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SUMMARY

The balancing domain decomposition method for mixed �nite elements by Cowsar, Mandel, and Wheeler
is extended to the case of mortar mixed �nite elements on non-matching multiblock grids. The algorithm
involves an iterative solution of a mortar interface problem with one local Dirichlet solve and one
local Neumann solve per subdomain on each iteration. A coarse solve is used to guarantee that the
Neumann problems are consistent and to provide global exchange of information across subdomains.
Quasi-optimal condition number bounds are derived, which are independent of the jump in coe�cients
between subdomains. Numerical experiments con�rm the theoretical results. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

A growing number of papers in recent years deal with the numerical modelling of partial
di�erential equations on non-matching grids. This generality, often referred to as a multiblock
approach, allows for modelling complex geometries by representing them as unions of sim-
pler locally discretized subdomains (blocks). The computational grids need not match across
interfaces, which allows for modelling internal boundaries and for e�cient treatment of spa-
tially and temporally varying physical processes. A typical example is modelling large scale
geological structures such as faults and layers, and high gradients near wells in �ow in porous
media.
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In a multiblock formulation the underlying equations hold locally on each subdomain.
This includes the possibility of multiphysics formulations where di�erent physical processes
and di�erent mathematical models may be associated with di�erent blocks, e.g. coupling
single-phase �ow with multiphase �ow in reservoir modelling [1, 2]. Appropriate discretization
methods are applied locally on the subdomains. Physically meaningful and mathematically
consistent matching conditions are imposed on the interfaces. Mortar �nite elements have
been successfully employed for discretely imposing these interface conditions when coupling
discretizations based on Galerkin �nite elements [3–5], mixed �nite elements [6–8], and �nite
volume elements [9].
In this work we consider mixed �nite element methods for subdomain discretizations. Mixed

methods owe their popularity to their local (element-wise) mass conservation property and the
simultaneous and accurate approximation of two variables of physical interest, e.g. pressure
and velocity in �uid �ow. The mortar mixed method can be viewed as an extension to
non-matching grids of the partially hybridized form of the mixed method where Lagrange
multiplier pressures are introduced on the inter-block boundaries [10–12].
This paper deals with the problem of solving e�ciently the algebraic system arising in

mortar mixed �nite element discretizations of elliptic equations. A non-overlapping domain
decomposition algorithm developed for matching grids by Glowinski and Wheeler [12, 13] and
later extended to non-matching grids [6, 14] is employed as a solver. The method reduces the
global system to an interface problem which is symmetric and positive de�nite in the case
of elliptic equations and can be solved iteratively via a preconditioned conjugate gradient
method. This approach is very suitable for parallel implementation since the dominant cost is
solving subdomain problems.
The feasibility of the domain decomposition solver depends critically on the rate of con-

vergence of the interface iteration and ultimately on the conditioning of the interface op-
erator. The goal of this paper is to extend to the case of non-matching multiblock grids
the balancing preconditioner for mixed �nite elements developed by Cowsar et al. [15].
Other substructuring preconditioners for mortar �nite elements can be found in References
[16–18]. The balancing domain decomposition method was introduced by Mandel [19] for
Galerkin �nite elements and later analysed by Mandel and Brezina [20]. The algorithm is
based on the Neumann–Neumann preconditioner [21–23] and involves an iterative solution
of the interface problem with one local Dirichlet solve (action of the operator) and one lo-
cal Neumann solve (action of the preconditioner) per subdomain on each iteration. A coarse
problem is added to guarantee that the Neumann problems are consistent which also pro-
vides global exchange of information across subdomains. The condition number analysis in
Reference [15] pivots around a characterization of the interface bilinear form as a H 1=2-
norm of an interpolant of the Dirichlet interface data. A key ingredient in our analysis is a
similar characterization for the mortar bilinear form and the mortar interface data (see (30)
below). Our theoretical results for the mortar balancing preconditioner provide, as in the
case of matching grids, a quasi-optimal condition number bound O((1 + log(H=h))2) which
is independent of the jump in coe�cients between subdomains. Here h is the discretiza-
tion parameter and H is the characteristic size of the subdomains. This bound also indicates
very weak dependence on the number of subdomains which is con�rmed experimentally in
Section 5. Our analysis depends on assumption on the grids (33) which is closely related
to a solvability condition (15) for the mortar spaces introduced in Reference [6] (see also
Reference [7]). This assumption is justi�ed in Appendix A for Raviart–Thomas subdomain
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BALANCING DOMAIN DECOMPOSITION FOR MORTAR MIXED FEM 161

discretizations of lowest order [24] on fairly general grids and it is easy to satisfy in practice
(see Remark 4.1).
The rest of the paper is organized as follows. Mortar mixed �nite element methods for

second-order elliptic equations are presented in Section 2. The non-overlapping domain de-
composition method and the balancing preconditioner are described in Section 3. Section 4 is
devoted to the analysis of the condition number of the preconditioned operator. In Section 5
the behaviour of the preconditioner is illustrated by a series of numerical experiments. A
technical lemma needed in the analysis is proven in Appendix A.

