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The paper presents a new approach to discretizing flow in porous media via mixed finite
element methods on non-matching multiblock grids. The velocity space along the interfaces is
enhanced to give flux-continuous approximation. No additional matching conditions need to
be imposed. The computational complexity of the resulting algebraic problem is comparable
to the one for the single-block case. A priori error estimates for the pressure and the velocity
and numerical experiments confirming the theory are presented.
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1. Introduction

We consider mixed finite element methods for flow in multiblock domains. Mixed
methods are especially useful for porous media problems due to their local mass con-
servation and explicit approximation of the velocity vector. In a multiblock formulation
the domain is decomposed into a series of subdomains (blocks). The equations hold
with their usual meaning on the subdomains, with physically meaningful boundary con-
ditions imposed on the interfaces. Each block is independently covered by a local grid.
The grids do not have to match on interfaces between blocks. This approach allows
for efficient couplings of different physical and numerical models, flexible gridding of
irregular geometries, and proper treatment of internal boundaries such as faults, layers,
and discontinuous coefficients.

Mortar mixed finite element methods have been successfully used to handle non-
matching grids in the multiblock framework [2,7,25]. A non-mortar approach based
on Robin interface conditions has also been developed [5]. Both methods lead to non-
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conforming discretizations with flux-matching imposed weakly through Lagrange mul-
tipliers. The reader is referred to [6,8,13,24] and references therein for the use of mortars
in the context of Galerkin finite element and finite volume methods.

In this paper we study an alternative approach based on enhancing the velocity
space along the subdomain interfaces. This allows for constructing flux-continuous
velocity approximation. The advantage of this formulation is that, unlike the mortar
method, no interface problem has to be solved, which eliminates one of the nested iter-
ative loops. The complexity of the resulting algebraic problem is comparable to the one
for the single-block case.

The enhanced velocity formulation has been implemented in the three-dimensional
multiblock multiphysics parallel simulator IPARS [22,23] for modeling multiphase flow,
developed at the University of Texas at Austin Center for Subsurface Modeling. The
method has been tested for modeling single-phase flow, two-phase flow, and three-phase
(Black Oil) flow. The mortar formulation is also implemented in IPARS, allowing for
direct comparison of the accuracy and efficiency of the two methods. Our numerical
experiments (see section 5) indicate that the enhanced velocity scheme is an order of
magnitude faster than the current implementation of the mortar method, while providing
similar accuracy.

The IPARS implementation is based on the lowest order Raviart–Thomas mixed
finite element spaces RT0 [17,18,21]. It reduces the mixed method to cell-centered finite
differences for pressures (and, for multiphase flow, saturations) via application of appro-
priate quadrature rules which allow the velocities to be eliminated [4,20]. In this context
the enhanced velocity method can be viewed as an extension to non-matching grids of
known cell-centered finite difference methods on locally refined grids [12,14].

The rest of the paper is organized as follows. In the next section the method is
formulated for single-phase flow. A priori error estimates for the pressure and the veloc-
ity are derived in section 3. In section 4, an extension of the method to two-phase flow
is given. Implementation details and numerical results are presented in section 5. The
paper ends with conclusions in section 6.

2. Formulation of the method for single-phase flow

We consider the following single-phase flow model for the pressure p and the ve-
locity u:

u = −K∇p in �, (2.1)

∇ · u = f in �, (2.2)

p = g on ∂�, (2.3)

where � = ⋃n
i=1 �i ⊂ R

d , d = 2 or 3, is a multiblock domain and K is a symmetric,
uniformly positive definite tensor representing the permeability divided by the viscosity.
The Dirichlet boundary conditions are considered merely for simplicity. For clarity of
the presentation we also assume that the problem is H 2-regular (see [16] for sufficient
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conditions). The subdomains �i are assumed to be non-overlapping. We let �i,j =
∂�i ∩ ∂�j , � = ⋃n

i,j=1 �i,j , and �i = ∂�i ∩ � = ∂�i\∂� denote interior block
interfaces. The functional spaces for the mixed weak formulation of (2.1)–(2.3) are
defined as usual [9] to be

V =H(div;�) = {
v ∈ (

L2(�)
)d

: ∇ · v ∈ L2(�)
}
,

W =L2(�).

