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Abstract

We propose and analyze a new mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Besides
he velocity, our approach introduces the velocity gradient and a pseudostress tensor as further unknowns. As a consequence,
e obtain a three-field Banach spaces-based mixed variational formulation, where the aforementioned variables are the main
nknowns of the system. We establish existence and uniqueness of a solution to the weak formulation, and derive the
orresponding stability bounds, employing classical results on nonlinear monotone operators. We then propose a semidiscrete
ontinuous-in-time approximation on simplicial grids based on the Raviart–Thomas elements of degree k ≥ 0 for the

pseudostress tensor and discontinuous piecewise polynomials of degree k for the velocity and the velocity gradient. In addition,
by means of the backward Euler time discretization, we introduce a fully discrete finite element scheme. We prove well-
posedness and derive the stability bounds for both schemes, and under a quasi-uniformity assumption on the mesh, we establish
the corresponding error estimates. We provide several numerical results verifying the theoretical rates of convergence and
illustrating the performance and flexibility of the method for a range of domain configurations and model parameters.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

In this work we study mathematical and computational modeling of fast flows in highly porous media using
he unsteady Brinkman–Forchheimer equations. Such flows occur in a wide range of applications, among which
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e highlight predicting and controlling processes arising in chemical, petroleum and environmental engineering.
ast flows in the subsurface may occur in fractured or vuggy aquifers or reservoirs, as well as near injection and
roduction wells during groundwater remediation or hydrocarbon production. The widely used Darcy’s law is not
uitable for flows through media with high porosity or with high Reynolds number. To overcome this limitation, an
lternative is to employ the Forchheimer law [1], which accounts for faster flows by including a nonlinear inertial
erm. We refer the reader to [2–7] for previous works on the numerical solution of the Forchheimer model. Another
ossible option is the Brinkman model [8], which describes Stokes flows through a set of obstacles, and therefore
t can be applied for highly porous media. Depending on its parameters, it can model flows in either the Stokes and
arcy regimes. Various numerical methods for the Brinkman model have been developed that are robust in both

imits, see, e.g., [9] and references therein.
The Brinkman–Forchheimer model (see, e.g., [10–14]), which combines the advantages of both models, has

een used to model fast flows in highly porous media. Up to the authors’ knowledge, one of the first works
n analyzing the unsteady Brinkman–Forchheimer equations is [10], where stability of solutions in the L2-norm
s established. This result is extended to the H 1-norm in [11]. In [12], well-posedness for a velocity–pressure
ariational formulation is established, whereas, a perturbed compressible system that approximates the Brinkman–
orchheimer equations is proposed and analyzed in [13]. There, a fully discrete numerical scheme is developed that
ombines a semi-implicit Euler scheme with the lowest-order Raviart–Thomas elements for the spatial discretization.
n [15], a pressure stabilization method and its finite element approximation are developed and analyzed. The
rinkman–Forchheimer model is coupled with a variable porosity Darcy model and applied for simulating wormhole
ropagation in [16]. More recently, a mixed pseudostress–velocity formulation is analyzed in [14], where existence
nd uniqueness of a solution are established for the weak formulation in a Banach space framework. Semidiscrete
ontinuous-in-time and fully discrete mixed finite element approximations are introduced and sub-optimal rates of
onvergence are established. In turn, in [17], the coupling of the steady Brinkman–Forchheimer and double-diffusion
quations is analyzed. There, the velocity gradient, the pseudostress tensor, the temperature and concentration
radients, and a pair of flux vectors are introduced as further unknowns. As a consequence, a Banach space fully
ixed variational formulation in each set of equations is obtained. Well-posedness of the solution of the continuous

nd discrete problems are proved by employing a fixed-point approach combined with classical results on nonlinear
onotone operators and Babuška–Brezzi’s theory in Banach spaces.
The purpose of the present work is to develop and analyze a new three-field mixed formulation of the unsteady

rinkman–Forchheimer problem and study a suitable conforming numerical discretization. To that end, unlike
revious works and motivated by [17,18], we introduce the velocity gradient and a pseudostress tensor as additional
nknowns besides the fluid velocity. The pressure is eliminated from the system and can be easily recovered through
simple postprocessing of the pseudostress. There are several advantages of this new approach, including the

irect and accurate approximation of additional unknowns of physical interest, which are the velocity gradient
nd pseudostress tensors. The approximation of the pseudostress tensor in the H(div) space ensures compatible
nforcement of momentum conservation. Moreover, our approach improves the suboptimal theoretical rates of
onvergence obtained in [14] for the pseudostress–velocity formulation under a quasi-uniformity assumption on
he mesh. Compared to classical velocity–pressure formulations, which may not be suitable for both the Stokes
nd Darcy regimes in the Brinkman equation, our approach is robust in both regimes, which is illustrated in the
umerical experiments. Two of the numerical examples also illustrate the capability of the method to resolve sharp
elocity gradients in the presence of discontinuous spatially varying parameters in complex geometries.

We establish existence and uniqueness of a solution to the continuous weak formulation by employing techniques
rom [19,20], and [18], combined with the classical monotone operator theory in a Banach space setting. Stability for
he weak solution is established by means of an energy estimate. We further develop semidiscrete continuous-in-time
nd fully discrete finite element approximations. The pseudostress tensor is approximated by the Raviart–Thomas
lements of order k ≥ 0, whereas, discontinuous piecewise polynomials of degree k are employed to approximate the
elocity and the velocity gradient tensor. We make use of the backward Euler method for the discretization in time.
dapting the tools employed for the analysis of the continuous problem, we prove well-posedness of the discrete

chemes and derive the corresponding stability estimates. We further perform error analysis for the semidiscrete
nd fully discrete schemes, establishing rates of convergence in space and time.

The rest of this work is organized as follows. The remainder of this section describes standard notation and

unctional spaces to be employed throughout the paper. In Section 2, we introduce the model problem and derive
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ts three-field mixed variational formulation. Next, in Section 3 we establish the well-posedness of the weak
ormulation. The semidiscrete continuous-in-time scheme is introduced and analyzed in Section 4. Error estimates
nd rates of convergence are also derived. In Section 5, the fully discrete approximation is developed and analyzed.
inally, the performance of the method is illustrated in Section 6 with several numerical examples in 2D and 3D, thus
erifying the aforementioned rates of convergence, as well as its flexibility to handle spatially varying parameters
n complex geometries.

reliminaries

Let Ω ⊂ Rd , d ∈ {2, 3}, denote a domain with Lipschitz boundary Γ . For s ≥ 0 and p ∈ [1, +∞], we
denote by Lp(Ω ) and Ws,p(Ω ) the usual Lebesgue and Sobolev spaces endowed with the norms ∥ · ∥Lp(Ω) and
· ∥Ws,p(Ω), respectively. Note that W0,p(Ω ) = Lp(Ω ). If p = 2, we write Hs(Ω ) in place of Ws,2(Ω ), and denote the
orresponding norm by ∥·∥Hs(Ω). By H and H we will denote the corresponding vectorial and tensorial counterparts
f a generic scalar functional space H. Moreover, given T > 0 and a separable Banach space V endowed with the
orm ∥ · ∥V, we let Lp(0, T ; V) be the space of classes of functions f : (0, T ) → V that are Bochner measurable
nd such that ∥ f ∥Lp(0,T ;V) < ∞, with

∥ f ∥
p
Lp(0,T ;V) :=

∫ T

0
∥ f (t)∥p

V dt, ∥ f ∥L∞(0,T ;V) := ess sup
t∈[0,T ]

∥ f (t)∥V.

n turn, for any vector field v := (vi )i=1,d , we set the gradient and divergence operators, as

∇v :=

(
∂ vi

∂ x j

)
i, j=1,d

and div(v) :=

d∑
j=1

∂ v j

∂ x j
.

n addition, for any tensor fields τ = (τi j )i, j=1,d and ζ = (ζi j )i, j=1,d , we let div(τ ) be the divergence operator div
cting along the rows of τ , and define the transpose, the trace, the tensor inner product, and the deviatoric tensor,
espectively, as

τ t
:= (τ j i )i, j=1,d , tr(τ ) :=

d∑
i=1

τi i , τ : ζ :=

d∑
i, j=1

τi j ζi j , and τ d
:= τ −

1
d

tr(τ ) I,

here I is the identity tensor in Rd×d . For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω

v w, (v, w)Ω :=

∫
Ω

v · w, (τ , ζ )Ω :=

∫
Ω

τ : ζ .

hen no confusion arises, | · | will denote the Euclidean norm in Rd or Rd×d . Additionally, we introduce the Hilbert
pace

H(div;Ω ) :=

{
τ ∈ L2(Ω ) : div(τ ) ∈ L2(Ω )

}
,

quipped with the usual norm ∥τ∥
2
H(div;Ω) := ∥τ∥

2
L2(Ω)

+∥div(τ )∥2
L2(Ω)

. In addition, in the sequel we will make use

f the well-known Young’s inequality, for a, b ≥ 0, 1/p + 1/q = 1, and δ > 0,

a b ≤
δp/2

p
ap

+
1

q δq/2 bq. (1.1)

Finally, we end this section by mentioning that, throughout the rest of the paper, we employ 0 to denote a generic
null vector (or tensor), and use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values at different places.

2. Continuous formulation

2.1. Model problem

In this work we are interested in approximating the solution of the unsteady Brinkman–Forchheimer equations
(see for instance [11–15]). More precisely, given the body force term f and a suitable initial data u , the
0
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a
forementioned system of equations is given by
∂ u
∂ t

− ν ∆u + α u + F |u|
p−2u + ∇ p = f , div(u) = 0 in Ω × (0, T ] ,

u = 0 on Γ × (0, T ] , u(0) = u0 in Ω , (p, 1)Ω = 0 in (0, T ] ,

(2.1)

where the unknowns are the velocity field u and the scalar pressure p. In addition, the constant ν > 0 is the
Brinkman coefficient, α > 0 is the Darcy coefficient, F > 0 is the Forchheimer coefficient and p ∈ [3, 4] is given.

Now, in order to derive our weak formulation, we first rewrite (2.1) as an equivalent first-order set of equations.
To that end, unlike [14] and inspired by [17,18], we introduce the velocity gradient and pseudostress tensors as
further unknowns, that is

t := ∇u, σ := ν t − p I in Ω × (0, T ] . (2.2)

In this way, applying the trace operator to t and σ , and utilizing the incompressibility condition div(u) = 0 in
Ω × (0, T ], one arrives at tr(t) = 0 in Ω × (0, T ] and

p = −
1
d

tr(σ ) in Ω × (0, T ] . (2.3)

Hence, replacing back (2.3) in the second equation of (2.2), we find that our model problem (2.1) can be rewritten,
equivalently, as the set of equations with unknowns u, t and σ , given by

t = ∇u , σ d
= ν t ,

∂ u
∂ t

+ α u + F |u|
p−2u − div(σ ) = f in Ω × (0, T ] ,

u = 0 on Γ × (0, T ] , u(0) = u0 in Ω , (tr(σ ), 1)Ω = 0 in (0, T ] .

(2.4)

At this point we stress that, as suggested by (2.3), p is eliminated from the formulation (2.4) and computed
afterwards in terms of σ by using identity (2.3). This fact, justifies the last equation in (2.4), which is equivalent
to imposing (p, 1)Ω = 0 in (0, T ].

2.2. Variational formulation

In this section we derive our three-field Banach mixed variational formulation for the system (2.4). To that end,
we proceed as in [17, Section 2.2] (see also [18,21,22] for similar approaches) and extend the analysis derived there
to our current unsteady regime, considering a generalized version of the inertial term |u|

p−2u, with p ∈ [3, 4]. In
fact, multiplying the first, second and third equations of (2.4) by suitable test functions τ , r, and v, respectively,
integrating by parts and using the Dirichlet boundary condition u = 0 on Γ × (0, T ], we get

(t, τ )Ω + (u, div(τ ))Ω = 0 , (2.5)

ν (t, r)Ω − (σ d, r)Ω = 0 , (2.6)

(∂t u, v)Ω + α (u, v)Ω + F (|u|
p−2u, v)Ω − (div(σ ), v)Ω = (f, v)Ω , (2.7)

for all (τ , r, v) in X × Q × M, where X ,Q and M are spaces to be defined below.
We begin by noting that the first term in (2.6) is well defined for t, r ∈ L2(Ω ), but due to the incompressibility

condition div(u) = tr(t) = 0, it makes sense to look for t, and consequently the test function r, in

Q :=

{
r ∈ L2(Ω ) : tr(r) = 0 in Ω

}
. (2.8)

This implies that (2.6) can be rewritten equivalently as

ν (t, r)Ω − (σ , r)Ω = 0 ∀ r ∈ Q . (2.9)

In addition, we note that the first and second terms in (2.5) and (2.6) (or (2.9)), respectively, are well defined if
σ , τ ∈ L2(Ω ). In turn, if u, v ∈ Lp(Ω ), with p ∈ [3, 4], then the first, second, and third terms in (2.7) are clearly
well defined, which forces both div(σ ) and div(τ ) to live in Lq(Ω ), with q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1.
According to this, we introduce the Banach space

H(divq;Ω ) :=

{
τ ∈ L2(Ω ) : div(τ ) ∈ Lq(Ω )

}
,

4
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quipped with the norm

∥τ∥H(divq;Ω) := ∥τ∥L2(Ω) + ∥div(τ )∥Lq(Ω),

and deduce that Eqs. (2.5)–(2.7) and (2.9) are well defined if we choose the spaces Q as in (2.8) and

M := Lp(Ω ) and X := H(divq;Ω )

ith their respective norms: ∥ · ∥Q := ∥ · ∥L2(Ω), ∥ · ∥M := ∥ · ∥Lp(Ω), and ∥ · ∥X := ∥ · ∥H(divq;Ω).
Now, for convenience of the subsequent analysis and similarly as in [22] (see also [17,18,23]) we consider the

decomposition:

X = X0 ⊕ R I,

where

X0 :=

{
τ ∈ H(divq;Ω ) : (tr(τ ), 1)Ω = 0

}
;

that is, R I is a topological supplement for X0. More precisely, each τ ∈ X can be decomposed uniquely as:

τ = τ 0 + c I with τ 0 ∈ X0 and c :=
1

d |Ω |
(tr(τ ), 1)Ω ∈ R.

hen, noticing that div(τ ) = div(τ 0) and employing the last equation of (2.4), we deduce that both σ and τ can be
onsidered hereafter in X0. Next, in order to write the above formulation in a more suitable way for the analysis to
e developed below, we now set the notations

u := (u, t) , v := (v, r) ∈ M × Q,

ith corresponding norm given by

∥v∥ := ∥v∥M + ∥r∥Q ∀ v ∈ M × Q .

ence, the weak formulation associated with the unsteady Brinkman–Forchheimer system (2.4) reads: Given
: [0, T ] → L2(Ω ) and u0 ∈ M, find (u, σ ) : [0, T ] → (M × Q) × X0, such that u(0) = u0 and, for a.e.

t ∈ (0, T ),

∂

∂ t
[E(u(t)), v] + [A(u(t)), v] + [B′(σ (t)), v] = [F(t), v] ∀ v ∈ M × Q ,

− [B(u(t)), τ ] = 0 ∀ τ ∈ X0 ,

(2.10)

here, the operators E,A : (M × Q) → (M × Q)′, and B : (M × Q) → X′

0 are defined, respectively, as

[E(u), v] := (u, v)Ω , (2.11)

[A(u), v] := α (u, v)Ω + F (|u|
p−2u, v)Ω + ν (t, r)Ω , (2.12)

[B(v), τ ] := − (v, div(τ ))Ω − (r, τ )Ω , (2.13)

and F is the bounded linear functional given by

[F, v] := (f, v)Ω . (2.14)

In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators. In addition, we let
B′

: X0 →
(
M × Q

)′ be the adjoint of B, which satisfies [B′(τ ), v] = [B(v), τ ] for all v ∈ M × Q and τ ∈ X0.

