined in L2(� f p); e.g., up ∈
H1/2+ε(�p) for some ε > 0. In particular, these equations hold for ξh ∈ 
ph ,
ψh ∈ � f h , and φh ∈ �sh in both the conforming case (S1) and the non-conforming
case (S2).

Now, we group the spaces similarly to the continuous case:

Xh := X f h × Vph × Xph × Wph, Yh := � f h × �sh × 
ph,

Zh := V f h × Vsh × Q f h × Qph,

σ h := (σ f h,uph, σ ph, pph) ∈ Xh, ϕ
h

:= (ϕh, θh, λh) ∈ Yh,

uh := (u f h,ush, γ f h, γ ph) ∈ Zh,

τ h := (τ f h, vph, τ ph, wph) ∈ Xh, ψ
h

:= (ψh,φh, ξh) ∈ Yh,

vh := (v f h, vsh,χ f h,χ ph) ∈ Zh .

The spaces Xh and Zh are endowed with the same norms as their continuous coun-
terparts. For Yh we consider the norm ‖ψ

h
‖2Yh

:= ‖ψh‖2� f h
+ ‖φh‖2�sh

+ ‖ξh‖2
ph
,

where

‖ξh‖
ph :=
{ ‖ξh‖
p for conforming subspaces (S1) (cf. (3.3)) ,

‖ξh‖L2(� f p)
for non-conforming subspaces (S2) .

(5.3)

Analogous notation is used for ‖ψh‖� f h and ‖φh‖�sh .
The continuity of all operators in the discrete case follows from their continuity

in the continuous case (cf. Lemma 4.3), with the exception of B1 (cf. (3.12)) in the
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case of non-conforming Lagrange multipliers (S2). In this case it follows for each
fixed h from the discrete trace-inverse inequality for piecewise polynomial functions,
‖ϕ‖L2(�) ≤ Ch−1/2‖ϕ‖L2(O), where � ⊂ ∂O. In particular,

bn f (τ f ,ψ) ≤ C‖τ f ‖L2(� f p)
‖ψ‖L2(� f p)

≤ Ch−1/2‖τ f ‖L2(� f )
‖ψ‖L2(� f p)

, (5.4)

with similar bounds for bnp (τ p,φ) and b�(vp, ξ).
We next discuss the discrete inf-sup conditions that are satisfied by the finite element

spaces. Let

X̃h :=
{
τ h ∈ Xh : τ f hn f = 0 and τ phnp = 0 on � f p

}
. (5.5)

In addition, define the discrete kernel of the operator B as

Vh :=
{
τ h ∈ Xh : B(τ h)(vh) = 0 ∀ vh ∈ Zh

}
= X̃ f h×Vph×X̃ph×Wph, (5.6)

where

X̃�h : =
{
τ �h ∈ X�h : (τ �h, ξ �h)�� = 0 ∀ ξ �h ∈ Q�h and div(τ �h) = 0 in ��

}
,

� ∈ { f , p}.

In the above, div(τ �h) = 0 follows from div(X f h) = V f h and div(Xph) = Vsh ,
which is true for all stable elasticity spaces.

Lemma 5.1 There exist positive constants β̃ and β̃1 such that

sup
0 �=τ h∈X̃h

B(τ h)(vh)
‖τ h‖X

≥ β̃ ‖vh‖Z ∀ vh ∈ Zh, (5.7)

sup
0 �=τ h∈Vh

B1(τ h)(ψh
)

‖τ h‖X
≥ β̃1 ‖ψ

h
‖Yh ∀ψ

h
∈ Yh . (5.8)

Proof We begin with the proof of (5.7).We recall that the spaceXh consists of stresses
and velocities with zero normal traces on the Neumann boundaries, while the space
X̃h involves further restriction on � f p. The inf-sup condition (5.7) without restricting
the normal stress or velocity on the subdomain boundary follows from the stability of
the elasticity and Darcy finite element spaces. The restricted inf-sup condition (5.7)
can be shown using the argument in [6, Theorem 4.2].

We continue with the proof of (5.8). Similarly to the continuous case, due the
diagonal character of operator B1 (cf. (3.12)), we need to show individual inf-sup
conditions for bn f , bnp , and b� . We first focus on b� . For the conforming case (S1)
(cf. (5.1)), the proof of (5.8) can be derived from a slight adaptation of [31, Lemma 4.4]
(see also [36, Section 5.3] for the case k = 0), whereas from [3, Section 5.1] we obtain
the proof for the non-conforming version (S2) (cf. (5.2)). We next consider the inf-
sup condition (5.8) for bn f , with argument for bnp being similar. The proof utilizes a
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suitable interpolant of τ f := e(v f ), the solution to the auxiliary problem (4.17). Due
to the stability of the spaces (X f h,V f h,Q f h) (cf. (5.7)), there exists an interpolant

�̃
f
h : H1(� f ) → X f h satisfying

b f (�̃
f
h τ f − τ f , v f h) = 0 ∀ v f h ∈ V f h,

bsk, f (�̃
f
h τ f − τ f ,χ f h) = 0 ∀χ f h ∈ Q f h,

〈(�̃ f
h τ f − τ f )n f , τ f hn f 〉� f p∪�N

f
= 0 ∀ τ f h ∈ X f h . (5.9)

The interpolant �̃ f
h τ f is defined as the elliptic projection of τ f satisfying Neumann

boundary condition on� f p∪�N
f [44, (3.11)–(3.15)].Due to (5.9), it holds that �̃

f
h τ f ∈

X̃ f h . With this interpolant, the proof of (5.8) for b� discussed above can be easily
modified forbn f , see [31, Lemma4.4] and [36, Section 5.3] for (S1) and [3, Section 5.1]
for (S2). ��
Remark 5.3 The stability analysis requires only a discrete inf-sup condition for B in
Xh × Zh . The more restrictive inf-sup condition (5.7) is used in the error analysis in
order to simplify the proof.

Finally, wewill utilize the following inf-sup condition: there exists a constant c > 0
such that

‖pph‖Wp + ‖λh‖
ph ≤ c sup
0 �=vph∈Vph

bp(vph, pph) + b�(vph, λh)
‖vph‖Vp

, (5.10)

whose proof for the conforming case (5.1) follows from a slight adaptation of [38,
Lemma 5.1], whereas the non-conforming case (5.2) can be found in [3, Section 5.1].

The semidiscrete continuous-in-timeapproximation to (3.11) reads: find (σ h,ϕh
,uh) :

[0, T ] → Xh ×Yh × Zh such that for all (τ h,ψh
, vh) ∈ Xh ×Yh × Zh , and for a.e.

t ∈ (0, T ),

∂

∂t
E(σ h)(τ h) + A(σ h)(τ h) + B1(τ h)(ϕh

) + B(τ h)(uh) = F(τ h),

−B1(σ h)(ψh
) + C(ϕ

h
)(ψ

h
) = 0,

−B (σ h)(vh) = G(vh). (5.11)

Wenext discuss the constructionof compatible discrete initial data (σ h,0,ϕh,0
,uh,0).

Lemma 5.2 Assume that pp,0 ∈ Hp. Then, there exist σ h,0 = (σ f h,0,uph,0, σ ph,0,

pph,0) ∈ Xh,ϕh,0
= (ϕh,0, θh,0, λh,0) ∈ Yh, anduh,0 = (u f h,0,ush,0, γ f h,0, γ ph,0)

∈ Zh satisfying

A(σ h,0)(τ h) + B1(τ h)(ϕh,0
) + B(τ h)(uh,0) = F̂h,0(τ h) ∀ τ h ∈ Xh,

−B1(σ h,0)(ψh
) + C(ϕ

h,0
)(ψ

h
) = 0 ∀ψ

h
∈ Yh,

−B (σ h,0)(vh) = G0(vh) ∀ vh ∈ Zh, (5.12)
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where F̂h,0 = (
1

n
q f (0)I, 0, f̂σ ph ,0, f̂ pph ,0)

t ∈ X′
2 and G0 = G(0) ∈ Z′ for some

f̂σ ph ,0 ∈ X
′
p,2 and f̂ pph ,0 ∈ W′

p,2.

Proof The construction is based on amodification of the step-by-step procedure for the
continuous initial data (σ 0,ϕ0

,u0) presented in Lemma 4.9. In each step the discrete
initial data is defined as a suitable projection of the continuous initial data.

1. Define θh,0 := P�s
h (θ0), where P�s

h : �s → �sh is the classical L2-projection
operator, satisfying, for all φ ∈ L2(� f p),

〈
φ − P�s

h (φ),φh

〉
� f p

= 0 ∀φh ∈ �sh .

2. Define (σ f h,0,ϕh,0,u f h,0, γ f h,0) ∈ X f h × � f h × V f h × Q f h and (uph,0,

pph,0, λh,0) ∈ Vph × Wph × 
ph by solving a coupled Stokes-Darcy problem:

a f (σ f h,0, τ f h) + bn f (τ f h , ϕh,0) + b f (τ f h , u f h,0) + bsk, f (τ f h , γ f h,0)

= a f (σ f ,0, τ f h) + bn f (τ f h , ϕ0) + b f (τ f h ,u f ,0) + bsk, f (τ f h , γ f ,0)

= − 1

n
(q f (0) I, τ f h)� f ,

− bn f (σ f h,0,ψh) + μαBJS

n−1∑
j=1

〈√
K−1

j (ϕh,0 − θh,0) · t f , j , ψh · t f , j
〉
� f p

+ 〈
ψh · n f , λh,0

〉
� f p

= −bn f (σ f ,0, ψh) + μαBJS

n−1∑
j=1

〈√
K−1

j (ϕ0 − θ0) · t f , j , ψh · t f , j
〉
� f p

+ 〈
ψh · n f , λ0

〉
� f p

= 0,

− b f (σ f h,0, v f h) − bsk, f (σ f h,0, χ f h) = −b f (σ f ,0, v f h) − bsk, f (σ f ,0, χ f h)

= (f f (0), v f h)� f ,

ap(uph,0, vph) + bp(vph , pph,0) + b�(vph , λh,0)

= ap(up,0, vph) + bp(vph , pp,0) + b�(vph , λ0) = 0

− bp(uph,0, wph) = −bp(up,0, wph) = −μ−1(div(K∇ pp,0), wph)�p ,

− 〈
ϕh,0 · n f + (θh,0 + uph,0) · np, ξh

〉
� f p

= − 〈
ϕ0 · n f + (θ0 + up,0) · np, ξh

〉
� f p

= 0,

(5.13)

for all (τ f h,ψh, v f h,χ f h) ∈ X f h ×� f h ×V f h ×Q f h and (vph, wph, ξh) ∈ Vph ×
Wph × 
ph . Note that (5.13) is well-posed as a direct application of Theorem 4.2.
Note also that θh,0 is datum for this problem.

3. Define (σ ph,0,ωh,0, ηph,0, ρ ph,0) ∈ Xph × �sh × Vsh × Qph , as the unique
solution of the problem
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(A(σ ph,0), τ ph)�p + bnp (τ ph,ωh,0) + bs(τ ph, ηph,0) + bsk,p(τ ph, ρ ph,0)

+ (A(αp pph,0 I), τ ph)�p

= (A(σ p,0), τ ph)�p + bnp (τ ph,ω0) + bs(τ ph, ηp,0) + bsk,p(τ ph, ρ p,0)

+ (A(αp pp,0 I), τ ph)�p = 0,

− bnp (σ ph,0,φh) + μαBJS

n−1∑
j=1

〈√
K−1

j (ϕh,0 − θh,0) · t f , j ,φh · t f , j
〉
� f p

+ 〈
φh · np, λh,0

〉
� f p

= −bnp (σ p,0,φh) + μαBJS

n−1∑
j=1

〈√
K−1

j (ϕ0 − θ0) · t f , j ,φh · t f , j
〉
� f p

+ 〈
φh · np, λ0

〉
� f p

= 0,

− bs(σ ph,0, vsh) − bsk,p(σ ph,0,χ ph) = −bs(σ p,0, vsh) − bsk,p(σ p,0,χ ph)

= (fp(0), vsh)�p , (5.14)

for all (τ ph,φh, vsh,χ ph) ∈ Xph × �sh × Vsh × Qph . Note that the well-
posedness of (5.14) follows from the classical Babuška-Brezzi theory. Note also that
pph,0,ϕh,0, θh,0, and λh,0 are data for this problem.

