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1. Introduction

Modeling of multiphase flow in permeable media plays a central role in subsur-
face environmental remediation as well as in problems associated with production
of hydrocarbon energy from existing oil and gas fields. Numerical simulation is
essential for risk assessment, cost reduction, and rational and efficient use of re-
sources.

The contamination of groundwater is one of the most serious environmental
problems facing the world. For example, more than 50% of drinking water in the
Unites States comes from groundwater. More than 10,000 active military instal-
lations and over 6,200 closed installations in the United States require subsurface
remediation. The process is difficult and extremely expensive and only now is tech-
nology emerging to cope with this severe and widespread problem. Hydrocarbons
contribute almost two-thirds of the nation’s energy supply. Moreover, recoverable
reserves are being increased twice as fast by enhanced oil recovery techniques as by
exploration.

Features that make the above problems difficult for numerical simulation in-
clude: multiple phases and chemical components, multi-scale heterogeneities, stiff
gradients, irregular geometries with internal boundaries such as faults and layers,
and multi-physics. Because of the uncertainty in the data, one frequently assumes
stochastic coefficients and thus is forced to multiple realizations; therefore both
computational efficiency and accuracy are crucial in the simulations. For efficiency,
the future lies in developing parallel simulators which utilize domain decomposition
algorithms.

One may ask what are the important aspects of parallel computation for these
complex physical models. First, in all cases, one must be able to partition dynam-
ically the geological domain based upon the physics of the model. Second, efficient
distribution of the computations must be performed. Critical issues here are load
balancing and minimal communication overhead. It is important to note that the
two decompositions may be different.

This work was supported in part by the U.S. Department of Energy and the National Science

Foundation.

c©0000 (copyright holder)

1



2 MARY F. WHEELER AND IVAN YOTOV

In this paper we will discuss a novel numerical methodology for subsurface
modeling based on multiblock domain decomposition formulations. Multiblock
discretizations involve the introduction of special approximating spaces (mortars)
on interfaces of adjacent subdomains. This paradigm is consistent with a physi-
cal/engineering description of the mathematical equations: that is, the equations
hold with their usual meaning on the sub-domains, which have physically meaning-
ful interface boundary conditions between them. The following features make the
multiblock approach computationally attractive.

In many cases geometrically highly irregular domains can be described as unions
of relatively simple blocks. Each block is independently covered by a relatively
simple (e.g. logically rectangular) grid. The grids do not have to match on the
interfaces between blocks. The local grid structure allows for more efficient and
accurate discretization techniques to be employed. (For example, mixed finite el-
ement/finite volume methods are more accurate and efficient on structured than
unstructured grids). Moreover, structured and unstructured grids could be coupled,
if the geometry of a given block is very irregular.

Since the numerical grids may be non-matching across interfaces, they can be
constructed to follow large scale geological features such as faults, heterogeneous
layers, and other internal boundaries. This is critical for the accuracy of the nu-
merical methods.

The multiblock approach allows for rigorous coupling of different physical pro-
cesses, mathematical models, or discretization methods in different parts of the
simulation domain (e.g., coupling underground with surface flow or coupling mixed
finite element with standard finite element methods).

Dynamic grid adaptivity can be performed locally on each block. This is very
convenient for the fast reconstruction of grids and calculation of stiffness matrices
in time-dependent problems. Mortar degrees of freedom may also vary, providing
an additional degree of adaptivity. For complex problems with multiscale hetero-
geneities and behavior, this approach provides a new mechanism for upscaling by
computing an effective flow field without having to compute effective permeabilities.
Moreover, the jump in fluxes along interfaces is a good indicator for the magnitude
of the local discretization error.

The multiblock structure of the discrete systems of equations allows for efficient
parallel domain decomposition solvers and preconditioners, which maximize data
and computation locality, to be designed and applied. In addition, weighted space
filling curve techniques provide efficient tools for distributing computations among
processors. Near optimal load balancing and minimal communication overhead can
be achieved, even for unstructured or dynamically adapted grids and computation-
ally rough problems (problems with a nonuniform computational load) [26].

Mortar finite elements have been successfully applied for standard finite element
and spectral finite element discretizations on non-matching grids (see, e.g. [9, 8]).