3. Well-posedness of the model

In this section we establish the solvability of (2.10). To that end we first collect some previous results that will
be used in the forthcoming analysis.
5



S. Caucao, R. Oyarzúa, S. Villa-Fuentes et al. Computer Methods in Applied Mechanics and Engineering 394 (2022) 114895

3

s

T

L

A

.1. Preliminary results

We begin by recalling the key result [19, Theorem IV.6.1(b)], which will be used to establish the existence of a
olution to (2.10).

heorem 3.1. Let the linear, symmetric and monotone operator N be given for the real vector space E to its
algebraic dual E∗, and let E ′

b be the Hilbert space which is the dual of E with the seminorm

|x |b =
(
N x(x)

)1/2 x ∈ E .

et M ⊂ E × E ′

b be a relation with domain D =

{
x ∈ E : M(x) ̸= ∅

}
.

Assume M is monotone and Rg(N +M) = E ′

b. Then, for each f ∈ W1,1(0, T ; E ′

b) and for each u0 ∈ D, there
is a solution u of

d
dt

(
N u(t)

)
+ M

(
u(t)

)
∋ f (t) a.e. 0 < t < T, (3.1)

with

N u ∈ W1,∞(0, T ; E ′

b), u(t) ∈ D, for all 0 ≤ t ≤ T, and N u(0) = N u0.

Note that E ′

b must be understood as the dual space of (E, | · |b).
In addition, in order to provide the range condition in Theorem 3.1 we will require the following abstract result

(see [20, Theorem 3.1] for details).

Theorem 3.2. Let X1, X2 and Y be separable and reflexive Banach spaces, X1 and X2 being uniformly convex,
and set X = X1 × X2. Let a : X → X ′ be a nonlinear operator, b : L(X, Y ′), and let V be the kernel of b, that is,

V :=

{
v ∈ X : [b(v), q] = 0 ∀ q ∈ Y

}
.

ssume that

(i) a is hemi-continuous, that is, for each u, v ∈ X the real mapping

J : R → R, t → J (t) = [a(u + tv), v]

is continuous;
(ii) there exist constants L > 0 and p1, p2 ≥ 2, such that

∥a(u) − a(v)∥X ′ ≤ L
2∑

j=1

{
∥u j − v j∥X j +

(
∥u j∥X j + ∥v j∥X j

)p j −2
∥u j − v j∥X j

}
, (3.2)

for all u = (u1, u2), v = (v1, v2) ∈ X;
(iii) the family of operators

{
a(· + t) : V → V′

: t ∈ X
}

is uniformly strictly monotone, that is there exist
γ > 0 and p1, p2 ≥ 2, such that

[a(u + t) − a(v + t), u − v] ≥ γ
{
∥u1 − v1∥

p1
X1

+ ∥u2 − v2∥
p2
X2

}
,

for all t ∈ X, and for all u = (u1, u2), v = (v1, v2) ∈ V ;
(iv) there exist β > 0 such that

sup
v∈X
v ̸=0

[b(v), q]
∥v∥X

≥ β ∥q∥Y ∀ q ∈ Y.

Then, for each ( f, g) ∈ X ′
× Y ′ there exists a unique (u, p) ∈ X × Y such that

[a(u), v] + [b(v), p] = [ f, v] ∀ v ∈ X ,
[b(u), q] = [g, q] ∀ q ∈ Y .

6
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Next, we establish the stability properties of the operators involved in (2.10). We begin by observing that the
perators E,B and the functional F are linear. In turn, from (2.11), (2.13) and (2.14), and employing Hölder and

Cauchy–Schwarz inequalities, there hold⏐⏐[B(v), τ ]
⏐⏐ ≤ ∥v∥ ∥τ∥X ∀ (v, τ ) ∈

(
M × Q

)
× X0 , (3.3)⏐⏐[F, v]

⏐⏐ ≤ ∥f∥L2(Ω) ∥v∥L2(Ω) ≤ |Ω |
(p−2)/(2 p)

∥f∥L2(Ω) ∥v∥ ∀ v ∈ M × Q , (3.4)

nd ⏐⏐[E(u), v]
⏐⏐ ≤ |Ω |

(p−2)/p
∥u∥ ∥v∥, [E(v), v] = ∥v∥

2
L2(Ω) ∀ u, v ∈ M × Q , (3.5)

which implies that B and F are bounded and continuous, and E is bounded, continuous, and monotone. In addition,
employing the Cauchy–Schwarz and Hölder inequalities, it is readily seen that the nonlinear operator A (cf. (2.12))
is bounded, that is⏐⏐[A(u), v]

⏐⏐ ≤

(
α |Ω |

(p−2)/p
∥u∥M + F ∥u∥

p−1
M + ν ∥t∥Q

)
∥v∥ . (3.6)

Finally, recalling the definition of the operators E,A, and B (cf. (2.11)–(2.13)), we stress that problem (2.10)
can be written in the form of (3.1) with

E :=
(
M × Q

)
× X0 , u :=

(
u
σ

)
, N :=

(
E 0
0 0

)
, M :=

(
A B′

−B 0

)
. (3.7)

Let E′

2 be the Hilbert space that is the dual of M × Q with the seminorm induced by the operator E =
(

I 0
0 0

)
(cf.

(2.11)), which is |v|E = (v, v)1/2
Ω = ∥v∥L2(Ω) ∀ v ∈ M ×Q. Note that E′

2 = L2(Ω ) ×{0}. Then we define the spaces

E ′

b :=
(
L2(Ω ) × {0}

)
× {0}, D :=

{
(u, σ ) ∈

(
M × Q

)
× X0 : M(u, σ ) ∈ E ′

b

}
. (3.8)

In the next section we prove the hypotheses of Theorem 3.1 to establish the well-posedness of (2.10).

3.2. Range condition and initial data

We begin with the verification of the range condition in Theorem 3.1. Let us consider the resolvent system
associated with (2.10): Find (u, σ ) ∈ (M × Q) × X0 such that

[(E + A)(u), v] + [B′(σ ), v] = [F̂, v] ∀ v ∈ M × Q ,

[B(u), τ ] = 0 ∀ τ ∈ X0 ,
(3.9)

where F̂ ∈ L2(Ω ) × {0} ⊂ M′
× {0} is a functional given by F̂(v) := (̂f, v)Ω for some f̂ ∈ L2(Ω ). Next, a unique

olution to (3.9) is established by employing Theorem 3.2. We stress that alternatively to Theorem 3.2, similar
rguments developed in [17, Section 3.3] can be employed to establish the well-posedness of (3.9). We begin by
bserving that, thanks to the uniform convexity and separability of Lp(Ω ) for p ∈ (1, +∞), the spaces M,Q, and
0 are uniformly convex and separable as well.
We continue our analysis by proving that the nonlinear operator E + A satisfies hypothesis (ii) of Theorem 3.2

ith p1 = p ∈ [3, 4] and p2 = 2.

emma 3.3. Let p ∈ [3, 4]. Then, there exists LBF > 0, depending on ν, F, and α, such that

∥(E + A)(u) − (E + A)(v)∥ ≤ LBF

{
∥u − v∥M + ∥t − r∥Q +

(
∥u∥M + ∥v∥M

)p−2
∥u − v∥M

}
, (3.10)

or all u = (u, t), v = (v, r) ∈ M × Q.

roof. Let u = (u, t), v = (v, r) ∈ M × Q. Then, according to the definition of the operators E,A (cf. (2.11),
(2.12)), similarly to the boundedness estimates (3.5) and (3.6), using Hölder’s and Cauchy–Schwarz inequalities,
we find that

∥(E + A)(u) − (E + A)(v)∥
(p−2)/p p−2 p−2 (3.11)
≤ (1 + α)|Ω | ∥u − v∥M + F ∥ |u| u − |v| v∥M′ + ν ∥t − r∥Q .

7



S. Caucao, R. Oyarzúa, S. Villa-Fuentes et al. Computer Methods in Applied Mechanics and Engineering 394 (2022) 114895

I
t

T
p

p

L

f

P

w
C

T
w

w

R
c

I
a
o

o

L

n turn, applying [24, Lemma 2.1, eq. (2.1a)] to bound the second term on the right hand side of (3.11), we deduce
hat there exists cp > 0, depending only on |Ω | and p such that

∥ |u|
p−2u − |v|

p−2v∥M′ ≤ cp
(
∥u∥M + ∥v∥M

)p−2
∥u − v∥M . (3.12)

hus, using (3.12) and (3.11), we obtain (3.10) with LBF = max
{
(1 + α)|Ω |

(p−2)/p, F cp, ν
}
, which completes the

roof. □

Next, the following lemma shows that the operator E + A satisfies hypothesis (iii) of Theorem 3.2 with
1 = p ∈ [3, 4] and p2 = 2.

emma 3.4. Let p ∈ [3, 4]. The family of operators
{

(E + A)(· + z) : M × Q → (M × Q)′ : z ∈ M × Q
}

is

uniformly strictly monotone, that is, there exists γBF > 0, such that[
(E + A)(u + z) − (E + A)(v + z), u − v

]
≥ γBF

{
∥u − v∥

p
M + ∥t − r∥2

Q

}
, (3.13)

or all z = (z, s) ∈ M × Q, and for all u = (u, t), v = (v, r) ∈ M × Q.

roof. Let z = (z, s) ∈ M ×Q and u = (u, t), v = (v, r) ∈ M ×Q. Then, from the definition of the operators E,A
(cf. (2.11), (2.12)), we get[

(E + A)(u + z) − (E + A)(v + z), u − v
]

= (1 + α)∥u − v∥
2
L2(Ω) + F (|u + z|p−2(u + z) − |v + z|p−2(v + z), u − v)Ω + ν ∥t − r∥2

Q ,
(3.14)

here, employing [24, Lemma 2.1, eq. (2.1b)] to bound the second term in (3.14), we deduce that there exists
p > 0 depending only on |Ω | and p such that

(|u + z|p−2(u + z) − |v + z|p−2(v + z), u − v)Ω ≥ Cp ∥u − v∥
p
M . (3.15)

hus, replacing (3.15) back into (3.14), and bounding below the first term on the right-hand side of (3.14) by 0,
e obtain[

(E + A)(u + z) − (E + A)(v + z), u − v
]

≥ Cp F ∥u − v∥
p
M + ν ∥t − r∥2

Q,

hich gives (3.13) with γBF = min
{
Cp F, ν

}
. □

emark 3.1. We observe that, using similar arguments to [18, eq. (3.30)], the kernel of the operator B (cf. (2.13))
an be written as

V =

{
v = (v, r) ∈ M × Q : ∇v = r and v ∈ H1

0(Ω )
}

. (3.16)

n turn, since the strict monotonicity bound (3.13) holds on M × Q, it is clear that it also holds on V. Notice
lso that, alternatively to Lemma 3.4, and similarly to [17, Lemma 3.5], it is possible to prove that the family of
perators

{
(E + A)(· + z) : V → V′

: z ∈ M × Q
}

is uniformly strongly monotone, that is, there exists γ̃BF > 0,
such that[

(E + A)(u + z) − (E + A)(v + z), u − v
]

≥ γ̃BF ∥u − v∥
2,

for all z = (z, s) ∈ M × Q, and for all u = (u, t), v = (v, r) ∈ V.

We end the verification of the hypotheses of Theorem 3.2, with the corresponding inf–sup condition for the
perator B.

emma 3.5. There exists a constant β > 0 such that

sup
v∈M×Q

[B(v), τ ]
∥v∥

≥ β ∥τ∥X ∀ τ ∈ X0 . (3.17)

v̸=0

8
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roof. For the case p = 4 and q = 4/3 we refer the reader to [18, eq. (3.44), Lemma 3.3], whose proof can be
easily extended to the case p ∈ [3, 4] and q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1. Further details are omitted. □

Now, we are in a position of establishing the solvability of the resolvent system (3.9).

emma 3.6. Given F̂ = (̂f, 0) ∈ L2(Ω ) × {0}, there exists a unique solution (u, σ ) = ((u, t), σ ) ∈ (M × Q) × X0
f the resolvent system (3.9).

roof. First, we recall from (3.3) and (3.4) that B and F̂ are linear and bounded. In turn, we note that Lemma 3.3
mplies, in particular, that the nonlinear operator E + A is hemi-continuous, that is, for each u, v ∈ M × Q, the

apping

J : R → R, z ↦→ J (z) := [(E + A)(u + z v), v]

is continuous. In this way, as a consequence of Lemmas 3.3, 3.4, and 3.5, and a straightforward application of
Theorem 3.2, we conclude the result. □

We end this section by establishing a suitable initial condition result, which is necessary to apply Theorem 3.1
to our context.

Lemma 3.7. Assume that the initial condition u0 ∈ M ∩ H, where

H :=

{
v ∈ H1

0(Ω ) : ∆v ∈ L2(Ω ) and div(v) = 0 in Ω
}

. (3.18)

Then, there exists (t0, σ 0) ∈ Q × X0 such that u0 := (u0, t0) and σ 0 satisfy(
A B′

−B 0

) (
u0
σ 0

)
∈

(
L2(Ω ) × {0}

)
× {0} . (3.19)

Proof. We proceed similarly to the proof of [14, Lemma 3.6]. Given u0 ∈ M ∩ H, we can define t0 := ∇u0 and
σ 0 := ν t0, which satisfy

tr(t0) = 0, div(σ 0) = ν ∆u0, and tr(σ 0) = 0 in Ω . (3.20)

Notice that t0 ∈ Q and σ 0 ∈ H0(div;Ω ) ⊂ X0, with H0(div;Ω ) :=
{
τ ∈ H(div;Ω ) : (tr(τ ), 1)Ω = 0

}
. Next,

integrating by parts the identity t0 = ∇u0 and proceeding similarly to (2.5), we obtain

− [B(u0), τ ] = 0 ∀ τ ∈ X0 .

Hence, given u0 ∈ M ∩ H (cf. (3.18)), multiplying the identity ν t0 = σ 0 and the second equation in (3.20) by
∈ Q and v ∈ M, respectively, and after minor algebraic manipulation we deduce that(

A B′

−B 0

) (
u0
σ 0

)
=

(
F0
0

)
, (3.21)

where, F0 = (f0, 0) and

(f0, v)Ω := (−ν ∆u0 + α u0 + F |u0|
p−2u0, v)Ω .

Using the additional regularity of u0 and the continuous injection of H1(Ω ) into L2(p−1)(Ω ), with p ∈ [3, 4], we
obtain⏐⏐(f0, v)Ω

⏐⏐ ≤

{
ν ∥∆u0∥L2(Ω) + α ∥u0∥L2(Ω) + F ∥u0∥

p−1
L2(p−1)(Ω)

}
∥v∥L2(Ω)

≤ C
{
∥∆u0∥L2(Ω) + ∥u0∥L2(Ω) + ∥u0∥

p−1
H1(Ω)

}
∥v∥L2(Ω) .