2. MORTAR MIXED FINITE ELEMENT METHODS

We consider the following second-order elliptic problem written as a system of two �rst-order
equations:

u=−K∇p in � (1)

∇ · u=f in � (2)

p= g on @� (3)

where �=
⋃n
i=1 �i⊂Rd, d=2 or 3, is a multiblock domain and K is a symmetric, uniformly

positive de�nite tensor. This system models, among many other applications, single-phase
�ow in porous media where p is the pressure and u is the velocity. The Dirichlet boundary
conditions are considered merely for simplicity. The subdomains �i are assumed to be non-
overlapping and shape-regular with diameters O(H), i.e. there exists a reference domain �̂
with a diameter O(1) and bijective mappings Fi such that

�i=Fi(�̂); ‖DFi‖6CH; ‖DF−1
i ‖6CH−1

Let �i; j= @�i ∩ @�j, �=
⋃n
i; j=1 �i; j, and �i= @�i ∩�= @�i\@� denote interior block interfaces.

We assume that there exist positive constants c, C, and �i such that

c�i�T�6�TK(x)�6C�i�T�; ∀�∈Rd; ∀x∈�i ; i=1; : : : ; n (4)

We will make use of the following standard notation. For a subdomain G⊂Rd, the L2(G)
inner product (or duality pairing) and norm are denoted by (·; ·)G and ‖·‖G, respectively, for
scalar and vector valued functions. For a section of a subdomain boundary S ⊂ ⋃n

i=1 @�i we
write 〈·; ·〉S and ‖ · ‖S for the L2(S) inner product (or duality pairing) and norm, respectively.
We omit G(S) in the subscript if G=� (S=�). Let us also denote, for any symmetric and
positive de�nite operator B on �, the B-induced inner product and norm by 〈u; v〉B= 〈Bu; v〉
and ‖u‖B=(〈u; u〉B)1=2, respectively. We will also make use of the scaled Sobolev norms

‖w‖21; G= |w|21; G +
1
H 2 ‖w‖2G; ‖w‖21=2; S = |w|21=2; S +

1
H

‖w‖2S
where

|w|21; G=
∫
G
|∇w(x)|2 dx; |w|21=2; S =

∫
S

∫
S

|w(t)− w(s)|2
|t − s|d dt ds
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162 G. PENCHEVA AND I. YOTOV

Throughout the paper the constants c and C will denote generic constants independent of h,
H , and �i.
The velocity and pressure functional spaces for the mixed weak formulation of (1)–(3) are

de�ned as usual [11] to be

V=H (div;�)= {v∈ (L2(�))d: ∇ · v∈L2(�)}; W =L2(�)

with norms

‖v‖V=(‖v‖2 + ‖∇ · v‖2)1=2; ‖w‖W = ‖w‖
A weak solution of (1)–(3) is a pair u∈V, p∈W such that

(K−1u; v) = (p;∇ · v)− 〈g; v · �〉@�; v∈H (div;�) (5)

(∇ · u; w) = (f;w); w∈L2(�) (6)

where � is the outward unit normal vector on @�. It is well known (see, e.g. References
[11, 25]) that (5)–(6) has a unique solution.
We also consider an alternative domain decomposition variational formulation. Let

Vi=H (div;�i); Wi=L2(�i)

If the solution (u; p) of (5)–(6) belongs to H 1(�)× L2(�), it is easy to see that it satis�es,
for 16i6n,

(K−1u; v)�i = (p;∇ · v)�i − 〈p; v · �i〉�i − 〈g; v · �i〉@�i\�i ; v∈Vi (7)

(∇ · u; w)�i = (f;w)�i ; w∈Wi (8)

n∑
i=1

〈u · �i; �〉�i =0; �∈L2(�) (9)

where �i is the outer unit normal to @�i.
Let Th; i be a conforming, quasi-uniform �nite element partition of �i, 16i6n. The sub-

domain partitions Th; i and Th; j need not match on �i; j. Let Th=
⋃n
i=1Th; i denote the global

�nite element partition. Let

Vh; i×Wh; i⊂Vi×Wi
be any of the usual mixed �nite element spaces de�ned on Th; i (see Reference [11, Sec-
tion III.3]), the RT spaces [24, 26], the BDM spaces [27], the BDFM spaces [28], the BDDF
spaces [29], or the CD spaces [30]. It is known for these spaces [11] that

∇ ·Vh; i=Wh; i
and that there exists a projection �i of (H 1(�i))d onto Vh; i, satisfying amongst other properties
that for any q∈ (H 1(�i))d,

(∇ · (�iq − q); w)�i =0; w∈Wh; i (10)

〈(q −�iq) · �i; v · �i〉@�i =0; v∈Vh; i (11)
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The most commonly used mixed spaces are the Raviart–Thomas spaces of lowest order RT0
[5, 24, 26]. In this case

Vh(E) = {v=(v1; v2) or v=(v1; v2; v3) :
vl= �l + �lxl; �l; �l ∈R; l=1; : : : ; d}

