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Abstract

We consider mixed ®nite element approximations of second order elliptic equations on domains that can be described as a union of

subdomains or blocks. We assume that the subdomain grids are locally de®ned and need not match across the block boundaries.

Specially chosen mortar ®nite element spaces are introduced on the interfaces for approximating the scalar variable (pressure). The

mortars also serve as Lagrange multipliers for imposing ¯ux-matching conditions. The method is implemented by reducing the al-

gebraic system to a positive de®nite interface problem in the mortar spaces. This problem is then solved using a multigrid on the

interface with conjugate gradient smoothing. The algorithm is very e�cient in a distributed parallel computing environment as only

subdomain solves are required on each conjugate gradient iteration. The standard variational assumptions for the multigrid are not

satis®ed, since the interface bilinear forms vary from level to level. We present theoretical results for the convergence of the V-cycle and

the W-cycle. Computational results in two- and three-dimensions are given to illustrate and con®rm the theory. Ó 2000 Elsevier

Science S.A. All rights reserved.
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1. Introduction

Mixed ®nite element methods are often used to approximate the solutions of second order elliptic
equations due to their local mass conservation property and their direct approximation of the vector ¯ux
variable. In many applications the complexity of the domain geometry or the solution itself warrants using
a multiblock domain structure, wherein the domain X � Rd , d � 2 or 3, is decomposed into non-over-
lapping blocks or subdomains Xi, i � 1; . . . ; n, with grids de®ned independently on each block. On the
�d ÿ 1�-dimensional interface C between subdomain blocks, the traces of the grids need not coincide. Two
typical examples in subsurface porous medium applications are the modeling of faults, which are natural
discontinuities in material properties, and the modeling of wells, the solution's response to which can be
resolved often only by using locally re®ned grids.

We use notation appropriate for applications to porous media, and we consider a model problem. For
the unknown pressure scalar function p�x� and Darcy velocity vector function u�x�, we consider the partial
di�erential boundary value problem:
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u � ÿKrp in X; �1�
r � u � f in X; �2�
p � g on oX; �3�

where K�x� is a symmetric, uniformly positive de®nite tensor representing the permeability divided by the
viscosity and f �x� represents the sources. We assume that each component of K is in L1�X� and is smooth
on each subdomain Xi, and that f 2 L2�X�. The Dirichlet condition imposed is considered for simplicity;
however, other boundary conditions can be handled easily.

A number of papers deal with the analysis and the implementation of mixed methods for our problem
on conforming grids (see, e.g., [31,34,30,5,14,12,13,20,29,35,16,21,23,4,3] and the general references
[15,32]). Mixed methods on nested locally re®ned grids are considered in [22,24], but these techniques rely
heavily on the fact that the grids are nested and cannot be extended directly to arbitrary non-matching
grids.

In [26] Glowinski and Wheeler introduced two domain decomposition algorithms for mixed ®nite ele-
ment methods for elliptic equations (1)±(3). A key result was the formulation of the matching conditions at
the interfaces of the subdomains as variational problems de®ned over trace spaces and thus reducing the
mixed ®nite element saddle point problem to a positive de®nite interface problem. In method 1, ¯uxes are
assumed to match and iterations are performed to match the pressure p. In method 2, the dual of method 1,
pressures are assumed to match and iterations are performed to match ¯uxes. Conjugate gradient tech-
niques are applied to both schemes to solve the interface problems.

A di�culty of the parallelization of method 1 on a distributed memory machine is the adjustment of the
pressure solution over the subdomains. Each evaluation of the bilinear form requires the solution of a
tridiagonal system of order at most nÿ 1. The order of the linear system varies depending on the boundary
conditions imposed and the decomposition employed. In method 2, the pressure adjustment by a constant
only arises for Neumann problems, and there is no linear system to solve.

In [25] a multilevel acceleration of method 1 is de®ned. Numerical experiments carried out on a se-
quential machine indicate that the number of V-cycles with conjugate gradient smoothing was practically
independent of h despite the fact that the condition number is O�Hh�ÿ1

, where h denotes the mesh size and
H the subdomain size.

In [19] a domain decomposition algorithm based on method 2 and incorporating an inner product
modi®cation and multilevel acceleration is de®ned and implemented for an arbitrary number of subdo-
mains in two spatial dimensions. Numerical experiments on an Intel iPSC/860 indicate that the resulting
algorithm is scalable due to an insensitivity in the number of V-cycles required for convergence to problem
size and variation in coef®cients.

In [18] two multigrid algorithms are discussed for three spatial dimensional problems, one a semi-
coarsening multigrid algorithm [33] and the second an extension of the two-dimensional scheme developed
in [19]. Both methods converge fast in terms of outer iterations for anisotropic models and models with
strongly discontinuous coe�cients. The global multigrid approach is more robust than the nested factor-
ization subdomain solver employed in the domain decomposition algorithm. The advantages of the domain
decomposition approach is that it required much less interprocessor communication per iteration and much
less storage.

The goal of this paper is to discuss the extension of the above domain decomposition and multigrid
algorithms to the case of non-matching multiblock grids and present theoretical and numerical results for
their convergence.