We will make use of the following standard notation. For a subdomain G ⊂ R
d ,

the L2(G) inner product (or duality pairing) and norm are denoted (·, ·)G and ‖ · ‖G,
respectively, for scalar and vector valued functions. The Sobolev spaces Wk

p(G), k ∈ R,
1 � p � ∞, are defined in the usual ways [1] with the usual norm ‖ · ‖k,p,G. Let
‖ · ‖k,G be the norm of the Hilbert space Hk(G) = Wk

2 (G). We omit G in the subscript
if G = �. For a section of a subdomain boundary S ⊂ ⋃n

i=1 ∂�i we write 〈·, ·〉S and
‖ · ‖S for the L2(S) inner product (or duality pairing) and norm, respectively.

With the above notation we have

‖v‖V = (‖v‖2 + ‖∇ · v‖2
)1/2

, ‖w‖W = ‖w‖.
A weak solution of (2.1)–(2.3) is a pair u ∈ V, p ∈ W such that(

K−1u, v
) = (p,∇ · v)− 〈g, v · ν〉∂�, v ∈ V, (2.4)

(∇ · u, w)= (f,w), w ∈ W. (2.5)

It is well known (see, e.g., [9,19]) that (2.4), (2.5) have a unique solution.
We next present the finite element discretization of (2.4), (2.5). Although the

method can be defined for all of the usual mixed finite element spaces on simplicial
and rectangular-type elements (see [9]), for simplicity of the presentation we restrict
our discussion to the most commonly used Raviart–Thomas spaces of lowest order
RT0 [17,18,21] on rectangles (if d = 2) or bricks (if d = 3).

Let Th,i be a rectangular partition of �i , 1 � i � n. The subdomain partitions Th,i
and Th,j need not match on �i,j . Let Th = ⋃n

i=1 Th,i . The RT0 spaces are defined for
any element E ∈ Th as follows:

Vh(E)=
{
v = (v1, v2) or v = (v1, v2, v3): vl = αl + βlxl; αl, βl ∈ R, l = 1, . . . , d

}
,

Wh(E)= {w = const}.
The degrees of freedom for a vector v ∈ Vh(E) can be specified by the values of its
normal components v · ν at the midpoints of all edges (faces) of E, where ν is the
outward unit normal vector on ∂E. The degree of freedom for a function w ∈ Wh(E) is
its value at the center of E (see figure 1).

The pressure finite element space on � is defined in the usual way:

Wh = {
w ∈ L2(�): w|E ∈ Wh(E), ∀E ∈ Th

}
.
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Figure 1. Degrees of freedom for the lowest order Raviart–Thomas spaces.

Figure 2. Degrees of freedom for the enhanced velocity space.

Note that, since Wh is a discontinuous space, no special care is needed on the interfaces.
Our goal is to construct a velocity finite element space V ∗

h ⊂ V on the multiblock
partition Th of �. Let, for i = 1, . . . , n,

Vh,i = {
v ∈ H(div;�i): v|E ∈ Vh(E), ∀E ∈ Th,i

}
,

be the usual RT0 velocity space on �i . The product space

Vh = Vh,1 ⊕ Vh,2 ⊕ · · · ⊕ Vh,n

however is not a subspace of H(div;�) since the normal vector components do not
match on �. We thus need to modify the degrees of freedom on �. Let Th,i,j be the
rectangular partition of �i,j obtained from the intersection of the traces of Th,i and Th,j .
(We assume that in 3D the subdomains do not meet at an angle.) We force the fluxes to
match on each element e ∈ Th,i,j . Consider any element E ∈ Th,i such that E∩�i,j �= ∅.
The interface grid may divide the boundary edge (face) of E into several parts. This
division can be extended inside the element as shown in figure 2. On each subelement Ek

we define a basis function vEk in the RT0 space Vh(Ek) which has a normal component
vEk · ν equal to one on ek and zero on the other edges (faces). Let V�

h be the span of all
such basis functions. We define the multiblock mixed finite element velocity space to be

V∗
h = (

V0
h,1 ⊕ V0

h,2 ⊕ · · · ⊕ V0
h,n ⊕ V�

h

) ∩H(div;�),

where V0
h,i is the subspace of Vh,i with zero normal trace on �i . We call V∗

h an enhanced
velocity space. The addition of the interface degrees of freedom allows for imposing
flux continuity on the finer interface grid T �

h = ⋃
1�i�j Th,i,j and thus constructing an
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H(div;�) – conforming velocity approximation. The price to pay is that this definition
modifies the usual RT0 velocity space on all elements neighboring � (see figure 2), which
leads to some difficulties in the analysis of the method.