Wh(E) = {w=const}

Note that for any element E ∈Th, the degrees of freedom for a vector v∈Vh(E) can be
speci�ed by the values of its normal components v · �E at the midpoints of all edges (faces)
of E, where �E is the outward unit normal vector on @E. The degree of freedom for a function
w∈Wh(E) is its value at the center of E.
The velocity and pressure mixed �nite element spaces on � are de�ned as follows:

Vh=
n⊕
i=1

Vh; i; Wh=
n⊕
i=1

Wh; i

Note that this choice leads to a non-conforming approximation since Vh 	⊂V.
Let Th; i; j be a quasi-uniform �nite element partition of �i; j. Let k be associated with the

degree of the polynomials in Vh · �. Denote by Mh; i; j ⊂L2(�i; j) the mortar �nite element space
on �i; j containing at least either the continuous or discontinuous piecewise polynomials of
degree k+1 on Th; i; j. For example, in the case of RT0, Mh; i; j is the space of piecewise linear
(bilinear, if d=3 and the grids are hexahedral) polynomials on Th; i; j. Let

Mh=
⊕

16i¡j6n

Mh; i; j

be the mortar �nite element space on �.
In the mortar mixed �nite element approximation of (5)–(6) we seek uh ∈Vh, ph ∈Wh, and

�h ∈Mh such that, for 16i6n,

(K−1uh; v)�i = (ph;∇ · v)�i − 〈�h; v · �i〉�i − 〈g; v · �i〉@�i\�i ; v∈Vh; i (12)

(∇ · uh; w)�i = (f;w)�i ; w∈Wh; i (13)

n∑
i=1

〈uh · �i; �〉�i =0; �∈Mh (14)

It is clear from (7) and (12) that �h ∈ Mh is an approximation to the pressure p on �. Equation
(14) enforces weak (with respect to the mortar space Mh) continuity of �ux across the block
interfaces. Existence and uniqueness of a solution to (12)–(14) are shown in References [6, 7]
along with optimal convergence and superconvergence for both pressure and velocity under
the assumption that for all � ∈ Mh; i; j there exists a constant C independent of h such that

‖�‖�i; j6C(‖Qh; i�‖�i; j + ‖Qh; j�‖�i; j) (15)

where Qh; i :L2(�i)→Vh; i · �i|�i is the L2-orthogonal projection satisfying for any �∈L2(�i)
〈�− Qh; i�; v · �i〉�i =0; ∀v∈Vh; i (16)
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Remark 2.1
The condition (15) imposes a limit on the number of mortar degrees of freedom and is easily
satis�ed in practice [6]. In the case of RT0 spaces, (15) holds under the assumption on the
grids in Lemma A.1, as it can be seen from the proof.

It will be convenient to treat the local operators Qh; i as operators from Mh to Vh; i · �i|�i ,
implicitly assuming that, for a function �∈Mh, Qh; i�=Qh; iNi�, where Ni :Mh→Mh; i≡Mh|�i
is the restriction operator. Similarly QTh; i, the L

2-orthogonal projector from Vh; i · �i|�i onto Mh; i,
will be understood as an operator from Vh; i · �i|�i to Mh, implicitly assuming that QTh; ivi · �i=
N Ti Q

T
h; ivi · �i, where N Ti :Mh; i→Mh is the extension-by-zero operator. In addition, given a func-

tion in Mh; i we assume by default that it is extended by zero to the whole Mh.

3. BALANCING DOMAIN DECOMPOSITION

We employ a non-overlapping domain decomposition method for the e�cient parallel so-
lution of the algebraic system that arises in the mortar mixed �nite element discretization
(12)–(14). The algorithm is based on the method originally developed by Glowinski and
Wheeler in Reference [12] for mixed methods on conforming grids. It reduces the global
system to a symmetric and positive de�nite interface mortar problem which can be solved by
a preconditioned conjugate gradient iteration. We formulate the balancing interface precondi-
tioner extending the work of Cowsar et al. [15] to mortar mixed �nite element methods on
non-matching grids.

3.1. Reduction to an interface problem

De�ne bilinear forms ah; i :L2(�)×L2(�)→R, 16i6n, and ah :L2(�)×L2(�)→R by

ah; i(�; �)=−〈u∗h; i(�) · �i; �〉�i ; ah(�; �)=
n∑
i=1
ah; i(�; �) (17)

where, for �∈L2(�), (u∗h; i(�); p∗
h; i(�))∈Vh; i×Wh; i, 16i6n, solve

(K−1u∗h; i(�); v)�i = (p
∗
h; i(�);∇ · v)�i − 〈�; v · �i〉�i ; v∈Vh; i (18)

(∇ · u∗h; i(�); w)�i =0; w∈Wh; i (19)

De�ne a linear functional gh :L2(�)→R by

gh(�)=
n∑
i=1

〈�uh; i · �i; �〉�i (20)

where (�uh; i �ph; i)∈Vh; i×Wh; i; 16i6n, solve

(K−1 �uh; i; v)�i = ( �ph; i;∇ · v)�i − 〈g; v · �i〉@�i\�i ; v∈Vh; i (21)

(∇ · �uh; i; w)�i = (f;w)�i ; w∈Wh; i (22)
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It is straightforward to show (see Reference [12]) that the solution (uh; ph; �h) of (12)–(14)
satis�es

ah(�h; �)= gh(�); �∈Mh (23)

with

uh= u∗h(�h) + �uh; ph=p∗
h(�h) + �ph (24)

where u∗h(�)∈Vh is such that u∗h(�)|�i = u∗h; i(�), with similar de�nitions for p∗
h(�), �uh, and �ph.