Techniques have been developed to approximate elliptic problems on non-matching multiblock grids
using Galerkin and spectral approximations in the blocks and tying these together through an approxi-
mation of the ¯ux on C in a special ®nite element space called a mortar space [7,6]. In the case of mixed
methods, mortar spaces are introduced for the interface pressure and used as Lagrange multipliers to
impose weekly normal ¯ux continuity. To achieve optimal convergence, the mortar spaces should consist of
polynomials of one degree higher than the normal trace of the subdomain velocity spaces. This choice
di�ers from the standard choice for Lagrange multipliers in the hybrid and macro-hybrid formulations of
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the mixed method [5,26]. For convergence analysis we refer to [36,2] in the case of a�ne triangulations and
to [36] in the case of curvilinear logically rectangular grids.

Multiblock discretizations lead to algebraic systems suitable for e�cient parallel solution algorithms. We
extend the non-overlapping domain decomposition algorithm from [26,18] and reduce the discrete system
to a symmetric and positive de®nite Schur-complement system in the mortar spaces.

Multigrid algorithms with conjugate gradient smoothing are used for the solution of the interface
problem. Both mortar and subdomain grids are coarsened on each level. Evaluation of the mortar bilinear
forms requires solving discrete subdomain problems on grids that vary from level to level. Therefore, the
bilinear forms are non-inherited and the standard multigrid variational assumption is not satis®ed. Our
multigrid analysis is motivated by a general theory developed by Bramble et al. [9±11], where some of the
standard assumptions are omitted. The main di�culties in our analysis are in proving the ``regularity and
approximation'' assumption (see (35) below) in the case of mortar mixed discretizations on non-matching
grids, as well as treating the non-stationary CG smoother. Our approach di�ers from the one in [8], where
multigrid is applied to solve the global system arising in the mortar ®nite element method.

The rest of the paper is organized as follows. The mixed ®nite element method is presented in Section 2.
In Section 3, we discuss the reduction of the computational problem to an interface problem and de®ne
multigrid algorithms on the interace. In Section 4, theoretical results are presented for these algorithms.
Numerical results are given in Section 5.

2. Mortar mixed ®nite element methods

In the weak formulation of (1)±(3) we seek a pair u 2 H�div; X�, p 2 L2�X� such that

�Kÿ1u; v� � �p;r � v� ÿ g; v � mh ioX; v 2 H�div; X�; �4�
�r � u;w� � �f ;w�; w 2 L2�X�: �5�

Here ��; ��S denotes the L2�S� inner product and �; �h ioS denotes the L2�oS� inner product or a duality pairing.
Let k � kS and k � koS be the associated L2-norms. We omit S if S � X. It is well known (see, e.g., [15]) that (4)
and (5) have a unique solution.

Let X � [n
i�1Xi be decomposed into n non-overlapping subdomains Xi, and let Ci;j � oXi \ oXj,

C � [16 i<j6 nCi;j, and Ci � oXi \ C � oXi n oX. Let

Vi � H�div; Xi�; V � �n
i�1

Vi

and

Wi � L2�Xi�; W � �n
i�1

Wi � L2�X�:

If the solution �u; p� of (4) and (5) belongs to H�div; X� � H 1�X�, it is easy to see that it satis®es, for
16 i6 n,

�Kÿ1u; v�Xi
� �p;r � v�Xi

ÿ p; v � mih iCi
ÿ g; v � mih ioXinC; v 2 Vi; �6�

�r � u;w�Xi
� �f ;w�Xi

; w 2 Wi ; �7�

where mi is the outer unit normal to oXi.
Let Th;i be a conforming, quasi-uniform ®nite element partition of Xi, 16 i6 n, with Th;i and Th;j

possibly non-matching on Ci;j. Let Th � [n
i�1Th;i. Let

Vh;i � Wh;i � Vi � Wi

be any of the usual mixed ®nite element spaces, (i.e., the RT spaces [34,31,30]; BDM spaces [14]; BDFM
spaces [13]; BDDF spaces [12], or CD spaces [16]). Let
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Vh � �
n

i�1
Vh;i; Wh � �

n

i�1
Wh;i:

All of the spaces above satisfy

r � Vh;i � Wh;i

and that there exists a projection operator Pi onto Vh;i, such that for any q 2 �H 1=2�e�Xi��d \ Vi,

�r � �Piqÿ q�;w�Xi
� 0; w 2 Wh;i; �8�

�qh ÿPiq� � mi; v � miioXi
� 0; v 2 Vh;i: �9�

Let Th;ij be a quasi-uniform ®nite element partition of Ci;j. Denote by Mh;i;j � L2�Ci;j� the space of either
continuous or discontinuous piecewise polynomials of degree k � 1 on Th;i;j, where k is associated with the
degree of the polynomials in Vh � m. More precisely, if d � 3, on any boundary element K, Mh;i;jjK � Pk�1�K�,
if K is a triangle, and Mh;i;jjK � Qk�1�K�, if K is a rectangle. Here

