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SUPERCONVERGENCE FOR CONTROL-VOLUME MIXED FINITE
ELEMENT METHODS ON RECTANGULAR GRIDS∗

THOMAS F. RUSSELL† , MARY F. WHEELER‡ , AND IVAN YOTOV§

Abstract. We consider control-volume mixed finite element methods for the approximation
of second-order elliptic problems on rectangular grids. These methods associate control volumes
(covolumes) with the vector variable as well as the scalar, obtaining local algebraic representation of
the vector equation (e.g., Darcy’s law) as well as the scalar equation (e.g., conservation of mass). We
establish O(h2) superconvergence for both the scalar variable in a discrete L2-norm and the vector
variable in a discrete H(div)-norm. The analysis exploits a relationship between control-volume
mixed finite element methods and the lowest order Raviart–Thomas mixed finite element methods.
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1. Introduction. We consider the second-order elliptic problem in a domain
Ω ⊂ Rd, d = 2 or 3, written as a first-order system

u = −K∇p in Ω,(1.1)

∇ · u = f in Ω,(1.2)

u · n = 0 on ∂Ω.(1.3)

The above equations model single-phase flow in porous media, where p is the fluid
pressure, the vector u is the Darcy velocity, K is a symmetric uniformly positive
definite and bounded diagonal tensor, representing the rock permeability divided by
the fluid viscosity, n is the outward unit normal to ∂Ω, and f is the source term
satisfying the compatibility condition∫

Ω

f dx = 0.

The choice of homogeneous Neumann boundary condition corresponds to an imper-
meable boundary, which is the typical physical situation.

In this paper we consider discretizations for (1.1)–(1.3) based on control-volume
mixed finite element methods (CVMFEM) and establish O(h2) superconvergence for
the pressure and velocity in a discrete L2-norm and H(div)-norm, respectively. Most
of the arguments can be extended to Dirichlet boundary conditions. However, some
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loss of superconvergence occurs on the boundary in that case. Global O(h) conver-
gence has been shown by Chou et al. [9, 10]; here we obtain the O(h2) rate suggested
by various numerical results (e.g., [8, 19, 24, 22]). Superconvergence is proved by
O(h2) estimates of the differences between the scalar and vector discrete solutions
and appropriate projections of the exact solutions.

CVMFEM, first introduced in [8], can be viewed as a type of mixed covolume
method [9, 10, 11]. CVMFEM are closely related to the Raviart–Thomas mixed finite
element methods (MFEM) [27, 7, 28], cell-centered finite difference (CCFD) methods
[29, 30, 4], mimetic finite difference (MFD) methods [5, 21, 6], and multipoint flux
approximation (MPFA) methods [1, 17]. Some of these relationships are explored in
detail in [22].

Like MFEM, CVMFEM are designed to provide simultaneous (accurate) approxi-
mations of pressure and velocity, and local mass conservation,

∫
Q
∇·uh =

∫
Q
f on each

finite element Q, where uh is the computed velocity. These properties can be difficult
to obtain when K is heterogeneous (in particular, discontinuous) and/or anisotropic,
especially when it incorporates irregular geological features. The methods listed above
seek to accomplish this for flow in porous media, among other applications.

Unlike MFEM, CVMFEM have vector control volumes (covolumes) that give
rise to a local discrete Darcy law analogous to (1.1). An engineer measuring the
permeability of a core sample will typically impose a pressure at each end and observe
the flux through the core. The discrete CVMFEM control volume that corresponds
to the discrete flux unknown through a face, consisting of the two adjacent halves of
the elements on either side of the face (see Figure 1), plays the role of this core, with
the element pressures representing the imposed pressures at the ends. The vector
test function associated with the control volume is essentially a piecewise-constant
vector field, similar to a unit vector in the control volume and a zero vector outside
it. The algebraic equation produced by this test function is the local discrete Darcy
law. Thus, CVMFEM represent both physical principles in (1.1)–(1.3) locally.

In MFEM, the test vector belongs to the vector trial space and therefore has
a continuous normal component. Because the test and trial spaces are the same,
the mass matrix is symmetric and positive definite (SPD). In CVMFEM, the normal
component of the test vector is discontinuous at the ends of the control volume, and
can also be discontinuous at the element face for general distorted grids. If K is
elementwise constant and the elements are affine (parallelograms in two dimensions),
the mass matrix is SPD, despite the distinct test and trial spaces; in general, it is not
symmetric, but symmetry can be restored by appropriate numerical integration [19].