With the above defined spaces we have the following mixed finite element dis-
cretization of (2.4), (2.5): find uh ∈ V∗

h and ph ∈ Wh such that(
K−1uh, v

) = (ph,∇ · v)− 〈g, v · ν〉∂�, v ∈ V∗
h, (2.6)

(∇ · uh,w)= (f,w), w ∈ Wh. (2.7)

3. Analysis of the single-phase flow model

One possible approach to analyzing (2.6), (2.7) is to employ the general saddle-
point problem theory (see, e.g., [9,15]). It is easy to check that the inf–sup condition

inf
w∈Wh\{0}

sup
v∈V∗

h\{0}
(∇ · v, w)
‖v‖V‖w‖W � β (3.1)

holds for the pair (V∗
h,Wh) with a constant β > 0 independent of h. The main tool

for proving (3.1) is the construction of a projection operator #∗ from H 1(�) onto V∗
h

defined locally for any E ∈ Th and any q ∈ H 1(E) as follows:∫
e

(
#∗q − q

) · ν ds = 0

where e is any edge (face) of E not lying on � or a part of an interface edge (face)
of E which is an element of the interface grid T �

h . We note that an application of the
divergence theorem implies that(∇ · (

#∗q − q
)
, w

) = 0, ∀w ∈ Wh. (3.2)

Since V∗
h(E) ⊃ Vh(E), the enhanced velocity space has at least as good approximation

properties as the original RT0 space and it holds that [9,18]∥∥q −#∗q
∥∥ � C‖q‖1h (3.3)

for any q ∈ H 1(�). We must note however that, for v ∈ V∗
h, ∇ · v may be a piecewise

constant on an element E that touches �. Therefore

∇ · V∗
h ⊃ Wh

but the two spaces may be different. There are two consequences of this fact. First,
∇ · #∗q does not equal the L2-projection of ∇ · q onto Wh; thus, no approximation
properties hold for ∇ ·#∗q. This is in contrast to the usual mixed projection operator #
defined on the original RT0 space Vh,i on each �i [9,18], which satisfies for any q ∈
H 1(�i)

‖q −#q‖�i
�C‖q‖1,�i

h, (3.4)∥∥∇ · (q −#q)
∥∥
�i

�C‖∇ · q‖r,�i
hr, 0 � r � 1. (3.5)
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Second, if v ∈ V∗
h is a discretely divergence free vector, i.e., if v ∈ Zh, where

Zh = {
v ∈ V∗

h: (∇ · v, w) = 0 ∀w ∈ Wh

}
,

then ∇ · v may not be zero (e.g. ∇ · v = 1 on half of E and ∇ · v = −1 on the other
half). Therefore the second condition needed in the general saddle-point problem theory,
coercivity of (K−1v, v) in Zh, does not hold with a constant independent of h and the
theory would not yield convergence bounds.

We take a direct approach to proving solvability and convergence of (2.6), (2.7).

Lemma 3.1. There exists a unique solution of (2.6), (2.7).

Proof. Since (2.6), (2.7) is a square system, it is enough to show uniqueness. Let f = 0
and g = 0. Taking v = uh and w = ph leads to uh = 0. Therefore (ph,∇ · v) = 0 for
all v ∈ V∗

h. Since ∇ · V∗
h ⊃ Wh, this implies that ph = 0. �

In the analysis below we make use of one more projection operator. For any ϕ ∈
L2(�), let ϕ̂ ∈ Wh be its L2(�) projection satisfying

(ϕ − ϕ̂, w) = 0, w ∈ Wh.

This operator has the standard L2-projection approximation property

‖ϕ − ϕ̂‖ � C‖ϕ‖rhr, 0 � r � 1. (3.6)

We will also need the following bound on ∇ ·#∗q.