Pk�1 �
X

06 i�j6 k�1

aijxi
1xj

2 : aij 2 R

( )
; Qk�1 �

Xk�1

i�1

Xk�1

j�1

aijxi
1xj

2 : aij 2 R

( )
:

Let

Mh � �
16 i<j6 n

Mh;i;j:

In the mortar mixed ®nite element approximation of (4) and (5), we seek uh 2 Vh, ph 2 Wh, and kh 2 Mh

such that, for 16 i6 n,

�Kÿ1uh; v�Xi
� �ph;r � v�Xi

ÿ kh; v � mih iCi
ÿ g; v � mih ioXinC; v 2 Vh;i; �10�

�r � uh;w�Xi
� �f ;w�Xi

; w 2 Wh;i; �11�
Xn

i�1

uh � mi; lh iCi
� 0; l 2 Mh: �12�

Existence and uniqueness of a solution to (10)±(12) is shown in [36,2] under the assumption that, for any
/ 2 Mh;i;j,

Qh;i/jCi;j
� Qh;j/jCi;j

� 0 implies that /jCi;j
� 0; �13�

where Qh;i : L2�Ci� ! Vh;i � mijCi
is the L2-projection satisfying for any / 2 L2�Ci�

/h ÿ Qh;i/; v � miiCi
� 0; v 2 Vh;i: �14�

The proof of the following convergence result can be found in [2], wherein l is associated with the degree
of the polynomials in Wh.

Theorem 1. For the solution of the mixed method (10)±(12), if

klk0;Ci;j
6C kQh;ilk0;Ci;j

�
� kQh;jlk0;Ci;j

�
8l 2 Mh; �15�
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then there exists a positive constant C independent of h such that

kuÿ uhk06C
Xn

i�1

kpks�1;Xi
hs

�
� kukr;Xi

hr
�
; �16�

kp̂ ÿ phk06C
Xn

i�1

kpks�1;Xi
hs�1

�
� kukr;Xi

hr�1 � kr � ukt;Xi
ht�1

�
; �17�

kp ÿ phk06C
Xn

i�1

kpks�1;Xi
hs

�
� kukr;Xi

hr�1 � kr � ukt;Xi
ht�1

�
; �18�

kr � �uÿ uh�k06C
Xn

i�1

kr � ukt;Xi
ht; �19�

where 06 s6 l� 1, 1=2 < r6 k � 1, 06 t6 l� 1, and p̂ 2 Wh is the L2-orthogonal projection of p.
Moreover, if the tensor K is diagonal and the mixed finite element spaces are the Raviart±Thomas spaces on

rectangular type grids:

jjjuÿ uhjjj6C
Xn

i�1

kpks�3=2;Xi
hs�1=2

�
� kukr�1=2;Xi

hr�1=2
�
; �20�

where 06 s6 l� 1, 1=2 < r6 k � 1, and jjj � jjj is a discrete approximation to the L2-norm involving inte-
gration along Gaussian lines (see [21,23,2] for the exact definition).

Remark 2. The condition (15) (and subsequently (13)) on the mortar grids and spaces is easily satisfied in
practice. It does not allow for the mortar space to be too rich compared to the subdomain grids. It has been
shown [36] that it holds for either continuous or discontinuous mortar spaces if the the mortar grid on each
interface is a coarsening by two in each direction of the trace of either one of the subdomain grids. This choice
is reminiscent of the one in the case of standard or spectral finite element subdomain discretizations [7,6].

Remark 3. Bounds (16), (18) and (19) imply optimal convergence, bound (17) implies superconvergence for the
pressure at the Gaussian points, and bound (20) implies superconvergence for the velocity along the Gaussian
lines, with a slightly higher solution regularity requirement.

Remark 4. The choice of the mortar finite element space Mh consisting of piecewise polynomials of degree
k � 1, i.e., one degree higher than the polynomials in Vh � m, is essential for the optimal convergence and su-
perconvergence of the method. If only polynomials of degree k are used, which is the standard Lagrange
multiplier choice for mixed methods on conforming grids [5], no superconvergence for the pressure, and only
suboptimal convergence for the velocity (with a loss of O�h1=2�), can be shown. This is due to the approximation
error on the interfaces. These theoretical estimates are in accordance with the numerically observed conver-
gence rates.

3. A non-overlapping domain decomposition algorithm

The algebraic system that arises in the mortar mixed ®nite element discretizations can be solved e�-
ciently in parallel using non-overlapping domain decomposition techniques. In this section we formulate an
algorithm based on the one originally developed in [26] for mixed methods on conforming grids. The
method reduces the global system to a symmetric and positive de®nite interface mortar problem. We then
formulate a multigrid algorithm for the solution of the interface problem.
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3.1. Reduction to interface problem