On a uniform grid with constant K, the lowest-order Raviart–Thomas MFEM,
denoted RT0, yields a tridiagonal mass matrix with weights 1/6, 2/3, 1/6, and the
basic CCFD results in a diagonal mass matrix. As will be seen below, CVMFEM
leads to weights 1/8, 3/4, 1/8. These are all of the form c, 1 − 2c, c, where c = 0
(CCFD), 1/6 (MFEM), or 1/8 (CVMFEM). In [19], some heuristic reasons to favor
c = 1/8 are presented: on a uniform grid, the second-order truncation error term is
half that of c = 0 and c = 1/6; on a nonuniform grid, only c = 1/8 matches one-sided
compact finite differences, avoiding any first-order local truncation error; in terms
of Fourier modes, the ratio of the discrete eigenvalue to the continuous eigenvalue is
generally closer to 1 for c = 1/8. Numerical results in [22] for homogeneous K show
second-order convergence for both MFEM and CVMFEM; on orthogonal grids, the
flux error for CVMFEM improves on that of MFEM by a factor of approximately 2.6;
on the distorted grids used, CVMFEM is worse by a factor of about 1.3.
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The rest of the paper is organized as follows. In the next section we recall the
Raviart–Thomas MFEM for (1.1)–(1.3). Section 3 describes the CVMFEM and its
relation to the Raviart–Thomas MFEM. Superconvergence for the velocity is estab-
lished in section 4. Section 5 is devoted to superconvergence for the pressure.

2. Mixed finite element methods. We will make use of the following standard
notation. For a subdomain G ⊂ Rd, the L2(G) inner product (or duality pairing) for
scalar and vector valued functions is denoted by (·, ·)G. We denote the norm in the
Sobolev space W k

p (G), k ∈ R, 1 ≤ p ≤ ∞ [2], by ‖ · ‖k,p,G. Let ‖ · ‖k,G be the norm

of the Hilbert space Hk(G) = W k
2 (G). We omit G in the subscript if G = Ω. For a

section of a subdomain boundary S ⊂ Rd−1 we write 〈·, ·〉S and ‖ · ‖0,S for the L2(S)
inner product (or duality pairing) and norm, respectively.

The mixed variational formulation, which is the basis for the MFEM is as follows.
Find u ∈ V and p ∈ W such that

(K−1u,v) = (p,∇ · v), v ∈ V,(2.1)

(∇ · u, w) = (f, w), w ∈ W,(2.2)

where

V = {v ∈ H(div; Ω) : v ·n = 0 on ∂Ω}, W = L2
0(Ω) =

{
w ∈ L2(Ω) :

∫
Ω

w dx = 0

}
,

and

H(div; Ω) = {v : v ∈ (L2(Ω))2, ∇ · v ∈ L2(Ω)}

with a norm

‖v‖V = (‖v‖2 + ‖∇ · v‖2)1/2.

We assume that Ω can be exactly covered by a rectangular-type finite element
partition Th. Let Vh × Wh ⊂ V × W be the lowest-order Raviart–Thomas (RT0)
mixed finite element spaces on Th [27]. More precisely, for all Q ∈ Th,

Vh(Q) = {v = (a1+b1x, a2+b2y, a3+b3z)
T on Q}, Wh(Q) = {w = constant on Q},

Vh = {v ∈ V : v|Q ∈ Vh(Q) ∀Q ∈ Th}, Wh = {w ∈ W : w|Q ∈ Wh(Q) ∀Q ∈ Th},

where the third component of v should be removed if d = 2. The degrees of freedom
of Vh are the constant normal components on the sides. If these are continuous, then
v ∈ H(div; Ω). Key properties of the RT0 spaces are

∇ · Vh = Wh(2.3)

and the existence of an interpolation operator Π : (H1(Ω))d → Vh (see [27, 7]) such
that for q ∈ (H1(Ω))2

(∇ · (Πq − q), w) = 0 ∀w ∈ Wh(2.4)

and which satisfies the continuity and approximation properties

‖Πq‖V ≤ C‖q‖1,(2.5)

‖q − Πq‖0 ≤ Ch|q|1.(2.6)
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Fig. 1. Computational grid and control volumes.