We have demonstrated in recent work that mortar domain decomposition is a
viable approach for modeling subsurface flow and transport. Physical and mathe-
matical considerations lead us to emphasize locally mass conservative schemes, in
particular mixed finite element (finite volume) methods for subdomain discretiza-
tions. Theoretical and numerical results for single phase flow indicate multiblock
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mixed finite element methods are highly accurate (superconvergent) for both pres-
sure and velocity [27, 1, 5, 7, 29]. A parallel non-overlapping domain decompo-
sition implementation, based on a method originally proposed by Glowinski and
Wheeler [16, 13, 12], provides an efficient scalable solution technique [27]. Some
efficient preconditioners have also been developed [18]. An extension of the method
to a degenerate parabolic equation arising in two phase flow is presented in [28],
where optimal convergence is shown.

In this paper we present a nonlinear domain decomposition algorithm for mul-
tiphase flow in porous media, based on mortar mixed finite element discretizations.
The global discrete nonlinear system of equations is reduced to a nonlinear interface
problem in the mortar space. The results demonstrate that this approach works
very well for systems of transient highly non-linear differential equations.

The rest of the paper is organized as follows. In the next section we present a
multiblock formulation and discretization for a two phase flow model. The domain
decomposition algorithm is described in Section 3. Computational results, including
some results on mortar adaptivity and upscaling are given in Section 4. We close
in Section 5 with remarks on possible extensions and conclusions.

2. Multiblock formulation and discretization

To illustrate the numerical technique, we consider a two-phase flow model.
In a multiblock formulation the domain Ω ⊂ R3 is decomposed into a series of
subdomains Ωk, k = 1, ..., nb. Let Γkl = ∂Ωk ∩ ∂Ωl be the interface between Ωk
and Ωl. We note that Γkl does not have to coincide with an edge (face) of either
subdomain.

The governing mass conservation equations are imposed on each subdomain
Ωk:

(1)
∂(φραSα)

∂t
+∇ ·Uα = qα,

where α = w (wetting), n (non-wetting) denotes the phase, Sα is the phase satu-
ration, ρα = ρα(Pα) is the phase density, φ is the porosity, qα is the source term,
and

(2) Uα = −kα(Sα)K
µα

ρα(∇Pα − ραg∇D)

is the Darcy velocity. Here Pα is the phase pressure, kα(Sα) is the phase relative
permeability, µα is the phase viscosity, K is the rock permeability tensor, g is the
gravitational constant, and D is the depth. On each interface Γkl the following
physically meaningful continuity conditions are imposed:

Pα|Ωk
= Pα|Ωl

,(3)

[Uα · ν]kl ≡ Uα|Ωk
· νk +Uα|Ωl

· νl = 0,(4)

where νk denotes the outward unit normal vector on ∂Ωk. The above equations are
coupled via the volume balance equation and the capillary pressure relation

(5) Sw + Sn = 1, pc(Sw) = Pn − Pw,
which are imposed on each Ωk and Γkl. We assume that no flow Uα · ν = 0 is
imposed on ∂Ω, although more general types of boundary conditions can also be
treated.
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2.1. Discretization spaces. It is important to choose properly the subdo-
main and interface discretization spaces in order to obtain a stable and accurate
scheme. A variant of the mixed method, the expanded mixed method, has been
developed for accurate and efficient treatment of irregular domains. The imple-
mentation and analysis of the method for single phase flow have been described in
several previous works (see [6, 2, 3] for single block and [27, 5, 29] for multiblock
domains). The original problem is transformed into a problem on a union of regular
computational (reference) grids. The permeability after the mapping is usually a
full tensor (except in some trivial cases). The mixed method could then be approx-
imated by cell-centered finite differences for the pressure, which is an efficient and
highly accurate scheme [6].

To simplify the presentation we will only describe here the rectangular reference
case. For a definition of the spaces on logically rectangular and triangular grids,
we refer to [2] (also see [24, 10]). Let us denote the rectangular partition of Ωk
by Thk

, where hk is associated with the size of the elements. The lowest order
Raviart-Thomas spaces RT0 [23] are defined on Thk

by

Ṽhk
=
{

v = (v1, v2, v3) : v|E = (α1x1 + β1, α2x2 + β2, α3x3 + β3)
T :

αl, βl ∈ R for all E ∈ Thk
,

and each vl is continuous in the lth coordinate direction
}

,

Vhk
=
{

v ∈ Ṽhk
: v · νk = 0 on ∂Ωk ∩ ∂Ω

}

Whk
=
{

w : w|E = α : α ∈ R for all E ∈ Thk

}

.