4. Finally, define (σ̂ ph,0,ush,0, γ ph,0) ∈ Xph ×Vsh ×Qph , as the unique solution
of the problem

(A(σ̂ ph,0), τ ph)�p + bs(τ ph,ush,0) + bsk,p(τ ph, γ ph,0) = −bnp (τ ph, θh,0) ,

−bs(σ̂ ph,0, vsh) − bsk,p(σ̂ ph,0,χ ph) = 0 , (5.15)

for all (τ ph, vsh,χ ph) ∈ Xph ×Vsh ×Qph . Problem (5.15) is well-posed as a direct
application of the classical Babuška-Brezzi theory. Note that θh,0 is datum for this
problem.

We thendefineσ h,0 = (σ f h,0,uph,0, σ ph,0, pph,0) ∈ Xh,ϕh,0
= (ϕh,0, θh,0, λh,0)

∈ Yh , and uh,0 = (u f h,0,ush,0, γ f h,0, γ ph,0) ∈ Zh . The above construction implies

that (σ h,0,ϕh,0
,uh,0) satisfy (5.12) with F̂h,0 = ( 1n q f (0)I, 0, f̂σ ph ,0, f̂ pph ,0)

t ∈ X′
2

and G0 = G(0) ∈ Z′, where f̂σ ph ,0 ∈ X
′
p,2 is defined by (̂fσ ph ,0, τ p)�p =

−(A(σ̂ ph,0), τ p)�p ∀τ p ∈ L
2(�p) and f̂ pph ,0 ∈ W′

p,2 is definedby ( f̂ pph ,0, wp)�p =
−bp(uph,0, wp) ∀wp ∈ L2(�p). ��

5.1 Existence and uniqueness of a solution

Now, we establish the well-posedness of problem (5.11) and the corresponding sta-
bility bound.
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Theorem 5.3 For each pp,0 ∈ Hp and compatible discrete initial data (σ h,0,ϕh,0
,uh,0)

constructed in Lemma 5.2 and each

f f ∈ W1,1(0, T ;V′
f ), fp ∈ W1,1(0, T ;V′

s), q f ∈ W1,1(0, T ;X′
f ),

qp ∈ W1,1(0, T ;W′
p) ,

there exists a unique solution of (5.11), (σ h,ϕh
,uh) : [0, T ] → Xh ×Yh × Zh such

that (σ ph, pph) ∈ W1,∞(0, T ;Xph)×W1,∞(0, T ;Wph), and (σ h(0),ϕh
(0),u f h(0),

γ f h(0)) = (σ h,0,ϕh,0
,u f h,0, γ f h,0). Moreover, assuming sufficient regularity of the

data, there exists a positive constant C independent of h and s0, such that

‖σ f h‖L∞(0,T ;X f ) + ‖σ f h‖L2(0,T ;X f )
+ ‖uph‖L∞(0,T ;L2(�p))

+ ‖uph‖L2(0,T ;Vp)

+ |ϕh − θh |L∞(0,T ;BJS) + |ϕh − θh |L2(0,T ;BJS) + ‖λh‖L∞(0,T ;
ph)

+ ‖ϕ
h
‖L2(0,T ;Yh)

+ ‖uh‖L2(0,T ;Z) + ‖A1/2(σ ph)‖L∞(0,T ;L2(�p))

+ ‖div(σ ph)‖L∞(0,T ;L2(�p))
+ ‖div(σ ph)‖L2(0,T ;L2(�p))

+ ‖pph‖L∞(0,T ;Wp) + ‖pph‖L2(0,T ;Wp)

+ ‖∂t A1/2(σ ph + αp pphI)‖L2(0,T ;L2(�p))
+ √

s0‖∂t pph‖L2(0,T ;Wp)

≤ C
(
‖f f ‖H1(0,T ;V′

f )
+ ‖fp‖H1(0,T ;V′

s )
+ ‖q f ‖H1(0,T ;X′

f )

+ ‖qp‖H1(0,T ;W′
p)

+ (1 + √
s0)‖pp,0‖Wp + ‖K∇ pp,0‖H1(�p)

)
. (5.16)

Proof From the fact that Xh ⊂ X, Zh ⊂ Z, and div(X f h) = V f h , div(Xph) = Vsh ,
div(Vph) = Wph , considering (σ h,0,ϕh,0

,uh,0) satisfying (5.12), and employing the
continuity and monotonicity properties of the operators N and M (cf. Lemma 4.3
and (5.4)), as well as the discrete inf-sup conditions (5.7), (5.8), and (5.10), the proof
is identical to the proofs of Theorems 4.10 and 4.12, and Corollary 4.11. We note that
the proof of Corollary 4.11 works in the discrete case due to the choice of the discrete
initial data as the elliptic projection of the continuous initial data (cf. (5.13)–(5.15)).

��
Remark 5.4 The construction of the initial data in Lemma 5.2 provides compatible
initial data (ηph,0, ρ ph,0,ωh,0) for the non-differentiated elasticity variables in the
sense of the first equation in (4.23) (cf. (5.14)). As in the continuous case, we can
recover them as follows:

ηph(t) = ηph,0 +
∫ t

0
ush(s) ds, ρ ph(t) = ρ ph,0 +

∫ t

0
γ ph(s) ds,

ωh(t) = ωh,0 +
∫ t

0
θh(s) ds ,

for each t ∈ [0, T ]. Then (3.7) holds discretely, which follows from integrating the
equation associated to τ ph in (5.11) from 0 to t ∈ (0, T ] and using the first equation
in (5.14).
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5.2 Error analysis

We proceed with establishing rates of convergence. To that end, let us set V ∈{
Wp,V f ,Vs,Q f ,Qp

}
, 
 ∈ {

� f ,�s,
p
}
and let Vh,
h be the discrete coun-

terparts. Let PV
h : V → Vh and P


h : 
 → 
h be the L2-projection operators,
satisfying

(u − PV
h (u), vh)�� = 0 ∀ vh ∈ Vh,

〈ϕ − P

h (ϕ), ψh〉� f p = 0 ∀ψh ∈ 
h, (5.17)

where � ∈ { f , p}, u ∈ {
pp,u f ,us, γ f , γ p

}
, ϕ ∈ {

ϕ, θ , λ
}
, and vh, ψh are the

corresponding discrete test functions. We have the approximation properties [27]:

‖u − PV
h (u)‖L2(��)

≤ Chsu+1 ‖u‖Hsu+1(��)
,

‖ϕ − P

h (ϕ)‖
h ≤ Chsϕ+r ‖ϕ‖Hsϕ+1(� f p)

, (5.18)

where su ∈ {
spp , su f , sus , sγ f

, sγ p

}
and sϕ ∈ {

sϕ, sθ , sλ
}
are the degrees of polyno-

mials in the spaces Vh and 
h , respectively, and (cf. (5.3)),

‖ϕ‖
h :=
{

‖ϕ‖H1/2(� f p)
, with r = 1/2 in (5.18) for conforming spaces (S1),

‖ϕ‖L2(� f p)
, with r = 1 in (5.18) for non-conforming spaces (S2).

Next, denote X ∈ {
X f ,Xp,Vp

}
, σ ∈ {

σ f , σ p,up
} ∈ X and let Xh and τh be

their discrete counterparts. For the case (S2) when the discrete Lagrange multiplier
spaces are chosen as in (5.2), (5.17) implies

〈ϕ − P

h (ϕ), τhn�〉� f p = 0 ∀ τh ∈ Xh, (5.19)

where � ∈ { f , p}. We note that (5.19) does not hold for the case (S1).
Let IXh : X ∩ H1(��) → Xh be the mixed finite element projection operator [19]

satisfying

(div(IXh (σ )), wh)�� = (div(σ ),wh)�� ∀wh ∈ Wh,〈
IXh (σ )n�, τhn�

〉
� f p

= 〈σn�, τhn�〉� f p
∀ τh ∈ Xh, (5.20)

and

‖σ − IXh (σ )‖L2(��)
≤ C hsσ +1‖σ‖Hsσ +1(��)

,

‖div(σ − IXh (σ ))‖L2(��)
≤ C hsσ +1‖div(σ )‖Hsσ +1(��)

, (5.21)

where wh ∈ {
v f h, vsh, wph

}
, Wh ∈ {

V f ,Vs,Wp
}
, and sσ ∈ {

sσ f , sσ p , sup

}
– the

degrees of polynomials in the spaces Xh .
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Now, let (σ f ,up, σ p, pp,ϕ, θ , λ,u f ,us, γ f , γ p) and (σ f h,uph, σ ph, pph,ϕh,

θh, λh,u f h,ush, γ f h, γ ph) be the solutions of (3.11) and (5.11), respectively. We
introduce the error terms as the differences of these two solutions and decompose
them into approximation and discretization errors using the interpolation operators:

eσ := σ − σh = (σ − IXh (σ )) + (IXh (σ ) − σh) := eIσ + ehσ , σ ∈ {
σ f , σ p,up

}
,

eϕ := ϕ − ϕh = (ϕ − P

h (ϕ)) + (P


h (ϕ) − ϕh) := eIϕ + ehϕ, ϕ ∈ {
ϕ, θ , λ

}
,

eu := u − uh = (u − PV
h (u)) + (PV

h (u) − uh) := eIu + ehu , u ∈ {
pp, u f , us , γ f , γ p

}
.

(5.22)

Then, we set the errors

eσ := (eσ f , eup , eσ p , epp ), eϕ := (eϕ, eθ , eλ), and eu := (eu f , eus , eγ f
, eγ p

).

We next form the error system by subtracting the discrete problem (5.11) from the
continuous one (3.11). Using that Xh ⊂ X and Zh ⊂ Z, as well as Remark 5.2, we
obtain

(∂t E + A)(eσ )(τ h) + B1(τ h)(eϕ) + B(τ h)(eu) = 0 ∀ τ h ∈ Xh,

−B1(eσ )(ψ
h
) + C(eϕ)(ψ

h
) = 0 ∀ψ

h
∈ Yh,

−B(eσ )(vh) = 0 ∀ vh ∈ Zh . (5.23)

We now establish the main result of this section.

Theorem 5.4 For the solutions of the continuous and discrete problems (3.11) and
(5.11) established in Theorem 4.10 and Theorem 5.3, respectively, assuming sufficient
regularity of the true solution according to (5.18) and (5.21), there exists a positive
constant C independent of h and s0, such that

‖eσ f ‖L∞(0,T ;X f ) + ‖eσ f ‖L2(0,T ;X f )
+ ‖eup‖L∞(0,T ;L2(�p))

+ ‖eup‖L2(0,T ;Vp)

+ |eϕ − eθ |L∞(0,T ;BJS) + |eϕ − eθ |L2(0,T ;BJS) + ‖eλ‖L∞(0,T ;
ph)

+ ‖eϕ‖L2(0,T ;Yh)
+ ‖eu‖L2(0,T ;Z) + ‖A1/2(eσ p )‖L∞(0,T ;L2(�p))

+ ‖div(eσ p )‖L∞(0,T ;L2(�p))
+ ‖div(eσ p )‖L2(0,T ;L2(�p))

+ ‖epp‖L∞(0,T ;Wp) + ‖epp‖L2(0,T ;Wp)

+ ‖∂t A1/2(eσ p + αpepp I)‖L2(0,T ;L2(�p))
+ √

s0‖∂t epp‖L2(0,T ;Wp)

≤ C
√
exp(T )

(
hsσ +1 + hsϕ+r + hsu+1

)
, (5.24)

where sσ = min{sσ f , sup , sσ p , spp }, sϕ = min{sϕ, sθ , sλ}, su = min{su f , sus , sγ f
, sγ p

},
and r is defined in (5.18).