The MFEM for approximating (2.1)–(2.2) is as follows. Find ũh ∈ Vh, p̃h ∈ Wh

such that

(K−1ũh,v) = (p̃h,∇ · v), v ∈ Vh,(2.7)

(∇ · ũh, w) = (f, w), w ∈ Wh.(2.8)

It has been shown in [27] that (2.7)–(2.8) has a unique solution and

‖p− p̃h‖W + ‖u − ũh‖V = O(h).

A number of authors have studied superconvergence for the above method or the
closely related CCFD method [25, 14, 30, 15, 16, 18, 4] and have shown results of the
form

|||p− p̃h|||W + |||u − ũh|||V = O(h2),

where ||| · |||W and ||| · |||V are discrete norms defined in (4.8) and (4.9) below (or
some variants of them). The goal of this paper is to obtain similar superconvergence
results for the CVMFEM.

3. Control volume mixed finite element methods. Denote the elements of
Th by Qi,j for d = 2 or by Qi,j,k for d = 3; see Figure 1 for d = 2. For simplicity, in
most of the paper we will use the notation and present the arguments for d = 2. The
case d = 3 is a trivial extension.

The center of Qi,j is denoted by ci,j . The midpoints of the left and right edges are
denoted by ci−1/2,j and ci+1/2,j , respectively, with similar notation for the bottom
and top edges. With each edge we associate a control volume, where Darcy’s law
(1.1) is approximated. In particular, letting ci+1/2,j = (xi+1/2, yj), ci,j = (xi, yj),
etc., define

Qi+1/2,j := (xi, xi+1) × (yj−1/2, yj+1/2) ∩ Ω,(3.1)

Qi,j+1/2 := (xi−1/2, xi+1/2) × (yi, yi+1) ∩ Ω.(3.2)
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The control volumes Qi+1/2,j and Qi,j+1/2 are referred to as v1-volumes and v2-
volumes, respectively. The control volumes that have at least one edge on ∂Ω are
called border volumes.

Define the velocity test space

Yh = {(v1
h, v

2
h) : v1

h|Qi+1/2,j
= constant ∀Qi+1/2,j , v

1
h = 0 on border v1-volumes

v2
h|Qi,j+1/2

= constant ∀Qi,j+1/2, v
2
h = 0 on border v2-volumes}.

Thus, for example, the basis function yi+1/2,j ∈ Yh associated with ci+1/2,j is
the vector (χi+1/2,j , 0), i.e., (1, 0) on Qi+1/2,j , (0, 0) elsewhere. To see the form of the
associated algebraic equation, write (1.1) as K−1u +∇p = 0, form the inner product
with yi+1/2,j , and integrate∫ xi+1

xi

∫ yj+1/2

yj−1/2

(K1)−1u1 dy dx +

∫ yj+1/2

yj−1/2

(p(xi+1, y) − p(xi, y)) dy = 0,

where u = (u1, u2) and K = diag(K1,K2). Suppose that K is elementwise constant
on Qi,j and Qi+1,j . Taking u = vi−1/2,j ,vi+1/2,j ,vi+3/2,j ∈ Vh, the usual RT0 vector
basis functions, we obtain the tridiagonal mass-matrix coefficients

1/8 (K1
i,j)

−1hx
i h

y
j , 3/8 (K1

i,j)
−1hx

i h
y
j + 3/8 (K1

i+1,j)
−1hx

i+1h
y
j , 1/8 (K1

i+1,j)
−1hx

i+1h
y
j ,

where hx and hy are the element dimensions. For homogeneous K and a uniform
grid, this reduces to 1/8, 3/4, 1/8, as noted above.

3.1. Variational formulation for CVMFEM. Following [9], define the bi-
linear forms a(·, ·) : (L2(Ω))d × (L2(Ω))d → R, b(·, ·) : Yh × H1(Ω) → R, and
c(·, ·) : H(div; Ω) × L2(Ω) → R as follows:

a(u,v) := (K−1u,v),

b(v, p) :=
∑
i,j

〈p, (v1, 0)T · n〉∂Qi+1/2,j
+
∑
i,j

〈p, (0, v2)T · n〉∂Qi,j+1/2
,

c(u, w) := (∇ · u, w).