Lemma 3.2. For all q ∈ H 1(�), there exists a constant C independent of h such that

‖∇ ·#∗q‖ � C‖q‖1. (3.7)

Proof. Using the triangle inequality, the inverse inequality, and (3.3)–(3.5) we have∥∥∇ ·#∗q
∥∥ �

∥∥∇ · (#∗q −#q
)∥∥ + ‖∇ ·#q‖

�C
(
h−1

∥∥#∗q −#q
∥∥ + ‖∇ · q‖)

�C
(
h−1

∥∥#∗q − q
∥∥ + h−1‖q −#q‖ + ‖∇ · q‖)

�C‖q‖1. �

3.1. Velocity error estimates

To analyze the convergence properties of (2.6), (2.7) we subtract the two equations
from (2.4), (2.5) to form the error equations(

K−1(u − uh), v
) = (p − ph,∇ · v), v ∈ V∗

h, (3.8)(∇ · (u − uh), w
) = 0, w ∈ Wh. (3.9)
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We first note that, using (3.2), (3.9) can be rewritten as(∇ · (
#∗u − uh

)
, w

) = 0, w ∈ Wh. (3.10)

We now take v = #∗u − uh and w = p̂ − ph to get(
K−1(#∗u − uh

)
,#∗u − uh

)
= (

K−1
(
#∗u − u

)
,#∗u − uh

) + (
p − p̂,∇ · (#∗u − uh

))
. (3.11)

To bound the second term on the right we note that, due to (3.10),

∇ · (#∗u − uh
)∣∣
E

= 0 ∀E ∈ Th such that E ∩ � = ∅.
Let �∗ be the union of all E ∈ Th such that E ∩ � �= ∅. We then have(

p − p̂,∇ · (#∗u − uh
)) = (

p − p̂,∇ · (#∗u − uh
))
�∗

�Ch‖p‖1,�∗h−1
∥∥#∗u − uh

∥∥
�∗

�Ch1/2‖p‖1,∞,�∗
∥∥#∗u − uh

∥∥, (3.12)

where we used (3.6) and an inverse inequality in the first inequality and that |�∗| � Ch

in the second inequality. A combination of (3.11), (3.12), and (3.3) leads to the following
result.

Theorem 3.1. For the velocity uh of the mixed method (2.6), (2.7), there exists a con-
stant C dependent on � and ‖K‖0,∞ but independent of h such that

‖u − uh‖ � C
(‖p‖1,∞,�∗h1/2 + ‖u‖1,�h

)
. (3.13)

3.2. Pressure error estimates

We use a duality argument to derive a bound on p − ph. Let ϕ be the solution of

−∇ ·K∇ϕ = −(p̂ − ph) in �,
ϕ= 0 on ∂�.

By elliptic regularity,

‖ϕ‖2 � C‖p̂ − ph‖0. (3.14)

In the argument below the generic constant C may depend on ‖K‖1,∞. Take v =
#∗K∇ϕ in (3.8) to get

‖p̂ − ph‖2
0 = (

p̂ − ph,∇ ·#∗K∇ϕ)
= (

K−1(u − uh),#∗K∇ϕ) + (
p̂ − p,∇ ·#∗K∇ϕ)

. (3.15)

The second term on the right can be bounded as follows, using (3.6) and (3.7):(
p̂ − p,∇ ·#∗K∇ϕ)

� Ch‖p‖1‖ϕ‖2. (3.16)
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For the first term on the right in (3.15) we write(
K−1(u − uh),#∗K∇ϕ) = (

K−1(u − uh),#∗K∇ϕ −K∇ϕ) + (u − uh,∇ϕ)
�C‖u − uh‖h‖ϕ‖2 + (u − uh,∇ϕ), (3.17)

using (3.3). We manipulate the second term on the right in (3.17) in the following way:

(u − uh,∇ϕ)=
(∇ · (u − uh), ϕ − ϕ̂

)
= (∇ · (

u −#∗u
)
, ϕ − ϕ̂

) + (∇ · (#∗u − uh
)
, ϕ − ϕ̂

)
�C‖u‖1h‖ϕ‖1 + (∇ · (#∗u − uh

)
, ϕ − ϕ̂

)
�∗ , (3.18)

using (3.9), (3.7) and (3.6). To bound the last term in (3.18) we consider separately the
two-dimensional and the three-dimensional cases. The reason for this is that we employ
the Sobolev embedding inequality [1]

‖ϕ‖1,p � C‖ϕ‖2, 2 � p � 2d

d − 2
,

which implies

‖ϕ‖1,∞ � C‖ϕ‖2, d = 2, (3.19)

and

‖ϕ‖1,6 � C‖ϕ‖2, d = 3. (3.20)