De®ne a bilinear form ah : L2�C� � L2�C� ! R by

ah�k; l� �
Xn

i�1

ah;i�k; l� � ÿ
Xn

i�1

u�h�k� � mi; l

 �

Ci
; �21�

where for k 2 L2�C�, �u�h�k�; p�h�k�� 2 Vh � Wh solve, for 16 i6 n,

Kÿ1u�h�k�; v
ÿ �

Xi
� �p�h�k�;r � v�Xi

ÿ k; v � mih iCi
; v 2 Vh;i; �22�

�r � u�h�k�;w�Xi
� 0; w 2 Wh;i: �23�

De®ne a linear functional gh : L2�C� ! R by

gh�l� �
Xn

i�1

gh;i�l� �
Xn

i�1

h�uh � mi; liCi
; �24�

where ��uh; �ph� 2 Vh � Wh solve, for 16 i6 n,

Kÿ1�uh; v
� �

Xi

� ��ph;r � v�Xi
ÿ g; v � mih ioXinC; v 2 Vh;i; �25�

�r � �uh;w�Xi
� �f ;w�Xi

; w 2 Wh;i: �26�
It is straightforward to show (see [26]) that the solution �uh; ph; kh� of (10)±(12) satis®es

ah�kh; l� � gh�l�; l 2 Mh �27�
with

uh � u�h�kh� � �uh; ph � p�h�kh� � �ph: �28�
The following lemma has been shown in [36,2] (see also [19,17] for the conforming grids case).

Lemma 5. The interface bilinear form ah��; �� is symmetric and positive semidefinite on L2�C�. If (13) holds,
then ah��; �� is positive definite on Mh.

The proof is based on the representation

ah;i�k; l� � Kÿ1u�h�k�; u�h�l�
ÿ �

Xi
; �29�

which follows easily from (22) and the de®nition of ah��; ��.
Another useful characterization for ah;i��; �� has been shown in [17,36]. There exist positive constants c1

and c2 such that

c1jIoXiQh;ilj1=2;oXi
6 ah;i�l; l�6 c2jIoXiQh;ilj1=2;oXi

8l 2 Mh; �30�
where IoXi is a continuous piecewise linear interpolant on the trace of the Th;i on the boundary. This
relation has been employed in the convergence analysis for the mortar mixed ®nite element methods [36]
and is instrumental in the multigrid convergence theory (see Appendix A).

3.2. Multigrid on the interface

Due to Lemma 5, a variety of iterative techniques can be used for the solution of (27). Here we employ a
multigrid V-cycle and W-cycle. Let us consider a sequence of nested interface grids on Ci;j, 16 i < j6 n,

Th1;i;j �Th2;i;j � � � � �ThL;i;j �Th;i;j:

We assume that, given Th1;i;j, Thk ;i;j is obtained from Thkÿ1;i;j by connecting edge midpoints; therefore
hk � 2 � hk�1, k � 1; . . . ; Lÿ 1. We associate with the grids a sequence of nested mortar ®nite element spaces,

Mh1;i;j � Mh2;i;j � � � � � MhL;i;j � Mh;i;j;

292 M.F. Wheeler, I. Yotov / Comput. Methods Appl. Mech. Engrg. 184 (2000) 287±302



de®ned as in Section 2. Similarly, we consider a sequence of nested subdomain grids

Th1;i �Th2;i � � � � �ThL;i �Th;i

and corresponding nested mixed ®nite element spaces

Vh1;i � Wh1;i � Vh2;i � Wh2;i � � � � � VhL;i � WhL ;i � Vh;i � Wh;i:

To simplify notations, we will omit h from the subscripts for the rest of the paper. We next introduce a
sequence of symmetric and positive de®nite bilinear forms,

ak��; �� : Mk �Mk ! R; 16 k6 L;

de®ned as in (21). Note that the evaluation of ak��; �� requires solving subdomain problems in spaces
Vk � Wk.

Let �; �h i denote the L2�C�-inner product and let k � k be the induced L2-norm . On each level k we as-
sociate with ak��; �� an operator Ak : Mk ! Mk satisfying for any k 2 Mk:

Ak�k�; lh i � ak�k; l� 8l 2 Mk:

We note that Ak �
Pn

i�1 Ak;i, where Ak;i : Mk ! Mk satisfy

Ak;i�k�; lh i � ak;i�k; l� 8l 2 Mk:

By (21),

Ak;ik � ÿPMk
i u�k�k� � mi; �31�

where PMk
i is the L2�oXi�-orthogonal projection onto Mk. The operator Ak is a mortar version of the Po-

incar�e±Steklov operator [1]. It can be viewed algebraically as the Schur complement with respect to the
mortar unknowns.