To impose the interface matching condition (3)–(4) we introduce a Lagrange mul-
tiplier or mortar finite element space Mhkl

defined on a rectangular grid Thkl
on

Γkl, where hkl is associated with the size of the elements in Thkl
. In this space

we approximate the interface pressures and saturations, and impose weakly normal
continuity of fluxes.

If the subdomain grids adjacent to Γkl match, we take Thkl
to be the trace of

the subdomain grids and define the matching mortar space by

Mm
hkl

= {µ : µ|e = α : α ∈ R, for all e ∈ Thkl
}.

If the grids adjacent to Γkl are non-matching, the interface grid need not match
either of them. Later we impose a mild condition on Thkl

to guarantee solvability
of the numerical scheme. We define our non-matching mortar space on an element
e ∈ Thkl

by

Mn
h (e) =

{

αξ1ξ2 + βξ1 + γξ2 + δ : α, β, γ, δ ∈ R
}

,

where ξl are the coordinate variables on e. Then, for each Γkl, we give two possibil-
ities for the non-matching mortar space, a discontinuous and a continuous version,
as

Mn,d
hkl

=
{

µ : µ|e ∈Mn
h (e) for all e ∈ Thkl

}

,

Mn,c
hkl

=
{

µ : µ|e ∈Mn
h (e) for all e ∈ Thkl

, µ is continuous on Γkl
}

.

We denote by Mhkl
any choice of Mn,d

hkl
, Mn,c

hkl
, or Mm

hkl
(on matching interfaces).

Remark 2.1. The usual piece-wise constant Lagrange multiplier space for RT0
is not a good choice in the case of non-matching grids, since it only provides O(1)
approximation on the interfaces and a suboptimal global convergence. With the
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above choice for mortar space, optimal convergence and, in some cases, supercon-
vergence is recovered for both pressure and velocity (see [27, 1] for single phase
flow and [28] for two phase flow).

2.2. The expanded mortar mixed finite element method. Following
[6], let, for α = w, n,

Ũα = −∇Pα.
Then

Uα = −kα(Sα)K
µα

ρα(Ũα − ραg∇D).

Before formulating the method, we note that two of the unknowns can be eliminated
using relations (5). Therefore the primary variables can be chosen to be one pressure
and one saturation which we denote by P and S.

Let 0 = t0 < t1 < t2 < ..., let ∆tn = tn − tn−1, and let fn = f(tn).
In the backward Euler multiblock expanded mixed finite element approximation

of (1)-(5) we seek, for 1 ≤ k < l ≤ nb and n = 1, 2, 3..., Un
h,α|Ωk

∈ Vhk
, Ũn

h,α|Ωk
∈

Ṽhk
, Pnh |Ωk

∈Whk
, Snh |Ωk

∈Whk
, P̄nh |Γkl

∈Mhkl
, and S̄nh |Γkl

∈Mhkl
such that, for

α = w and n,
∫

Ωk

Snh,α − Sn−1h,α

∆tn
w dx+

∫

Ωk

∇ ·Un
h,α w dx =

∫

Ωk

qα w dx, w ∈Whk
,(6)

∫

Ωk

Ũn
h,α · v dx =

∫

Ωk

Pnh,α∇ · v dx−
∫

∂Ωk\∂Ω

P̄nh,αv · νk dσ, v ∈ Vhk
,(7)

∫

Ωk

Un
h,α · ṽ dx =

∫

Ωk

knh,αK

µh,α
ρnh,α(Ũ

n
h,α − ρnh,αg∇D) · ṽ dx, ṽ ∈ Ṽhk

,(8)

∫

Γkl

[Un
h,α · ν]kl µdσ = 0, µ ∈Mhkl

.(9)

Here knh,α and ρnh,α ∈ Whk
are given functions of the subdomain primary variables

Pnh and Snh . The mortar functions P̄nh,α can be computed using(5), given the mortar

primary variables P̄nh and S̄nh .

Remark 2.2. Introducing the pressure gradients Ũα in the expanded mixed
method allows for proper handling of the degenerate (for Sα = 0) relative per-
meability kα(Sα) in (7)–(8). It also allows, even for a full permeability tensor K,
to accurately approximate the mixed method on each subdomain by cell-centered
finite differences for Ph and Sh. This is achieved by approximating the vector in-
tegrals in (7) and (8) by a trapezoidal quadrature rule and eliminating Ũh,α and
Uh,α from the system [6, 2, 3].