Proof We present in detail the proof for the conforming case (S1). The proof in the
non-conforming case (S2) is simpler, since several error terms are zero. We explain
the differences at the end of the proof.
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We proceed as in Theorem 4.12. Taking (τ h,ψh
, vh) = (ehσ , ehϕ, ehu) in (5.23), we

obtain

1

2
∂t

(
ae(ehσ p

, ehpp ; ehσ p
, ehpp ) + s0 (ehpp , e

h
pp )�p

)
+ a f (ehσ f

, ehσ f
) + ap(ehup

, ehup
)

+ cBJS(ehϕ, ehθ ; ehϕ, ehθ )

= −a f (eIσ f
, ehσ f

) − ap(eIup
, ehup

) − ae(∂t eIσ p
, ∂t eIpp ; ehσ p

, ehpp ) − C(eIϕ)(ehϕ)

− bn f (e
h
σ f

, eIϕ) − bnp (e
h
σ p

, eIθ ) − b�(ehup
, eIλ) + bn f (e

I
σ f

, ehϕ) + bnp (e
I
σ p

, ehθ ) + b�(eIup
, ehλ)

− bsk, f (ehσ f
, eIγ f

) − bsk,p(ehσ p
, eIγ p

) + bsk, f (eIσ f
, ehγ f

) + bsk,p(eIσ p
, ehγ p

), (5.25)

where, the right-hand side of (5.25) has been simplified, since the projection properties
(5.17) and (5.20), and the fact that div(ehup

) ∈ Wph , div(ehσ f
) ∈ V f h , and div(ehσ p

) ∈
Vsh , imply that the following terms are zero:

s0(∂t eIpp , e
h
pp ), bp(e

h
up

, eIpp ), bp(e
I
up

, ehpp ), b f (ehσ f
, eIu f

), b f (eIσ f
, ehu f

),

bs(ehσ p
, eIus ), bs(e

I
σ p

, ehus ). (5.26)

In turn, from the equations in (5.23) corresponding to test functions v f h , vsh , andwph ,
using the projection properties (5.20), we find that

b f (ehσ f
, v f h) = 0 ∀ v f h ∈ V f h, bs(ehσ p

, vsh) = 0 ∀ vsh ∈ Vsh,

bp(ehup
, wph) = ae(∂t ehσ p

, ∂t ehpp ; 0, wph) + ae(∂t eIσ p
, ∂t eIpp ; 0, wph)

+(s0 ∂t ehpp , wph)�p ∀wph ∈ Wph .

Therefore div(ehσ �
) = 0 in ��, with � ∈ { f , p}, and using (4.2)–(4.3) we deduce

‖(ehσ f
)d‖2

L2(� f )
≥ C ‖ehσ f

‖2
X f

, ‖div(ehσ p
)‖L2(�p)

= 0 ,

‖div(ehup
)‖L2(�p)

≤ C
(
‖∂t A1/2(eIσ p

+ αp eIpp I)‖L2(�p)

+‖∂t A1/2(ehσ p
+ αp ehpp I)‖L2(�p)

+ √
s0 ‖∂t ehpp‖Wp

)
. (5.27)

Then, applying the ellipticity and continuity bounds of the bilinear forms involved in
(5.25) (cf. Lemma 4.3) and the Cauchy–Schwarz and Young’s inequalities, in combi-
nation with (5.27), we get
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∂t

(
‖A1/2(ehσ p

+ αpehpp I)‖2L2(�p)
+ s0‖ehpp‖2Wp

)
+ ‖ehσ f

‖2
X f

+ ‖ehup
‖2Vp

+‖div(ehσ p
)‖2L2(�p)

+ |ehϕ − ehθ |2BJS
≤ C

(
‖eIσ f

‖2
X f

+ ‖eIup
‖2Vp

+ ‖eIσ p
‖2
Xp

+ |eIϕ − eIθ |2BJS + ‖eIϕ‖2Yh
+ ‖eIγ f

‖2
Q f

+‖eIγ p
‖2
Qp

+ ‖∂t A1/2 (eIσ p
+ αp eIpp I)‖2L2(�p)

+ ‖A1/2 (ehσ p
+ αp ehpp I)‖2L2(�p)

+‖∂t A1/2 (ehσ p
+ αp ehpp I)‖2L2(�p)

+ s0‖∂t ehpp‖2Wp

)

+δ1

(
‖ehσ f

‖2
X f

+ ‖ehup
‖2Vp

+ |ehϕ − ehθ |2BJS
)

+δ2

(
‖ehσ p

‖2
L2(�p)

+ ‖ehϕ‖2Yh
+ ‖ehγ f

‖2
Q f

+ ‖ehγ p
‖2
Qp

)
,

where for the bound on bnp (e
h
σ p

, eIθ ) we used the trace inequality (3.2) and the fact

that div(ehσ p
) = 0. Next, integrating from 0 to t ∈ (0, T ], using (4.14) to control the

term ‖ehσ p
‖2
L2(�p)

, and choosing δ1 small enough, we find that

‖A1/2(ehσ p
+ αpehpp I)(t)‖2L2(�p)

+ s0‖ehpp (t)‖2Wp

+
∫ t

0

(
‖ehσ f

‖2
X f

+ ‖ehup
‖2Vp

+ ‖div(ehσ p
)‖2L2(�p)

+ |ehϕ − ehθ |2BJS
)
ds

≤ C

( ∫ t

0

(
‖eIσ f

‖2
X f

+ ‖eIup
‖2Vp

+ |eIϕ − eIθ |2BJS + ‖eIϕ‖2Yh
+ ‖eIγ f

‖2
Q f

+ ‖eIγ p
‖2
Qp

+ ‖eIσ p
‖2
Xp

)
ds

+
∫ t

0

(
‖∂t A1/2 (eIσ p

+ αp eIpp I)‖2L2(�p)
+ ‖A1/2 (ehσ p

+ αp ehpp I)‖2L2(�p)

)
ds

+
∫ t

0

(
‖∂t A1/2 (ehσ p

+ αp ehpp I)‖2L2(�p)
+ s0‖∂t ehpp‖2Wp

)
ds

+ ‖A1/2(ehσ p
+ αp ehpp I)(0)‖2L2(�p)

+ s0‖ehpp (0)‖2Wp

)

+ δ2

∫ t

0

(
‖ehpp‖2Wp

+ ‖ehϕ‖2Yh
+ ‖ehγ f

‖2
Q f

+ ‖ehγ p
‖2
Qp

)
ds . (5.28)

On the other hand, taking τ h = (τ f h, vph, τ ph, 0) ∈ Vh (cf. (5.6)) in the first
equation of (5.23), we obtain

B1(τ h)(e
h
ϕ) = −(∂t E + A)(eσ )(τ h) − B1(τ h)(e

I
ϕ) ,

In the above, thanks to the projection properties (5.17), the following terms are zero:
bp(vph, eIpp ), b f (τ f h, eIu f

), and bs(τ ph, eIus ). Then the discrete inf-sup condition of

B1 (cf. (5.8)) for ehϕ = (ehϕ, ehθ , ehλ) ∈ Yh gives

123



S. Caucao et al.

‖ehϕ‖Yh ≤C
(
‖eIσ f

‖X f + ‖eIup
‖Vp + ‖eIϕ‖Yh + ‖eIγ f

‖2
Q f

+ ‖eIγ p
‖2
Qp

+ ‖∂t A1/2 (eIσ p
+ αp eIpp I)‖L2(�p)

+ ‖ehσ f
‖X f + ‖ehup

‖Vp + ‖ehγ f
‖2
Q f

+ ‖ehγ p
‖2
Qp

+ ‖∂t A1/2 (ehσ p
+ αp ehpp I)‖L2(�p)

+ ‖ehpp‖Wp

)
. (5.29)

In turn, to bound ‖ehu‖Z, we test (5.23) with τ h = (τ f h, 0, τ ph, 0) ∈ X̃h (cf. (5.5)),
to find that

B(τ h)(e
h
u) = −

(
a f (eσ f , τ f h) + ae(∂t eσ p , ∂t epp ; τ ph, 0) + B(τ h)(e

I
u)

)
.

In the above, the terms b f (τ f h, eIu f
) and bs(τ ph, eIus ) are zero, due to the projection

property (5.17). Then, the discrete inf-sup condition of B (cf. (5.7)) for ehu ∈ Zh ,
yields

‖ehu‖Z ≤ C
(
‖eIσ f

‖X f + ‖∂t A1/2 (eIσ p
+ αp eIpp I)‖L2(�p)

+ ‖eIγ f
‖Q f + ‖eIγ p

‖Qp

+‖ehσ f
‖X f + ‖∂t A1/2 (ehσ p

+ αp ehpp I)‖L2(�p)

)
. (5.30)

Finally, to bound ‖ehpp‖Wp , we test (5.23) with τ h = (τ f h, vph, τ ph, 0) ∈ Xh to get

bp(vph, ehpp ) + b�(vph, ehλ) = −
(
ap(eup , vph) + bp(vph, eIpp ) + b�(vph, eIλ)

)
.

Note that bp(vph, eIpp ) = 0 due to the projection property (5.17), thus the discrete
inf-sup condition (5.10) gives

‖ehpp‖Wp + ‖ehλ‖
ph ≤ C
(
‖eIup

‖L2(�p)
+ ‖eIλ‖
ph + ‖ehup

‖L2(�p)

)
. (5.31)

Combining (5.28) with (5.29), (5.30), and (5.31), choosing δ2 small enough,

and employing the Grönwall’s inequality to deal with the term
∫ t

0
‖A1/2 (ehσ p

+
αp ehpp I)‖2L2(�p)

ds, we obtain
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‖A1/2(ehσ p
+ αp ehpp I)(t)‖2L2(�p)

+ s0 ‖ehpp (t)‖2Wp

+
∫ t

0

(
‖ehσ f

‖2
X f

+ ‖ehup
‖2Vp

+ ‖div(ehσ p
)‖2L2(�p)

+ ‖ehpp‖2Wp

+ |ehϕ − ehθ |2BJS + ‖ehϕ‖2Yh
+ ‖ehu‖2Z

)
ds

≤ C exp(T )

( ∫ t

0

(
‖eIσ ‖2X + ‖eIϕ‖2Yh

+ ‖eIu‖2Z + |eIϕ − eIθ |2BJS

+ ‖∂t A1/2 (eIσ p
+ αp eIpp I)‖2L2(�p)

)
ds

+
∫ t

0

(
‖∂t A1/2 (ehσ p

+ αp ehpp I)‖2L2(�p)
+ s0‖∂t ehpp‖2Wp

)
ds

+ ‖A1/2(ehσ p
+ αp ehpp I)(0)‖2L2(�p)

+ s0‖ehpp (0)‖2Wp

)
. (5.32)

Now, in order to bound
∫ t

0

(
‖∂t A1/2 (ehσ p

+ αp ehpp I)‖2L2(�p)
+ s0‖∂t ehpp‖2Wp

)
ds

on the right-hand side of (5.32), we test (5.23) with τ h = (∂tehσ f
, ehup

, ∂tehσ p
, ∂tehpp ),

ψ
h

= (ehϕ, ehθ , ∂tehλ), and vh = (ehu f
, ehus , e

h
γ f

, ehγ p
), differentiate in time the rows

in (5.23) associated to vph,ψh,φh, v f h, vsh,χ f h,χ ph , and employ the projections
properties (5.17)–(5.20) to eliminate some of the terms (cf. (5.26)), obtaining

1

2
∂t

( 1

2μ
‖(ehσ f

)d‖2
L2(� f )

+ ap(ehup
, ehup

) + cBJS(ehϕ, ehθ ; ehϕ, ehθ )
)

+‖∂t A1/2(ehσ p
+αpehpp I)‖2L2(�p)

+ s0‖∂tehpp‖2Wp

= −a f (eIσ f
, ∂t ehσ f

) − ap(∂t eIup
, ehup

) − ae(∂t eIσ p
, ∂t eIpp ; ∂t ehσ p

, ∂t ehpp )

−cBJS(∂t eIϕ, ∂t eIθ ; ehϕ, ehθ ) + c�(ehϕ, ehθ ; ∂t eIλ) − c�(eIϕ, eIθ ; ∂t ehλ)

−bn f (∂t e
h
σ f

, eIϕ) − bnp (∂t e
h
σ p

, eIθ ) − b�(ehup
, ∂t eIλ)

+bn f (∂t e
I
σ f

, ehϕ) + bnp (∂t e
I
σ p

, ehθ ) + b�(eIup
, ∂t ehλ) − bsk, f (∂t ehσ f

, eIγ f
)

−bsk,p(∂t ehσ p
, eIγ p

) + bsk, f (∂t eIσ f
, ehγ f

) + bsk,p(∂t eIσ p
, ehγ p

) . (5.33)