Lemma 3.1. If (u, p) ∈ H(div; Ω)×H1(Ω) solves (1.1)–(1.3), then (u, p) satisfies
the variational formulation

a(u,v) + b(v, p) = 0, v ∈ Yh,(3.3)

c(u, w) = (f, w), w ∈ Wh.(3.4)

Proof. Equation (1.1) implies, for v ∈ Yh,

(K−1u,v) = (−∇p,v) =
∑
i,j

(−∇p, (v1, 0)T )Qi+1/2,j
+
∑
i,j

(−∇p, (0, v2)T )Qi,j+1/2

= −
∑
i,j

〈p, (v1, 0)T · n〉∂Qi+1/2,j
−
∑
i,j

〈p, (0, v2)T · n〉∂Qi,j+1/2
,

giving (3.3). Equation (3.4) follows trivially from (1.2).
The CVMFEM may be formulated as follows. Find (uh, ph) ∈ Vh×Wh such that

a(uh,v) + b(v, ph) = 0, v ∈ Yh,(3.5)

c(uh, w) = (f, w), w ∈ Wh.(3.6)
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Note that (3.5) is a Petrov–Galerkin FEM, since the test functions differ from the
trial functions. We next recall the transfer operator γh : Vh → Yh, introduced in [9].
Define, for all v ∈ Vh,

γhv =

⎛
⎝∑

i,j

v1(ci+1/2,j)χi+1/2,j ,
∑
i,j

v2(ci,j+1/2)χi,j+1/2

⎞
⎠ .

It has been shown in [9] that for constants α > 0 and C independent of h,

b(γhv, w) = −c(v, w) ∀ v ∈ Vh, w ∈ Wh,(3.7)

a(v, γhv) ≥ α‖v‖2
0 ∀ v ∈ Vh,(3.8)

‖γhv‖0 ≤ C‖v‖0.(3.9)

4. Velocity superconvergence analysis. In this section we establish super-
convergence for the velocity in the CVMFEM. In the treatment of the permeability
K we will make use of the following piecewise smooth space. Let Wα

Th
consist of

functions ϕ such that ϕ|Q ∈ Wα(Q) for all Q ∈ Th and ‖ϕ‖α,Q is uniformly bounded,
independently of h. Let

|||ϕ|||α = max
Q∈Th

‖ϕ‖α,Q.

Subtracting (3.5)–(3.6) from (3.3)–(3.4) gives the error equations

a(u − uh,v) + b(v, p− ph) = 0, v ∈ Yh,(4.1)

c(u − uh, w) = 0, w ∈ Wh.(4.2)

We first note that (4.2) implies

0 = c(u − uh, w) = (∇ · (u − uh), w) = (∇ · (Πu − uh), w) ∀w ∈ Wh

using (2.4). Therefore, using (2.3),

∇ · (Πu − uh) = 0.(4.3)

Let Ph be the L2-orthogonal projection onto Wh, satisfying for any ϕ ∈ L2(Ω)

(ϕ− Phϕ,w) = 0 ∀w ∈ Wh.(4.4)

Taking v = γh(Πu − uh) and w = Php− ph in (4.1)–(4.2) implies

a(Πu − uh, γh(Πu − uh))

= −a(u − Πu, γh(Πu − uh)) − b(γh(Πu − uh), p− ph),(4.5)

c(Πu − uh, Php− ph) = 0.(4.6)

The second term on the right in (4.5) can be manipulated as follows:

b(γh(Πu − uh), p− ph) = b(γh(Πu − uh), p− Php) + b(γh(Πu − uh), Php− ph)

= b(γh(Πu − uh), p− Php) − c(Πu − uh, Php− ph)

= b(γh(Πu − uh), p− Php),
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using (3.7) and (4.6) in the last equality. Therefore (4.5) gives

a(Πu − uh, γh(Πu − uh)) = −a(u − Πu, γh(Πu − uh)) − b(γh(Πu − uh), p− Php).
(4.7)

Lemma 4.4 implies that

|a(u − Πu, γh(Πu − uh)| ≤ Ch2|||K−1|||1,∞‖u‖2‖Πu − uh‖0.

Using (4.3), Lemma 4.5 gives

|b(γh(Πu − uh), p− Php)| ≤ Ch2‖p‖3‖Πu − uh‖0.

With the above two bounds and (3.8), (4.7) implies the following superconvergence
result.

Theorem 4.1. For the CVMFEM approximation (uh, ph), there exists a constant
C independent of h such that

‖Πu − uh‖0 ≤ Ch2|||K−1|||1,∞(‖u‖2 + ‖p‖3).

Remark 4.1. The velocity superconvergence result of Theorem 4.1 and the pres-
sure superconvergence bound of Theorem 5.1 require global smoothness of u and p.
There are practical cases when the solution is locally smooth on a given region but
possesses reduced regularity globally, such as aquifers with faults or multiple rock lay-
ers. Such cases could be treated by establishing interior and negative norm bounds,
using techniques developed in [26, 14].