If d = 2 we write(∇ · (
#∗u − uh

)
, ϕ − ϕ̂

)
�∗ �

∥∥∇ · (#∗u − uh
)∥∥

�∗‖ϕ − ϕ̂‖�∗

�Ch−1
∥∥#∗u − uh

∥∥
�∗h‖ϕ‖1,�∗

�Ch1/2(‖p‖1,∞,�∗ + ‖u‖1
)
h1/2‖ϕ‖1,∞,�∗

�Ch
(‖p‖1,∞,�∗ + ‖u‖1

)‖ϕ‖2, (3.21)

where we used the inverse inequality, (3.6), (3.13), the fact that |�∗| � Ch, and (3.19).
For d = 3 we bound the above term in the following way, using Hölder’s inequality:(∇ · (

#∗u − uh
)
, ϕ − ϕ̂

)
�∗ �

∥∥∇ · (
#∗u − uh

)∥∥
L6/5(�∗)‖ϕ − ϕ̂‖L6(�∗)

�C
∥∥∇ · (

#∗u − uh
)∥∥

L6/5(�∗)h‖ϕ‖1,6,�∗

�C
∥∥∇ · (

#∗u − uh
)∥∥

L6/5(�∗)h‖ϕ‖2,�∗, (3.22)

using the Lp-version of (3.6) (see [11]) and (3.20). To complete the argument we again
employ Hölder’s inequality. For any 1 < p < ∞

‖φ‖Lp(G) �
{(∫

G

φ2 dx

)p/2(∫
G

1 dx

)1−p/2}1/p

= ‖φ‖L2(G)|G|(2−p)/(2p),
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which, with φ = ∇ · (#∗u − uh), G = �∗, and p = 6/5, implies∥∥∇ · (#∗u − uh
)∥∥

L6/5(�∗) � C
∥∥∇ · (#∗u − uh

)∥∥
L2(�∗)h

1/3.

Substituting this bound into (3.22) gives(∇ · (#∗u − uh
)
, ϕ − ϕ̂

)
�∗ �Ch−1

∥∥#∗u − uh
∥∥h1/3h‖ϕ‖2

�C
(‖p‖1,∞,�∗ + ‖u‖1

)
h5/6‖ϕ‖2, (3.23)

using (3.13). The combination of (3.15)–(3.21) and (3.23), along with (3.14) and (3.6)
gives the following result.

Theorem 3.2. For the pressure ph of the mixed method (2.6), (2.7), there exists a con-
stant C dependent on � and ‖K‖1,∞ but independent of h such that

‖p − ph‖ � C
(‖p‖1,∞,�∗ + ‖u‖1,�

)
hr, (3.24)

where r = 1 if d = 2 and r = 5/6 if d = 3.

3.3. Interior velocity error estimates

We establish interior error bounds for u − uh. Let �′
i be compactly contained

in �i , i = 1, . . . , n, and let �′ = ⋃n
i=1 �

′
i . We assume that h is small enough so that

�′ ∩�∗ = ∅.

Theorem 3.3. For any ε > 0, there exists a constant Cε independent of h such that

‖u − uh‖�′ � Cε

(‖p‖1,∞,�∗ + ‖u‖1,�
)
hr−ε, (3.25)

where r = 1 if d = 2 and r = 5/6 if d = 3.

We will need the following lemma.

Lemma 3.3. If φ ∈ C∞(�) and v ∈ V∗
h, then there exists a constant independent of h

such that ∥∥(
I −#∗)(φv)

∥∥ � C‖v‖‖φ‖1h. (3.26)

Proof. For any v ∈ V∗
h consider the functional lv(φ) = φv −#∗(φv). Since lv(φ) = 0

for all constant functions φ, the statement of the lemma follows from the Bramble–
Hilbert lemma [11]. �

Proof of theorem 3.3. For i = 1, . . . , n and j = 1, 2, . . . , fix domains �j

i such that

�′
i ⊂⊂ �

j+1
i ⊂⊂ �

j

i ⊂⊂ �i, �j =
n⋃
i=1

�
j

i ,
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and let 0 � φj+1 ∈ C∞
0 (�

j) with φj+1 ≡ 1 on �j+1. We have, using (3.8) with v =
#∗(φj+1(#

∗u − uh)) for some c > 0,

c
∥∥φ1/2

j+1(u − uh)
∥∥2
�j �

(
K−1(u − uh), φj+1(u − uh)