Then, integrating (5.33) from 0 to t ∈ (0, T ], using the identities
∫ t

0
a f (eIσ f

, ∂t ehσ f
) ds = a f (eIσ f

, ehσ f
)

∣∣∣t
0
−

∫ t

0
a f (∂t eIσ f

, ehσ f
) ds ,

∫ t

0
bn� (∂t e

h
σ �

, eI◦) ds = bn� (e
h
σ �

, eI◦)
∣∣∣t
0
−

∫ t

0
bn� (e

h
σ �

, ∂t eI◦) ds , � ∈ { f , p}, ◦ ∈ {ϕ, θ} ,

∫ t

0
bsk,�(∂t ehσ �

, eIγ �
) ds = bsk,�(ehσ �

, eIγ �
)

∣∣∣t
0
−

∫ t

0
bsk,�(ehσ �

, ∂t eIγ �
) ds ,

∫ t

0

〈
eI� · n f , ∂t ehλ

〉
� f p

ds =
〈
eI� · n f , ehλ

〉
� f p

∣∣∣t
0
−

∫ t

0

〈
∂t eI� · n f , ehλ

〉
� f p

ds , � ∈ {ϕ, θ ,up},
(5.34)
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and applying the ellipticity and continuity bounds of the bilinear forms involved
(cf. Lemma 4.3), the Cauchy-Schwarz and Young’s inequalities, and the fact that
div(ehσ �

) = 0 in �� with � ∈ { f , p} (cf. (5.27)), we obtain

‖ehσ f
(t)‖2

X f
+ ‖ehup

(t)‖2L2(�p)
+ ‖div(ehσ p

(t))‖2L2(�p)
+ |(ehϕ − ehθ )(t)|2BJS

+
∫ t

0

(
‖∂t A1/2 (ehσ p

+ αp ehpp I)‖2L2(�p)
+ s0‖∂t ehpp‖2Wp

)
ds

≤ C

(
‖eIσ f

(t)‖2
L2(� f )

+ ‖eIup
(t)‖2Vp

+ ‖eIσ p
(t)‖2

L2(�p)
+ ‖eIϕ(t)‖2� f h

+‖eIθ (t)‖2�sh
+ ‖eIγ f

(t)‖2
Q f

+ ‖eIγ p
(t)‖2

Qp
+

∫ t

0

(
‖∂t eIσ f

‖2
X f

+ ‖∂t eIup
‖2Vp

+|∂t (eIϕ − eIθ )|2BJS + ‖eIθ‖2�sh
+ ‖∂t eIϕ‖2Yh

+ ‖∂t eIγ f
‖2
Q f

+ ‖∂t eIγ p
‖2
Qp

+‖∂t A1/2 (eIσ p
+ αp eIpp I)‖2L2(�p)

+ ‖∂t eIσ p
‖2
Xp

)
ds

+‖eIσ f
(0)‖2

L2(� f )
+ ‖eIup

(0)‖2Vp
+ ‖eIϕ(0)‖2� f h

+ ‖eIθ (0)‖2�sh
+ ‖eIγ f

(0)‖2
Q f

)

+δ3

(
‖ehσ f

(t)‖2
X f

+ ‖ehσ p
(t)‖2

L2(�p)
+ ‖ehλ(t)‖2
ph

+
∫ t

0

(
‖ehσ f

‖2
X f

+ ‖ehup
‖2Vp

+ |ehϕ − ehθ |2BJS
)
ds +

∫ t

0

(
‖ehϕ‖2Yh

+ ‖ehu‖2Z
)
ds

)

+1

2

∫ t

0
‖∂t A1/2 (ehσ p

+ αp ehpp I)‖2L2(�p)
ds + C

(
‖ehσ f

(0)‖2
X f

+ ‖ehup
(0)‖2L2(�p)

+‖ehσ p
(0)‖2

Xp
+ |(ehϕ − ehθ )(0)|2BJS + ‖ehλ(0)‖2
ph

)
. (5.35)

We note that ‖ehσ p
(t)‖2

L2(�p)
+‖ehλ(t)‖2
ph

can be bounded by using (4.14) and (5.31),

whereas all the other terms with δ3 can be bounded by the left hand side of (5.32).
Thus, combining (5.32) with (5.31) and (5.35), using algebraic manipulations, and
choosing δ3 small enough, we get

‖ehσ f
(t)‖2

X f
+ ‖ehup

(t)‖2L2(�p)
+ |(ehϕ − ehθ )(t)|2BJS + ‖ehλ(t)‖2
ph

+‖A1/2(ehσ p
+ αp ehpp I)(t)‖2L2(�p)

+ ‖div(ehσ p
(t))‖2L2(�p)

+ ‖ehpp (t)‖2Wp

+
∫ t

0

(
‖ehσ f

‖2
X f

+ ‖ehup
‖2Vp

+ |ehϕ − ehθ |2BJS + ‖ehϕ‖2Yh

+‖ehu‖2Z + ‖div(ehσ p
)‖2L2(�p)

+ ‖ehpp‖2Wp

+‖∂t A1/2 (ehσ p
+ αp ehpp I)‖2L2(�p)

+ s0‖∂t ehpp‖2Wp

)
ds

≤ C exp(T )

(
‖eIσ f

(t)‖2
L2(� f )

+ ‖eIup
(t)‖2Vp

+ ‖eIσ p
(t)‖2

L2(�p)
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+‖eIϕ(t)‖2� f h
+ ‖eIθ (t)‖2�sh

+ ‖eIγ f
(t)‖2

Q f
+ ‖eIγ p

(t)‖2
Qp

+
∫ t

0

(
‖eIσ ‖2X + ‖eIϕ‖2Yh

+ ‖eIu‖2Z + |eIϕ − eIθ |2BJS + ‖∂t eIσ ‖2X
)
ds

+
∫ t

0

(
‖∂t eIϕ‖2Yh

+ |∂t (eIϕ − eIθ )|2BJS + ‖∂t eIγ f
‖2
Q f

+ ‖∂t eIγ p
‖2
Qp

)
ds

+‖eIσ f
(0)‖2

L2(� f )
+ ‖eIup

(0)‖2Vp
+ ‖eIϕ(0)‖2� f h

+ ‖eIθ (0)‖2�sh
+ ‖eIγ f

(0)‖2
Q f

+‖ehσ f
(0)‖2

X f
+ ‖ehup

(0)‖2L2(�p)
+ ‖ehσ p

(0)‖2
Xp

+(1 + s0)‖ehpp (0)‖2Wp
+ |(ehϕ − ehθ )(0)|2BJS + ‖ehλ(0)‖2
ph

)
.

(5.36)

Finally, we establish a bound on the initial data terms above. In fact, proceeding as
in (4.45), recalling fromCorollary 4.11 and Theorem 5.3 that (σ (0),ϕ(0)) = (σ 0,ϕ0

)

and (σ h(0),ϕh
(0)) = (σ h,0,ϕh,0

), using similar arguments to (5.32) in combination
with the error system derived from (5.13)–(5.14), we deduce

‖ehσ f
(0)‖2

X f
+ ‖ehup

(0)‖2Vp
+ ‖A1/2 (ehσ p

(0))‖2
L2(�p)

+ ‖div(ehσ p
(0))‖2L2(�p)

+‖ehpp (0)‖2Wp
+ |(ehϕ − ehθ )(0)|2BJS + ‖ehλ(0)‖2
ph

≤ C
(
‖eIσ 0

‖2X + ‖eIϕ̃
0
‖2Yh

+ ‖eIũ0‖2Z
)

, (5.37)

where σ 0 = (σ f ,0,up,0, σ p,0, pp,0), ϕ̃0
= (ϕ0,ω0, λ0) and ũ0 = (u f ,0, ηp,0, γ f ,0,

ρ p,0), and e
I
σ 0

, eIϕ̃
0
, eIũ0 denote their corresponding approximation errors. Thus, using

the error decomposition (5.22) in combinationwith (5.36)–(5.37), the triangle inequal-
ity, (4.14) and the approximation properties (5.18) and (5.21), we obtain (5.24) with
a positive constant C depending on parameters μ, λp, μp, αp, kmin, kmax, αBJS, and
the extra regularity assumptions for σ ,ϕ, and u whose expressions are obtained from
the right-hand sides of (5.18) and (5.21). This completes the proof in the conforming
case (S1).

The proof in the non-conforming case (S2) follows by using similar arguments.
We exploit the projection property (5.19) to conclude that some terms in (5.25) are
zero, namely bn f (e

h
σ f

, eIϕ), bnp (e
h
σ p

, eIθ ), and b�(ehup
, eIλ), as well as terms appear-

ing in the operator C (cf. (3.9)):
〈
ehϕ · n f , eIλ

〉
� f p

,
〈
eIϕ · n f , ehλ

〉
� f p

,
〈
ehθ · np, eIλ

〉
� f p

,

and
〈
eIθ · np, ehλ

〉
� f p

. In addition, in the non-conforming version of (5.29) the terms

‖eIλ‖
ph , ‖eIϕ‖� f h , and ‖eIθ‖�sh do not appear, since the bilinear forms b�(vph, eIλ),
bn f (τ f h, eIϕ), and bnp (τ ph, eIθ ) are zero by a direct application of the projection prop-
erty (5.19). ��
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6 Amultipoint stress-fluxmixed finite element method

In this section, inspired by previous works on the multipoint flux mixed finite element
method for Darcy flow [20, 42, 60, 61] and the multipoint stress mixed finite element
method for elasticity [6–8], we present a vertex quadrature rule that allows for local
elimination of the stresses, rotations, and Darcy flux, leading to a positive-definite
cell-centered pressure-velocities-traces system. We emphasize that, to the best of our
knowledge, this is the first time such method is developed for the Stokes equations.
To that end, the finite element spaces we consider for both (X f h,V f h,Q f h) and
(Xph,Vsh,Qph) are the triple BDM1 −P0 −P1, which have been shown to be stable
for mixed elasticity with weak stress symmetry in [16, 17, 32], whereas (Vph,Wph)

is chosen to beBDM1−P0 [18], and the Lagrange multiplier spaces (� f h,�sh,
ph)

are either P1 − P1 − P1 or Pdc
1 − Pdc

1 − Pdc1 satisfying (S1) or (S2) (cf. (5.1), (5.2)),
respectively, where Pdc1 denotes the piecewise linear discontinuous finite element space
and Pdc

1 is its corresponding vector version. We remark that the chosen finite element
spaces for the stresses, rotations, and Darcy flux have degrees of freedom that can be
associated with the element vertices, which, in combination with the vertex quadrature
rule, allows for local elimination of these variables.

6.1 A quadrature rule setting

Let S� denote the space of elementwise continuous functions on T �
h . For any pair of

tensor or vector valued functions ϕ and ψ with elements in S�, we define the vertex
quadrature rule as in [61] (see also [6, 8]):

(ϕ, ψ)Q,�� :=
∑
E∈T �

h

(ϕ, ψ)Q,E =
∑
E∈T �

h

|E |
s

s∑
i=1

ϕ(ri ) · ψ(ri ), (6.1)

where � ∈ { f , p}, s = 3 on triangles and s = 4 on tetrahedra, ri , i = 1, . . . , s, are the
vertices of the element E , and · denotes the inner product for both vectors and tensors.

We will apply the quadrature rule for the bilinear forms a f , ap, ae and bsk,�, which
will be denoted by ahf , a

h
p, a

h
e and bhsk,�, respectively. These bilinear forms involve

the stress spaces X f h and Xph , the vorticity space Q f h and rotation space Qph , and
the Darcy velocity space Vph . The BDM1 spaces have for degrees of freedom s − 1
normal components on each element edge (face), which can be associated with the
vertices of the edge (face). At any element vertex ri , the value of a tensor or vector
function is uniquely determined by its normal components at the associated two edges
or three faces. Also, the vorticity space Q f h and the rotation space Qph are vertex-
based. Therefore the application of the vertex quadrature rule (6.1) for the bilinear
forms involving the above spaces results in coupling only the degrees of freedom
associated with a mesh vertex, which allows for local elimination of these variables.
Next, we state a preliminary lemma to be used later on, which has been proved in [8,
Lemma 3.1] and [6, Lemma 2.2].
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Lemma 6.1 There exist positive constants C0 and C1 independent of h, such that for
any linear uniformly bounded and positive-definite operator L, there hold

(L(ϕ), ϕ)Q,�� ≥ C0 ‖ϕ‖2��
, (L(ϕ), ψ)Q,�� ≤ C1 ‖ϕ‖��‖ψ‖��,

∀ϕ,ψ ∈ S�, � ∈ { f , p}.