The above result immediately implies superconvergence for the velocity in an L2

sense along the Gaussian lines. Consider an element Q = [a1, b1] × [a2, b2]. Following
[18, 16], for a vector q = (q1, q2) define

|||q1|||21,Q = (b2 − a2)

∫ b1

a1

∣∣∣∣q1
(
x1,

a2 + b2
2

)∣∣∣∣
2

dx1,

|||q2|||22,Q = (b1 − a1)

∫ b2

a2

∣∣∣∣q2
(
a1 + b1

2
, x2

)∣∣∣∣
2

dx2,

|||q|||2 =

2∑
i=1

∑
Q∈Th

|||qi|||2i,Q.

Note that for q ∈ Vh, |||q||| = ‖q‖0.
Corollary 4.2. There exists a constant C independent of h such that

|||u − uh||| ≤ Ch2|||K−1|||1,∞(‖u‖2 + ‖p‖3).

Proof: It was shown in [16] that

|||u − Πu||| ≤ Ch2|u|2,

where | · |2 denotes the H2-seminorm. Also, using Theorem 4.1,

|||Πu − uh||| = ‖Πu − uh‖0 ≤ Ch2|||K−1|||1,∞(‖u‖2 + ‖p‖3).
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The assertion of the corollary follows from the above two bounds and the triangle
inequality.

It is also easy to see that ∇ · (u− uh) is superconvergent at the midpoints of the
elements. Define, for a scalar function g,

|||g||| =

⎛
⎝∑

i,j

|Qi,j |g(ci,j)2
⎞
⎠

1/2

.(4.8)

Using (4.3) and (2.4),

|||∇ · (u − uh)||| = |||∇ · (u − Πu)||| = |||∇ · u − ∇̂ · u||| ≤ Ch2‖∇ · u‖2,∞,

where the last inequality follows from Lemma 4.6. Defining

|||q|||2V = |||q|||2 + |||∇ · q|||2,(4.9)

the above results can be summarized as follows.
Corollary 4.3. There exists a constant C independent of h such that

|||u − uh|||V ≤ Ch2(‖u‖2 + ‖∇ · u‖2,∞ + ‖p‖3).(4.10)

We next proceed with the three lemmas needed in the proof of Theorem 4.1.
Lemma 4.4. There exists a constant C independent of h such that, for all v ∈ Vh,

|a(u − Πu, γhv)| ≤ Ch2|||K−1|||1,∞‖u‖2‖v‖0.

Proof. We first show that if q ∈ (P1(Q))2, where Pk is the space of polynomials
of degree ≤ k, then∫

Q

(q − Πq)γhv dx dy = 0 ∀v ∈ Vh, Q ∈ Th.(4.11)

The argument follows the proof of Lemma 3.1 in [16]. Let Q = [a, b] × [c, d] and let
L1(x) and L̃1(y) be the linear Legendre polynomials on [a, b] and [c, d], respectively.
It is easy to see that any q ∈ (P 1(Q))2 can be decomposed into

q(x, y) = q̄(x, y) + (αL̃1(y), βL1(x))T ,

where q̄ ∈ Vh(Q). Since q̄ − Πq̄ = 0, it is enough to establish (4.11) for q(x, y) =
(αL̃1(y), βL1(x))T . It is shown in [16] that in this case Πq = 0. Therefore∫

Q

(q − Πq)γhv dx dy =

∫
Q

qγhv dx dy

=

∫
Q

(αL̃1(y)(γhv)1(x, y) + βL1(x)(γhv)2(x, y)) dx dy = 0,

using that for any fixed x0 ∈ [a, b], (γhv)1(x0, y) ∈ P0[c, d], that for any fixed y0 ∈
[c, d], (γhv)2(x, y0) ∈ P0[a, b], and the orthogonality properties of L1(x) and L̃1(y).

We now have

a(u − Πu, γhv) = (K−1(u − Πu), γhv)

=
∑
Q∈Th

[K−1
Q (u − Πu, γhv)Q + ((K−1 −K−1

Q )(u − Πu), γhv)Q],
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where K−1
Q is the value of K−1 at the center of Q. Therefore

|a(u − Πu, γhv)| ≤ C‖K−1‖0,∞
∑
Q∈Th

|(u − Πu, γhv)Q|

+ Ch|||K−1|||1,∞‖u − Πu‖0‖γhv‖0.