We introduce linear maps Ah; i :Mh→Mh, i=1; : : : ; n, corresponding to the bilinear forms
ah; i(·; ·) and satisfying

〈Ah; i�; �〉= ah; i(�; �); ∀�; �∈Mh (25)

Note that (17) and (25) imply

Ah; i�=−QTh; iu
∗
h; i(�) · �i (26)

hence the operators Ah; i are Dirichlet-to-Neumann maps. It is clear from (18) that u∗h; i(�)=
u∗h; i(Qh; i�) which combined with (26) implies that

Ah; i=QTh; iAh; iQh; i (27)

where Ah; i are the local non-mortar Dirichlet-to-Neumann maps from Vh; i · �i|�i to Vh; i · �i|�i .
The interface problem (23) can now be written as

Ah�= �gh (28)

where Ah=
∑n

i=1 Ah; i :Mh→Mh and �gh ∈Mh is the Riesz representation of gh. The operator
Ah is a mortar version of the Poincar	e–Steklov operator [31]. It can be viewed algebraically
as the Schur complement with respect to the mortar unknowns.
The following lemma has been shown in References [6, 7] (see also References [13, 15] for

the conforming grids case).

Lemma 3.1
The interface bilinear form ah(·; ·) is symmetric and positive semi-de�nite in L2(�)×L2(�). If
(15) holds, then ah(·; ·) is positive de�nite in Mh×Mh.

The proof is based on the representation

ah; i(�; �)= (K−1u∗h(�); u
∗
h(�))�i (29)

which follows easily from (17) and (18).
Another useful characterization for ah; i(·; ·) has been shown in Reference [6] (see also

Reference [15]). There exist positive constants c and C such that

c�i|I@�iQh; i�|21=2; @�i6ah; i(�; �)6C�i|I@�iQh; i�|21=2; @�i ; ∀�∈Mh (30)

where �i is the constant from (4) and I@�i is a continuous piecewise linear interpolant on
the trace of the Th; i on the boundary introduced in Reference [15]. The interpolant I@�i is
de�ned in Appendix A for the case of RT0. See Reference [15] for a general de�nition.
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Due to Lemma 3.1, the interface problem (28) can be solved using a preconditioned conju-
gate gradient (PCG) method. One evaluation of the operator Ah : �→Ah� is required on each
PCG iteration. It involves the following steps.

1. Project (L2-orthogonally) mortar data onto the subdomain grids

�
Qh; i→ Qh; i�

2. Solve in parallel subdomain problems (18)–(19) with Dirichlet data Qh; i�, on the interior
interfaces to compute the �uxes u∗h; i(�) · �i.

3. Project the �uxes back to the mortar space

u∗h; i(�) · �i
QTh; i→ umh; i

and compute the jump across each interface �i; j

[umh ]ij= u
m
h; i + u

m
h; j

The projection Steps 1 and 3 are relatively inexpensive. The dominant cost is in Step 2.

3.2. Balancing preconditioner

The balancing preconditioner is based on the Neumann–Neumann preconditioner developed
in [21–23]. The latter can be expressed in operator form as

B−1
NN =

n∑
i=1
A+h; i (31)

where A+h; i is the Moore–Penrose pseudo-inverse of Ah; i. The evaluation of B
−1
NN requires solving

subdomain problems Ah; i�i= ri with Neumann boundary data ri: �nd uh; i ∈Vh; i, ph; i ∈Wh; i,
�i ∈Mh; i such that

(K−1uh; i; v)�i = (ph; i;∇ · v)�i − 〈�i; v · �i〉�i ; v∈Vh; i
(∇ · uh; i; w)�i =0; w∈Wh; i
〈uh; i · �i; �〉�i = 〈ri; �〉�i ; �∈Mh; i

The preconditioner (31) has two drawbacks: the local problems may not be solvable and
the convergence deteriorates for large number of subdomains due to lack of global exchange
of information. The balancing preconditioner [15, 19, 20] was developed to overcome these
problems. The idea is to balance residuals so that local problems Ah; i�i= ri are solvable
(modulo Null Ah; i) and the result does not depend on the speci�c choice of local solutions.
We note that Ah; i�i= ri is solvable if

ri⊥NullAh; i=
{{const} if full Neumann
∅ otherwise

De�ne a partition of unity Di such that Di� is non-zero only on �i and
n∑
i=1
Di�= �; ∀�∈Mh (32)
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De�ne spaces Zi such that Null Ah; i⊆Zi. We take Zi= {const} for i=1; : : : ; n. The coarse
space is de�ned as follows:

MH =
{
�∈Mh: �=

n∑
i=1
Di�i; �i ∈Zi

}

Clearly dimMH6n. A residual r is said to be balanced (local problems are solvable) if