Consequently, the bilinear form (L(ϕ), ϕ)Q,�� is an inner product in L2(��) and

(L(ϕ), ϕ)
1/2
Q,��

is a norm equivalent to ‖ϕ‖�� .

The semidiscrete coupled multipoint stress-flux mixed finite element method for
(3.11) reads: Find (σ h,ϕh

,uh) : [0, T ] → Xh × Yh × Zh such that for all
(τ h,ψh

, vh) ∈ Xh × Yh × Zh , and for a.e. t ∈ (0, T ),

∂

∂t
Eh(σ h)(τ h) + Ah(σ h)(τ h) + B1(τ h)(ϕh

) + Bh(τ h)(uh) = F(τ h),

−B1(σ h)(ψh
) + C(ϕ

h
)(ψ

h
) = 0,

−Bh(σ h)(vh) = G(vh), (6.2)

where

Ah(σ h)(τ h) := ahf (σ f h, τ f h) + ahp(uph, vph) + bp(vph, pph) − bp(uph, wph),

Eh(σ h)(τ h) := ahe (σ ph, pph; τ ph, wph) + (s0 pph, wph)�p ,

Bh(τ h)(vh) := b f (τ f h, v f h) + bs(τ ph, vsh) + bhsk, f (τ f h,χ f h) + bhsk,p(τ ph,χ ph).

We next discuss the discrete inf-sup conditions. We recall the space X̃h defined in
(5.5). We also define the discrete kernel of the operator Bh as

V̂h :=
{
τ h ∈ Xh : Bh(τ h)(vh) = 0 ∀ vh ∈ Zh

}
= X̂ f h×Vph×X̂ph×Wph, (6.3)

where

X̂�h : =
{
τ �h ∈ X�h : (τ �h, ξ �h)Q,�� = 0 ∀ ξ �h ∈ Q�h and div(τ �h) = 0 in ��

}
,

� ∈ { f , p},

emphasizing the difference from the discrete kernel of B defined in (5.6).

Lemma 6.2 There exist positive constants β̂ and β̂1, such that

sup
0 �=τ h∈X̃h

Bh(τ h)(vh)
‖τ h‖X

≥ β̂ ‖vh‖Z ∀ vh ∈ Zh, (6.4)

sup
0 �=τ h∈V̂h

B1(τ h)(ψh
)

‖τ h‖X
≥ β̂1 ‖ψ

h
‖Yh ∀ψ

h
∈ Yh . (6.5)
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Proof The proof of (6.4) follows from a slight adaptation of the argument in [6,
Theorem 4.2]. The proof of (6.5) is similar to the proof of (5.8). The main difference
is replacing the interpolant satisfying (5.9) by an interpolant �̂

f
h : H1(� f ) → X f h

satisfying

b f (�̂
f
h τ f − τ f , v f h) = 0 ∀ v f h ∈ V f h,

bhsk, f (�̂
f
h τ f − τ f ,χ f h) = 0 ∀χ f h ∈ Q f h,

〈(�̂ f
h τ f − τ f )n f , τ f hn f 〉� f p∪�N

f
= 0 ∀ τ f h ∈ X f h,

whose existence follows from the inf-sup condition for Bh (6.4). ��
We can establish the following well-posedness result.

Theorem 6.3 For each pp,0 ∈ Hp and compatible discrete initial data (σ h,0,ϕh,0
,uh,0)

constructed in Lemma 5.2 and each

f f ∈ W1,1(0, T ;V′
f ), fp ∈ W1,1(0, T ;V′

s), q f ∈ W1,1(0, T ;X′
f ),

qp ∈ W1,1(0, T ;W′
p),

there exists a unique solution of (6.2), (σ h,ϕh
,uh) : [0, T ] → Xh×Yh×Zh such that

(σ ph, pph) ∈ W1,∞(0, T ;Xph) × W1,∞(0, T ;Wph), and (σ h(0),ϕh
(0),u f h(0),

γ f h(0)) = (σ h,0,ϕh,0
,u f h,0, γ f h,0). Moreover, assuming sufficient regularity of the

data, a stability bound as in (5.16) also holds.

Proof The theorem follows from similar arguments to the proof of Theorem 5.3, in
conjunction with Lemmas 6.1 and 6.2. ��

6.2 Error analysis

Now, we obtain the error estimates and theoretical rates of convergence for the mul-
tipoint stress-flux mixed scheme (6.2). To that end, for each σ f h , τ f h ∈ X f h , uph ,
vph ∈ Vph , σ ph , τ ph ∈ Xph , pph , wph ∈ Wph , χ f h ∈ Q f h , and χ ph ∈ Qph , we
denote the quadrature errors by

δ f (σ f h, τ f h) = a f (σ f h, τ f h) − ahf (σ f h, τ f h),

δp(uph, vph) = ap(uph, vph) − ahp(uph, vph),

δe(σ ph, pph; τ ph, wph) = ae(σ ph, pph; τ ph, wph) − ahe (σ ph, pph; τ ph, wph),

δsk,�(χ�h, τ �h) = bsk,�(χ�h, τ �h) − bhsk,�(χ�h, τ �h), � ∈ { f , p}. (6.6)

Next, for the operator A (cf. (2.4)) we will say that A ∈ W
1,∞
T p
h

if A ∈ W
1,∞(E)

for all E ∈ T p
h and ‖A‖W1,∞(E) is uniformly bounded independently of h. Similar

notation holds for K−1. In the next lemma we establish bounds on the quadrature
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errors. The proof follows from a slight adaptation of [6, Lemma 5.2] to our context
(see also [8, 61]).

Lemma 6.4 If K−1 ∈ W
1,∞
T p
h

and A ∈ W
1,∞
T p
h
, then there is a constant C > 0 indepen-

dent of h such that

|δ f (σ f h, τ f h)| ≤ C
∑
E∈T f

h

h ‖σ f h‖H1(E) ‖τ f h‖L2(E),

|δp(uph, vph)| ≤ C
∑
E∈T p

h

h ‖K−1‖W1,∞(E) ‖uph‖H1(E) ‖vph‖L2(E),

|δe(σ ph, pph; τ ph, wph)|
≤ C

∑
E∈T p

h

h ‖A‖W1,∞(E)‖(σ ph, pph)‖H1(E)×L2(E)‖(τ ph, wph)‖L2(E)×L2(E),

|δsk,�(τ �h,χ�h)| ≤ C
∑
E∈T �

h

h ‖τ �h‖L2(E) ‖χ�h‖H1(E), � ∈ { f , p},

|δsk,�(τ �h,χ�h)| ≤ C
∑
E∈T �

h

h ‖τ �h‖H1(E) ‖χ�h‖L2(E), � ∈ { f , p},

for all σ f h, τ f h ∈ X f h , uph, vph ∈ Vph, σ ph, τ ph ∈ Xph, pph, wph ∈ Wph,
χ f h ∈ Q f h , χ ph ∈ Qph.

We are ready to establish the convergence of the multipoint stress-flux mixed finite
element method.

Theorem 6.5 For the solutions of the continuous and semidiscrete problems (3.11) and
(6.2) established in Theorem 4.10 and Theorem 6.3, respectively, assuming sufficient
regularity of the true solution according to (5.18) and (5.21), there exists a positive
constant C independent of h and s0, such that

‖eσ f ‖L∞(0,T ;X f ) + ‖eσ f ‖L2(0,T ;X f )
+ ‖eup‖L∞(0,T ;L2(�p))

+ ‖eup‖L2(0,T ;Vp)

+ |eϕ − eθ |L∞(0,T ;BJS) + |eϕ − eθ |L2(0,T ;BJS) + ‖eλ‖L∞(0,T ;
ph)

+ ‖eϕ‖L2(0,T ;Yh)
+ ‖eu‖L2(0,T ;Z) + ‖A1/2(eσ p )‖L∞(0,T ;L2(�p))

+ ‖div(eσ p )‖L∞(0,T ;L2(�p))
+ ‖epp‖L∞(0,T ;Wp)

+ ‖div(eσ p )‖L2(0,T ;L2(�p))
+ ‖epp‖L2(0,T ;Wp)

+ ‖∂t A1/2(eσ p + αpepp I)‖L2(0,T ;L2(�p))
+ √

s0‖∂t epp‖L2(0,T ;Wp)

≤ C
√
exp(T )

(
h + h1+r

)
, (6.7)

where r is defined in (5.18).
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Proof To obtain the error equations, we subtract the multipoint stress-flux mixed finite
element formulation (6.2) from the continuous one (3.11). Using the error decompo-
sition (5.22) and applying some algebraic manipulations, we obtain the error system:

(
∂t Eh + Ah

)
(ehσ )(τ h) + B1(τ h)(e

h
ϕ) + Bh(τ h)(e

h
u)

= −(
∂t E + A

)
(eIσ )(τ h) − B1(τ h)(e

I
ϕ) − B(τ h)(e

I
u) − δ f ep(Ih(σ ), Ph(u))(τ h),

−B1(ehσ )(ψ
h
) + C(ehϕ)(ψ

h
) = B1(eIσ )(ψ

h
) − C(eIϕ)(ψ

h
)

−Bh(ehσ )(vh) = B(eIσ )(vh) + δ f p(Ih(σ ))(vh) , (6.8)

for all (τ h,ψh
, vh) ∈ Xh × Yh × Zh , where

δ f ep(Ih(σ ), Ph(u))(τ h) := −δ f (I
X f
h (σ f ), τ f h) − δe(I

Xp
h (σ p), pp; τ ph, wph)

−δp(I
Vp
h (up), vph) − δsk, f (τ f h, P

Q f
h (γ f )) − δsk,p(τ ph, P

Qp
h (γ p))

and
δ f p(Ih(σ ))(vh) := δsk, f (I

X f
h (σ f ),χ f h) + δsk,p(I

Xp
h (σ p),χ ph) .

Notice that the error system (6.8) is similar to (5.23), except for the additional quadra-
ture error terms. The rest of the proof follows from the arguments in the proof of (5.24),
using Lemmas 6.1, 6.2 and 6.4, and utilizing the continuity bounds of the interpolation
operators IX�

h , I
vp
h , PQ�

h [6, Lemma 5.1]:

‖IX�

h (τ �h)‖H1(E) ≤ C ‖τ �h‖H1(E) ∀ τ �h ∈ H
1(E) , � ∈ { f , p} ,

‖PQ�

h (χ�h)‖H1(E) ≤ C ‖χ�h‖H1(E) ∀χ�h ∈ H
1(E) ,

‖IVp
h (vph)‖H1(E) ≤ C ‖vph‖H1(E) ∀ vph ∈ H1(E) .

We omit further details, and refer to [6, 8, 61] for more details on the error analysis of
the multipoint flux and multipoint stress mixed finite element methods on simplicial
grids. ��

6.3 Reduction to a cell-centered pressure-velocities-traces system

In this section we focus on the fully discrete problem associated to (6.2) (cf. (3.11),
(5.11)), and describe how to obtain a reduced cell-centered system for the algebraic
problem at each time step. For the time discretization we employ the backward Euler
method. Let�t be the time step, T = M �t , tm = m �t ,m = 0, . . . , M . Let dt um :=
(�t)−1(um−um−1) be the first order (backward) discrete time derivative,where um :=
u(tm). Then the fully discrete model reads: given (σ 0

h,ϕ
0
h
,u0h) = (σ h,0,ϕh,0

,uh,0)

satisfying (5.12), find (σm
h ,ϕm

h
,umh ) ∈ Xh × Yh × Zh , m = 1, . . . , M , such that for

all (τ h,ψh
, vh) ∈ Xh × Yh × Zh ,

dt Eh(σm
h )(τ h) + Ah(σ

m
h )(τ h) + B1(τ h)(ϕ

m
h
) + Bh(τ h)(u

m
h ) = F(τ h) ,
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−B1(σ
m
h )(ψ

h
) + C(ϕm

h
)(ψ

h
) = 0 ,

−Bh(σ
m
h )(vh) = G(vh) . (6.9)

Remark 6.1 The well-posedness and error estimate associated to the fully discrete
problem (6.9) can be derived employing similar arguments to Theorems 6.3 and 6.5
in combination with the theory developed in [9, Sections 6 and 9]. In particular, we
note that at each time step the well-posedness of the fully discrete problem (6.9), with
m = 1, . . . , M , follows from similar arguments to the proof of Lemma 4.7.