)
�j

= (
K−1(u − uh), φj+1

(
u −#∗u

))
�j

+(
K−1(u − uh),

(
I −#∗)(φj+1

(
#∗u − uh

)))
�j

+(
p − ph,∇ ·#∗(φj+1

(
#∗u − uh

)))
�j

�C
{∥∥φ1/2

j+1(u − uh)
∥∥
�j

∥∥u −#∗u
∥∥
�j

+ ‖u − uh‖�j

∥∥#∗u − uh
∥∥
�j‖φj+1‖1,�j h

+ (
p − ph,∇ ·#∗(φj+1

(
#∗u − uh

)))
�j

}
, (3.27)

where we used lemma 3.3 in the second inequality. For the last term in (3.27) we have,
using that ∇ · (#∗u − uh) = 0 on �j ,(
p − ph,∇ ·#∗(φj+1

(
#∗u − uh

)))
�j = (

p̂ − ph,∇ · (
φj+1

(
#∗u − uh

)))
�j

= (
p̂ − ph,∇φj+1 · (

#∗u − uh
))
�j

�C‖p̂ − ph‖�j

∥∥φ1/2
j

(
#∗u − uh

)∥∥
�j−1 . (3.28)

Thus, using (3.27), (3.28), (3.3), theorems 3.1 and 3.2,∥∥φ1/2
j+1(u − uh)

∥∥
�j � C

(‖p‖1,∞,�∗ + ‖u‖1,�
)(
h+ hr/2

∥∥φ1/2
j (u − uh)

∥∥1/2
�j−1

)
. (3.29)

Since theorem 3.1 gives ∥∥φ1/2
j (u − uh)

∥∥
�j−1 � Cjh

r/2+1/4,

applying (3.29) recurrently, we obtain the statement of the theorem. �

Remark 3.1. Theorems 3.2 and 3.3 imply optimal (for d = 2) and almost optimal (for
d = 3) convergence for the pressure and the interior velocity, respectively.

4. Extension to two-phase flow

The method from the previous section can be extended to two-phase and three-
phase (Black Oil) flow models. We present here the formulation for two-phase incom-
pressible flow of oil and water. The governing mass conservation equations [10] are

∂(φραSα)

∂t
+ ∇ · Uα = qα, (4.1)

where α = w (water), o (oil) denotes the phase, Sα is the phase saturation, ρα = ρα(Pα)

is the phase density, φ is the porosity, qα is the source term, and

Uα = −kα(Sα)K

µα
ρα(∇Pα − ραg∇D) (4.2)
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is the Darcy velocity. Here Pα is the phase pressure, kα(Sα) is the phase relative perme-
ability, µα is the phase viscosity, K is the rock permeability tensor, g is the gravitational
constant, and D is the depth. The above equations are coupled via the volume balance
equation and the capillary pressure relation

Sw + So = 1, pc(Sw) = Po − Pw. (4.3)

We assume for simplicity that oil and water pressures are specified on ∂�, although
more general types of boundary conditions can also be treated.

We employ a variant of the mixed finite element method, the expanded mixed
method. It has been developed for accurate and efficient treatment of irregular domains
(see [3,4] for single block and [25] for multiblock domains). In the context of multiphase
flow this method allows for proper treatment of the degeneracies in the diffusion term
(see remark 4.1).

Following [4], let, for α = w, o,

Ũα = −∇Pα.
Then

Uα = kα(Sα)K

µα
ρα

(
Ũα + ραg∇D

)
.

Let 0 = t0 < t1 < t2 < · · · , let 3tn = tn − tn−1, and let f n = f (tn). In the backward
Euler expanded mixed finite element approximation of (4.1)–(4.3) we seek, for n =
1, 2, 3, . . . , Un

h,α ∈ Vh, Ũn
h,α ∈ Vh, Pn

h,α ∈ Wh, and Snh,α ∈ Wh such that, for α = o
and w, ∫

�

(φρh,αSh,α)
n − (φρh,αSh,α)

n−1

3tn
w dx +

∫
�

∇ · Un
h,αw dx =

∫
�

qαw dx,

w ∈ Wh, (4.4)∫
�

Ũn
h,α · v dx =

∫
�

P n
h,α∇ · v dx −

∫
∂�

P n
h,αv · νk dσ, v ∈ Vh, (4.5)∫

�k

Un
h,α · ṽ dx =

∫
�

knh,αK

µh,α
ρnh,α

(
Ũn
h,α + ρnh,αg∇D

) · ṽ dx, ṽ ∈ Vh. (4.6)