(4.12)

Using (4.11), an application of the Bramble–Hilbert lemma [12] implies

|(u − Πu, γhv)Q| ≤ Ch2|u|2,Q‖γhv‖0,Q,

which combined with (4.12), (2.6), and (3.9) completes the proof.
Lemma 4.5. There exists a constant C independent of h such that for all v ∈ Vh,

|b(γhv, p− Php)| ≤ Ch2‖p‖3‖v‖V.

Proof. Let ei+1/2,j = ∂Qi+1/2,j ∩Qi,j and ei,j+1/2 = ∂Qi,j+1/2 ∩Qi,j . Note that
in the sums in

b(γhv, p− Php)

=
∑
i,j

〈p− Php, ((γhv)1, 0)T · n〉∂Qi+1/2,j
+
∑
i,j

〈p− Php, (0, (γhv)2)T · n〉∂Qi,j+1/2
,

every edge ei+1/2,j and ei,j+1/2 appears twice (from the two neighboring covolumes).

Using that ∂v1

∂x and ∂v2

∂y are constants on each element Qi,j , we have

b(γhv, p− Php)

=
∑
i,j

(
hx
i

∂v1

∂x

∫
ei+1/2,j

(p− Php) dy + hy
j

∂v2

∂y

∫
ei,j+1/2

(p− Php) dx

)

=
∑
i,j

(
∂v1

∂x

(
hx
i

∫
ei+1/2,j

p dy −
∫
Qi,j

p dxdy

)

+
∂v2

∂y

(
hy
j

∫
ei,j+1/2

p dx−
∫
Qi,j

p dxdy

))
(4.13)

=
∑
i,j

((
p,

∂v1

∂x

)
Qi,j ,Mx

−
(
p,

∂v1

∂x

)
Qi,j

+

(
p,

∂v2

∂y

)
Qi,j ,My

−
(
p,

∂v2

∂y

)
Qi,j

)
,

where (·, ·)Q,Mx is the quadrature rule on Q which uses the midpoint rule in x and
exact integration in y, and (·, ·)Q,My uses exact integration in x and the midpoint
rule in y. Since the midpoint rule is exact for linear polynomials, the Peano kernel
theorem [13, Theorem 3.7.1] implies(

p,
∂v1

∂x

)
Qi,j ,Mx

−
(
p,

∂v1

∂x

)
Qi,j

=

∫
Qi,j

ϕ(x)
∂2p

∂x2
(x, y)

∂v1

∂x
dxdy

=

∫
Qi,j

ϕ(x)
∂2p

∂x2
(x, y)∇ · v dxdy −

∫
Qi,j

ϕ(x)
∂2p

∂x2
(x, y)

∂v2

∂y
dxdy ≡ T1 + T2,(4.14)

where

ϕ(x) =

{
(x− xi−1/2)

2/2, xi−1/2 ≤ x ≤ xi,
(x− xi+1/2)

2/2, xi ≤ x ≤ xi+1/2.
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For the first term we have

|T1| ≤ Ch2‖p‖2,Qi,j‖∇ · v‖0,Qi,j .(4.15)

Integrating by parts in T2 gives

T2 =

∫
Qi,j

ϕ(x)
∂3p

∂x2∂y
(x, y)v2(x, y) dxdy

−
(∫

ei,j,t

−
∫
ei,j,b

)
ϕ(x)

∂2p

∂x2
(x, y)v2(x, y) dx ≡ T2,1 + T2,2,(4.16)

where ei,j,t and ei,j,b are the top and the bottom edge of Qi,j , respectively. For T2,1

we have

|T2,1| ≤ Ch2‖p‖3,Qi,j‖v‖0,Qi,j .(4.17)

For T2,2 we notice that v2 is continuous across horizontal edges and the assumed

regularity of p(x, y) implies that the trace of ∂2p
∂x2 is well defined. When summing over

all elements, each edge integral will appear twice from the expressions for the two
neighboring elements, with opposite signs. Therefore∑

i,j

T2,2 = 0.(4.18)

Combining (4.14)–(4.18) implies

∑
i,j

((
p,

∂v1

∂x

)
Qi,j ,Mx

−
(
p,

∂v1

∂x

)
Qi,j

)
≤ Ch2‖p‖3‖v‖V.