Notice that the first row in (6.9) can be rewritten equivalently as
(
(�t)−1Eh + Ah

)
(σm

h )(τh) + B1(τh)(ϕm
h

) + Bh(τh)(umh )

= F(τh) + (�t)−1Eh(σm−1
h )(τh) . (6.10)

Let us associate with the operators in (6.9)–(6.10) matrices denoted in the same way.
We then have

(
(�t)−1 Eh + Ah

)
=

⎛
⎜⎜⎜⎝

Aσ f σ f 0 0 0

0 Aupup 0 Atup pp
0 0 Aσ pσ p Atσ p pp
0 −Aup pp Aσ p pp App pp

⎞
⎟⎟⎟⎠ , Bh =

⎛
⎜⎜⎜⎝

Aσ f u f 0 0 0

0 0 Aσ pus 0
Aσ f γ f 0 0 0

0 0 Aσ pγ p 0

⎞
⎟⎟⎟⎠ ,

B1 =
⎛
⎜⎝

Aσ f ϕ 0 0 0

0 0 Aσ pθ 0

0 Aupλ 0 0

⎞
⎟⎠ , C =

⎛
⎜⎝

Aϕϕ At
ϕθ

Atϕλ

Aϕθ Aθθ At
θλ

−Aϕλ −Aθλ 0

⎞
⎟⎠ ,

with

Aσ f σ f ∼ ahf (·, ·), Aupup ∼ ahp(·, ·), Aσ pσ p ∼ (�t)−1 ahe (·, 0; ·, 0),
Aσ p pp ∼ (�t)−1ahe (·, 0; 0, ·),
App pp ∼ (�t)−1ahe (0, ·; 0, ·) + (�t)−1(s0 ·, ·)�p , Aup pp ∼ bp(·, ·),
Aσ f ϕ ∼ bn f (·, ·), Aupλ ∼ b�(·, ·),
Aσ pθ ∼ bnp (·, ·), Aϕϕ ∼ cBJS(·, 0; ·, 0), Aϕθ ∼ cBJS(·, 0; 0, ·),
Aθθ ∼ cBJS(0, ·; 0, ·), Aϕλ ∼ c�(·, 0; ·),
Aθλ ∼ c�(0, ·; ·), Aσ f u f ∼ b f (·, ·), Aσ f γ f

∼ bhsk, f (·, ·),
Aσ pus ∼ bs(·, ·), Aσ pγ p

∼ bhsk,p(·, ·),

where the notation A ∼ a means that the matrix A is associated with the bilinear form
a. Denoting the algebraic vectors corresponding to the variables σm

h , ϕ
m
h
, and umh in

the same way, we can then write the system (6.9) in a matrix-vector form as

⎛
⎝ (�t)−1 Eh + Ah Bt

1 Bt
h−B1 C 0

−Bh 0 0

⎞
⎠

⎛
⎝σm

h
ϕm
h

umh

⎞
⎠ =

⎛
⎝F + (�t)−1Eh(σm−1

h )

0
G

⎞
⎠ . (6.11)
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Aswe noted in Sect. 6.1, due to the the use of the vertex quadrature rule, the degrees
of freedom (DOFs) of the Stokes stress σm

f h , Darcy velocity umph and poroelastic
stress tensor σm

ph associated with a mesh vertex become decoupled from the rest of
the DOFs. As a result, the assembled mass matrices have a block-diagonal structure
with one block per mesh vertex. The dimension of each block equals the number of
DOFs associated with the vertex. These matrices can then be easily inverted with local
computations. Inverting each local block in Aupup allows for expressing the Darcy
velocity DOFs associated with a vertex in terms of the Darcy pressure pmph at the
centers of the elements that share the vertex, as well as the trace unknown λmh on
neighboring edges (faces) for vertices on � f p. Similarly, inverting each local block in
Aσ f σ f allows for expressing the Stokes stress DOFs associated with a vertex in terms
of neighboring Stokes velocityumf h , vorticity γm

f h , and traceϕm
h . Finally, inverting each

local block in Aσ pσ p allows for expressing the poroelastic stress DOFs associated with
a vertex in terms of neighboring Darcy pressure pmph , structure velocity u

m
sh , structure

rotation γm
ph , and trace θmh . Then we have

umph = −A−1
upup

Atup pp pmph − A−1
upup

Atupλ
λmh ,

σm
f h = −A−1

σ f σ f
Atσ f ϕ

ϕm
h − A−1

σ f σ f
Atσ f u f

umf h − A−1
σ f σ f

Atσ f γ f
γm

f h ,

σm
ph = −A−1

σ pσ p
Atσ p pp pmph − A−1

σ pσ p
Atσ pθ

θmh − A−1
σ pσ p

Atσ pus u
m
sh − A−1

σ pσ p
Atσ pγ p

γm
ph .

(6.12)

The reduced matrix associated to (6.11) in terms of (pmph,ϕ
m
h , θmh , λmh ,umf h,u

m
sh, γ

m
f h,

γm
ph) is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Appσ p pp + Appup pp 0 −Appσ pθ Appupλ 0 −Appσ pus 0 −Appσ pγ p

0 Aϕϕ+Aϕσ f ϕ At
ϕθ At

ϕλ Au f σ f ϕ 0 Aγ f σ f ϕ 0
At
ppσ pθ

Aϕθ Aθθ+Aθσ pθ At
θλ

0 Ausσ pθ 0 Aγ pσ pθ

At
ppupλ

−Aϕλ −Aθλ Aλupλ 0 0 0 0

0 At
u f σ f ϕ

0 0 Au f σ f u f 0 Au f σ f γ f
0

At
ppσ pus 0 At

usσ pθ
0 0 Ausσ pus 0 Ausσ pγ p

0 At
γ f σ f ϕ

0 0 At
u f σ f γ f

0 Aγ f σ f γ f
0

At
ppσ pγ p

0 At
γ pσ pθ

0 0 At
usσ pγ p

0 Aγpσ pγ p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.13)
where

Appσ p pp = App pp − Aσ p pp A
−1
σ pσ p

At
σ p pp , Appup pp = Aup pp A

−1
upup

At
up pp ,

Appσ pθ = Aσ p pp A
−1
σ pσ p

At
σ pθ

,

Appupλ = Aup pp A
−1
upup

At
upλ

, Appσ pus = Aσ p pp A
−1
σ pσ p

At
σ pus ,

Appσ pγ p
= Aσ p pp A

−1
σ pσ p

At
σ pγ p

, Aϕσ f ϕ = Aσ f ϕ A
−1
σ f σ f

At
σ f ϕ

,

Aθσ pθ = Aσ pθ A
−1
σ pσ p

At
σ pθ

, Aλupλ = AupλA
−1
upup

At
upλ

,

Au f σ f ϕ = Aσ f ϕ A
−1
σ f σ f

At
σ f u f

, Au f σ f u f = Aσ f u f A
−1
σ f σ f

At
σ f u f

,

Au f σ f γ f
= Aσ f u f A

−1
σ f σ f

At
σ f γ f

, Ausσ pθ = Aσ pθ A
−1
σ pσ p

At
σ pus ,
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Ausσ pus = Aσ pus A
−1
σ pσ p

At
σ pus , Ausσ pγ p

= Aσ pus A
−1
σ pσ p

At
σ pγ p

,

Aγ pσ pγ p
= Aσ pγ p

A−1
σ pσ p

At
σ pγ p

, Aγ pσ pθ = Aσ pθ A
−1
σ pσ p

At
σ pγ p

,

Aγ f σ f γ f
= Aσ f γ f

A−1
σ f σ f

At
σ f γ f

, Aγ f σ f ϕ = Aσ f ϕ A
−1
σ f σ f

At
σ f γ f

. (6.14)

Furthermore, due to the vertex quadrature rule, the vorticity and structure rotation
DOFs corresponding to each vertex of the grid become decoupled from the rest of
the DOFs, leading to block-diagonal matrices Aγ f σ f γ f

and Aγ pσ pγ p
. Recalling the

matrix definitions in (6.14), each block is symmetric and positive definite and thus
locally invertible, due the positive definiteness of A−1

σ f σ f
and A−1

σ pσ p
and the inf-sup

condition (5.7). We then have

γm
f h = −A−1

γ f σ f γ f
Aγ f σ f ϕ ϕm

h − A−1
γ f σ f γ f

At
u f σ f γ f

umf h,

γm
ph = −A−1

γ pσ pγ p
At
ppσ pγ p

pmph − A−1
γ pσ pγ p

Aγ pσ pθ θmh − A−1
γ pσ pγ p

At
usσ pγ p

umsh,

(6.15)

and using some algebraic manipulation, we obtain the reduced problem Apmh = F,
with vector solution pmh := (pmph,ϕ

m
h , θmh , λmh ,umf h,u

m
sh) and matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ã ppσ p pp + Appup pp 0 − Ã ppσ pθ Appupλ 0 − Ã ppσ pus
0 Ãϕσ f ϕ+Aϕϕ At

ϕθ At
ϕλ Ãu f σ f ϕ 0

Ãt
ppσ pθ

Aϕθ Ãθσ pθ+Aθθ At
θλ

0 Ãusσ pθ

At
ppupλ

−Aϕλ −Aθλ Aλupλ 0 0

0 Ãt
u f σ f ϕ

0 0 Ãu f σ f u f 0
Ãt
ppσ pus 0 Ãt

usσ pθ
0 0 Ãusσ pus

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.16)
where

Ã ppσ p pp = Appσ p pp + Appσ pγ p
A−1

γ pσ pγ p
At
ppσ pγ p

,

Ã ppσ pθ = Appσ pθ − Apσ pθ A
−1
γ pσ pγ p

At
γ pσ pθ

,

Ã ppσ pus = Appσ pus − Appσ pγ p
A−1

γ pσ pγ p
At
usσ pγ p

,

Ãϕσ f ϕ = Aϕσ f ϕ − Aγ f σ f ϕ A
−1
γ f σ f γ f

At
γ f σ f ϕ

,

Ãu f σ f ϕ = Au f σ f ϕ − Aγ f σ f ϕ A
−1
γ f σ f γ f

At
u f σ f γ f

,

Ãθσ pθ = Aθσ pθ − Aγ pσ pθ A
−1
γ pσ pγ p

At
γ pσ pθ

,

Ãusσ pθ = Ausσ pθ − Aγ pσ pθ A
−1
γ pσ pγ p

At
usσ pγ p

,

Ãu f σ f u f = Au f σ f u f − Au f σ f γ f
A−1

γ f σ f γ f
At
u f σ f γ f

,

Ãusσ pus = Ausσ pus − Ausσ pγ p
A−1

γ pσ pγ p
At
usσ pγ p

, (6.17)
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and the right hand side vector F has been obtained by transforming the right-hand
side in (6.9) accordingly to the procedure above. Note that, after solving the problem
with matrix (6.16), we can recover umph, σ

m
f h, σ

m
ph and γm

f h, γ
m
ph through the formulae

(6.12) and (6.15), respectively, thus obtaining the full solution to (6.9).

Lemma 6.6 The cell-centered finite difference system for the pressure-velocities-traces
problem (6.16) is positive definite.