Remark 2.3. A necessary condition for solvability of the scheme is that, for
any φ ∈Mhkl

,

(10) Qh,kφ = Qh,lφ = 0⇒ φ = 0,

where Qh,k is the L2-projection onto Vhk
· νk. This is not a very restrictive condi-

tion and requires that the mortar grid is not too fine compared to the subdomain
grids. One choice that satisfies this condition for both continuous and discontinu-
ous mortars is to take the trace of either subdomain grid and coarsen it by two in
each direction (see [27, 1] for details).
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3. Domain decomposition

To solve the discrete system (6)–(9) on each time step, we reduce it to an
interface problem in the mortar space. This approach is based on a domain decom-
position algorithm for single phase flow developed originally for conforming grids
[16], and later generalized to non-matching grids coupled with mortars [27].

3.1. Interface formulation. Let

Mh =
⊕

1≤k<l≤nb

Mhkl

denote the mortar space on Γ = ∪1≤k<l≤nb
Γkl and letMh =Mh×Mh. We define a

non-linear interface functional Bn :Mh×Mh → R as follows. For ψ = (P̄nh , S̄
n
h )
T ∈

Mh and µ = (µw, µn) ∈Mh, let

Bn(ψ, µ) =
∑

1≤k<l≤nb

∫

Γkl

([Un
h,w(ψ) · ν]kl µw + [Un

h,n(ψ) · ν]kl µn)dσ,

where (Snh (ψ),U
n
h,α(ψ)) are solutions to the series of subdomain problems (6)–(8)

with boundary data P̄nh,α(ψ).
Define a non-linear interface operator Bn :Mh →Mh by

〈Bnψ, µ〉 = Bn(ψ, µ), ∀µ ∈Mh,

where 〈·, ·〉 is the L2-inner product in Mh. It is now easy to see that the solution
to (6)–(9) equals (ψ, Snh (ψ),U

n
h,α(ψ)), where ψ ∈Mh solves

(11) Bn(ψ) = 0.

3.2. Iterative solution of the interface problem. We solve the system
of nonlinear equations on the interface (11) by an inexact Newton method. Each
Newton step s is computed by a forward difference GMRES iteration for solving
B′(ψ)s = −B(ψ) (we omit superscript n for simplicity). On each GMRES iteration
the action of the Jacobian B′(ψ) on a vector µ is approximated by the forward
difference

DδB(ψ : µ) =















0, µ = 0,

||µ||B(ψ+δ||ψ||µ/||µ||)−B(ψ)δ||ψ|| , µ 6= 0, ψ 6= 0,

||µ||B(δµ/||µ||)−B(ψ)δ , µ 6= 0, ψ = 0.

We take δ =
√
ε, where ε is the nonlinear tolerance for evaluation of B. The inexact

Newton-GMRES algorithm is described in details in [17].
Note that each GMRES iteration only requires one evaluation of the nonlinear

operator B. The evaluation of B involves solving subdomain problems (6)–(8) in
parallel and two inexpensive projection steps - from the mortar grid onto the local
subdomain grids and from the local grids onto the mortar grid. Since each block can
be distributed among a number of processors, the subdomain solvers are parallel
themselves. This two level parallelism is needed to account for both the physical
and the computational domain decomposition. The subdomain problems are also
nonlinear and are solved by a preconditioned Newton-Krylov solver (see [14] for a
detailed description). We must note that, since the perturbation δ is very small, the
subdomain solution with boundary data ψ is a very good initial guess for solving
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Figure 1. Geological layers and numerical grids. The dark layers
(400 md) are eight times more permeable than the light layers.

subdomain problems with boundary data ψ + δ||ψ||µ/||µ||. As a result it usually
takes only one nonlinear subdomain iteration to evaluate B(ψ + δ||ψ||µ/||µ||).

4. Computational results

In this section we present numerical results illustrating the application of the
method described in the previous two sections to modeling two phase subsurface
flow. We also give some results on adapting mortar degrees of freedom and its
relation to upscaling in the case of single phase flow.

4.1. A two phase flow simulation. The methodology described above has
been implemented in a parallel implicit multiblock two phase flow simulator UT-MB
[25, 21]. The simulator is built on top of an object oriented parallel computational
infrastructure [22], which is based on DAGH (Distributed Adaptive Grid Hierarchy)
library [20].