〈r; �H 〉=0; �H ∈MH

Balancing r means replacing it with

rbal = r − AhrH
where rH ∈MH is found by solving a coarse problem

ah(rH ; �H )= 〈r; �H 〉; �H ∈MH

Algorithm (Balancing Preconditioner)
Given r ∈Mh, de�ne B−1

bal r as follows:
1. Solve a coarse problem:

ah(rH ; �H )= 〈r; �H 〉; �H ∈MH

and balance the residual:

rbal = r − AhrH
2. Distribute rbal to subdomains: ri=DTi r

bal.
3. Solve local Neumann problems for �i ∈Mh; i:

Ah; i�i= ri

4. Average local solutions: �=
∑n

i=1Di�i
5. Solve a coarse problem:

ah(�H ; �H )= 〈r; �H 〉 − ah(�; �H ); �H ∈MH

and balance local solutions:

B−1
bal r= �+ �H

Note that the coarse solves in Step 1 and Step 5 provide global exchange of information
across subdomains. In addition, Step 1 guarantees that the local problems in Step 3 are
solvable, and due to Step 5, the result of the preconditioner is independent of the speci�c
choice of local solutions. The dominant cost is in Step 3 which requires solving subdomain
problems in parallel. The preconditioning cost is comparable to the cost of performing one
unpreconditioned iteration, thus one preconditioned iteration is twice as expensive as one
unpreconditioned iteration.
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4. ANALYSIS OF THE CONDITION NUMBER

We start with several technical lemmas. The �rst lemma establishes that the balancing pre-
conditioner operator is symmetric and positive de�nite and gives an abstract bound on the
condition number. The proof follows closely the proof of Theorem 3.2 in Reference [19] and
is omitted here.

Lemma 4.1
Bbal is symmetric and positive de�nite and

cond(B−1
balAh)6 sup

{∑n
j=1 ah; j(

∑n
i=1Di�i;

∑n
i=1Di�i)∑n

i=1 ah; i(�i; �i)
: �i ∈Mh; i and �i⊥NullAh; i

}
:

The proof of the following lemma which gives a bound on the condition number of the
preconditioned system follows from the proof of Theorem 3.3 in Reference [20].

Lemma 4.2
For subdomain �i, de�ne the weighting map Di as multiplication by edgewise (facewise if
d=3) constants,

(Di�i)(x)=
�i

�i + �j
�i(x); x∈�i; j

and assume that there exists a number R so that

1
�j
ah; j(�i; �i)6

1
�i
Rah; i(�i; �i)

for all i; j=1; : : : ; n and all �i ∈Mh; i such that
∫
�i
�i�i ds=0, ∀�i ∈NullAh; i. Then there exists

a constant C independent of h, H , and R such that

cond(B−1
balAh)6CR

We make the following explicit assumption about the computational grids. There exist
positive constants c and C independent of h and H such that, for any �∈Mh,

c‖I@�iQh; i�‖1=2;�i; j6‖I@�jQh; j�‖1=2;�i; j6C‖I@�iQh; i�‖1=2;�i; j ; 16i; j6n (33)

Remark 4.1
It is shown in Appendix A, Lemma A.1, that (33) holds in the case of RT0 spaces under
mild and easily satis�ed in practice assumptions on the computational grids. These assumptions
allow for a great amount of independence in constructing the subdomain grids, including large
grid-size ratios (with constants possibly depending on these ratios).

The following lemma is an extension of Lemma 6.4 in Reference [15] to non-matching
grids.
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Lemma 4.3
Assume that (33) holds. Then there exists a constant C independent of H and h such that

‖I@�jQh; j�i‖21=2; @�j6C(1 + log(H=h))2‖I@�iQh; i�i‖21=2; @�; ∀�i ∈Mh; i

Proof
By Lemma 4.3 of Reference [32], we have

‖I@�jQh; j�i‖21=2; @�j6C(1 + log(H=h))2‖I@�jQh; j�i‖21=2;�i; j
By (33),

‖I@�jQh; j�i‖1=2;�i; j6C‖I@�iQh; i�i‖1=2;�i; j
Combining the above inequalities with the obvious inequality

‖I@�iQh; i�i‖1=2;�i; j6‖I@�iQh; i�i‖1=2; @�i
completes the proof.

We assume that @�i ∩ @� is either empty or of size O(H) so that the Poincar	e inequality
holds uniformly for all �i and there exists a constant C independent of h and H such that

‖w‖2�i6CH 2|w|21;�i ; ‖w‖2@�i6CH |w|21=2; @�i (34)

for all w∈H 1(�i) if @�i ∩ @� is non-empty and for all w ∈ H 1(�i), 〈w; 1〉�i =0, if @�i ∩ @�
is empty.
We are now ready to state the main result.