(3.22)

Thus, F0 ∈ L2(Ω ) × {0} so then (3.19) holds, completing the proof. □

emark 3.2. The assumption on the initial condition u0 in (3.18) is not necessary for all the results that follow
ut we shall assume it from now on for simplicity. A similar assumption to u0 is also made in [14, Lemma 3.6]

, σ ) satisfying (3.19) is not unique.
(see also [12, eq. (2.2)]). Note also that (u0 0

9
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.3. Main result

We now establish the well-posedness of problem (2.10).

heorem 3.8. For each compatible initial data (u0, σ 0) = ((u0, t0), σ 0) constructed in Lemma 3.7 and each
∈ W1,1(0, T ; L2(Ω )), there exists a unique (u, σ ) = ((u, t), σ ) : [0, T ] →

(
M × Q

)
× X0 solution to (2.10), such

that u ∈ W1,∞(0, T ; L2(Ω )) and (u(0), t(0), σ d(0)) = (u0, t0, σ
d
0).

roof. We recall that (2.10) fits in the framework of Theorem 3.1 with the definitions (3.7) and (3.8). Note that
is linear, symmetric and monotone since E is (cf. (3.5)). In addition, since A is strictly monotone, it is not

ifficult to see that M is monotone. On the other hand, from Lemma 3.6 we know that given (F̂, 0) ∈ E ′

b with
F̂ = (̂f, 0), there is a unique (u, σ ) = ((u, t), σ ) ∈

(
M ×Q

)
×X0, such that (F̂, 0) = (N +M)(u, σ ) which implies

Rg(N +M) = E ′

b. Finally, considering u0 ∈ M ∩ H (cf. (3.18)), from a straightforward application of Lemma 3.7
e are able to find (t0, σ 0) ∈ Q × X0 such that (u0, σ 0) = ((u0, t0), σ 0) ∈ D. Therefore, applying Theorem 3.1 to
ur context, we conclude the existence of a solution (u, σ ) = ((u, t), σ ) to (2.10), with u ∈ W1,∞(0, T ; L2(Ω )) and
(0) = u0.

We next show that the solution of (2.10) is unique. To that end, let (ui , σ i ), with i ∈ {1, 2}, be two solutions
corresponding to the same data. Then, taking (2.10) with (v, τ ) = (u1 − u2, σ 1 − σ 2) ∈

(
M ×Q

)
×X0, we deduce

hat
1
2

∂t ∥u1 − u2∥
2
L2(Ω) + [A(u1) − A(u2), u1 − u2] = 0,

which together with the strict monotonicity bound of A (cf. (3.13)), yields
1
2

∂t ∥u1 − u2∥
2
L2(Ω) + α ∥u1 − u2∥

2
L2(Ω) + Cp F ∥u1 − u2∥

p
M + ν ∥t1 − t2∥

2
Q ≤ 0.

ntegrating in time from 0 to t ∈ (0, T ], and using u1(0) = u2(0), we obtain

∥u1(t) − u2(t)∥2
L2(Ω) +

∫ t

0

(
∥u1 − u2∥

2
L2(Ω) + ∥u1 − u2∥

p
M + ∥t1 − t2∥

2
Q

)
ds ≤ 0 . (3.23)

herefore, it follows from (3.23) that u1(t) = u2(t) and t1(t) = t2(t) for all t ∈ (0, T ]. Next, from the inf–sup
ondition of the operator B (cf. (3.17)) and the first equation of (2.10), we get

β ∥σ 1 − σ 2∥X ≤ sup
v∈M×Q

v̸=0

[B′(σ 1 − σ 2), v]
∥v∥

= − sup
v∈M×Q

v̸=0

[∂t E(u1 − u2), v] + [A(u1) − A(u2), v]
∥v∥

= 0 ,

hich implies that σ 1(t) = σ 2(t) for all t ∈ (0, T ], and therefore (2.10) has a unique solution.
Finally, since Theorem 3.1 implies that M(u) ∈ L∞(0, T ; E ′

b), we can take t → 0 in all equations without time
derivatives in (2.10). Using that the initial data (u0, σ 0) = ((u0, t0), σ 0) satisfies the same equations at t = 0 (cf.
3.21)), and that u(0) = u0, we obtain

ν (t(0) − t0, r)Ω − (σ (0) − σ 0, r)Ω = 0 ∀ r ∈ Q ,

(t(0) − t0, τ )Ω = 0 ∀ τ ∈ X0 .
(3.24)

hus, taking r = t(0) − t0 and τ = σ (0) − σ 0 in (3.24) we deduce that t(0) = t0. In addition, from the latter and
esting the first equation in (3.24) with r = (σ (0) − σ 0)d

∈ Q implies that σ d(0) = σ d
0, completing the proof. □

We conclude this section with the corresponding stability bounds for the solution of (2.10).

heorem 3.9. Let p ∈ [3, 4]. Assume that f ∈ W1,1(0, T ; L2(Ω ))∩L2(p−1)(0, T ; L2(Ω )), and u0 ∈ M∩H satisfying
3.19). Then, there exist constants CBF,1, CBF,2 > 0 only depending on |Ω |, ν, α, F, and β, such that

∥u∥L∞(0,T ;L2(Ω)) + ∥u∥L2(0,T ;M) + ∥t∥L2(0,T ;Q) + ∥σ∥L2(0,T ;X)

≤ CBF,1

{
∥f∥p−1

+ ∥f∥ 2 2 + ∥u0∥
p/2

+ ∥u0∥
p−1

+ ∥u0∥ 1

} (3.25)

L2(p−1)(0,T ;L2(Ω)) L (0,T ;L (Ω)) M L2(Ω) H (Ω)

10
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∥u∥L∞(0,T ;M) ≤ CBF,2

{
∥f∥2/p

L2(0,T ;L2(Ω))
+ ∥u0∥M + ∥u0∥

2/p
H1(Ω)

}
. (3.26)

Proof. We follow an analogous reasoning to the proof of [14, Theorem 3.3]. We begin by choosing (v, τ ) = (u, σ )
in (2.10), to get

1
2

∂t ∥u∥
2
L2(Ω) + [A(u), u] = (f, u)Ω .

Next, from the definition of the operator A (cf. (2.12)), using Cauchy–Schwarz and Young’s inequalities (cf. (1.1)),
we obtain

1
2

∂t ∥u∥
2
L2(Ω) + α ∥u∥

2
L2(Ω) + F ∥u∥

p
M + ν ∥t∥2

Q ≤
δ

2
∥f∥2

L2(Ω) +
1

2 δ
∥u∥

2
L2(Ω) . (3.27)

n turn, noting from the second row of (2.10) that u = (u, t) belongs to V (cf. (3.16)), we know that t = ∇u and
∈ H1

0(Ω ), which combined with the Sobolev embedding from H1(Ω ) into Lp(Ω ), with p ∈ [3, 4], implies

α

2
∥u∥

2
L2(Ω) +

ν

2
∥t∥2

Q ≥
min

{
α, ν

}
2

(
∥u∥

2
L2(Ω) + ∥∇u∥

2
L2(Ω)

)
≥

min
{
α, ν

}
2 ∥ip∥2 ∥u∥

2
M , (3.28)

where ip is the embedding operator. Combining the above with (3.27) and choosing δ = 1/α, yields

∂t ∥u∥
2
L2(Ω) +

min
{
α, ν

}
∥ip∥2 ∥u∥

2
M + ν ∥t∥2

Q ≤
1
α

∥f∥2
L2(Ω) . (3.29)

otice that, in order to simplify the stability bound, we have neglected the term F∥u∥
p
M on the left hand side of

3.27). Integrating (3.29) from 0 to t ∈ (0, T ], we obtain

∥u(t)∥2
L2(Ω) +

∫ t

0

(
∥u∥

2
M + ∥t∥2

Q

)
ds ≤ C1

{∫ t

0
∥f∥2

L2(Ω) ds + ∥u(0)∥2
L2(Ω)

}
, (3.30)

ith C1 := max
{
1, 1

α

}
∥ip∥2

(
min

{
α, ν, ∥ip∥2, ν ∥ip∥2

})−1.
On the other hand, from the inf–sup condition of B (cf. (3.17)), the first equation of (2.10), and the stability

bounds of F, E,A (cf. (3.5), (3.4) and (3.6)), we deduce that

β ∥σ∥X ≤ sup
v∈M×Q

v̸=0

[B′(σ ), v]
∥v∥

= sup
v∈M×Q

v̸=0

[F, v] − [∂t E(u), v] − [A(u), v]
∥v∥

≤ C2

(
∥f∥L2(Ω) + ∥u∥M + ∥u∥

p−1
M + ∥t∥Q + ∥∂t u∥L2(Ω)

)
,

(3.31)

where C2 := max
{
|Ω |

(p−2)/(2p), |Ω |
(p−2)/p, α |Ω |

(p−2)/p, F, ν
}
. In turn, using (3.29), the Sobolev embedding of Lp(Ω )

nto L2(Ω ), with p > 2, the Young inequality (cf. (1.1)), and simple algebraic computations, we are able to find
hat

∂t ∥u∥
2 (p−1)
L2(Ω)

+ ∥u∥
2 (p−1)
M = (p − 1)∥u∥

2 (p−2)
L2(Ω)

∂t ∥u∥
2
L2(Ω)

+ ∥u∥
2 (p−2)
M ∥u∥

2
M

≤ C̃3 ∥f∥2
L2(Ω) ∥u∥

2 (p−2)
M ≤ C(p) C̃p−1

3 ∥f∥2 (p−1)
L2(Ω)

+
1
2

∥u∥
2 (p−1)
M ,

(3.32)

with C̃3 :=
(p−1)|Ω |

(p−2)2/p
∥ip∥

2

α min{∥ip∥2,α,ν}
and C(p) :=

(2(p−2))p−2

(p−1)p−1 , which, similarly to (3.30), implies

∥u(t)∥2 (p−1)
L2(Ω)

+

∫ t

0
∥u∥

2 (p−1)
M ds ≤ C3

{∫ t

0
∥f∥2 (p−1)

L2(Ω)
ds + ∥u(0)∥2 (p−1)

L2(Ω)

}
, (3.33)

where C3 := max
{
1, 2 C(p) C̃p−1

3

}
. Then, taking square in (3.31), integrating from 0 to t ∈ (0, T ], and using (3.30)

nd (3.33), we get∫ t

0
∥σ∥

2
X ds ≤ C4

{ ∫ t

0

(
∥f∥2(p−1)

L2(Ω)
+ ∥f∥2

L2(Ω)

)
ds

+ ∥u(0)∥2(p−1)
L2(Ω)

+ ∥u(0)∥2
L2(Ω) +

∫ t

∥∂t u∥
2
L2(Ω) ds

}
,

(3.34)
0

11
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ith C4 := 10 C2
2 β−2 max{1, C1, C3} (cf. (3.30), (3.31), (3.33)). Next, in order to bound the last term in (3.34), we

differentiate in time the second equation of (2.10), choose (v, τ ) = ((∂t u, ∂t t), σ ), and employ Cauchy–Schwarz
nd Young’s inequalities, to obtain

1
2

∂t

(
α ∥u∥

2
L2(Ω) +

2 F
p

∥u∥
p
M + ν ∥t∥2

Q

)
+ ∥∂t u∥

2
L2(Ω) ≤

1
2

∥f∥2
L2(Ω) +

1
2

∥∂t u∥
2
L2(Ω).

Integrating from 0 to t ∈ (0, T ], we get

2 F
p

∥u(t)∥p
M +

∫ t

0
∥∂t u∥

2
L2(Ω) ds ≤ C5

{∫ t

0
∥f∥2

L2(Ω) ds + ∥u(0)∥p
M + ∥u(0)∥2

L2(Ω) + ∥t(0)∥2
Q

}
, (3.35)

with C5 := max
{
1, α, 2 F/p, ν

}
. Then, combining (3.35) with (3.34), yields∫ t

0
∥σ∥

2
X ds ≤ C4 (1 + C5)

{ ∫ t

0

(
∥f∥2(p−1)

L2(Ω)
+ ∥f∥2

L2(Ω)

)
ds

+ ∥u(0)∥p
M + ∥u(0)∥2(p−1)

L2(Ω)
+ ∥u(0)∥2

L2(Ω) + ∥t(0)∥2
Q

}
,

(3.36)

which, combined with (3.30) and the fact that (u(0), t(0)) = (u0, t0), with t0 = ∇u0 in Ω (cf. Lemma 3.7 and
heorem 3.8), implies (3.25) with

CBF,1 :=

(
8 max{C1, C4 (1 + C5)}

)1/2
,

nd C1, C4, and C5 defined in (3.30), (3.34), and (3.35), respectively. In addition, (3.35) yields (3.26) with

CBF,2 :=

(
p

2 F
max

{
1, α,

2 F
p

, ν
})1/p

,

concluding the proof. □

Remark 3.3. The stability bound (3.25) can be derived alternatively without using the fact that u = (u, t) belongs
to V (cf. (3.16)) and the corresponding coercivity bound (3.28), but in that case the strict monotonicity bound (3.13)
should be employed and consequently the expression on the right-hand side of (3.25) would be more complicated,
involving other terms related to p ∈ [3, 4]. We also note that (3.26) will be employed in the next section to deal
with the nonlinear term associated to the operator A (cf. (2.12)), which is necessary to obtain the corresponding
error estimate. It is important to mention that the constants CBF,1 and CBF,2 (cf. (3.25), (3.26)) are not explicitly
computable since they depend on the theoretical constants ∥ip∥ and β, respectively.

Remark 3.4. The analysis developed in this section can be easily extended to the problem (2.4) with non-
homogeneous Dirichlet boundary condition, u = uD on Γ × (0, T ]. To that end, (2.10) has to be rewritten as
follows: given f : [0, T ] → L2(Ω ), uD : [0, T ] → H1/2(Γ ) and u0 ∈ M ∩ H (cf. (3.18)), find (u, σ ) = ((u, t), σ ) :

[0, T ] →
(
M × Q

)
× X0, such that u(0) = u0 and, for a.e. t ∈ (0, T ),

∂

∂ t
[E(u(t)), v] + [A(u(t)), v] + [B′(σ (t)), v] = [F(t), v] ∀ v ∈ M × Q ,

− [B(u(t)), τ ] = [G(t), τ ] ∀ τ ∈ X0 ,

here the functional G ∈ X′

0 is given by [G, τ ] = ⟨τn, uD⟩Γ , with ⟨·, ·⟩Γ denoting the duality between H−1/2(Γ )
nd H1/2(Γ ). We refer the reader to [22, Lemma 3.5] for the proof that τn ∈ H−1/2(Γ ) for all τ ∈ X0 in the case
= 4 and q = 4/3. The proof can be extended to the case p ∈ [3, 4] and q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1,

after slight adaptations. Then, we reformulate the problem as a parabolic problem for u, and proceed as in [25, eq.
(4.14), Section 4.1].

Remark 3.5. We stress that the analysis developed in this section can be adapted to prove the well-posedness
of related unsteady problems such as the Navier–Stokes–Brinkman or the Boussinesq equations. In particular, for
the Boussinesq equations, the range condition stated in Lemma 3.6 reduces to solving the stationary Boussinesq

problem by employing a fixed-point strategy as in [18]. This is a topic of an ongoing research.

12
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. Semidiscrete continuous-in-time approximation

In this section we introduce and analyze the semidiscrete continuous-in-time approximation of (2.10). We analyze
ts solvability by employing the strategy developed in Section 3. Finally, we derive the error estimates and obtain
he corresponding rates of convergence.