In this example we present the results of a two phase oil-water flow simulation
in a faulted heterogeneous irregularly shaped multiblock reservoir. A fault cuts
through the middle of the domain and divides it into two blocks. The curvilinear
numerical grids follow the geological layers and are non-matching across the fault
(see Figure 1). Each block is covered by a 32×32×20 grid. The simulation was done
on eight processors on IBM SP2, each block distributed among four processors. Oil
concentration contours after 281 days of displacement (water is injected at the right
front corner and producer is placed at the left back corner) are given on Figure 2.

4.2. Mortar adaptivity and upscaling. Adapting mortar degrees of free-
dom may result in substantial reduction of the cost for solving the interface problem.
Note that solvability condition (10) does not prevent from using mortar grids much
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Figure 2. Oil concentration contours at 281 days.

coarser that the subdomain grids. One must expect, however, certain loss of accu-
racy with coarsening the interface grids. In the following example we study how
reduction of mortar degrees of freedom affects the number of interface iterations
and the flux discretization error on the interface. Similar ideas have been explored
by Dorr in [15]. We solve a single phase flow problem on a 32 × 32 × 32 domain
with a highly correlated log-normal permeability field and one injection and three
production wells at the corners. A 2 × 2 × 2 domain decomposition is employed.
This example suites well the purpose of our study, due to the large heterogeneities
and substantial flow through all interfaces. The results of the experiment are shown
in Figure 3. The traces of subdomain grids on each interface are 16× 16 and hav-
ing 256 mortar degrees of freedom is equivalent to exact matching of the fluxes.
We report the number of conjugate gradient iterations (no preconditioning) and
relative flux L2-error on the interface for several levels of coarsening the mortar
grids and for three different types of mortars. We first note that the error for the
piecewise constant mortars grows very rapidly and indicates that this is not a good
choice. This is consistent with our theoretical results (see Remark 2.1). The two
bilinear cases behave similarly, although the continuous case performs somewhat
better. We observe that in this case, the number of mortar degrees of freedom,
and consequently the number of interface iterations, can be reduced by a factor of
two, with the relative flux error still being under ten percent. Moreover, the global
relative error is even smaller, as the solution away from the interfaces is not affected
as much.

The reduction of mortar degrees of freedom can be viewed as an upscaling pro-
cedure. Standard upscaling techniques compute effective permeabilities on coarse
grids. It is usually difficult to estimate the error associated with the upscaling
process. Here we compute, in a sense, an effective flow field and the flux jump is a
good indication for the numerical error.
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Figure 3. Dependence of interface iterations and error on num-
ber of interface degrees of freedom; mortar 1–continuous piecewise
bilinears, mortar 2–discontinuous piecewise bilinears, mortar 3–
piecewise constants.

If only a single bilinear mortar is used on each interface, we have a two scale
problem, where the solution is computed locally on the fine scale and fluxes match
on the coarse (subdomain) scale. One can view the solution as a sum of a coarse
grid solution and a local fine grid correction, which is similar to the approaches
taken in [4, 19]. In the following example, also considered in [4], we solve the
single phase flow equation with a log-normal permeability field originally presented
in [11]. As can be seen in Figure 4, the solution on a fine 32 × 32 grid is very
similar to the solution obtained by matching fluxes on a coarse 4 × 4 grid using
a single linear mortar on each interface. We should note that a similar procedure
using constant instead of linear mortars produced highly inaccurate results.
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Fine scale solution

“Upscaled” solution

Figure 4. Computed pressure (shade) and velocity (arrows) field
for the two scale example.

5. Conclusions

In this paper we considered two levels of domain decompositions - physical
and computational. It is important to first decompose the physical problem with
appropriate hierarchical models (geometry, geology, chemistry/physics) and then
efficiently decompose the computations on a parallel machine.

We have introduced new mortar spaces which provide an accurate and efficient
basis for discretizations on non-matching grids, hierarchical domain decomposition,
and solvers. In addition, this approach allows the coupling of multiphysics, multi-
numerics, and multiscales.

We have demonstrated the applicability of these mortar space decompositions
to two phase flow in permeable media. Further computational experiments have
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Figure 5. Multiphysics, multi-numerical models, complex geol-
ogy, and upscaling.

shown the computational cost can be reduced substantially by interface adaptivity,
which is related to upscaling.

Our current research involves extensions of these techniques to three flowing
phases and multiple solid phases, as well as coupling of fully implicit and various
time-splitting schemes, as shown in Figure 5.
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