Theorem 4.1
If (33) holds and the weights Di satisfy

(Di�)(x)=
�i

�i + �j
�(x); x∈�i; j ; for all �∈Mh

then there exists a constant C independent of h, H , and jumps in K , such that

cond(B−1
balAh)6C(1 + log(H=h))

2

Proof
Let �i ∈Mh; i be such that �i⊥NullAh; i. With (30) we have

ah; j(�i; �i)6C�j|I@�jQh; j�i|21=2; @�j6C�j‖I@�jQh; j�i‖21=2; @�i
6C�j(1 + log(H=h))2‖I@�iQh; i�i‖21=2; @�i

using Lemma 4.3 for the last inequality. Note that it easily follows from the de�nitions of
Qh; i and I@�i that

〈I@�iQh; i�i; 1〉�i = 〈Qh; i�i; 1〉�i = 〈�i; 1〉�i =0

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:159–180



170 G. PENCHEVA AND I. YOTOV

so that the Poincar	e inequality (34) implies

‖I@�iQh; i�i‖21=2; @�i6C|I@�iQh; i�i|21=2; @�i
Therefore we have

ah; j(�i; �i)6C�j(1 + log(H=h))2|I@�iQh; i�i|21=2; @�i
6C

�j
�i
(1 + log(H=h))2ah; i(�i; �i)

using (30) for the last inequality. The proof is completed by applying Lemma 4.2.

Remark 4.2
The above theorem implies in the case of non-matching grids a bound for the balancing
preconditioner which is similar to the bounds obtained for matching grids [15, 20].

5. NUMERICAL RESULTS

We present four computational experiments con�rming the theoretical results of Section 4
about the behaviour of the balancing preconditioner. In Examples 1 and 3 we study the
dependence of the convergence rate on h for a smooth and a highly heterogeneous problem,
respectively. Example 2 is designed to investigate the e�ect of jumps in the coe�cients. In
Example 4 we consider the e�ect of the number of subdomains. In all cases one processor is
assigned per subdomain. The runs in Examples 1–3 are performed on the unit square divided
into four subdomains (H = 1

2). The runs in Example 4 are performed on a sequence of domain
decompositions ranging from 2× 2 to 5× 5 subdomains.
In Examples 1 and 3 the condition number and number of CG iterations with and without

preconditioning are reported for several levels of grid re�nements starting with the grids shown
in Figure 1(A). The largest ratio of the subdomain grid sizes in these examples is 5

2 .

Figure 1. Initial grids for Example 1.
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Table I. Condition number and number of iterations for Example 1.

1=h BalCG CG

Cond. Iter. Cond. Iter.

Case 1
4 4.54520 11 9.0482 14
8 5.90177 11 17.0075 18
16 7.54221 12 33.5087 25
32 9.44828 12 66.7478 36

Case 2
4 2.30058 8 10.7644 12
8 2.83097 9 21.1122 19
16 3.37244 9 41.7829 29
32 4.11108 9 83.2505 41

Figure 2. Condition number and number of iterations for Example 1. (A) Case 1 and (B) Case 2.

We also consider a second case in Example 1 where the ratio is 11
2 (see Figure 1(B)).

The mortars are chosen to be discontinuous (for Examples 1, 3 and 4) or continuous (for
Example 2) piecewise linears on an interface grid obtained by coarsening by two the trace of
the coarser of the neighbouring subdomain grids.
The problem in Example 1 has analytical solution p(x; y)= x3y2 + sin(xy) and a smooth

permeability tensor

K =
(
10 + 5 cos(xy) 0

0 1

)

The condition number and number of iterations for both cases are given in Table I, Figure 2
and Figure 3. As expected from the theory, the condition number in the case of balancing
preconditioner grows very slowly as h gets smaller and the number of PCG iterations stays
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Figure 3. Dependence of the condition number on (1+log(H=h))2 in Example 1.
(A) Case 1 and (B) Case 2.

Figure 4. Permeability values (left) and residual reduction (right) for the initial level in Example 2.

almost the same. A comparison of the results from Case 1 and Case 2 indicates that the
condition number and number of iterations are almost independent of the grid size ratio.
In Example 2 we study the dependence of the behaviour of the balancing preconditioner

on jumps in the coe�cient. A di�erent permeability function is assigned on each subdomain
as shown in Figure 4 (left). A series of runs is performed changing each function so that
the jumps between subdomains get larger. The behaviour of the CG iteration is illustrated
in Figure 5. We note that both the condition number and the number of iterations remain
bounded when jumps become larger which is consistent with the bound given in Theorem 4.1.
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Figure 5. Dependence of CG convergence on jumps in coe�cients in Example 2.

Figure 6. Permeability �eld and computed pressure (shade) and velocity (arrows) in Example 3.

We also compare in Figure 4 (right) the residual reductions in the unpreconditioned and
the preconditioned CG iterations. The preconditioning accelerates the residual reduction and
removes the oscillations observed in the unpreconditioned case.
In Example 3 we simulate �ow through highly heterogeneous porous media. The perme-

ability �eld and the computed solution on the �rst level of re�nement (left-to-right �ow is
imposed through boundary conditions) are given in Figure 6. For each level of re�nement the
permeability �eld is projected onto the corresponding computational grids. The condition num-
ber and the number of iterations (see Table IIA and Figure 7) once again grow very slowly
as h gets smaller. On Figure 8(A) we compare the residual reductions in the unpreconditioned
and the preconditioned CG iterations.
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Table II. Condition number and number of iterations for Example 3 and 4.