.1. Existence and uniqueness of a solution

Let Th be a shape-regular triangulation of Ω consisting of triangles K (when d = 2) or tetrahedra K (when
= 3) of diameter hK , and define the mesh-size h := max

{
hK : K ∈ Th

}
. In turn, given an integer l ≥ 0 and

subset S of Rd , we denote by Pl(S) the space of polynomials of total degree at most l defined on S. Hence, for
ach integer k ≥ 0 and for each K ∈ Th , we define the local Raviart–Thomas space of order k as

RTk(K ) := Pk(K ) ⊕ P̃k(K ) x,

here x := (x1, . . . , xd )t is a generic vector of Rd , P̃k(K ) is the space of polynomials of total degree equal to k
efined on K , and, according to the convention in Section 1, we set Pk(K ) := [Pk(K )]d and Pk(K ) := [Pk(K )]d×d .

In this way, introducing the finite element subspaces:

Mh :=

{
vh ∈ M : vh |K ∈ Pk(K ) ∀ K ∈ Th

}
,

Qh :=

{
rh ∈ Q : rh |K ∈ Pk(K ) ∀ K ∈ Th

}
,

Xh :=

{
τ h ∈ X : ctτ h |K ∈ RTk(K ) ∀ c ∈ Rn

∀ K ∈ Th

}
, X0,h := Xh ∩ X0 ,

(4.1)

and denoting from now on

uh := (uh, th), vh := (vh, rh) ∈ Mh × Qh ,

the semidiscrete continuous-in-time problem associated with (2.10) reads: Find (uh, σ h) : [0, T ] →
(
Mh×Qh

)
×X0,h

uch that, for a.e. t ∈ (0, T ),
∂

∂ t
[E(uh), vh] + [A(uh), vh] + [B(vh), σ h] = [F, vh] ∀ vh ∈ Mh × Qh ,

− [B(uh), τ h] = 0 ∀ τ h ∈ X0,h .

(4.2)

As initial condition we take (uh,0, σ h,0) = ((uh,0, th,0), σ h,0) to be a suitable approximations of (u0, σ 0), the solution
of (3.21), that is, we chose (uh,0, σ h,0) solving

[A(uh,0), vh] + [B(vh), σ h,0] = [F0, vh] ∀ vh ∈ Mh × Qh ,

− [B(uh,0), τ h] = 0 ∀ τ h ∈ X0,h ,
(4.3)

ith F0 ∈ L2(Ω ) × {0} being the right-hand side of (3.21). This choice is necessary to guarantee that the discrete
nitial datum is compatible in the sense of Lemma 3.7, which is needed for the application of Theorem 3.1. Notice
hat the well-posedness of problem (4.3) follows from similar arguments to the proof of Lemma 3.6. In addition,
aking (vh, τ h) = (uh, σ h) in (4.3), we deduce from the definition of the operator A (cf. (2.12)) and the continuity

bound of F0 (cf. (3.22)) that, there exists a constant C0 > 0, depending only on |Ω |, ν, α, and F, and hence
independent of h, such that

∥uh,0∥
p
M + ∥uh,0∥

2
L2(Ω) + ∥th,0∥

2
Q ≤ C0

{
∥u0∥

2(p−1)
H1(Ω)

+ ∥∆u0∥
2
L2(Ω) + ∥u0∥

2
L2(Ω)

}
. (4.4)

In this way, the well-posedness of (4.2) follows analogously to its continuous counterpart provided in Theorem 3.8.
More precisely, we begin by introducing the discrete kernel of the operator B, that is,

Vh :=

{
vh := (vh, rh) ∈ Mh × Qh : (vh, div(τ h))Ω + (rh, τ h)Ω = 0 ∀ τ h ∈ X0,h

}
. (4.5)

Then, we derive from [18, Section 5] the following two properties, the first one being the discrete inf–sup

condition of B and the second one an auxiliary result that will be used to obtain the stability bound (4.10).

13
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emma 4.1. There exist positive constants β̃ and Cd, such that

sup
vh∈Mh×Qh

vh ̸=0

[B(vh), τ h]
∥vh∥

≥ β̃ ∥τ h∥X ∀ τ h ∈ X0,h (4.6)

and

∥rh∥Q ≥ Cd ∥vh∥M ∀ (vh, rh) ∈ Vh . (4.7)

Proof. For the case p = 3 and q = 3/2 we refer the reader to [17, Lemma 4.1], whose proof can be easily extended
to the case p ∈ [3, 4] and q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1. In what follows we provide some details just
for sake of completeness. We begin by introducing the discrete space Z0,h defined by

Z0,h :=

{
τ h ∈ X0,h : [B(vh, 0), τ h] = (vh, div(τ h))Ω = 0 ∀ vh ∈ Mh

}
,

which, according to the fact that div(X0,h) ⊆ Mh , becomes

Z0,h =

{
τ h ∈ X0,h : div(τ h) = 0 in Ω

}
.

Next, by using the abstract equivalence result provided by [18, Lemma 5.1], we deduce that (4.6) and (4.7) are
jointly equivalent to the existence of positive constants β1 and β2, independent of h, such that there hold

sup
τh∈X0,h

τh ̸=0

[B(vh, 0), τ h]
∥τ h∥X

= sup
τh∈X0,h

τh ̸=0

(vh, div(τ h))Ω
∥τ h∥X

≥ β1 ∥vh∥M ∀ vh ∈ Mh (4.8)

and

sup
rh∈Qh
rh ̸=0

[B(0, rh), τ h]
∥rh∥Q

= sup
rh∈Qh
rh ̸=0

(rh, τ h)Ω
∥rh∥Q

≥ β2 ∥τ h∥X ∀ τ h ∈ Z0,h . (4.9)

hen, we observe that (4.8) follows from a slight adaptation of [22, Lemma 4.3] (see also [18, eq. (5.45)]).
urthermore, recalling from [23, Lemma 2.3] that there exists a constant c1 > 0, depending only on Ω , such

hat

c1 ∥τ∥
2
L2(Ω) ≤ ∥τ d

∥
2
L2(Ω) + ∥div(τ )∥2

L2(Ω) ∀ τ ∈ H0(div;Ω ),

nd using the fact that τ d
h ∈ Qh for each τ h ∈ Z0,h (see the proof of [23, Theorem 3.3] for details), we easily get

4.9) with β2 = c1/2
1 . □

Next, we address the discrete counterparts of Lemmas 3.3 and 3.4, whose proofs, being almost verbatim of the
ontinuous ones, are omitted.

emma 4.2. Let p ∈ [3, 4]. The family of operators
{

(E+A)(·+zh) : Mh ×Qh → (Mh ×Qh)′ : zh ∈ Mh ×Qh

}
s uniformly strongly monotone with the same constant γBF > 0 from (3.13), that is, there holds[

(E + A)(uh + zh) − (E + A)(vh + zh), uh − vh

]
≥ γBF

{
∥uh − vh∥

p
M + ∥th − rh∥

2
Q

}
,

for each zh = (zh, sh) ∈ Mh × Qh , and for all uh = (uh, th), vh = (vh, rh) ∈ Mh × Qh . In addition, the operator
+ A : (Mh × Qh) → (Mh × Qh)′ is continuous in the sense of (3.10), with the same constant LBF.

We are now in a position to establish the semi-discrete continuous in time analogue of Theorems 3.8 and 3.9.

heorem 4.3. Let p ∈ [3, 4]. For each compatible initial data (uh,0, σ h,0) := ((uh,0, th,0), σ h,0) satisfying (4.3)
and f ∈ W1,1(0, T ; L2(Ω )), there exists a unique (uh, σ h) = ((uh, th), σ h) : [0, T ] →

(
Mh ×Qh

)
×X0,h solution to

4.2), satisfying uh ∈ W1,∞(0, T ; Mh) and (uh(0), th(0)) = (uh,0, th,0). Moreover, assuming that u0 ∈ M∩H satisfies
2(p−1) 2 ˆ ˆ
3.19) and that f ∈ L (0, T ; L (Ω )), there exist constants CBF,1, CBF,2 > 0 depending only on |Ω |, ν, α, F, and

14
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,̃ such that

∥uh∥L∞(0,T ;L2(Ω)) + ∥uh∥L2(0,T ;M) + ∥th∥L2(0,T ;Q) + ∥σ h∥L2(0,T ;X)

≤ ĈBF,1

{
∥f∥p−1

L2(p−1)(0,T ;L2(Ω))
+ ∥f∥L2(0,T ;L2(Ω))

+ ∥u0∥
(p−1)2

H1(Ω)
+ ∥u0∥

p−1
H1(Ω)

+ ∥∆u0∥
p−1
L2(Ω)

+ ∥∆u0∥L2(Ω) + ∥u0∥L2(Ω)

}
,

(4.10)

nd

∥uh∥L∞(0,T ;M) ≤ ĈBF,2

{
∥f∥2/p

L2(0,T ;L2(Ω))
+ ∥u0∥

2(p−1)/p
H1(Ω)

+ ∥∆u0∥
2/p
L2(Ω)

+ ∥u0∥
2/p
L2(Ω)

}
. (4.11)

roof. According to Lemma 4.2, the discrete inf–sup condition for B provided by (4.6) (cf. Lemma 4.1),
nd considering that (uh,0, σ h,0) satisfies (4.3), the proof of existence and uniqueness of solution of (4.2) with

uh ∈ W1,∞(0, T ; Mh) and uh(0) = uh,0, follows similarly to the proof of Theorem 3.8 by applying Theorem 3.1.
Moreover, from the discrete version of (3.24), we deduce that th(0) = th,0. Notice that, it is not possible to prove
that σ d

h(0) = σ d
h,0 since (σ h(0) − σ h,0)d does not belong to Qh .

On the other hand, noticing from the second row of (4.2) that uh := (uh, th) : [0, T ] → Vh (cf. (4.5)), employing
4.7) to obtain the discrete version of (3.30), using the fact that (uh(0), th(0)) = (uh,0, th,0) and estimate (4.4) to
btain the discrete versions of (3.30)–(3.36), we proceed as in the proof of Theorem 3.9 and derive (4.10) and
4.11), thus completing the proof. □

We stress that, alternatively to the analysis developed in Theorem 4.3, one can prove that (4.2) is well-posed by
sing classical arguments of the theory of differential–algebraic equations (DAEs) as in [26, Section 3.1].

.2. Error analysis

Now we derive suitable error estimates for the semidiscrete scheme (4.2). To that end, in what follows we assume
hat {Th}h>0 is a family of quasi-uniform triangulations, which implies that the following inverse inequality holds
see, for instance,[27, Corollary 1.141]):

for 1 ≤ p ≤ q < ∞, ∥ξ∥Lq(Ω) ≤ Chd( 1
q −

1
p )

∥ξ∥Lp(Ω), (4.12)

for all piecewise polynomial functions ξ with C > 0 independent of h.
Now we introduce some notations and state a couple of previous results. First, we recall the discrete inf–sup

condition of B (cf. (4.6)), and a classical result on mixed methods (see, for instance [23, eq. (2.89) in Theorem 2.6])
ensure the existence of a constant C > 0, independent of h, such that:

inf
vh∈Vh

∥u − vh∥ ≤ C inf
vh∈Mh×Qh

∥u − vh∥ . (4.13)

Now, in order to obtain the theoretical rates of convergence for the discrete scheme (4.2), we recall the
pproximation properties of the finite element subspaces Mh,Qh , and Xh (cf. (4.1)), that can be found in [23,27,28],
nd [21, Section 3.1] (see also [18, Section 5]).

(APu
h) For each l ∈ [0, k + 1] and for each v ∈ Wl,p(Ω ), there holds

inf
vh∈Mh

∥v − vh∥M ≤ C hl
∥v∥Wl,p(Ω).

(APt
h) For each l ∈ [0, k + 1] and for each t ∈ Hl(Ω ) ∩ Q, there holds

inf
rh∈Qh

∥r − rh∥Q ≤ C hl
∥r∥Hl (Ω).

(APσ
h ) For each l ∈ (0, k + 1] and for each τ ∈ Hl(Ω ) ∩ X0 with div(τ ) ∈ Wl,q(Ω ), there holds

inf
τh∈X0,h

∥τ − τ h∥X ≤ C hl
{
∥τ∥Hl (Ω) + ∥div(τ )∥Wl,q(Ω)

}
.

Owing to (4.13) and (APu
h), (APt

h) and (APσ
h ), it follows that, under an extra regularity assumption on the exact

), C(∂ u), C(σ ), and C(∂ σ ),
olution (to be specified below in Theorem 4.6), there exist positive constants C(u t t

15
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epending on u, t and σ , respectively, such that

inf
vh∈Vh

∥u − vh∥ ≤ C(u) hl , inf
vh∈Vh

∥∂t u − vh∥ ≤ C(∂t u) hl ,

inf
τh∈X0,h

∥σ − τ h∥X ≤ C(σ ) hl , and inf
τh∈X0,h

∥∂t σ − τ h∥X ≤ C(∂t σ ) hl .
(4.14)

In turn, in order to simplify the subsequent analysis, we write eu = (eu, et) = (u − uh, t − th), and eσ = σ − σ h .
Next, given arbitrary v̂h := (̂vh, r̂h) : [0, T ] → Vh (cf. (4.5)) and τ̂ h : [0, T ] → X0,h , as usual, we shall then
decompose the errors into

eu = δu + ηu = (δu, δt) + (ηu, ηt) , eσ = δσ + ησ , (4.15)

with

δu = u − v̂h , δt = t − r̂h , δσ = σ − τ̂ h ,

ηu = v̂h − uh , ηt = r̂h − th , ησ = τ̂ h − σ h .
(4.16)

In addition, we stress for later use that ∂t vh : [0, T ] → Vh for each vh(t) ∈ Vh (cf. (4.5)). In fact, given
vh, τ h) : [0, T ] → Vh × X0,h , after simple algebraic computations, we obtain

[B(∂t vh), τ h] = ∂t
(
[B(vh), τ h]

)
− [B(vh), ∂t τ h] = 0 , (4.17)

where, the latter is obtained by observing that ∂t τ h(t) ∈ X0,h .
In this way, by subtracting the discrete and continuous problems (2.10) and (4.2), respectively, we obtain the

ollowing system:

∂

∂ t
[E(eu), vh] + [A(u) − A(uh), vh] + [B(vh), eσ ] = 0 ∀ vh ∈ Mh × Qh,

[B(eu), τ h] = 0 ∀ τ h ∈ X0,h .

(4.18)

We now establish the main result of this section, namely, the theoretical rate of convergence of the discrete
cheme (4.2). To that end, we first establish two preliminary results.

emma 4.4. Let ((u, t), σ ) : [0, T ] →
(
M × Q

)
× X0 with u ∈ W1,∞(0, T ; L2(Ω )) and ((uh, th), σ h) : [0, T ] →

Mh ×Qh
)
×X0,h with uh ∈ W1,∞(0, T ; Mh), be the unique solutions of the continuous and semidiscrete problems

2.10) and (4.2), respectively. Let p ∈ [3, 4]. Then, there exists C > 0 depending only on |Ω |, ν, α, F, Cd, and
ata, such that

∥eu∥L∞(0,T ;L2(Ω)) + ∥eu∥L2(0,T ;M) + ∥et∥L2(0,T ;Q) ≤ C Ψ (u, σ ) , (4.19)

where

Ψ (u, σ ) := ∥δu∥L∞(0,T ;M×Q) + ∥∂t δu∥L2(0,T ;M×Q) + ∥δu∥
p−1
L2(p−1)(0,T ;M×Q)

+ ∥δu∥L2(0,T ;M×Q) + ∥δσ∥L2(0,T ;X) + ∥δu0∥
p−1

+ ∥δu0∥ + ∥δσ 0∥X .