Remark 4.1. Introducing the pressure gradients Ũα in the expanded mixed method al-
lows for proper handling of the degenerate (for Sα = 0) relative permeability kα(Sα) in
(4.5), (4.6). It also allows, even for a full permeability tensor K, to accurately approx-
imate the mixed method on each subdomain by cell-centered finite differences for Po

and So. This is achieved by approximating the vector integrals in (4.5) and (4.6) by a
trapezoidal quadrature rule and eliminating Ũh,α and Uh,α from the system [3,4].
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5. Numerical experiments

5.1. Implementation

We briefly discuss the implementation of the enhanced velocity method in IPARS.
For simplicity we concentrate on the single-phase system (2.6), (2.7) with a diagonal per-
meability tensor K. As we mentioned above, the mixed finite element method is reduced
to cell-centered finite differences for the pressure. An application of the trapezoidal
quadrature rule to the integral (K−1u, v) in (2.6) allows to express, on any edge (face)
away from the interface, the normal velocity as a transmissibility coefficient times the
difference of the pressures in the neighboring cells (see [20] for details). To describe the
equations on the interface, let us consider figure 3. Assume that the permeability in the
direction orthogonal to the interface has values Ka , Kb1 , and Kb2 on elements a, b1, and
b2, respectively. Using the trapezoidal rule approximation of (2.6), the flux qi on ei is
given by

qi = −Ti(pa − pbi ), i = 1, 2, (5.1)

where

Ti = 2|ei |
(
ha

Ka

+ hb

Kbi

)
is the transmissibility coefficient on ei . The flux q on e = e1 ∪ e2 is given by

q = q1 + q2. (5.2)

The mass conservation (2.7) for element a couples, via (5.1), pa with pb1 and pb2 . This
coupling introduces irregularity in the data structure for the algebraic system. To avoid
this difficulty, a ghost layer around the boundary of each subdomain is utilized, see
figure 4. Note the ghost layer is also used for communication between processors on
multiprocessor machines. A new pressure variable pea is introduced in the ghost cell.
The flux q can then be written as

q = −T (
pa − pea

)
, (5.3)

Figure 3. Finite differences on the interface.
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Figure 4. Ghost cell pressure.

where T = T1 + T2. Equations (5.1)–(5.3) can be used to solve for pea in terms of pb1

and pb2 . In our case we obtain

pea = T1pb1 + T2pb2

T
.

A Krylov space iterative solver is employed in IPARS for solving the algebraic system.
In the case of multiphase flow, Newton’s method is applied for the nonlinear system,
and GMRES is used for solving the Jacobian system. The iterative solver only requires
matrix–vector products. The above change of variables allows for preserving the regular
structure of the algebraic system. We should also point out that the IPARS implemen-
tation exhibits very good parallel scalability, although such studies are not presented
here.

5.2. Single-phase flow

In this section we present two numerical studies for single-phase flow confirming
the theory of section 3. Both examples are set on � = (0, 6)× (0, 6) ⊂ R

2 and employ
Dirichlet boundary conditions. The domain is divided into four subdomains with inter-
faces along the lines x = 3 and y = 3. The initial non-matching subdomain grids are
4 × 4, 5 × 6, 5 × 3, and 4 × 4. The rates were established by running the test cases and
4 levels of grid refinement, each time halving the element diameters.

The first problem we consider has a smooth solution

p(x, y) = x3y4 + x2 + sin(xy) cos(y)

and permeability coefficient

K =
(
(x + 1)2 + y2 0

0 (x + 1)2

)
.

The convergence results are given in table 1. The pressure error |||p−ph||| is the discrete
L2-norm induced by the midpoint rule on Th. The discrete L2 velocity error |||u−uh||| is
based on the values of the normal component at the midpoint of the edges. The interior
velocity error |||u−uh|||�′ is computed on a fixed domain �′ which does not include one
interface cell layer at the first refinement level. The numerically observed convergence
rates correspond to those predicted by the theory. The pressure and velocity computed
by the enhanced velocity scheme on the first level of refinement are shown in figure 5.
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Table 1
Discrete norm errors and convergence rates for example 1.