The multigrid algorithm uses the following intergrid transfer operators. Since the spaces are nested, the
coarse-to-fine operator

Ik : Mkÿ1 ! Mk

is taken to be the natural injection, i.e.,

Ikl � l 8l 2 Mkÿ1:

The fine-to-coarse operator

Qkÿ1 : Mk ! Mkÿ1

is de®ned to be the transpose of Ik with respect to �; �h i, i.e.,

Qkÿ1k; lh i � k; Iklh i � k; lh i 8k 2 Mk; l 2 Mkÿ1:

Note that Qkÿ1 is the L2-projection from Mk to Mkÿ1. In the analysis we will also need an ak-orthogonal
projection

Pkÿ1 : Mk ! Mkÿ1

satisfying for any k 2 Mk:

akÿ1�Pkÿ1k; l� � ak�k; Ikl� 8l 2 Mkÿ1: �32�
On each level k we employ m�k� conjugate gradient (CG) smoothing iterations. We note that the matrix

corresponding to ak��; �� cannot be formed explicitly, hence stationary smoothers like Jacobi and Gauss±
Seidel cannot be applied. It is well known that the mth CG iterate for solving Akl � gk is of the form

lm � l0 � Gk;mr0;

where

r0 � gk ÿ Akl
0
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is the initial residual and

Gk;mr0 2Kk;m�r0�;
where

Kk;m�r0� � span�r0;Akr0; . . . ;Amÿ1
k r0�

is the mth Krylov subspace.
The multigrid algorithm de®nes an operator B � BL which can be used in a linear iterative process

ln�1 � ln ÿ B Aln� ÿ g�
or as a preconditioner for A. On the coarsest grid we de®ne

B1 � Aÿ1
1 :

For any g 2 Mk, 26 k6L, we de®ne Bkg recursively in terms of Bkÿ1. Let p be any positive integer.
(i) Initialization:

x�0� � 0; q�0� � 0:

(ii) Presmoothing:

x�1� � x�0� � Gk;m g
ÿ ÿ Akx�0�

�
:

(iii) Coarse grid correction:

x�2� � x�1� � Ikq�p�;

where q�i�, i � 1; . . . ; p is de®ned by

q�i� � q�iÿ1� � Bkÿ1 Qkÿ1 g
ÿ� ÿ Akx�1�

�ÿ Akÿ1q�iÿ1��:
(iv) Postsmoothing:

Bkg � x�3� � x�2� � Gk;m g
ÿ ÿ Akx�2�

�
:

In the above algorithm p � 1 and p � 2 correspond to the V-cycle and the W-cycle, respectively.

4. Theoretical results for the multigrid

The analysis in this section is based on a general framework developed by Bramble et al. [9±11]. Since the
bilinear forms ak��; �� are de®ned by solving discrete subdomain problems on di�erent grid levels (see (21)),
the standard variational assumption

ak�Ikl; Ikl� � akÿ1�l; l� 8l 2 Mkÿ1 �33�
is not satis®ed. We employ techniques from [11], where analysis is given without assuming (33). The main
di�culties here are in proving the ``regularity and approximation'' assumption (see (35) below) and treating
the non-stationary CG smoother.

The analysis is based on a recurrence relation for the error propagation operator I ÿ BkAk, which follows
easily from the de®nition of Bk:

I ÿ BkAk � Kk;m I� ÿ IkPkÿ1 � Ik I� ÿ Bkÿ1Akÿ1�pPkÿ1�Kk;m; �34�
where Kk;m � I ÿ Gk;mAk is the CG error propagation operator. As in [11], we make an assumption on the
regularity of the solution and the approximation properties of the discretization. There exists 0 < a6 1 such
that for 26 k6 L:

jAk��I ÿ IkPkÿ1�l; l�j6Ca
kAklk2

vk

 !a

ak�l; l�1ÿa 8l 2 Mk; �35�
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where vk is the largest eigenvalue of Ak. We show in the Appendix A that (35) holds for our application. The
property of the CG smoother required for the convergence analysis is given in Lemma 6.

Lemma 6. Let

Kk;x � I ÿ x
vk

Ak; 0 < x < 2

be the error propagation operator for the weighted Richardson iteration. Then

ak Kk;ml;Kk;ml� �6 ak Km
k;xl;Km

k;xl
� �

8l 2 Mk: �36�

Proof. It is a well known property of CG that (see e.g. [28])

ak e lm� �; e�lm�� � � min
p2P 0

m

ak p Ak� �e l0
ÿ �

; p Ak� �e l0
ÿ �ÿ �

;

where

e�l� � Aÿ1
k gk ÿ l

and

P 0
m � p : p is a polynomial of degree m; p�0�f � 1g:

The lemma now follows, since e�lm� � Kk;me�l0�, Km
k;x 2 P 0

m�Ak�, and l0 2 Mk is an arbitrary vector. �

It follows trivially from the Lemma that the spectrum of Kk;m is in the interval �0; 1� and

kAkKk;mlk6 kAkKm
k;xlk: �37�

We now state and prove a convergence result for the W-cycle. The proof follows closely the proof of
Theorem 7 in [11], but differs in incorporating the bound for the smoother (Lemma 6 vs. assumption (A.4)
in [11]).