(4.20)

Proof. First, adding and subtracting suitable terms in (4.18) with vh = ηu = (ηu, ηt) : [0, T ] → Vh (cf. (4.5))
and τ h = ησ : [0, T ] → X0,h , and employing the strict monotonicity bound of A (cf. (3.13)) and the fact that
ηu(t) ∈ Vh , thus [B(ηu), ησ ] = 0, we deduce that

1
2

∂t ∥ηu∥
2
L2(Ω) + α ∥ηu∥

2
L2(Ω) + FCp ∥ηu∥

p
M + ν ∥ηt∥

2
Q

≤ −(∂t δu, ηu)Ω − α(δu, ηu)Ω − F(|u|
p−2u − |̂vh |

p−2̂vh, ηu)Ω − ν(δt, ηt)Ω − [B(ηu), δσ ] .
(4.21)

Next, using again the fact that ηu(t) = (ηu, ηt)(t) ∈ Vh , we deduce from (4.7) that Cd∥ηu∥M ≤ ∥ηt∥Q. Thus, using
(3.12), the continuity bound of the operator B (cf. (3.3)), the Cauchy–Schwarz, Hölder and Young’s inequalities
16
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cf. (1.1)), and neglecting the term ∥ηu∥
p
M in (4.21) to obtain a simplified error estimate, we obtain

1
2

∂t ∥ηu∥
2
L2(Ω) + α ∥ηu∥

2
L2(Ω) +

C2
d ν

2
∥ηu∥

2
M +

ν

2
∥ηt∥

2
Q

≤ ∥∂t δu∥L2(Ω)∥ηu∥L2(Ω) + α ∥δu∥L2(Ω)∥ηu∥L2(Ω) + F cp
(
∥δu∥M + 2 ∥u∥M

)p−2
∥δu∥M ∥ηu∥M

+ ν ∥δt∥Q∥ηt∥Q + ∥δσ∥X∥ηu∥

≤ C1

(
∥∂t δu∥

2
M + ∥δu∥

2 (p−1)
M +

(
1 + ∥u∥

2 (p−2)
M

)
∥δu∥

2
M + ∥δt∥

2
Q + ∥δσ∥

2
X

)
+

1
2

(
α ∥ηu∥

2
L2(Ω) +

C2
d ν

2
∥ηu∥

2
M +

ν

2
∥ηt∥

2
Q

)
,

here C1 is a positive constant depending on |Ω |, ν, α, F, and Cd, which yields

∂t ∥ηu∥
2
L2(Ω) + α ∥ηu∥

2
L2(Ω) +

C2
d ν

2
∥ηu∥

2
M +

ν

2
∥ηt∥

2
Q

≤ 2 C1

(
∥∂t δu∥

2
M + ∥δu∥

2 (p−1)
M +

(
1 + ∥u∥

2 (p−2)
M

)
∥δu∥

2
M + ∥δt∥

2
Q + ∥δσ∥

2
X

)
.

(4.22)

Integrating (4.22) from 0 to t ∈ (0, T ], recalling that ∥u∥L∞(0,T ;M) is bounded by data (cf. (3.26)), we find that

∥ηu(t)∥2
L2(Ω) +

∫ t

0

(
∥ηu∥

2
L2(Ω) + ∥ηu∥

2
M + ∥ηt∥

2
Q

)
ds

≤ C2

{∫ t

0

(
∥∂t δu∥

2
M + ∥δu∥

2 (p−1)
M + ∥δu∥

2
M + ∥δt∥

2
Q + ∥δσ∥

2
X

)
ds + ∥ηu(0)∥2

L2(Ω)

}
,

(4.23)

with C2 > 0 depending only on |Ω |, ν, α, F, Cd, and data.
Next, in order to bound the last term in (4.23), we subtract the continuous and discrete initial condition problems

(3.21) and (4.3), to obtain the error system:

[A(u0) − A(uh,0), vh] + [B(vh), σ 0 − σ h,0] = 0 ∀ vh ∈ Mh × Qh ,

− [B(u0 − uh,0), τ h] = 0 ∀ τ h ∈ X0,h .

Then, proceeding as in (4.22), recalling from Theorems 3.8 and 4.3 that (u(0), t(0)) = (u0, t0) and (uh(0), th(0)) =

uh,0, th,0), respectively, we get

∥ηu(0)∥2
L2(Ω) + ∥ηu(0)∥2

≤ Ĉ0

(
∥δu0∥

2 (p−1)
M + ∥δu0∥

2
+ ∥δσ 0∥

2
X

)
, (4.24)

where, similarly to (4.16), we denote δu0 = (δu0 , δt0 ) = (u0 − v̂h(0), t0 − r̂h(0)) and δσ 0 = σ 0 − τ̂ h(0), with arbitrary
(̂vh(0), r̂h(0)) ∈ Vh and τ̂ h(0) ∈ X0,h , and Ĉ0 is a positive constant depending only on |Ω |, ν, α, F, and Cd. Thus,
combining (4.23) and (4.24), and using the error decomposition (4.15), we obtain (4.19) and conclude the proof. □

Lemma 4.5. Let ((u, t), σ ) : [0, T ] →
(
M × Q

)
× X0 with u ∈ W1,∞(0, T ; L2(Ω )) and ((uh, th), σ h) : [0, T ] →

Mh ×Qh
)
×X0,h with uh ∈ W1,∞(0, T ; Mh), be the unique solutions of the continuous and semidiscrete problems

2.10) and (4.2), respectively. Let p ∈ [3, 4]. Assume that {Th}h>0 is a family of quasi-uniform triangulations. Then,
here exists C > 0 depending only on |Ω |, ν, α, F, β̃, and data, such that

∥eσ∥L2(0,T ;X) ≤ C h−d(p−2)/(2p)
{
Ψ (u, σ ) + ∥δσ∥L∞(0,T ;X) + ∥∂t δσ∥L2(0,T ;X)

}
, (4.25)

ith Ψ (u, σ ) defined in (4.20).

roof. We begin by observing that the discrete inf–sup condition of B (cf. (4.6)), combined with the first equation
of (4.18), and the continuity bounds of E,A,B (cf. (3.5) (3.10), (3.3)), there holds

β̃ ∥ησ∥X ≤ sup
vh∈Mh×Qh

vh ̸=0

[B(vh), ησ ]
∥vh∥

= − sup
vh∈Mh×Qh

vh ̸=0

[∂t E(eu), vh] + [A(u) − A(uh), vh] + [B(vh), δσ ]
∥vh∥

≤ C̃3

(
∥∂t eu∥ 2 + ∥eu∥M +

(
∥u∥M + ∥uh∥M

)p−2
∥eu∥M + ∥et∥Q + ∥δσ∥X

)
,
L (Ω)

17
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ith C̃3 > 0 depending only on |Ω |, ν, α, and F. Then, taking square in the above inequality, integrating from
to t ∈ (0, T ], recalling that both ∥u∥L∞(0,T ;M) and ∥uh∥L∞(0,T ;M) are bounded by data (cf. (3.26), (4.11)), and

employing (4.19), we deduce that

∥ησ∥
2
L2(0,T ;X) ≤ C3

{
Ψ (u, σ )2

+

∫ t

0
∥∂t ηu∥

2
L2(Ω) ds

}
, (4.26)

ith Ψ (u, σ ) defined in (4.20) and C3 > 0 depending on |Ω |, ν, α, F, β̃, and data. Next, in order to bound the last
term in (4.26), we choose vh = ∂t ηu = (∂t ηu, ∂t ηt) in the first equation of (4.18), to find that

1
2

∂t

(
α ∥ηu∥

2
L2(Ω) + ν ∥ηt∥

2
Q

)
+ ∥∂t ηu∥

2
L2(Ω) = −(∂t δu, ∂t ηu)Ω − α (δu, ∂t ηu)Ω

− F (|u|
p−2u − |uh |

p−2uh, ∂t ηu)Ω + (∂t ηu, div(δσ ))Ω − ν (δt, ∂t ηt)Ω + (∂t ηt, δσ )Ω .

Notice that [B(∂t ηu), ησ ] = 0 since ηu(t) ∈ Vh (cf. (4.17)). Then, using the identities

(δt, ∂t ηt)Ω = ∂t (δt, ηt)Ω − (∂t δt, ηt)Ω and (∂t ηt, δσ )Ω = ∂t (ηt, δσ )Ω − (ηt, ∂t δσ )Ω ,

in combination with the Cauchy–Schwarz, Hölder and Young’s inequalities, the continuity bound of A (cf.
(3.10)), the quasi-uniformity assumption on the family mesh {Th}h>0 and the inverse inequality ∥∂t ηu∥M ≤

c h−d(p−2)/(2p)
∥∂t ηu∥L2(Ω) (cf. (4.12)), with ηu(t) ∈ Mh , we obtain

1
2

∂t

(
α ∥ηu∥

2
L2(Ω) + ν ∥ηt∥

2
Q

)
+ ∥∂t ηu∥

2
L2(Ω)

≤ C4 h−d(p−2)/p C(u, uh)
(
∥∂t δu∥

2
M + ∥δu∥

2
M + ∥eu∥

2
M + ∥δσ∥

2
X

)
+

1
2

∥∂t ηu∥
2
L2(Ω) + ∂t

(
(ηt, δσ )Ω − ν (δt, ηt)Ω

)
+ ν (∂t δt, ηt)Ω − (ηt, ∂t δσ )Ω ,

with

C(u, uh) := 1 + ∥u∥
2(p−2)
M + ∥uh∥

2(p−2)
M

and C4 > 0 depending on |Ω |, ν, α, F, β̃, and data. Thus, integrating from 0 to t ∈ (0, T ], we find that

1
2

(
α ∥ηu(t)∥2

L2(Ω) + ν ∥ηt(t)∥
2
Q +

∫ t

0
∥∂t ηu∥

2
L2(Ω) ds

)
≤ C4 h−d(p−2)/p

∫ t

0
C(u, uh)

(
∥∂t δu∥

2
M + ∥δu∥

2
M + ∥eu∥

2
M + ∥δσ∥

2
X

)
ds

+

(
(ηt(t), δσ (t))Ω − ν (δt(t), ηt(t))Ω

)
+

∫ t

0

(
ν (∂t δt, ηt)Ω − (ηt, ∂t δσ )Ω

)
ds

+
α

2
∥ηu(0)∥2

L2(Ω) +
ν

2
∥ηt(0)∥2

Q −

(
(ηt(0), δσ (0))Ω − ν (δt(0), ηt(0))Ω

)
.

hen, using Cauchy–Schwarz and Young’s inequalities, recalling that ∥u∥L∞(0,T ;M) and ∥uh∥L∞(0,T ;M) are bounded
by data (cf. (3.26) and (4.11)), employing estimates (4.23), (4.24) and (4.19), and some algebraic manipulations,
we deduce that

∥ηu(t)∥2
L2(Ω) + ∥ηt(t)∥

2
Q +

∫ t

0
∥∂t ηu∥

2
L2(Ω) ds

≤ C5

{
h−d(p−2)/p Ψ (u, σ )2

+ ∥δt(t)∥2
Q + ∥δσ (t)∥2

X +

∫ t

0

(
∥∂t δu∥

2
+ ∥∂t δσ∥

2
L2(Ω)

)
ds

+

∫ t

0

(
∥δu∥

2 (p−1)
M + ∥δu∥

2
+ ∥δσ∥

2
X

)
ds + ∥δu0∥

2 (p−1)
M + ∥δu0∥

2
+ ∥δσ 0∥

2
X

}
,

(4.27)

with C5 > 0 depending on |Ω |, ν, α, F, β̃, and data. Thus, combining (4.26) and (4.27), using the error
ecomposition (4.15) and considering sufficiently small values of h, we obtain (4.25) concluding the proof. □

We now establish the main convergence result. Notice that, optimal and sub-optimal rates of convergences of
order O(hl) and O(hl−d(p−2)/(2p)) are confirmed for (u, t) and σ , respectively.

Theorem 4.6. Let ((u, t), σ ) : [0, T ] →
(
M × Q

)
× X0 with u ∈ W1,∞(0, T ; L2(Ω )) and ((uh, th), σ h) :

[0, T ] →
(
M ×Q

)
×X with u ∈ W1,∞(0, T ; M ), be the unique solutions of the continuous and semidiscrete
h h 0,h h h

18
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roblems (2.10) and (4.2), respectively. Assume further that {Th}h>0 is a family of quasi-uniform triangulations
nd that there exists l ∈ (0, k + 1], such that u ∈ Wl,p(Ω ), t ∈ Hl(Ω ), σ ∈ Hl(Ω ), and div(σ ) ∈ Wl,q(Ω ), with
∈ [3, 4] and q ∈ [4/3, 3/2] satisfying 1/p + 1/q = 1. Then, there exist C1(u, σ ), C2(u, σ ) > 0 depending only on
(u), C(∂t u), C(σ ), C(∂t σ ), |Ω |, ν, α, F, Cd, β̃, and data, such that

∥eu∥L∞(0,T ;L2(Ω)) + ∥eu∥L2(0,T ;M) + ∥et∥L2(0,T ;Q) ≤ C1(u, σ )
(

hl
+ hl (p−1)

)
(4.28)

and

∥eσ∥L2(0,T ;X) ≤ C2(u, σ ) h−d(p−2)/(2p)
(

hl
+ hl (p−1)

)
. (4.29)

Proof. The assertion of the theorem follows straightforwardly from Lemmas 4.4 and 4.5, by considering the fact that
vh : [0, T ] → Vh and τ h : [0, T ] → X0,h are arbitrary, taking infimum in (4.19) and (4.25) over the corresponding
discrete subspaces Vh and X0,h , and applying the approximation properties (4.14). □

Remark 4.1. The rates of convergences obtained in (4.28)–(4.29) improve the ones obtained in [14, Theorem
4.4] for the pseudostress–velocity formulation. More precisely, an additional order of convergence hl (p−2)/2(p−1) is
gained, which illustrate one of the advantage of our three-field mixed formulation (4.2). We also note that in the
steady state case of (2.4) the error estimate (4.29) does not include the term h−d(p−2)/(2p) because the global inverse
inequality is not necessary to bound ∥ησ∥X (see [17, Section 5] for details of the case p = 3).

emark 4.2. Alternatively to Lemmas 4.4 and 4.5, the theoretical rates of convergence obtained in (4.28) and
4.29) (cf. Theorem 4.6) can be obtained by employing a Strang-type lemma for the generic problem (3.1) and then
pplying that result to (2.10) and (4.2). To that end, similar arguments to the ones developed in [17, Lemma 5.1]
ould be required.

. Fully discrete approximation

In this section we introduce and analyze a fully discrete approximation of (2.10) (cf. (4.2)). To that end, for the
ime discretization we employ the backward Euler method. Let ∆t be the time step, T = N∆t , and let tn = n∆t ,
= 0, . . . , N . More precisely, we let dt un

= (∆t)−1(un
−un−1) be the first order (backward) discrete time derivative,

here un
:= u(tn). Then the fully discrete method reads: given fn

∈ L2(Ω ) and (u0
h, σ

0
h) = (uh,0, σ h,0) satisfying

(4.3) find (un
h, σ

n
h) = ((un

h, tn
h), σ n

h) ∈
(
Mh × Qh

)
× X0,h , n = 1, . . . , N , such that

dt [E(un
h), vh] + [A(un

h), vh] + [B(vh), σ n
h] = [Fn, vh] ∀ vh ∈ Mh × Qh ,

− [B(un
h), τ h] = 0 ∀ τ h ∈ X0,h ,

(5.1)

where [Fn, vh] := (fn, vh)Ω .
In what follows, given a separable Banach space V endowed with the norm ∥ · ∥V, we make use of the following

discrete in time norms

∥u∥
p
ℓp(0,T,V) := ∆t

N∑
n=1

∥un
∥

p
V and ∥u∥ℓ∞(0,T,V) := max

0≤n≤N
∥un

∥V . (5.2)

Next, we state the main results for method (5.1).