Proof Consider a vector qt = (wt
ph ψ t

h φt
h ξ th vtf h vtsh) �= 0. Employing the matrices

in (6.14) and (6.17) and some algebraic manipulations, we obtain

qt Aq = wt
ph

(
App pp − Aσ p pp A

−1
σ pσ p A

t
σ p pp

)
wph + wt

ph Appσ pγ p A
−1
γ pσ pγ p

Atppσ pγ p
wph

+(
Atup pp wph + Atupλ ξh

)t A−1
upup

(
Atup pp wph + Atupλ ξh

) + (ψ t
h φt

h)

(
Aϕϕ At

ϕθ

Aϕθ Aθθ

) (
ψh
φh

)

+(ψ t
h vtf h)

(
Ãϕσ f ϕ Ãu f σ f ϕ

Ãtu f σ f ϕ
Ãu f σ f u f

) (
ψh
v f h

)
+ (φt

h vtsh)

(
Ãθσ pθ Ãusσ pθ

Ãtusσ pθ
Ãusσ pus

) (
φh
vsh

)
. (6.18)

Now, we focus on analyzing the six terms in the right-hand side of (6.18). The first
term is non-negative due to [41, Theorem 7.7.6] and the fact that the matrix App pp −
Aσ p pp A

−1
σ pσ p

At
σ p pp is a Schur complement of the matrix

(
Aσ pσ p At

σ p pp
Aσ p pp App pp

)
,

which is positive semi-definite as a consequence of the ellipticity property of the oper-
ator ae (cf. (3.8) and (4.7)). The second term is nonnegative, since the matrix Aγ pσ pγ p

is positive definite, as noted in (6.15). The third term is positive for (wt
ph ξ th) �= 0, due

to the positive-definiteness of A−1
upup

and the inf-sup condition (5.10). The fourth term
is non-negative since the operator C (cf. (4.8)) is positive semi-definite. The matrices
in the last two terms are Schur complements of the matrices

A f :=
⎛
⎜⎝

Aϕσ f ϕ Au f σ f ϕ Aγ f σ f ϕ

At
u f σ f ϕ

Au f σ f u f Au f σ f γ f

At
γ f σ f ϕ

At
u f σ f γ f

Aγ f σ f γ f

⎞
⎟⎠and Ap :=

⎛
⎜⎝

Aθσ pθ Ausσ pθ Aγ pσ pθ

At
usσ pθ

Ausσ pus Ausσ pγ p

At
γ pσ pθ

At
usσ pγ p

Aγ pσ pγ p

⎞
⎟⎠ ,

respectively, which are positive definite. In particular, for vtf = (ψ t
h vtf h χ t

f h) �= 0
and vtp = (φt

h vtsh χ t
ph) �= 0, we have

vtf A f v f = (
At

σ f ϕ
ψh + At

σ f u f
v f h

+ At
σ f γ f

χ f h
)t
A−1

σ f σ f

(
At

σ f ϕ
ψh + At

σ f u f
v f h + At

σ f γ f
χ f h

)
> 0,

vtp Apvp = (
At

σ pθ
φh + At

σ pus vsh

+ At
σ pγ p

χ ph
)t
A−1

σ pσ p

(
At

σ pθ
φh + At

σ pus vsh + At
σ pγ p

χ ph
)

> 0,
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due to the positive-definiteness of A−1
σ f σ f

and A−1
σ pσ p

, along with the combined inf-
sup condition for Bh(τ h)(vh) + B1(τ h)(ψh

). The latter follows from the inf-sup
conditions (6.4) and (6.5), using that (6.5) holds in the kernel of Bh . Then, applying
again [41, Theorem 7.7.6], we conclude that the last two terms in (6.18) are positive
for (ψ t

h vtf h) �= 0 and (φt
h vtsh) �= 0. Therefore qt Aq > 0 for all q �= 0, implying

that the matrix A from (6.16) is positive definite. ��

Remark 6.2 The solution of the reduced systemwith thematrixA from (6.16) results in
significant computational savings compared to the original system (6.11). In particular,
five of the eleven variables have been eliminated. Three of the remaining variables
are Lagrange multipliers that appear only on the interface � f p. The other three are
the cell-centered velocities and Darcy pressure, with only n DOFs per element in the
Stokes region and n + 1 DOFs per element in the Biot region, which are the smallest
possible number of DOFs for the sub-problems compared to any other formulation.
For example, consider the Stokes-Biot formulation in [3, eq. (5.1)-(5.3)], which uses a
velocity-pressure formulation for Stokes, displacement formulation for elasticity, and a
velocity-pressure formulation for Darcy. In the lowest order case it uses the P1 b× P1
MINI elements for Stokes, the lowest order Raviart–Thomas spaces RT0 × P0 for
Darcy, and continuous piecewise linear P1 for the displacement. This results in n + 1
DOFs per vertex and one DOF per element for Stokes, one DOF per edge or face
and one DOF per element for Darcy, and n DOFs per vertex for elasticity. Therefore
the number of DOFs is significantly larger compared to our reduced system (6.16).
We further remark that the cost of eliminating the stresses, vorticity, rotation, and
velocity, as well as their recovery, is asymptotically negligible compared to the cost
of solving the reduced system. In particular this involves, for each vertex, solving
local systems for the elimination and matrix-vector multiplications for the recovery,
with small matrices of size independent of the number of elements. Finally, since the
reduced system is positive definite, efficient iterative solvers such as GMRES can be
utilized for its solution.

7 Numerical results

In this section we present numerical results that illustrate the behavior of the fully
discrete multipoint stress-flux mixed finite element method (6.9). Our implementation
is in two dimensions and it is based onFreeFem++ [40], in conjunctionwith the direct
linear solver UMFPACK [29]. For spatial discretization, we use the (BDM1 −P0 −P1)

spaces for Stokes, the (BDM1 −P0 −P1)− (BDM1 −P0) spaces for Biot, and either
(P1 − P1 − P1) or Pdc

1 − Pdc
1 − Pdc1 for the Lagrange multipliers. We present three

examples. Example 1 is used to corroborate the rates of convergence. Example 2 is a
simulation of the coupling of surface and subsurface hydrological systems, focusing
on the qualitative behavior of the solution. Example 3 illustrates an application to flow
in a poroelastic medium with an irregularly shaped cavity, using physically realistic
parameters. We note that in all the three examples the prescribed initial conditions
pp,0 and σ p,0 are part of compatible initial data for all variables that satisfy at t = 0
the equations in the numerical scheme (6.9) without time derivatives, cf. (5.12).
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7.1 Example 1: convergence test

In this test we study the convergence rates for the space discretization using an ana-
lytical solution. The domain is � = � f ∪ �p, where � f = (0, 1) × (0, 1) and
�p = (0, 1)× (−1, 0). In particular, the upper half is associated with the Stokes flow,
while the lower half represents the flow in the poroelastic structure governed by the
Biot system, see Fig. 1 (left). The figure also shows the types of boundary conditions
imposed on the different sections of the boundary, recalling that �D

f , �
N
f , �

D
p , �

N
p , �̃

D
p ,

and �̃N
p have been defined in the model problem Eqs. (2.2) and (2.6). The parameters

and the true solution are given in Fig. 1 (right). The solution is designed to satisfy the
interface conditions (2.8) on � f p. The right hand side functions f f , q f , fp and qp, the
boundary conditions, and the initial condition pp,0 are determined from (2.2)–(2.6)
using the true solution. Note that the boundary conditions for σ f ,u f ,up, σ p, and ηp
are not homogeneous and therefore the right-hand side of the resulting system is mod-
ified accordingly. The total simulation time for this example is T = 0.01 and the time
step is �t = 10−3. The time step is sufficiently small, so that the time discretization
error does not affect the convergence rates.

Tables 1 and 2 show the convergence history for a sequence of quasi-uniform mesh
refinements with non-matching grids along the interface employing conforming and
non-conforming spaces for the Lagrangemultipliers (cf. (5.1)–(5.2)), respectively. The
grids on the coarsest level are shown in Fig. 1 (left). In the tables, h f and h p denote
the mesh sizes in � f and �p, respectively, while the mesh sizes for their traces on
� f p are ht f and htp. We note that the Stokes pressure and the displacement at time tm
are recovered by the post-processing formulae pmf = − 1

n (tr(σm
f )−2μ qmf ) (cf. (2.2))

and ηmp = ηm−1
p + �t ums (cf. Remark 5.4), respectively. The results illustrate that

spatial rates of convergence O(h), as provided by Theorem 6.5, are attained for all
subdomain variables in their natural norms. The Lagrange multiplier variables, which
are approximated in P1 − P1 − P1 and Pdc

1 − Pdc
1 − Pdc1 , exhibit rates of convergence

O(h3/2) andO(h2) in the H1/2 and L2-norms on� f p, respectively, which is consistent
with the order of approximation.

Fig. 1 Example 1, domain and coarsest mesh level (left), parameters and analytical solution (right)
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Table 1 Example 1, errors and convergence rates with P1 − P1 − P1 Lagrange multipliers

h f ‖eσ f ‖2(0,T ;X f )
‖eu f ‖2(0,T ;V f )

‖eγ f ‖2(0,T ;Q f )
‖ep f ‖2(0,T ;L2(� f ))

Error Rate Error Rate Error Rate Error Rate

0.1964 2.2E-02 − 2.7E-02 − 2.4E-03 − 6.3E-03 −
0.0997 1.2E-02 0.95 1.4E-02 1.00 9.3E-04 1.41 3.1E-03 1.05

0.0487 5.7E-03 0.99 6.8E-03 0.99 4.2E-04 1.11 1.6E-03 0.93

0.0250 2.9E-03 1.04 3.4E-03 1.04 2.0E-04 1.13 7.8E-04 1.07

0.0136 1.4E-03 1.14 1.7E-03 1.15 9.4E-05 1.23 3.9E-04 1.15

0.0072 7.1E-04 1.08 8.4E-04 1.10 4.7E-05 1.09 2.0E-04 1.02

h p ‖eσ p‖∞(0,T ;Xp) ‖eus ‖2(0,T ;Vs )
‖eγ p‖2(0,T ;Qp) ‖eup‖2(0,T ;Vp) ‖epp ‖∞(0,T ;Wp)

Error Rate Error Rate Error Rate Error Rate Error Rate

0.2828 2.7E-01 − 4.3E-02 − 3.4E-02 − 1.0E-01 − 7.5E-02 −
0.1646 1.4E-01 1.27 2.2E-02 1.23 9.4E-03 2.38 5.2E-02 1.27 3.8E-02 1.25

0.0779 6.7E-02 0.97 1.1E-02 0.96 2.2E-03 1.96 2.5E-02 1.00 1.9E-02 0.93

0.0434 3.4E-02 1.17 5.4E-03 1.19 5.8E-04 2.25 1.2E-02 1.24 9.4E-03 1.22

0.0227 1.7E-02 1.06 2.7E-03 1.07 2.0E-04 1.68 5.9E-03 1.08 4.7E-03 1.07

0.0124 8.4E-03 1.15 1.4E-03 1.15 8.1E-05 1.48 2.9E-03 1.15 2.4E-03 1.14

‖eηp‖2(0,T ;L2(�p)) ht f ‖eϕ‖2(0,T ;� f )
htp ‖eθ‖2(0,T ;�s ))

‖eλ‖2(0,T ;
p)

error rate Error Rate Error Rate Error Rate

2.7E-04 − 1/8 1.6E-03 − 1/5 1.6E-02 − 6.9E-03 −
1.4E-04 1.23 1/16 3.7E-04 2.11 1/10 5.7E-03 1.49 2.5E-03 1.49

6.7E-05 0.96 1/32 1.3E-04 1.45 1/20 1.2E-03 2.31 8.5E-04 1.52

3.4E-05 1.19 1/64 4.6E-05 1.54 1/40 3.4E-04 1.76 3.0E-04 1.50

1.7E-05 1.07 1/128 1.2E-05 1.96 1/80 1.1E-04 1.62 1.1E-04 1.50

8.4E-06 1.15 1/256 3.6E-06 1.70 1/160 2.2E-05 2.34 3.7E-05 1.54

7.2 Example 2: coupled surface and subsurface flows

In this example, we simulate coupling of surface and subsurface flows, which could be
used to describe the interaction between a river and an aquifer.We consider the domain
� = (0, 2) × (−1, 1). We associate the upper half with the river flow modeled by
Stokes equations, while the lower half represents the flow in the aquifer governed by
the Biot system. The appropriate interface conditions are enforced along the interface
y = 0. In this example we focus on the qualitative behavior of the solution and use
unit physical parameters:

μ = 1, αp = 1, λp = 1, μp = 1, s0 = 1, K = I, αBJS = 1.
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Table 2 Example 1, errors and convergence rates with Pdc1 − Pdc1 − Pdc1 Lagrange multipliers

h f ‖eσ f ‖2(0,T ;X f )
‖eu f ‖2(0,T ;V f )