Theorem 7. Let p � 2 in the definition of BL. If (35) holds and m is sufficiently large, then there exists a
positive constant M such that

jak��I ÿ BkAk�l; l�j6 dak�l; l� 8l 2 Mk; �38�
where

d � M
M � ma

:

Proof. We ®rst show that

ÿak��I ÿ BkAk�l; l�6 dak�l; l� 8l 2 Mk: �39�
Let ~l � Kk;ml. Using (34) and (32),

ÿak��I ÿ BkAk�l; l� � ÿ ak��I ÿ IkPkÿ1 � Ik�I ÿ Bkÿ1Akÿ1�2Pkÿ1�~l; ~l�
� ÿ ak��I ÿ IkPkÿ1�~l; ~l� ÿ akÿ1��I ÿ Bkÿ1Akÿ1�2Pkÿ1 ~l; Pkÿ1 ~l�
6 ÿ ak��I ÿ IkPkÿ1�~l; ~l�; �40�

using in the last inequality that I ÿ Bkÿ1Akÿ1 is symmetric with respect to akÿ1��; ��. By (35),

ÿak��I ÿ IkPkÿ1�~l; ~l�6Ca
kAk ~lk2

vk

 !a

ak�~l; ~l�1ÿa
: �41�
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With (37) we have

kAk ~lk2

vk
6
kAkKm

k;xlk2

vk
� ak

I ÿ Kk;x

x
Km

k;xl;Km
k;xl

� �
6 1

2mx
ak I
��
ÿ K2m

k;x

�
l; l
�
6 1

2mx
ak�l; l�; �42�

where the second inequality follows from the spectral bound on Kk;x and the inequality

�1ÿ z�z2m6 1

2m
�1ÿ z�

X2mÿ1

i�0

zi � 1

2m
1
ÿ ÿ z2m

�
for 06 z6 1. Combining together (40)±(42) and using the trivial bound

ak�~l; ~l�6 ak�l; l�;
we obtain

ÿak��I ÿ BkAk�l; l�6Ca�2mx�ÿaak�l; l�;
which implies (39) if m is suf®ciently large. We prove the opposite inequality,

ak��I ÿ BkAk�l; l�6 dak�l; l� 8l 2 Mk; �43�
by induction on k. For k � 1 (43) is trivially satis®ed. Assume that (43) holds for k ÿ 1, which implies

akÿ1��I ÿ Bkÿ1Akÿ1�2l; l�6 d2akÿ1�l; l� 8l 2 Mkÿ1:

Now, as in (40), we have

ak��I ÿ BkAk�l; l�6 ak��I ÿ IkPkÿ1�~l; ~l� � d2akÿ1�Pkÿ1 ~l; Pkÿ1 ~l�
� �1ÿ d2�ak��I ÿ IkPkÿ1�~l; ~l� � d2ak�~l; ~l�: �44�

By (35) and a generalized arithmetic±geometric mean inequality,

jak��I ÿ IkPkÿ1�~l; ~l�j6Ca ac
kAk ~lk2

vk

(
� �1ÿ a�cÿa=�1ÿa�ak�~l; ~l�

)
�45�

for any c > 0. Similarly to (42),

kAk ~lk2

vk
6 1

2mx
ak�l; l�
h

ÿ ak Km
k;xl;Km

k;xl
� �i

: �46�

Combining (44)±(46) and applying (36) gives

ak��I ÿ BkAk�l; l�6 1
ÿ ÿ d2

�Caac
2mx

ak�l; l�
h

ÿ ak Km
k;xl;Km

k;xl
� �i

� 1
ÿ� ÿ d2

�
Ca�1ÿ a�cÿa=�1ÿa� � d2

�
ak Km

k;xl;Km
k;xl

� �
: �47�

We ®nish the argument by choosing c such that the two coe�cients above are equal and bounded above by
d (see Theorem 3 in [10] for details). �

Our next result is for the multigrid V-cycle (p � 1). It has been shown in [11] that in this case BL is
symmetric and positive de®nite operator on ML. Therefore, the V-cycle can be used as a preconditioner for
AL. The next theorem indicates that, under a mild assumption on the number of smoothing iterations, the
system BLAL is well conditioned independently of L.
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Theorem 8. Assume that (35) holds and B is defined with p � 1. If m�k� satisfy

b0m�k�6m�k ÿ 1�6 b1m�k� �48�
for some constants b0 and b1 greater than one, then

g0ak�l; l�6 ak�BkAkl; l�6 g1ak�l; l� 8l 2 Mk; �49�
where

g0 P
m�k�a

M � m�k�a and g16
M � m�k�a

m�k�a :

Proof. We ®rst show by induction that

ak��I ÿ BkAk�l; l�6 dkak�l; l� 8l 2 Mk

with dk � M=�M � m�k�a�. This implies the ®rst inequality in (49) with go � 1ÿ dk. We note that the
statement is trivial for k � 1 and assume that it holds for k ÿ 1. Similarly to (44) we have

ak��I ÿ BkAk�l; l�6 �1ÿ dkÿ1�ak��I ÿ IkPkÿ1�~l; ~l� � dkÿ1ak�~l; ~l�: �50�
The remainder of the argument is exactly as in the proof of Theorem 7 ((45)±(47)). To estimate g1, we recall
that (see Theorem 7)

ÿak��I ÿ IkPkÿ1�~l; ~l�6Ca�2m�k�x�ÿaak�l; l�:
The rest of the argument follows the proof of Theorem 6 in [11]. It uses the recurrence relation (34) to show
that

g16
Yk

i�2

1

�
� C

m�i�a
�
6 1� M

m�k�a

using (48) for the last inequality. �

5. Computational results

We present several examples that illustrate numerically the convergence of the multigrid V-cycle (p � 1).
In all cases discontinuous piecewise linear mortar ®nite elements are used, and one presmoothing and one
postsmoothing CG iteration is applied (m � 1). The CG is diagonally preconditioned by the harmonic
average of the projections of the permeability coef®cients onto the mortar spaces.