Theorem 5.1. Let p ∈ [3, 4]. For each (u0
h, σ

0
h) = ((uh,0, th,0), σ h,0) satisfying (4.3) and fn

∈ L2(Ω ), n = 1, . . . , N,
here exists a unique solution (un

h, σ
n
h) = ((un

h, tn
h), σ n

h) ∈
(
Mh × Qh

)
× X0,h to (5.1). Moreover, under a suitable

extra regularity assumption on the data, there exist constants C̃BF,1, C̃BF,2 > 0 depending only on |Ω |, ν, α, F, and
β̃, such that

∥uh∥ℓ∞(0,T ;L2(Ω)) + ∆t ∥dt uh∥ℓ2(0,T ;L2(Ω)) + ∥uh∥ℓ2(0,T ;M) + ∥th∥ℓ2(0,T ;Q) + ∥σ h∥ℓ2(0,T ;X)

≤ C̃BF,1

{
∥f∥p−1

ℓ2(p−1)(0,T ;L2(Ω))
+ ∥f∥ℓ2(0,T ;L2(Ω))

+ ∥u0∥
(p−1)2

+ ∥u0∥
p−1

+ ∥∆u0∥
p−1

+ ∥∆u0∥ 2 + ∥u0∥ 2

} (5.3)
H1(Ω) H1(Ω) L2(Ω) L (Ω) L (Ω)

19
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nd

∥uh∥ℓ∞(0,T ;M) ≤ C̃BF,2

{
∥f∥2/p

ℓ2(0,T ;L2(Ω))
+ ∥u0∥

2(p−1)/p
H1(Ω)

+ ∥∆u0∥
2/p
L2(Ω)

+ ∥u0∥
2/p
L2(Ω)

}
. (5.4)

Proof. First, we note that at each time step the well-posedness of the fully discrete problem (5.1), with n =

1, . . . , N , follows from similar arguments to the proof of Lemma 3.6 (see also [17, Section 3.3] for the case p = 3).
On the other hand, the derivation of (5.3) and (5.4) can be obtained similarly as in the proof of Theorem 3.9. In

fact, we choose (vh, τ h) = (un
h, σ

n
h) in (5.1), use the identity

(dt un
h, un

h)Ω =
1
2

dt ∥un
h∥

2
L2(Ω) +

1
2
∆t ∥dt un

h∥
2
L2(Ω) , (5.5)

the definition of the operator A (cf. (2.12)), and the Cauchy–Schwarz and Young’s inequalities (cf. (1.1)), to obtain

1
2

dt∥un
h∥

2
L2(Ω) +

1
2
∆t ∥dt un

h∥
2
L2(Ω) + α ∥un

h∥
2
L2(Ω) + F ∥un

h∥
p
M + ν ∥tn

h∥
2
Q

≤
δ

2
∥fn

∥
2
L2(Ω) +

1
2 δ

∥un
h∥

2
L2(Ω) .

(5.6)

In turn, noting from the second row of (5.1) that un
h = (un

h, tn
h) ∈ Vh (cf. (4.5)), with n = 1, . . . , N , using the

stimate (4.7), and choosing δ =
1

2 α
, we obtain

dt ∥un
h∥

2
L2(Ω) + ∆t ∥dt un

h∥
2
L2(Ω) + C2

d ν ∥un
h∥

2
M + ν ∥tn

h∥
2
Q ≤

1
2 α

∥fn
∥

2
L2(Ω) . (5.7)

Notice that, in order to simplify the stability bound, we have neglected the term ∥un
h∥

p
M on the left-hand side of

(5.6). Thus summing up over the time index n = 1, . . . , m, with m = 1, . . . , N , in (5.7) and multiplying by ∆t ,
we get

∥um
h ∥

2
L2(Ω) + (∆t)2

m∑
n=1

∥dt un
h∥

2
L2(Ω) + ∆t

m∑
n=1

(
∥un

h∥
2
M + ∥tn

h∥
2
Q

)
≤ C1

{
∆t

m∑
n=1

∥fn
∥

2
L2(Ω) + ∥u0

h∥
2
L2(Ω)

}
,

(5.8)

with C1 := max{1, 1
2 α

}
(
min{1, ν, C2

d ν}
)−1.

On the other hand, from the discrete inf–sup condition of B (cf. (4.6)) and the first equation of (5.1), we deduce
that

β̃ ∥σ n
h∥X ≤ C2

{
∥fn

∥L2(Ω) + ∥un
h∥M + ∥un

h∥
p−1
M + ∥tn

h∥Q + ∥dt un
h∥L2(Ω)

}
, (5.9)

ith C2 > 0 defined in (3.31). In turn, using Young’s inequality (cf. (1.1)), we readily obtain

∥un−1
h ∥

2
L2(Ω) ∥un

h∥
2 (p−2)
L2(Ω)

≤
1

p − 1
∥un−1

h ∥
2 (p−1)
L2(Ω)

+
p − 2
p − 1

∥un
h∥

2 (p−1)
L2(Ω)

,

hich, together with (5.7), the fact that Lp(Ω ) is continuously embedded into L2(Ω ), with p ∈ [3, 4], the Young
nequality (cf. (1.1)), and simple algebraic computations, imply

dt ∥un
h∥

2 (p−1)
L2(Ω)

+ ∥un
h∥

2 (p−1)
M ≤ (p − 1)∥un

h∥
2 (p−2)
L2(Ω)

dt ∥un
h∥

2
L2(Ω)

+ ∥un
h∥

2 (p−2)
M ∥un

h∥
2
M

≤ C̃3 ∥fn
∥

2
L2(Ω) ∥un

h∥
2 (p−2)
M ≤ C(p) C̃p−1

3 ∥fn
∥

2 (p−1)
L2(Ω)

+
1
2

∥un
h∥

2 (p−1)
M ,

ith C̃3 and C(p) defined in (3.32), which, similarly to (5.8), yields

∥um
h ∥

2 (p−1)
L2(Ω)

+ ∆t
m∑

∥un
h∥

2 (p−1)
M ≤ C3

{
∆t

m∑
∥fn

∥
2 (p−1)
L2(Ω)

+ ∥u0
h∥

2 (p−1)
L2(Ω)

}
, (5.10)
n=1 n=1
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ith C3 defined in (3.33). Then, taking square in (5.9), using (5.8) and (5.10), we deduce the analogous estimate
of (3.34), that is

∆t
m∑

n=1

∥σ n
h∥

2
X ≤ C4

{
∆t

m∑
n=1

(
∥fn

∥
2(p−1)
L2(Ω)

+ ∥fn
∥

2
L2(Ω)

)
+ ∥u0

h∥
2 (p−1)
L2(Ω)

+ ∥u0
h∥

2
L2(Ω) + ∆t

m∑
n=1

∥dt un
h∥

2
L2(Ω)

}
, with m = 1, . . . , N ,

(5.11)

ith C4 := 10 C2
2 β̃−2 max{1, C1, C3} (cf. (5.8), (3.31), (3.33)). Next, in order to bound the last term in (5.11), we

hoose (vh, τ h) = ((dt un
h, dt tn

h), σ n
h) in (5.1), apply some algebraic manipulation, and employ the Cauchy–Schwarz

and Young’s inequalities, to obtain

∥dt un
h∥

2
L2(Ω) +

1
2

dt

(
α ∥un

h∥
2
L2(Ω) + ν ∥tn

h∥
2
L2(Ω)

)
+ F (|un

h |
p−2un

h, dt un
h)Ω

+
1
2
∆t

(
α ∥dt un

h∥
2
L2(Ω) + ν ∥dt tn

h∥
2
L2(Ω)

)
≤

1
2
∥fn

∥
2
L2(Ω) +

1
2
∥dt un

h∥
2
L2(Ω) .

(5.12)

n turn, employing Hölder and Young’s inequalities, we have⏐⏐(|un
h |

p−2un
h, un−1

h )Ω
⏐⏐ ≤

p − 1
p

∥un
h∥

p
M +

1
p
∥un−1

h ∥
p
M,

which implies

(|un
h |

p−2un
h, dt un

h)Ω ≥
(∆t)−1

p

(
∥un

h∥
p
M − ∥un−1

h ∥
p
M

)
=

1
p

dt ∥un
h∥

p
M . (5.13)

Thus, combining (5.12) with (5.13), summing up over the time index n = 1, . . . , m, with m = 1, . . . , N and
multiplying by ∆t , we get

2F
p

∥um
h ∥

p
M + ∆t

m∑
n=1

∥dt un
h∥

2
L2(Ω)

≤ C5

{
∆t

m∑
n=1

∥fn
∥

2
L2(Ω) + ∥u0

h∥
p
M + ∥u0

h∥
2
L2(Ω) + ∥t0

h∥
2
Q

}
,

(5.14)

with C5 := max
{
1, α, 2 F/p, ν

}
(cf. (3.35)). Then, combining (5.11) and (5.14) yields

∆t
m∑

n=1

∥σ n
h∥

2
X ≤ C4 (1 + C5)

{
∆t

m∑
n=1

(
∥fn

∥
2
L2(Ω) + ∥fn

∥
2(p−1)
L2(Ω)

)
+ ∥u0

h∥
2(p−1)
L2(Ω)

+ ∥u0
h∥

p
M + ∥u0

h∥
2
L2(Ω) + ∥t0

h∥
2
Q

}
, with m = 1, . . . , N

which, combined with (5.8), the fact that (u0
h, t0

h) = (uh,0, th,0) and the estimate (4.4), implies (5.3), with

C̃BF,1 :=

(
20 max {C1, C4 (1 + C5)} max

{
1, C0, 3p−2 Cp−1

0

})1/2
,

where C0, C1, C4, and C5 are the constants defined in (4.4), (5.8), (5.11), and (5.14), respectively. In addition, (4.4)
and (5.14) yield (5.4), with

C̃BF,2 :=

(
p

2 F
max

{
1, α,

2 F
p

, ν

}
max{1, C0}

)1/p

,

which concludes the proof. □

We observe that, similarly to (3.25) and (3.26), the constants C̃BF,1 and C̃BF,2 (cf. (5.3), (5.4)) are not explicitly
computable since they depend on the theoretical constants ∥ip∥, Cd and β̃.

Now, we proceed by establishing the corresponding rates of convergence for the fully discrete scheme (5.1).
o that end, as in Section 4.2, we assume that {T } is a family of quasi-uniform triangulations and write
h h>0
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o

N
(
w

n
u = (en

u, en
t ) = (un

− un
h, tn

− tn
h), and en

σ = σ n
− σ n

h . Next, given arbitrary v̂n
h := (̂vn

h, r̂n
h) ∈ Vh (cf. (4.5))

nd τ̂ n
h ∈ X0,h , with n = 1, . . . , N , we decompose the errors into

en
u = δn

u + ηn
u = (δn

u, δ
n
t ) + (ηn

u, η
n
t ) , en

σ = δn
σ + ηn

σ , (5.15)

with
δn

u = un
− v̂n

h , δn
t = tn

− r̂n
h , δn

σ = σ n
− τ̂ n

h ,

ηn
u = v̂n

h − un
h , ηn

t = r̂n
h − tn

h , ηn
σ = τ̂ n

h − σ n
h .

Thus, subtracting the fully discrete problem (5.1) from the continuous counterparts (2.10) at each time step
n = 1, . . . , N , we obtain the following error system:

dt [E(en
u), vh] + [A(un) − A(un

h), vh] + [B(vh), en
σ ] = (rn(u), vh)Ω ,

[B(en
u), τ h] = 0.

(5.16)

for all vh ∈ Mh ×Qh and τ h ∈ X0,h , where rn(u) denotes the difference between the time derivative and its discrete
analog, that is

rn(u) = dt un
− ∂t u(tn).

In addition, we recall from [29, Lemma 4] that for sufficiently smooth u, there holds

∥rn(u)∥ℓ2(0,T ;L2(Ω)) ≤ C(∂t t u)∆t , with C(∂t t u) := C∥∂t t u∥L2(0,T ;L2(Ω)) . (5.17)

hen, using discrete-in-time arguments as in the proof of Theorem 5.1 and the estimate (5.17), the derivation of the
heoretical rate of convergence of the fully discrete scheme (5.1) follows similarly to the proof of Theorem 4.6,.

We stress for later use that dt vn
h ∈ Vh , when vn

h ∈ Vh (cf. (4.5)), for each n = 1, . . . , N . In fact, given vn
h ∈ Vh ,

ith n = 1, . . . , N , assuming v0
h ∈ Vh and using the linearity of the operator B, we obtain

[B(dt vn
h), τ h] =

1
∆ t

(
[B(vn

h), τ h] − [B(vn−1
h ), τ h]

)
= 0 ∀ τ h ∈ X0,h . (5.18)

Next, for the sake of the presentation of the rate of convergence of the fully discrete scheme (5.1), we first establish
wo preliminary lemmas.

emma 5.2. Let p ∈ [3, 4]. Then, for the solution of the fully discrete problem (5.1) there exists C > 0 depending
nly on |Ω |, ν, α, F, Cd, and data, such that

∥eu∥ℓ∞(0,T ;L2(Ω)) + ∆t ∥dt eu∥ℓ2(0,T ;L2(Ω)) + ∥eu∥ℓ2(0,T ;M) + ∥et∥ℓ2(0,T ;Q) ≤ C Ψ̂ (u, σ ) , (5.19)

where

Ψ̂ (u, σ ) := ∥δu∥ℓ∞(0,T ;M×Q) + ∆t ∥dtδu∥ℓ2(0,T ;L2(Ω)) + ∥dtδu∥ℓ2(0,T ;M×Q) + ∥δu∥
p−1
ℓ2(p−1)(0,T ;M×Q)

+ ∥δu∥ℓ2(0,T ;M×Q) + ∥δσ∥ℓ2(0,T ;X) + ∥rn(u)∥ℓ2(0,T ;L2(Ω)) + ∥δ0
u∥

p−1
+ ∥δ0

u∥ + ∥δ0
σ∥X .