1=h BalCG CG

Cond. Iter. Cond. Iter.

A. Example 3
4 63.454 17 222.19 25
8 53.831 27 338.23 47
16 90.266 34 2313.30 94
32 192.754 38 14049.80 207
64 336.072 50 65824.20 492

B. Example 4
4 8.1659 13 38.257 23
9 12.2771 16 111.967 38
16 13.2133 19 225.357 55
25 13.4436 20 379.496 72

Figure 7. Condition number and number of iterations for Example 3.

In Example 4 we study the dependence of the behaviour of the balancing preconditioner
on the number of subdomains. We solve a problem with analytical solution

p(x; y; z)= x3y4 + x2 + sin(xy) cos(y)

and a smooth permeability tensor

K =


(x + 1)2 + y2 0 0

0 (x + 1)2 0
0 0 1




on a sequence of domain decompositions from 2× 2 to 5× 5 subdomains. The ratio H=h is
kept constant with subdomain grids chosen 14× 18 or 12× 20 in a checkerboard fashion.
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Figure 8. Performance of balancing preconditioner for Examples 3 and 4. (A) Residual reduction for
Example 3 and (B) condition number and number of iterations for Example 4.

The condition number and number of iterations are given in Table II(B) and Figure 8(B).
The results are consistent with the theory and indicate very good parallel scalability of the
balancing preconditioner.

APPENDIX A

Here we justify the assumption (33) on the computational grids. We show that (33) holds in
the case of RT0 rectangular subdomain discretizations for a fairly general grid
con�guration. We start by de�ning the piecewise linear interpolant I@�i for the RT0 spaces.
More general de�nition is given in Reference [15]. Let T̂h; i be a re�nement of Th; i|�i (with
vertices at the element centers (primary vertices) and the element vertices (secondary vertices)
of Th; i|�i . Note that the primary vertices coincide with the degrees of freedom of Vh; i · �i|�i
and, correspondingly, the pressure Lagrange multipliers on �i. Let Uh; i be the space of con-
tinuous piecewise linear functions subordinate to the partition T̂h; i. For �∈Vh; i · �i|�i , de�ne
I@�i�∈Uh; i as follows:

I@�i�(x)=




�(x); if x is a primary vertex of T̂h; i

the area-weighted average of if x is a secondary vertex of T̂h; i

values of � at all adjacent

primary vertices;

the linear interpolation of if x is not a vertex of T̂h; i

vertex values;
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Figure A1. Grids on the mortar and neighbouring subdomain along the interface �i; j.

To simplify the presentation below, we call two non-negative functions f1(·) and f2(·) with
the same domain D equivalent and write

f1�f2
if there exist positive constants c and C independent of h and H such that

cf1(�)6f2(�)6Cf1(�); ∀�∈D
It is easy to see that for any p̂∈Uh; i and for any 	i ∈ T̂h; i

|p̂|21; 	i � |	i|1−2=d ∑
vertices
vl;vk ∈ 	i

(p̂(vl)− p̂(vk))2 (A1)

|p̂|20; 	i � |	i| ∑
vertices
vl ∈ 	i

p̂(vl)2 (A2)

Lemma A.1
Consider d=2; RT0 subdomain discretizations on rectangular grids, and discontinuous piece-
wise linear mortar spaces. Assume that every element of Th; i; j contains at least one element
of Th; i|�i; j and that at least one element of Th; i; j contains at least two elements of Th; i|�i; j .
Assume that the same relation holds for Th; i; j and Th; j|�i; j (see Figure A1). Then, for any
�∈Mh,

‖I@�iQh; i�‖1=2;�i; j �‖I@�jQh; j�‖1=2;�i; j
Proof
First, consider an element 	1 of Th; i; j that contains at least two elements, e1; e2, of Th; i|�i; j .
Denote the vertices of 	1 by v1; v2 with coordinates s0; s1, respectively, and the coordinates of
the endpoints of e1; e2 by t0; t1; t2 (see Figure A1, left). Let, for a given �∈Mh,

�(vm)=�m; m=1; 2; pl=Qh; i�|el ; l=1; 2

By de�nition, the value of I@�iQh;i� at the midpoint of el (primary vertex) is pl. Denote by
�p the value of I @�iQh; i� at the secondary vertex between e1 and e2. We have

�p=
|e2|p1 + |e1|p2

|e1|+ |e2| ; p1 − �p=
|e1|

|e1|+ |e2| (p1 − p2); �p− p2 = |e2|
|e1|+ |e2| (p1 − p2)
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hence it is enough to consider in (A1) and (A2) only the values of I@�iQh; i� at the primary
vertices. For p1; p2 we obtain(

p1
p2

)
=A0

(
�1
�2

)
; A0=

(
�1 �2
�1 �2

)
(A3)

where

�1 =
2s1 − t0 − t1
2(s1 − s0) ; �2 =

t0 + t1 − 2s0
2(s1 − s0) ; �1 =

2s1 − t1 − t2
2(s1 − s0) ; �2 =

t1 + t2 − 2s0
2(s1 − s0)