The ®rst test is on the unit square in R2. We solve a problem with a discontinuous permeability

K � I ; 06 x < 1=2;
10 � I ; 1=2 < x6 1

�
and a given analytical solution

p�x; y� � x2y3 � cos�xy�; 06 x6 1=2;
2x�9

20

ÿ �2
y3 � cos 2x�9

20
y

ÿ �
; 1=26 x6 1:

�
In this test we study both the convergence of the mixed method as well as the convergence of the

multigrid V-cycle. We run the test case on ®ve levels of grid re®nement (both subdomain and mortar grid
elements are divided by two in each direction for each re®nement). The grids and the computed solution on
the ®rst level of re®nement are shown on Fig. 1. A mortar grid with 3 elements is used on each interface Ci;j.
Convergence rates for the mixed method are given in Table 1. Here k � kM is the discrete L2-norm induced by
the midpoint rule on Th (or the trace of Th on C). The rates were established by computing a least squares
®t to the error. We observe numerically convergence rates corresponding to those predicted by the theory.
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We next report the reduction factors for the multigrid V-cycle on the interface. On each grid level dif-
ferent number of multigrid levels are used, so that the coarsest mortar grid always consists of a single
element on each interface. In Table 2 we give the reduction factor d and the number of V-cycles needed for
the solution of the interface problem. We observe that both d and the number of V-cycles are insensitive to
increasing the number of levels.

Our next example is on three-dimensional irregular domain. The domain is de®ned to be the image of the
unit cube via the mapping:

x
y
z

0@ 1A � F
x̂
ŷ
ẑ

0@ 1A � x̂
ŷ � 1

10
sin�6x̂�
ẑ

0@ 1A: �51�

Fig. 1. Computed pressure (shade) and velocity (arrows).

Table 1

Discrete norm errors and convergence rates

1=h kp ÿ phkM jjjuÿ uhjjj kkÿ QhkhkM

12 2.31Eÿ04 1.98Eÿ02 6.75Eÿ04

24 5.87Eÿ05 6.71Eÿ03 1.72Eÿ04

48 1.48Eÿ05 2.29Eÿ03 4.35Eÿ05

96 3.72Eÿ06 7.89Eÿ04 1.09Eÿ05

192 9.70Eÿ07 2.71Eÿ04 3.62Eÿ06

Rate O�h1:98� O�h1:55� O�h1:90�

Table 2

Number of V-cycles and reduction factors

1=h Levels V-cycles d

12 3 14 0.22

24 4 11 0.16

48 5 12 0.15

96 6 12 0.18

192 7 12 0.20
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The pressure and the permeability are

p�x; y; z� � sin�p�x� y � z��; K � 1

1� 100 � �x2 � y2 � z2� :

We employ the expanded mixed method on curvilinear grids [3] and transform the problem to a com-
putational problem with a modi®ed full tensor coe�cient on a union of rectangular grids. The multigrid
algorithm is performed on the rectangular grids which allows for a trivial construction of coarse grids. The
subdomain problems are solved e�ciently by reducing the mixed method to cell-centered ®nite di�erences
for the pressure [4]. After convergence the obtained reference solution is transformed back to the curvilinear
grids.

Table 3

Multigrid V-cycle performance

Domain decomposition Total mortar

elements

Total block

elements

CPU time

(seconds)

V-cycles d

Level 1 (2 multigrid levels)

2� 2� 1 16 378 9.49 19 0.41

2� 2� 2 48 756 6.64 14 0.28

4� 2� 2 112 1512 10.06 18 0.36

4� 4� 2 256 3024 18.23 26 0.50

4� 4� 4 576 6048 11.71 15 0.29

Level 2 (3 multigrid levels)

2� 2� 1 64 3024 34.28 23 0.37

2� 2� 2 192 6048 28.02 14 0.29

4� 2� 2 448 12096 20.50 16 0.34

4� 4� 2 1024 24192 31.44 22 0.43

4� 4� 4 2304 48384 26.25 15 0.28

Level 3 (4 multigrid levels)

2� 2� 1 144 10206 80.25 23 0.38

2� 2� 2 432 20412 50.82 14 0.28

4� 2� 2 1008 40824 69.57 16 0.33

4� 4� 2 2304 81648 72.62 22 0.40

4� 4� 4 5184 163296 53.40 15 0.28

Fig. 2. Computed pressure on the second grid level.
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We solve the problem on a series of grid levels and domain decompositions to study the scalability of
the multigrid algorithm. We run on three grid levels and ®ve di�erent decompositions (see Table 3). On the
®rst grid level the subdomain grids are taken to be 4� 4� 4 and 5� 5� 5 in a checkerboard fashion. The
mortar grids are 2� 2 on each interface. On each subsequent level we re®ne both subdomain and mortar
grids. The computed solution on the second grid level with 2� 2� 2 domains is shown in Fig. 2. In Table
3 we report CPU times, number of V-cycles and reduction factors for the three grid levels and ®ve domain
decompositions. Note that for a ®xed grid level the size of the subdomain problems remains the same when
adding new processors. The results indicate that the algorithm scales very well both with increasing the
number of processors, as well as the number of unknowns. The timings are performed on an Intel
Paragon.