The second error term in (4.13) can be bounded in a similar way. Note that for d = 3,
a similar argument goes through with two terms analogous to T2.

Lemma 4.6. For all g ∈ W 2
∞ there exists a constant C independent of h such

that

|||g − Phg||| ≤ Ch2‖g‖2,∞.

Proof. Let Q ∈ Th. The Taylor expansion with integral remainder about the
midpoint (x0, y0) of Q gives for any (x, y) ∈ Q

g(x, y) = g(x0, y0) + (x− x0)
∂g

∂x
(x0, y0) + (y − y0)

∂g

∂y
(x0, y0) + R(x, y),

where |R(x, y)| ≤ Ch2‖g‖2,∞,Q. Integrating the above equation over Q and using
that

∫
Q
g =

∫
Q
Phg gives

|Q|(Phg(x0, y0) − g(x0, y0)) =

∫
Q

R(x, y) dxdy,

which implies

|Phg(x0, y0) − g(x0, y0)| ≤ Ch2‖g‖2,∞,Q.

The statement of the lemma now follows from the definition (4.8) of ||| · |||.
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5. Pressure superconvergence analysis. In this section we employ a duality
argument to derive superconvergence for the pressure at the cell centers. We will
make use of the following continuity property of Π [23, 3]. For any ε > 0,

‖Πq‖0 ≤ C(‖q‖ε + ‖∇ · q‖0).(5.1)

Consider the auxiliary problem

−∇ ·K∇ϕ = Php− ph in Ω,(5.2)

−K∇ϕ · n = 0 on ∂Ω,

which is well posed since
∫
Ω
Php =

∫
Ω
ph = 0. Elliptic regularity [20] implies that

there exists ε > 0 such that

‖ϕ‖1+ε ≤ C‖Php− ph‖0.(5.3)

Note that (5.3) holds for L-shaped domains. Let φ = −K∇ϕ. We have

‖Php− ph‖2
0 = (Php− ph,∇ · φ) = (Php− ph,∇ · Πφ) = c(Πφ, Php− ph)

= −b(γhΠφ, Php− ph) = −b(γhΠφ, Php− p) − b(γhΠφ, p− ph)

= −b(γhΠφ, Php− p) + a(u − uh, γhΠφ),(5.4)

using (4.1) with v = γhΠφ. By Lemma 4.5,

|b(γhΠφ, Php− p)| ≤ Ch2‖p‖3‖Πφ‖V
≤ Ch2‖p‖3(‖φ‖ε + ‖∇ · φ‖0) ≤ Ch2|||K|||ε,∞‖p‖3‖Php− ph‖0

using (5.1), (5.3), and that ‖∇·Πφ‖0 ≤ ‖∇·φ‖0, which follows from ∇·Πφ = Ph∇ · φ.
For the last term in (5.4) we write

|a(u − uh, γhΠφ)| = |a(u − Πu, γhΠφ) + a(Πu − uh, γhΠφ)|
≤ C(h2|||K−1|||1,∞‖u‖2‖Πφ‖0 + ‖K−1‖0,∞‖Πu − uh‖0‖γhΠφ‖0)

≤ Ch2|||K−1|||1,∞(‖u‖2 + ‖p‖3)‖Πφ‖0

≤ Ch2|||K|||ε,∞|||K−1|||1,∞(‖u‖2 + ‖p‖3)‖Php− ph‖0

using Lemma 4.4, Theorem 4.1, (3.9), (5.1), (5.3), and (5.2). A combination of (5.4)
and the above two bounds gives the following pressure superconvergence result.

Theorem 5.1. For the CVMFEM approximation (uh, ph), there exists a constant
C independent of h such that

‖Php− ph‖0 ≤ Ch2|||K|||ε,∞|||K−1|||1,∞(‖u‖2 + ‖p‖3).

It is now easy to obtain superconvergence for the pressure at the midpoints of
the elements. Let |||w|||W = |||w|||, where |||w||| is defined in (4.8), and note that
|||w|||W = ‖w‖0 for all w ∈ Wh.

Corollary 5.2. There exists a constant C independent of h such that

|||p− ph|||W ≤ Ch2|||K|||ε,∞|||K−1|||1,∞(‖u‖2 + ‖p‖2,∞ + ‖p‖3).

Proof. The result follows immediately from the triangle inequality

|||p− ph|||W ≤ |||p− Php|||W + |||Php− ph|||W ,

Lemma 4.6, and Theorem 5.1.
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