(5.20)

Proof. Similarly as in the proof of Theorem 4.6, adding and subtracting suitable terms in (5.16) with vh = ηn
u =

(ηn
u, η

n
t ) ∈ Vh and τ h = ηn

σ ∈ X0,h , with n = 1, . . . , N , and employing the strict monotonicity of A (cf. (3.15)), we
deduce that

(dt ηn
u, η

n
u)Ω + α ∥ηn

u∥
2
L2(Ω) + FCp ∥ηn

u∥
p
M + ν ∥ηn

t ∥
2
Q

≤ −(dt δn
u, η

n
u)Ω − α (δn

u, η
n
u)Ω − F (|un

|
p−2un

− |̂vn
h |

p−2v̂n
h, η

n
u)Ω

− ν (δn
t , η

n
t )Ω − [B(ηn

u), δn
σ ] + (rn(u), ηn

u)Ω .

otice that [B(ηn
u), ηn

σ ] = 0 since ηn
u ∈ Vh , n = 1, . . . , N . In addition, using the identity (5.5), the fact that

ηn
u, η

n
t ) ∈ Vh (cf. (4.7)), the continuity bound of B (cf. (3.3)), and similar arguments employed to derive (4.22),

e obtain

dt ∥ηn
u∥

2
L2(Ω) + ∆t ∥dtη

n
u∥

2
L2(Ω) + ∥ηn

u∥
2
L2(Ω) + ∥ηn

u∥
2
M + ∥ηn

t ∥
2
Q

≤ C
{
∥d δn

∥
2

+ ∥δn
∥

2(p−1)
+

(
1 + ∥un

∥
2(p−2))

∥δn
∥

2
+ ∥δn

∥
2

+ ∥δn
∥

2
+ ∥r (u)∥2

}
,

(5.21)

1 t u M u M M u M t Q σ X n L2(Ω)

22
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ith C1 > 0 depending on |Ω |, ν, α, F, and Cd. Thus, summing up over the time index n = 1, . . . , m, with
m = 1, . . . , N , in (5.21) and multiplying by ∆t , we get

∥ηm
u ∥

2
L2(Ω) + (∆t)2

m∑
n=1

∥dtη
n
u∥

2
L2(Ω) + ∆t

m∑
n=1

(
∥ηn

u∥
2
L2(Ω) + ∥ηn

u∥
2
M + ∥ηn

t ∥
2
Q

)
≤ C2 ∆t

m∑
n=1

{
∥dt δn

u∥
2
M + ∥δn

u∥
2(p−1)
M +

(
1 + ∥un

∥
2(p−2)
M

)
∥δn

u∥
2
M

+ ∥δn
t ∥

2
Q + ∥δn

σ∥
2
X + ∥rn(u)∥2

L2(Ω)

}
+∥η0

u∥
2
L2(Ω) ,

(5.22)

with C2 > 0 depending on |Ω |, ν, α, F, and Cd. Thus, using (4.24) and the error decomposition (5.15) to bound
∥η0

u∥
2
L2(Ω)

, noting that ∥u∥ℓ∞(0,T ;M) is bounded by ∥u∥L∞(0,T ;M), which is bounded by data (cf. (3.26)), we obtain
(5.19) completing the proof. □

Lemma 5.3. Let p ∈ [3, 4]. Then, for the solution of the fully discrete problem (5.1) there exists C > 0 depending
only on |Ω |, ν, α, F, β̃, and data, such that

∥eσ∥ℓ2(0,T ;X) ≤ C h−d(p−2)/(2p)
{
Ψ̂ (u, σ ) + ∥δσ∥ℓ∞(0,T ;X) + ∥dt δσ∥ℓ2(0,T ;X)

}
, (5.23)

ith Ψ̂ (u, σ ) defined in (5.20).

roof. We proceed as in Lemma 4.5, using the discrete inf–sup condition of B (cf. (4.6)), the first equation of
5.16), and the continuity bound of E,A,B (cf. (3.5), (3.10), (3.3)), to deduce that

β̃ ∥ηn
σ∥X ≤ sup

vh∈Mh×Qh
vh ̸=0

[B(vh), ηn
σ ]

∥vh∥

= sup
vh∈Mh×Qh

vh ̸=0

− [dt E(en
u), vh] − [A(un) − A(un

h), vh] − [B(vh), δn
σ ] + (rn(u), vh)Ω

∥vh∥

≤ C3

(
∥dt en

u∥L2(Ω) +
(
∥un

∥M + ∥un
h∥M

)p−2
∥en

u∥M + ∥en
u∥ + ∥δn

σ∥X + ∥rn(u)∥L2(Ω)

)
.

hen, taking square in the above inequality, summing up over the time index n = 1, . . . , m, with m = 1, . . . , N ,
ultiplying by ∆t , noting that ∥u∥ℓ∞(0,T ;M) is bounded by ∥u∥L∞(0,T ;M), which in turn is bounded by data, as well

s ∥uh∥ℓ∞(0,T ;M) (cf. (3.26) and (5.3)), and employing (5.19), we get

∥ηn
σ∥

2
ℓ2(0,T ;X) ≤ C4

{
Ψ̂ (u, σ )2

+ ∆t
N∑

n=1

∥dt ηn
u∥

2
L2(Ω)

}
, (5.24)

with Ψ̂ (u, σ ) defined in (5.20) and C4 > 0 depending on |Ω |, ν, α, F, β̃, and data. Next, in order to bound the
ast term on the right-hand side of (5.24), we choose vh = (dt ηn

u, dt ηn
t ) in the first equation of (5.16) and use the

identity (5.5), and the fact that ηn
u ∈ Vh (cf. (5.18)), which implies [B(dt ηn

u), ηn
σ ] = 0, to find that

1
2

dt

(
α ∥ηn

u∥
2
L2(Ω) + ν ∥ηt∥

2
Q

)
+

1
2
∆t

(
α ∥dtη

n
u∥

2
L2(Ω) + ν ∥dtη

n
t ∥

2
Q

)
+ ∥dt ηn

u∥
2
L2(Ω)

= −(dt δn
u, dt ηn

u)Ω − α (δn
u, dt ηn

u)Ω − F (|un
|
p−2un

− |un
h |

p−2un
h, dt ηn

u)Ω

+ (dt ηn
u, div(δn

σ ))Ω + (rn(u), dtη
n
u)Ω − ν (δn

t , dt ηn
t )Ω + (dt ηn

t , δ
n
σ )Ω .

hen, using the identities

n n ( n n) n n−1 n n ( n n ) n−1 n
(δt , dt ηt )Ω = dt δt , ηt Ω
− (dt δt , ηt )Ω , and (dt ηt , δσ )Ω = dt ηt , δσ Ω

− (ηt , dt δσ )Ω ,
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ith n = 1, . . . , N , in combination with Cauchy–Schwarz, Hölder and Young’s inequalities (cf. (1.1)), the continuity
ound (3.12), and the fact that ∥dt ηn

u∥M ≤ c h−d(p−2)/(2p)
∥dt ηn

u∥L2(Ω), with ηn
u ∈ Mh (cf. (4.12)), we obtain

1
2

dt

(
α ∥ηn

u∥
2
L2(Ω) + ν∥ηn

t ∥
2
Q

)
+

1
2
∆t

(
α ∥dtη

n
u∥

2
L2(Ω) + ν ∥dtη

n
t ∥

2
Q

)
+ ∥dt ηn

u∥
2
L2(Ω)

≤ C5 h−d(p−2)/p Ĉ(un, un
h)

(
∥dt δn

u∥
2
L2(Ω) + ∥δn

u∥
2
M + ∥en

u∥
2
M + ∥δn

σ∥
2
X + ∥rn(u)∥2

L2(Ω)

)
+

1
2

∥dt ηn
u∥

2
L2(Ω) + dt

(
(ηn

t , δ
n
σ )Ω − ν (δn

t , η
n
t )Ω

)
+ ν (dt δn

t , η
n−1
t )Ω − (ηn−1

t , dt δn
σ )Ω ,

here

Ĉ(un, un
h) := 1 + ∥un

∥
2(p−2)
M + ∥un

h∥
2(p−2)
M ,

nd C5 is a positive constant depending on |Ω |, α and F. Thus, summing up over the time index n = 1, . . . , m,
with m = 1, . . . , N , and multiplying by ∆t , using Cauchy–Schwarz and Young’s inequalities, and minor algebraic
manipulations, we get

∥ηm
u ∥

2
L2(Ω) + ∥ηm

t ∥
2
Q + (∆t)2

m∑
n=1

(
∥dtη

n
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L2(Ω) + ∥dtη

n
t ∥
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Q

)
+ ∆t

m∑
n=1

∥dt ηn
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2
L2(Ω)

≤ C6 h−d(p−2)/p∆t
m∑

n=1

Ĉ(un, un
h)

(
∥dt δn

u∥
2
M + ∥δn

u∥
2
M + ∥en

u∥
2
M + ∥δn

σ∥
2
X + ∥rn(u)∥2
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)
+ C7

{
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m∑
n=1

(
∥dt δn

t ∥
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L2(Ω) + ∥dtδ
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σ∥

2
X

)
+ ∥δ0

t ∥
2
L2(Ω) + ∥δ0

σ∥
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+∆t
m−1∑
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t ∥

2
Q + ∥η0

u∥
2
L2(Ω) +

(
1 + ∆t

)
∥η0

t ∥
2
Q

}
,

(5.25)

with C6, C7 > 0 depending on |Ω |, ν, α and F. Thus, using the error decomposition (5.15), combining (5.22)
and (5.25), employing (4.24) to bound the terms ∥η0

u∥L2(Ω), ∥η
0
t ∥Q, noting again that ∥u∥ℓ∞(0,T ;M) is bounded

by ∥u∥L∞(0,T ;M), which together with ∥uh∥ℓ∞(0,T ;M) are bounded by data (cf. (3.26) and (5.3)), and considering
sufficiently small values of h, we obtain (5.23) concluding the proof. □

Theorem 5.4. Let the assumptions of Theorem 4.6 hold, with p ∈ [3, 4]. Then, for the solution of the fully discrete
problem (5.1) there exist Ĉ1(u, σ ), Ĉ2(u, σ ) > 0 depending only on C(u), C(∂t u), C(∂t t u), C(σ ), C(∂t σ ), |Ω |, ν,

, F, β̃, and data, such that

∥eu∥ℓ∞(0,T ;L2(Ω)) + ∆t ∥dt eu∥ℓ2(0,T ;L2(Ω)) + ∥eu∥ℓ2(0,T ;M) + ∥et∥ℓ2(0,T ;Q)

≤ Ĉ1(u, σ )
(

hl
+ hl (p−1)

+ ∆t
) (5.26)

and

∥eσ∥ℓ2(0,T ;X) ≤ Ĉ2(u, σ ) h−d(p−2)/(2p)
(

hl
+ hl (p−1)

+ ∆t
)
. (5.27)

roof. The assertion of the theorem follows straightforwardly from Lemmas 5.2 and 5.3, the estimate (5.17), the
act that v̂n

h ∈ Vh and τ n
h ∈ X0,h , with n = 0, 1, . . . , N , are arbitrary, taking infimum in (5.19) and (5.23), over the

corresponding discrete subspaces Vh and X0,h , and using (5.17) and the approximation properties (4.14). □

Remark 5.1. For the fully discrete scheme (5.1) we have considered the backward Euler method only for the
sake of simplicity. The analysis developed in Section 5 can be adapted to other time discretizations, such as BDF
schemes or the Crank–Nicolson method.

6. Numerical results

In this section we present four numerical results that illustrate the performance of the fully discrete method (5.1)
on a set of quasi-uniform triangulations of the respective domains, considering the finite element subspaces defined
by (4.1) (cf. Section 4.1). In what follows, we refer to the corresponding sets of finite element subspaces generated
24
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y k = 0 and k = 1, as simply P0 − P0 − RT0 and P1 − P1 − RT1, respectively. Our implementation is based
on a FreeFem++ code [30], in conjunction with the direct linear solver UMFPACK [31]. We handle the nonlinearly
using a Newton–Raphson algorithm with a fixed tolerance tol = 1E − 06. As usual, the iterative method is finished
when the relative error between two consecutive iterations of the complete coefficient vector, namely coeffm+1 and
coeffm , is sufficiently small, that is,

∥coeffm+1
− coeffm

∥

∥coeffm+1
∥

≤ tol,

where ∥ · ∥ stands for the usual Euclidean norm in RDOF, with DOF denoting the total number of degrees of freedom
defined by the finite element subspaces Mh,Qh and X0,h (cf. (4.1)).

We stress that, according to the notation used for the fully discrete norm (5.2), and besides the unknowns u, t,
and σ , we are also able to compute the pressure error:

∥ep∥ℓ2(0,T ;L2(Ω)) =

{
∆ t

N∑
n=1

∥pn
− pn

h∥
2
L2(Ω)

}1/2

,

where, pn
h stands for the post-processed pressure suggested by the identity (2.3), that is

pn
h = −

1
d

tr(σ n
h) with n = 1, . . . , N . (6.1)

It follows that

∥ep∥ℓ2(0,T ;L2(Ω)) =
1
d

∥tr(σ − σ h)∥ℓ2(0,T ;L2(Ω)) ≤
1

√
d

∥σ − σ h∥ℓ2(0,T ;X),

hich shows that the rate of convergence for p is at least the one for σ . This is indeed confirmed by the numerical
esults reported below.

The examples considered in this section are described next. In all of them, and for the sake of simplicity, we
hoose ν = 1. In addition, the condition (tr(σ n

h), 1)Ω = 0 is implemented using a scalar Lagrange multiplier (adding
ne row and one column to the matrix system that solves (5.1) for un

h, tn
h , and σ n

h).
Examples 1 and 2 are used to corroborate the rate of convergence in two and three dimensional domains,

espectively. The total simulation time for these examples is T = 0.01 and the time step is ∆ t = 10−3. The
ime step is sufficiently small, so that the time discretization error does not affect the convergence rates. On the
ther hand, Examples 3 and 4 are used to analyze the behavior of the method when different Darcy and Forchheimer
oefficients are considered in different scenarios. For these cases, the total simulation time and the time step are
onsidered as T = 1 and ∆ t = 10−2, respectively.

xample 1 (2D Domain with Different Values of the Parameter p). In this test we corroborate the convergence for
he space discretization using an analytical solution and also study the performance of the numerical method with
espect to the total error and different values of the power p in the inertial term |u|

p−2u (cf. (2.4)). The domain is
he square Ω = (0, 1)2. First, we consider p = 4, α = 1, F = 10, and the data f and the initial condition u0 are
efined by means of the exact solution given by the smooth functions

u = exp(t)
(

sin(πx) cos(πy)
− cos(πx) sin(πy)

)
, p = exp(t) cos(πx) sin

(πy
2

)
.

Notice that the given exact solution u is non-homogeneous on the boundary so that the right-hand side must be
adjusted properly as described in Remark 3.4.

In Fig. 6.1 we display the solution obtained with the mixed P1 − P1 − RT1 approximation with mesh size
h = 0.0128 and 39,146 triangle elements (actually representing 979, 674 DOF) at time T = 0.01. Note that we are
able to compute not only the original unknowns, but also the pressure field through the formula (6.1). Tables 6.1
and 6.2 show the convergence history for a sequence of quasi-uniform mesh refinements, including the average
number of Newton iterations. The results illustrate that the optimal and sub-optimal spatial rates of convergence
O(hk+1) and O(hk+1/2) for (u, t) and σ , respectively, provided by Theorem 5.4 (see also Theorem 4.6) are attained
for d = 2, p = 4, and k = 0, 1. Moreover, the numerical results suggest optimal rate of convergence O(hk+1) for
25
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Fig. 6.1. Example 1, computed magnitude of the velocity, velocity gradient component, pseudostress tensor component, and pressure field.

Table 6.1
Example 1, number of degrees of freedom, mesh sizes, errors, rates of convergences, and average number of Newton iterations for the
P0 − P0 − RT0 approximation of the Brinkman–Forchheimer model with p = 4 and F = 10.