Appendix A. Proof of regularity and approximation assumption

In this section we prove the regularity and approximation assumption (35) for the rectangular RT0

mixed method from the computational results section. We note that the arguments can be extended to
triangular grids, other mixed ®nite element spaces and higher order approximations.

Theorem 9. Assume that each subdomain Xi is convex, the mixed finite element spaces Vk;i � Wk;i are the
lowest order Raviart±Thomas spaces on rectangular-type elements, and the mortar spaces Mk;i;j consist of
continuous or discontinuous piecewise linears on rectangular grids and satisfy (15). Then (35) holds.

Proof. Given any kk 2 Mk, recall from (21) that for 16 i6 n

ak;i�kk; l� � ÿ u�k;i�kk� � mi; l
D E

Ci

8l 2 L2�Ci�;

where u�k;i�kk� is the velocity solution to the subdomain problem (22) and (23). Let (see (31))

uk;i � ÿPMk
i u�k;i�kk� � mi � Ak;ikk;

and let ki � p�i joXi
, where p�i is the solution to

ÿr � Krp�i � 0 in Xi; �A:1�
ÿ Krp�i � mi � uk;i on Ci; �A:2�
p�i � 0 on oXi \ oX �A:3�

Note that (A.1)±(A.3) is well posed even if oXi \ oX � ;, since, using (23),Z
oXi

uk;i dr � ÿ
Z

oXi

u�k;i�kk� � mi dr � ÿ
Z

Xi

r � u�k;i�kk� dx � 0:

By elliptic regularity [27],

kp�i k1�b;Xi
6Ckuk;ikÿ1=2�b;Ci

�A:4�
for 0 < b6 1=2. Let u�i � ÿKrp�i . We now have

ak;i�kk ÿ ki; lk� � uk;i; lk


 �
Ci
ÿ ak;i�ki; lk� � ÿ u�i

�D
ÿ u�k;i�ki�

�
� mi; lk

E
Ci

: �A:5�

Note that u�k;i�ki� is a mixed ®nite element approximation of u�i ; therefore the term on the right in (A.5) can
be bounded by standard mixed method error estimates. Following an argument in [36], Theorem 3.1, which
employs the ak;i��; �� characterization (30), we have

ak;i kk

ÿ ÿPMkÿ1
i ki; kk ÿPMkÿ1

i ki�1=26Chb
kÿ1kp�i k1�b;Xi

6Chb
kÿ1kuk;ikÿ1=2�b;Ci

; �A:6�
using (A.4) for the second inequality. We now write

kuk;ikÿ1=2�b;Ci
6Ckuk;ik1ÿ2b

ÿ1=2;Ci
kuk;ik2b

0;Ci
� Ckuk;ik1ÿ2b

ÿ1=2;Ci
kAk;ikkk2b: �A:7�
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In addition,

kuk;ikÿ1=2;Ci
� sup
kwk1=2;Ci

�1

uk;i;w

 � � sup

kwk1=2;Ci
�1

ak;i kk;P
Mk
i w

ÿ �
6 ak;i�kk; kk�1=2

sup
kwk1=2;Ci

�1

ak;i PMk
i w;PMk

i w
ÿ �

6Cak;i�kk; kk�1=2; �A:8�
using (30) for the last inequality. Combining (A.6)±(A.8),

ak;i kk

ÿ ÿPMkÿ1
i ki; kk ÿPMkÿ1

i ki�6Ch2b
kÿ1kAk;ikkk4bak;i�kk; kk�1ÿ2b

6C
kAk;ikkk2

vk

 !2b

ak;i�kk; kk�1ÿ2b; �A:9�

using that hkÿ16Chk 6Cvÿ1
k . We next notice that, with (32),

akÿ1;i�Pkÿ1kk; lkÿ1� � ak;i�kk; Iklkÿ1� � uk;i; lkÿ1


 � 8lkÿ1 2 Mkÿ1;

which allows us to derive, in a way similar to (A.9):

akÿ1;i PMkÿ1
i kiÿ ÿ Pkÿ1kk;P

Mkÿ1
i ki ÿ Pkÿ1kk

�
6C

kAk;ikkk2

vk

 !2b

ak;i�kk; kk�1ÿ2b: �A:10�

The statement of the theorem now follows with a � 2b, since

ak;i�Iklkÿ1; Iklkÿ1�6Cakÿ1;i�lkÿ1; lkÿ1� 8lkÿ1 2 Mkÿ1: �A:11�
Inequality (A.11) can be shown easily using a scaling argument and the characterization (30). �
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