‖eγ f ‖2(0,T ;Q f )
‖ep f ‖2(0,T ;L2(� f ))

Error Rate Error Rate Error Rate Error Rate

0.1964 2.2E-02 − 2.7E-02 − 2.4E-03 − 6.1E-03 −
0.0997 1.2E-02 0.94 1.4E-02 1.00 9.7E-04 1.31 3.1E-03 1.02

0.0487 5.7E-03 0.99 6.8E-03 0.99 4.2E-04 1.16 1.6E-03 0.92

0.0250 2.8E-03 1.04 3.4E-03 1.04 2.0E-04 1.13 7.8E-04 1.07

0.0136 1.4E-03 1.14 1.7E-03 1.15 9.4E-05 1.23 3.9E-04 1.15

0.0072 7.1E-04 1.08 8.4E-04 1.09 4.7E-05 1.09 2.0E-04 1.02

h p ‖eσ p‖∞(0,T ;Xp) ‖eus ‖2(0,T ;Vs )
‖eγ p‖2(0,T ;Qp) ‖eup‖2(0,T ;Vp) ‖epp ‖∞(0,T ;Wp)

Error Rate Error Rate Error Rate Error Rate Error Rate

0.2828 2.7E-01 − 4.3E-02 − 3.4E-02 − 1.0E-01 − 7.5E-02 −
0.1646 1.4E-01 1.27 2.2E-02 1.23 9.4E-03 2.39 5.2E-02 1.26 3.8E-02 1.25

0.0779 6.7E-02 0.97 1.1E-02 0.96 2.2E-03 1.96 2.5E-02 1.00 1.9E-02 0.93

0.0434 3.4E-02 1.17 5.4E-03 1.19 5.8E-04 2.25 1.2E-02 1.24 9.4E-03 1.22

0.0227 1.7E-02 1.06 2.7E-03 1.07 2.0E-04 1.67 5.9E-03 1.08 4.7E-03 1.07

0.0124 8.4E-03 1.15 1.4E-03 1.15 8.1E-05 1.48 2.9E-03 1.15 2.4E-03 1.14

‖eηp‖2(0,T ;L2(�p)) ht f ‖eϕ‖2(0,T ;L2(� f p)) htp ‖eθ‖2(0,T ;L2(� f p)) ‖eλ‖2(0,T ;L2(� f p))

Error Rate Error Rate Error Rate Error Rate

2.7E-04 − 1/8 4.1E-04 − 1/5 7.9E-03 − 1.1E-03 −
1.4E-04 1.23 1/16 2.0E-04 1.04 1/10 2.9E-03 1.46 3.1E-04 1.87

6.7E-05 0.96 1/32 2.4E-05 3.07 1/20 5.7E-04 2.34 7.7E-05 2.01

3.4E-05 1.19 1/64 6.4E-06 1.89 1/40 1.5E-04 1.89 1.9E-05 2.00

1.7E-05 1.07 1/128 1.6E-06 1.97 1/80 3.8E-05 2.01 4.9E-06 1.98

8.4E-06 1.15 1/256 4.0E-07 2.02 1/160 9.0E-06 2.09 1.2E-06 2.09

The body forces, the external source, and the initial conditions are set to zero:

f f = 0, q f = 0, fp = 0, qp = 0, pp,0 = 0, and σ p,0 = 0.

The flow is driven through a parabolic fluid velocity on the left boundary of the fluid
region with boundary conditions specified as follows:

u f = (−40y(y − 1), 0)t on � f ,le f t ,

u f = 0 on � f ,top,

σ f n f = 0 on � f ,right ,

pp = 0 and σ pnp = 0 on �p,bottom,

up · np = 0 and us = 0 on �p,le f t ∪ �p,right .
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Fig. 2 Example 2, computed solution at T = 3. Top left: velocities u f h and uph (arrows), u f h,2 and uph,2
(color). Top middle and right: negative stresses −(σ f h,12, σ f h,22)

t and −(σ ph,12, σ ph,22)
t (arrows);

middle: −σ f h,12 and −σ ph,12 (color); right: −σ f h,22 and −σ ph,22 (color). Bottom left: negative Stokes
stress−σ f h,22 andDarcy pressure pph . Bottom right: displacement ηph (arrows) and its magnitude (color)

Here � f ,le f t denotes the section of the boundary of the fluid region that is on the left
side of the domain �, {0} × (0, 1). The rest of the boundary sections are defined in
a similar manner. To avoid inconsistency between the initial data and the non-zero
boundary condition for u f , we start with u f = 0 on � f ,le f t at t = 0 and gradually
increase it to reach u f = (−40y(y − 1), 0)t at t = 0.3. In this way, all boundary
conditions and source terms are zero at t = 0 and we can take zero initial data for all
variables that are compatible in the sense that all equations without time derivatives
hold at t = 0. We remind the reader that, while the existence of compatible initial data
for all variables is needed for thewell posedness and accuracy of the numericalmethod,
only the initial conditions pp,0 and σ p,0 are used in the scheme. The simulation is run
for a total time T = 3 with a time step�t = 0.06. The computed solution is presented
in Fig. 2.

From the velocity plot (top left), we see that the flow in the Stokes region is moving
primarily from left to right, driven by the parabolic inflow condition, with some of the
fluid percolating downward into the poroelastic medium due to the zero pressure at the
bottom,which simulates gravity. Themass conservationu f ·n f +

(
∂tηp + up

)·np = 0
on the interface with np = (0, 1)t indicates the continuity of the second components
of the fluid velocity and Darcy velocity when the displacement becomes steady, which
is observed from the color plot of the vertical velocity. The stress plots (top middle and
right) illustrate the ability of our fully mixed formulation to compute accurateH(div)
stresses in both the fluid and poroelastic regions, without the need for numerical
differentiation. In addition, the conservation of momentum σ f n f + σ pnp = 0 and
balance of normal stress (σ f n f )·n f = −pp imply that σ f ,12 = σ p,12,σ f ,22 = σ p,22
and −σ f ,22 = pp on the interface. These conditions are verified from the top middle
and right color plots, as well as the bottom left plot. Furthermore, the arrows in the
stress plots are formed by the second columns of the stresses, whose traces on the
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interface are σ f n f and −σ pnp, respectively. For visualization purpose, the Stokes
stress is scaled by a factor of 1/5 compared to the poroelastic stress, due to large
difference in their magnitudes away from the interface. Nevertheless, the continuity
of the vector field across the interface is evident, consistent with the conservation of
momentum condition σ f n f + σ pnp = 0. The overall qualitative behavior of the
computed stresses is consistent with the specified boundary and interface conditions.
In particular, we observe large fluid stress along the top boundary due to the no slip
condition, as well as along the interface due to the slip with friction condition. The
singularity near the lower left corner of the Stokes region is due to the mismatch in
boundary conditions between the fluid and poroelastic regions. Finally, the last plot
shows that the inflow from the Stokes region causes deformation of the poroelastic
medium.

7.3 Example 3: irregularly shaped fluid-filled cavity

This example features highly irregularly shaped cavity motivated by modeling flow
through vuggy or naturally fractured reservoirs or aquifers. It uses physical units and
realistic parameter values taken from the reservoir engineering literature [39]:

μ = 10−6 kPa s, αp = 1, λp = 5/18 × 107 kPa, μp = 5/12 × 107 kPa,

s0 = 6.89 × 10−2 kPa−1, K = 10−8 × I m2, αBJS = 1.

We emphasize that the problem features very small permeability and storativity, as
well as large Lamé parameters. These are parameter regimes that are known to lead
locking in modeling of the Biot system of poroelasticity [47, 63]. The domain is
� = (0, 1)× (0, 1), with a large fluid-filled cavity in the interior. The boundary of the
cavity is defined as a union of curved segments designed to give irregular geometry
with sharp corners. The mesh files are available in https://github.com/tongtongli1/
MSMFE_cavity-mesh. The body forces, the external source, and the initial conditions
are set as follows:

f f = 0, q f = 0, fp = 0, qp = 0, pp,0 = 1000, and σ p,0 = −αp pp,0 I.

The flow is driven from left to right via a pressure drop of 1 kPa, with boundary
conditions specified as follows:

σ f n f · n f = 1000, u f · t f = 0 on � f ,right ,

pp = 1001 on �p,le f t , pp = 1000 on �p,right ,

up · np = 0 on �p,top ∪ �p,bottom,

σ p np = −αp pp np on �p,le f t ∪ �p,right ,

us = 0 on �p,top ∪ �p,bottom .

Here � f ,right denotes the section of the boundary of the fluid region that is on the
right side of the domain �, {1} × (0, 1). The rest of the boundary sections are defined
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Fig. 3 Example 3, computed solution at T = 10 s. Top left:Darcy velocity (arrows) and pressure (color). Top
middle: displacement (arrows) and its magnitude (color). Top right: first row of the poroelastic stress tensor
(arrows) and its magnitude (color). Bottom left: Stokes velocity (arrows) and pressure (color). Bottom
middle: Stokes velocity (arrows) and its magnitude (color). Bottom right: first row of the Stokes stress
(arrows) and its magnitude (color)

in a similar manner. The total simulation time is T = 10 s with a time step of size
�t = 0.05 s. To avoid inconsistency between the initial and boundary conditions for
pp, we start with pp = 1000 on �p,le f t at t = 0 and gradually increase it to reach
pp = 1001 at t = 0.5 s. Similar adjustment is done for σ pnp. In this way there
exist compatible initial data for all variables, which combine the prescribed initial
conditions pp,0 = 1000 and σ p,0 = −αp pp,0 I with zero data for the rest of the
variables. We again remind the reader that only the initial conditions pp,0 = 1000 and
σ p,0 = −αp pp,0 I are used in the scheme.

The simulation results at the final time T = 10 s are shown in Fig. 3. In the top plots,
we present the Darcy pressure and Darcy velocity vector, the displacement vector with
its magnitude, and the first row of the poroelastic stress with its magnitude. Since the
pressure variation is small relative to its value, for visualization purpose we plot its
difference from the reference pressure, pp−1000. TheDarcy velocity and the pressure
drop are largest in the region between the left inflow boundary and the cavity. The
displacement is largest around the cavity, due to the large fluid velocity within the
cavity and the slip with friction interface condition. The poroelastic stress exhibits
singularities near some of the sharp tips of the cavity. The bottom plots show the
fluid pressure and velocity vector, the velocity vector with its magnitude, and the first
row of the fluid stress with its magnitude. Similarly to the Darcy pressure, we plot
p f − 1000. A channel-like flow profile is clearly visible within the cavity, with the
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largest velocity along a central path away from the cavity walls. The fluid pressure is
decreasing from left to right along the central path of the cavity. Consistent with the
poroelastic stress, the fluid stress near the tips of the cavity is relatively larger. We
emphasize that, despite the locking regime of the parameters, the computed solution
is free of locking and spurious oscillations. This example illustrates the ability of
our method to handle computationally challenging problems with physically realistic
parameters in poroelastic locking regimes.

8 Conclusions

In this paper we present and analyze the first, to the best of our knowledge, fully
dual mixed formulation of the quasi-static Stokes-Biot model, and its mixed finite
element approximation, using a velocity-pressure Darcy formulation, a weakly sym-
metric stress-displacement-rotation elasticity formulation, and a weakly symmetric
stress-velocity-vorticity Stokes formulation. Essential-type interface conditions are
imposed via suitable Lagrange multipliers. The numerical method features accurate
stresses and Darcy velocity with local mass and momentum conservation. Further-
more, a new multipoint stress-flux mixed finite element method is developed that
allows for local elimination of the Darcy velocity, the fluid and poroelastic stresses,
the vorticity, and the rotation, resulting in a reduced positive definite cell-centered
pressure-velocities-traces system. The theoretical results are complemented by a series
of numerical experiments that illustrate the convergence rates for all variables in their
natural norms, as well as the ability of the method to simulate physically realistic
problems motivated by applications to coupled surface-subsurface flows and flows
in fractured poroelastic media with parameter values in locking regimes. A possible
future direction is to consider the extension of the multipoint stress-flux mixed finite
element method to higher order, employing techniques developed in [4, 30] for Darcy
flow. One could also consider displacement-based discontinuous Galerkin methods,
which are known to exhibit anti-locking behavior for the Biot system of poroelasticity
[54].
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