Note that �1 + �2 = 1; �1 + �2 = 1, and hence

det A0 = �1 − �1 = t2 − t0
2(s1 − s0)¿C¿0

which gives (
�1
�2

)
=A−1

0

(
p1
p2

)
(A4)

where the elements of A−1
0 do not depend on h. We also have

p1 − p2 = (�1 − �1)(�1 − �2) (A5)

Proceeding inductively, assume that we have expressed p1; : : : ; pl−1 in terms of �1; : : : ; �2k , as
well as di�erences of two consecutive p’s in terms of di�erences of �’s and vice versa. Con-
sider two neighbouring elements, 	k ; 	k+1, of Th; i; j, each containing an element of Th; i|�i; j (el−1
and el+1, respectively) (see Figure A1, right). Denote the vertices of 	k and 	k+1 by v2k−1; v2k
and v2k+1; v2k+2, respectively, with co-ordinates sk−1; sk ; sk+1. Denote the coordinates of the
endpoints of el−1; el; el+1 by tl−2; tl−1; tl; tl+1. Let

�(vm)=�m; m=2k − 1; : : : ; 2k + 2; pn=Qh; i�|en ; n= l− 1; l; l+ 1
Then we have

pl−1 = al;1�2k−1 + al;2�2k ;

pl = bl;1�2k−1 + bl;2�2k + bl;3�2k+1 + bl;4�2k+2

pl+1 = cl;1�2k+1 + cl;2�2k+2 (A6)

where

al;1 =
(2sk − tl−2 − tl−1)
2(sk − sk−1) ; al;2 =

(tl−2 + tl−1 − 2sk−1)
2(sk − sk−1)

bl;1 =
(sk − tl−1)2

2(tl − tl−1)(sk − sk−1) ; bl;2 =
(sk − tl−1)(tl−1 + sk − 2sk−1)
2(tl − tl−1)(sk − sk−1)

bl;3 =
(tl − sk)(2sk+1 − sk − tl)
2(tl − tl−1)(sk+1 − sk) ; bl;4 =

(tl − sk)2
2(tl − tl−1)(sk+1 − sk)

cl;1 =
(2sk+1 − tl − tl+1)
2(sk+1 − sk) ; cl;2 =

(tl + tl+1 − 2sk)
2(sk+1 − sk)
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Note that the coe�cients in (A6) can be bounded above and below by constants independent
of h and dependent on the grid-size ratio. We can rewrite the last two equations of (A6) as(

pl
pl+1

)
=
(
bl;1�2k−1 + bl;2�2k

0

)
+ Al

(
�2k+1
�2k+2

)
; Al=

(
bl;3 bl;4
cl;1 cl;2

)
(A7)

Note that

al;1 + al;2 = 1; bl;1 + bl;2 + bl;3 + bl;4 = 1; cl;1 + cl;2 = 1 (A8)

Since

det Al =
(tl − sk)(tl+1 − sk)
2(tl − tl−1)(sk+1 − sk)¿C¿0(

�2k+1
�2k+2

)
= A−1

l

[(
pl
pl+1

)
−
(
bl;1�2k−1 + bl;2�2k

0

)]
(A9)

Thus, �2k+1 and �2k+2 are linear combinations of p1; : : : ; pl+1 with coe�cients independent
of h. Using (A8), if follows from (A6) that(

pl−1 − pl
pl − pl+1

)
=(�2k−1 − �2k)

(
al;1 − bl;1
bl;1

)
+ Bl

(
�2k − �2k+1
�2k+1 − �2k+2

)
(A10)

where

Bl=
(
bl;3 + bl;4 bl;4
bl;1 + bl;2 cl;2 − bl;4

)
(A11)

Using (A8), we get

det Bl= bl;3cl;2 − bl;4cl;1 = det Al
so (

�2k − �2k+1
�2k+1 − �2k+2

)
=B−1

l

[(
pl−1 − pl
pl − pl+1

)
− (�2k−1 − �2k)

(
al;1 − bl;1
bl;1

)]
(A12)

Therefore, (�2k − �2k+1) and (�2k+1 − �2k+2) can be expressed as linear combinations of the
di�erences (pn − pn+1); n=1; : : : ; l.
Applying the inequality (a+ b)262(a2 + b2) and combining (A2), (A3), (A6), and (A9)

implies

|I@�iQh; i�|0;�i; j � |�|0;�i; j (A13)

Combining (A1), (A5), (A10), and (A12) gives

|I@�iQh; i�|1;�i; j � |�|1;�i; j (A14)

Similar arguments imply

|I@�jQh; j�|0;�i; j � |�|0;�i; j (A15)
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and

|I@�jQh; j�|1;�i; j � |�|1;�i; j (A16)

The interpolation theory of Sobolev spaces [33] and bounds (A13)–(A16) imply the statement
of the lemma.

Remark A.1
The proof of the above lemma is also valid in the case of continuous piecewise linear mortars.

Remark A.2
The above argument can be generalized to three-dimensional rectangular-type RT0 discretiza-
tions in a relatively straightforward way.
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