DOF h ∥eu∥ℓ∞(0,T ;L2(�)) ∥eu∥ℓ2(0,T ;M) ∥et∥ℓ2(0,T ;Q)

Error Rate Error Rate Error Rate

304 0.3727 2.02E−01 – 2.51E−02 – 9.23E−02 –
1248 0.1964 8.73E−02 1.3069 1.09E−02 1.2964 4.48E−02 1.1299
4896 0.0970 4.38E−02 0.9772 5.48E−03 0.9806 2.24E−02 0.9782

19 456 0.0478 2.13E−02 1.0183 2.65E−03 1.0294 1.14E−02 0.9617
77 648 0.0245 1.08E−02 1.0188 1.35E−03 1.0115 5.66E−03 1.0427

313 680 0.0128 5.35E−03 1.0755 6.67E−04 1.0769 2.80E−03 1.0790

∥eσ ∥ℓ2(0,T ;X) ∥ep∥ℓ2(0,T ;L2(�)) iter

Error Rate Error Rate

4.99E−01 – 4.31E−02 – 2.3
1.88E−01 1.5214 1.88E−02 1.2980 2.2
8.60E−02 1.1116 8.30E−03 1.1563 2.2
3.96E−02 1.0954 3.46E−03 1.2360 2.2
1.96E−02 1.0539 1.76E−03 1.0131 2.2
9.65E−03 1.0865 8.44E−04 1.1264 2.2

Table 6.2
Example 1, number of degrees of freedom, mesh sizes, errors, rates of convergences, and average number of Newton iterations for the
P1 − P1 − RT1 approximation of the Brinkman–Forchheimer model with p = 4 and F = 10.

DOF h ∥eu∥ℓ∞(0,T ;L2(�)) ∥eu∥ℓ2(0,T ;M) ∥et∥ℓ2(0,T ;Q)

Error Rate Error Rate Error Rate

932 0.3727 5.71E−02 – 5.53E−03 – 3.56E−02 –
3864 0.1964 1.39E−02 2.2117 1.31E−03 2.2546 8.44E−03 2.2489

15 228 0.0970 3.46E−03 1.9675 3.23E−04 1.9787 2.07E−03 1.9902
60 656 0.0478 8.76E−04 1.9398 8.10E−05 1.9561 5.24E−04 1.9431

242 362 0.0245 2.20E−04 2.0693 2.04E−05 2.0646 1.29E−04 2.0955
979 674 0.0128 5.35E−05 2.1671 4.91E−06 2.1801 3.07E−05 2.2019

∥eσ ∥ℓ2(0,T ;X) ∥ep∥ℓ2(0,T ;L2(�)) iter

Error Rate Error Rate

6.52E−01 – 6.34E−02 – 2.7
1.83E−01 1.9865 1.14E−02 2.6740 2.3
4.98E−02 1.8416 1.85E−03 2.5816 2.2
1.31E−02 1.8874 3.99E−04 2.1684 2.2
3.38E−03 2.0269 6.53E−05 2.7076 2.2
8.10E−04 2.1911 1.23E−05 2.5544 2.2
26
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Table 6.3
Example 1, number of degrees of freedom, mesh sizes, total errors, rates of convergences, and average number of Newton iterations for the
P0 − P0 − RT0 approximation of the Brinkman–Forchheimer model, considering p ∈ {3.0, 3.2, 3.4, 3.6, 3.8, 4.0} and F = 10.

DOF h p = 3.0 p = 3.2 p = 3.4

etotal Rate iter etotal Rate iter etotal Rate iter

304 0.3727 5.20E−01 – 2.1 5.17E−01 – 2.2 5.14E−01 – 2.3
1248 0.1964 1.99E−01 1.4991 2.1 1.98E−01 1.5005 2.1 1.97E−01 1.5017 2.2
4896 0.0970 9.18E−02 1.0978 2.1 9.11E−02 1.0992 2.1 9.05E−02 1.1004 2.2

19 456 0.0478 4.26E−02 1.0834 2.1 4.23E−02 1.0839 2.1 4.20E−02 1.0844 2.2
77 648 0.0245 2.11E−02 1.0500 2.1 2.10E−02 1.0507 2.1 2.08E−02 1.0514 2.2

313 680 0.0128 1.04E−02 1.0846 2.1 1.03E−02 1.0849 2.1 1.02E−02 1.0852 2.2

p = 3.6 p = 3.8 p = 4.0

etotal Rate iter etotal Rate iter etotal Rate iter

5.12E−01 – 2.3 5.10E−01 – 2.3 5.08E−01 – 2.3
1.96E−01 1.5027 2.2 1.95E−01 1.5035 2.2 1.94E−01 1.5042 2.2
8.99E−02 1.1015 2.2 8.95E−02 1.1025 2.2 8.91E−02 1.1034 2.2
4.17E−02 1.0849 2.2 4.15E−02 1.0854 2.2 4.13E−02 1.0859 2.2
2.07E−02 1.0519 2.2 2.05E−02 1.0524 2.2 2.04E−02 1.0529 2.2
1.02E−02 1.0854 2.2 1.01E−02 1.0857 2.2 1.01E−02 1.0859 2.2

all the unknowns. The Newton’s method exhibits a behavior independent of the mesh size, converging in average
of 2.2 iterations in all cases. On the other hand, in Table 6.3 we show the behavior of our method with respect to
the total error

etotal :=

(
∥eu∥

2
ℓ2(0,T ;M) + ∥et∥

2
ℓ2(0,T ;Q) + ∥eσ∥

2
ℓ2(0,T ;X)

)1/2
,

onsidering α = 1, F = 10, and different powers p ∈
{
3.0, 3.2, 3.4, 3.6, 3.8, 4.0

}
in the inertial term |u|

p−2u (cf.
2.4)), polynomial degree k = 0, and different mesh sizes h. Here we observe that the method provides optimal
ate of convergence independently of p.

xample 2 (Convergence Against Smooth Exact Solutions in a 3D Domain). In our second example, we consider
he cube domain Ω = (0, 1)3 and the exact solution:

u = exp(t)

⎛⎝ sin(π x) cos(π y) cos(π z)
−2 cos(π x) sin(π y) cos(π z)

cos(π x) cos(π y) sin(π z)

⎞⎠ , p = exp(t) (x − 0.5)3 sin(y + z).

imilarly to the first example, we consider the parameters p = 4, α = 1, and F = 10, whereas the right-hand side
unction f is computed from (2.1) using the above solution. In addition, the model problem is complemented with
he appropriate Dirichlet boundary condition and initial data.

The numerical solutions at time T = 0.01 are shown in Fig. 6.2, which were built using the fully-mixed
0 − P0 − RT0 approximation with mesh size h = 0.0786 and 34,992 tetrahedral elements (actually representing
00, 696 DOF). The convergence history for a set of quasi-uniform mesh refinements using k = 0 is shown in
able 6.4. Again, the mixed finite element method converges optimally with order O(h) for all the unknowns,
hich, in particular, is better than the theoretical suboptimal rate of convergence O(h1/4) provided by (5.27) in
heorem 5.4 (see also Theorem 4.6) for σ with d = 3, p = 4, and k = 0.

xample 3 (Flow Through Porous Media with Channel Network). In our third example, inspired by [32,
ection 5.2.4], we focus on a flow through a porous medium with a channel network. We consider the square
omain Ω = (−1, 1)2 with an internal channel network denoted as Ωc, which is described in the first plot of
ig. 6.3. First, we consider the Brinkman–Forchheimer model (2.4) in the whole domain Ω , with inertial power
= 4 but with different values of the parameters α and F for the interior and the exterior of the channel, that is,

α =

{
1 in Ωc and F =

{
10 in Ωc

.

1000 in Ω \ Ωc 1 in Ω \ Ωc
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T

Table 6.4
Example 2, number of degrees of freedom, mesh sizes, errors, rates of convergences, and average number of Newton iterations for the mixed
P0 − P0 − RT0 approximation of the Brinkman–Forchheimer model with p = 4 and F = 10.

DOF h ∥eu∥ℓ∞(0,T ;L2(�)) ∥eu∥ℓ2(0,T ;M) ∥et∥ℓ2(0,T ;Q)

Error Rate Error Rate Error Rate

888 0.7071 4.50E−01 – 5.73E−02 – 2.93E−01 –
2916 0.4714 3.11E−01 1.2964 3.96E−02 0.9106 1.93E−01 1.0284

22 680 0.2357 1.60E−01 0.9806 2.06E−02 0.9394 9.54E−02 1.0179
137 940 0.1286 8.81E−02 1.0294 1.14E−02 0.9831 5.18E−02 1.0068
600 696 0.0786 5.39E−02 1.0115 6.97E−03 0.9943 3.16E−02 1.0020

∥eσ ∥ℓ2(0,T ;X) ∥ep∥ℓ2(0,T ;L2(�)) iter

Error Rate Error Rate

2.70E−00 – 1.98E−01 – 3.1
1.40E−00 1.6237 1.14E−01 1.3593 2.8
5.49E−01 1.3470 5.03E−02 1.1810 2.3
2.67E−01 1.1900 2.26E−02 1.3220 2.2
1.54E−01 1.1178 1.10E−02 1.4654 2.2

Fig. 6.2. Example 2, computed magnitude of the velocity, velocity gradient component, pseudostress tensor component, and pressure field.

he parameter choice corresponds to a high permeability (α = 1) in the channel and increased inertial effect
(F = 10), compared to low permeability (α = 1000) in the porous medium and reduced inertial effect (F = 1). In
addition, the body force term is f = 0, the initial condition is zero, and the boundaries conditions are

u · n = 0.2, u · t = 0 on Γleft, σ n = (0, 0) on Γ \ Γleft,

which corresponds to inflow on the left boundary and zero stress outflow on the rest of the boundary.

In Fig. 6.3 we display the computed magnitude of the velocity, velocity gradient tensor, and pseudostress tensor
at times T = 0.01 and T = 1, which were built using the fully-mixed P0 − P0 − RT0 approximation on a mesh
with 27,287 triangle elements (actually representing 218, 561 DOF). As expected, we observe faster flow through
the channel network, with a significant velocity gradient across the interface between the channel and the porous
medium. The pseudostress is more diffused since it includes the pressure field. This example illustrates the ability of
the Brinkman–Forchheimer model to handle heterogeneous media using spatially varying parameters, as well as the
ability of our three-field mixed finite element method to resolve sharp velocity gradients in the presence of strong
jump discontinuity of the parameters. We further study the robustness of the method with respect to the physical
parameters. In Fig. 6.4 we display the computed magnitude of the velocity with the setting α = 1000, F = 1 in the
porous medium and F ∈ {10, 100, 1000, 10000}, α ∈ {10, 100} in the channel. The top two rows are with p = 3 and
the bottom two rows are with p = 4. We observe that in both cases with p = 3 or p = 4 the inertial term F |u|

p−2u
has the effect of reducing the velocity on the channel, with the velocity decreasing when F is increased. This effect
is higher when p = 3 and F ∈ {1000, 10000}. Furthermore, comparing the results with α = 10 and 100, we observe
that the higher value of α results in smaller velocity. This study illustrates that the method produces stable and

physically reasonable results for a wide range of the physical parameters in both the Stokes and the Darcy regimes.
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Fig. 6.3. Example 3, domain configuration, computed magnitude of the velocity, velocity gradient tensor, and pseudostress tensor at time
T = 0.01 (top plots), and at time T = 1 (bottom plots).

xample 4 (Flow Through Porous Media with Fracture Network). In our last example, inspired by [32, Sec-
tion 5.2.5], we focus on flows through porous media with fracture network. We consider the square domain
Ω = (−1, 1)2 with an internal network of thin fractures (denoted as Ωf) that intersect at sharp angles, as shown in
the first plot of Fig. 6.5. Similarly to Example 3, we consider the Brinkman–Forchheimer model (2.4) in the whole
domain Ω , with inertial power p = 4 but with different values of the parameters α and F for the interior and the
exterior of the fracture, that is,

α =

{
1 in Ωf

1000 in Ω \ Ωf
and F =

{
10 in Ωf

1 in Ω \ Ωf
. (6.2)

In turn, the body force term is f = 0, the initial condition is zero, and the boundaries conditions are

σ n =

{
(−0.5(y − 1), 0) on Γleft ,

(0, −0.5(x − 1)) on Γbottom ,
σ n = (0, 0) on Γright ∪ Γtop , (6.3)

hich drives the flow in a diagonal direction from the left-bottom corner to the right-top corner of the square domain
.

In Fig. 6.5 we display the computed magnitude of the velocity, velocity gradient tensor, and pseudostress tensor
t times T = 0.01 and T = 1, which, due to the challenging geometry of the fracture region, were built using the
1 −P1 −RT1 approximation on a mesh with 48,891 triangle elements (actually representing 1, 222, 689 DOF). We
ote that the velocity in the fractures is higher than the velocity in the porous medium, due to smaller fractures
hickness and the parameter setting (6.2). Also, the velocity is higher in branches of the network where the fluid
nters from the left-bottom corner and decreases toward the right-top corner of the domain. In addition, we observe
sharp velocity gradient across the interfaces between the fractures and the porous medium. The pseudostress is

onsistent with the boundary conditions (6.3) and, similarly to the channel network example, it is more diffused since
t includes the pressure field. This example illustrates the ability of the method to provide accurate resolution and
umerically stable results for heterogeneous inclusions with high aspect ratio and complex geometry, as presented
n the network of thin fractures.
29
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Fig. 6.4. Example 3, computed magnitude of the velocity with p = 3 and channel setting F ∈ {10, 100, 1000, 10000} with α = 10 and 100
(first and second rows, respectively), and p = 4 with channel setting F ∈ {10, 100, 1000, 10000} with α = 10 and 100 (third and fourth rows,
respectively).
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Fig. 6.5. Example 4, domain configuration, computed magnitude of the velocity, velocity gradient tensor, and pseudostress tensor at time
T = 0.01 (top plots), and at time T = 1 (bottom plots).
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S. Caucao, R. Oyarzúa, S. Villa-Fuentes et al. Computer Methods in Applied Mechanics and Engineering 394 (2022) 114895
[18] E. Colmenares, G.N. Gatica, S. Moraga, A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq
problem, ESAIM Math. Model. Numer. Anal. 54 (5) (2020) 1525–1568.

[19] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, in: Mathematical Surveys and
Monographs, vol. 49, American Mathematical Society, Providence, RI, 1997.

[20] S. Caucao, M. Discacciati, G.N. Gatica, R. Oyarzúa, A conforming mixed finite element method for the Navier–Stokes/Darcy–
Forchheimer coupled problem, ESAIM Math. Model. Numer. Anal. 54 (5) (2020) 1689–1723.

[21] J. Camaño, C. Muñoz, R. Oyarzúa, Numerical analysis of a dual-mixed problem in non-standard Banach spaces, Electron. Trans.
Numer. Anal. 48 (2018) 114–130.

[22] J. Camaño, C. García, R. Oyarzúa, Analysis of a conservative mixed-FEM for the stationary Navier–Stokes problem, Numer. Methods
Partial Differential Equations 37 (5) (2021) 2895–2923.

[23] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications, in: Springer Briefs in Mathematics,
Springer, Cham, 2014.

[24] J.W. Barrett, W.B. Liu, Finite element approximation of the p-Laplacian, Math. Comp. 61 (204) (1993) 523–537.
[25] I. Ambartsumyan, V.J. Ervin, T. Nguyen, I. Yotov, A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with

poroelastic media, ESAIM Math. Model. Numer. Anal. 53 (6) (2019) 1915–1955.
[26] I. Ambartsumyan, E. Khattatov, I. Yotov, P. Zunino, A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure

interaction model, Numer. Math. 140 (2) (2018) 513–553.
[27] A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, in: Applied Mathematical Sciences, vol. 159, Springer-Verlag, New

York, 2004.
[28] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, in: Springer Series in Computational Mathematics, vol. 15,

Springer-Verlag, New York, 1991.
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