Level |||p − ph||| |||u − uh||| |||u − uh|||�′

0 3.26E−02 3.33E−02 2.17E−02
1 8.83E−03 1.38E−02 8.88E−03
2 3.67E−03 7.87E−03 3.81E−03
3 1.87E−03 5.11E−03 1.52E−03
4 9.68E−04 3.49E−03 7.23E−04

Rate O(h0.95) O(h0.55) O(h1.07)

Figure 5. Computed pressure (shade) and velocity (arrows) for example 1.

In the second example we test a problem with a discontinuous coefficient. The
permeability is a piecewise constant function

K =



1, x < 3 and y < 3,
100, x > 3 and y > 3,
10, otherwise,

and the true pressure solution is

p(x, y) = 1

K
(x − 3)(y − 3) sin(xy).

Note that the pressure is continuous, although not continuously differentiable, and the
normal velocity component is also continuous across the interface. As it can be seen in
table 2, all three errors exhibit super-convergence of second order. The reason for the
higher order is that the tangential velocity component is zero on the interface and the
effect of the non-matching grids is small. This is also confirmed by the fact that the full
domain and the interior velocity errors are very close. A plot of the computed solution
is given in figure 6.
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Table 2
Discrete norm errors and convergence rates for example 2.

Level |||p − ph||| |||u − uh||| |||u − uh|||�′

0 2.74E−01 4.31E−01 4.31E−01
1 5.65E−02 1.34E−01 1.35E−01
2 1.37E−02 3.76E−02 3.28E−02
3 3.40E−03 9.71E−03 8.05E−03
4 8.47E−04 2.47E−03 1.99E−03

Rate O(h2.01) O(h1.97) O(h2.02)

Figure 6. Computed pressure for example 2.

5.3. Two-phase flow

Here we test the enhanced velocity scheme for modeling two-phase incompress-
ible flow in porous media and compare its behavior to that of the mortar method. We
model oil–water displacement in a heterogeneous reservoir. The domain is a square with
dimensions 420×420 ft divided into 4 subdomains. The computational grids are 42×42
and 35 × 30 in a checkerboard fashion. In the mortar run the mortar space is discon-
tinuous piecewise linear and the mortar grid on each interface has 21 elements with 42
degrees of freedom. The grids and the permeability field (which varies three orders of
magnitude) are given in figure 7. Initially oil pressure is 500 psi and water saturation
is 0.22. Water is injected at the lower left corner. A production well is placed at the up-
per right corner. Water saturation profiles for both methods after 2651 days of injection
are given in figure 8. The plots indicate that the two schemes produce very similar solu-
tions. This is also confirmed by the production well rates and oil–water ratios plotted in
figure 9. The closeness of these results may seem surprising at first due to the different
convergence properties of the two methods. We believe the reason for this is that the
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Figure 7. Permeability field and computational grids in the two-phase example.

A. Enhanced velocity B. Discontinuous mortars

Figure 8. Water saturation profiles after 2651 days of injection.

dominant source of error in this case are the wells, not the non-matching grids. How-
ever, there is a big difference in the efficiency of the two methods. For this test case the
enhanced velocity scheme is approximately 8 times faster than the mortar scheme. This
is expected, since the former scheme avoids the solution of an interface problem and
its computational cost is comparable to solving a single-block problem. In fairness we
should mention that in the current mortar implementation a nonlinear interface problem
is being solved. Although very flexible and suitable for multiphysics applications, this
formulation is somewhat slow. A better mortar solver is being implemented.



J.A. Wheeler et al. / Enhanced velocity mixed finite element methods 331

A. Oil production rate B. Water/oil ratio

Figure 9. Well rates.

6. Conclusions

A new approach to modeling flow in porous media via mixed finite element meth-
ods on non-matching multiblock grids is presented. The method is somewhat simpler
and less expensive than the mortar method, since flux continuity is incorporated in the
velocity space. Theoretical a priori estimates and numerical studies for single-phase
flow show almost optimal convergence for pressure and interior velocity. Computational
results for two-phase flow indicate that the enhanced velocity method provides accuracy
comparable to the mortar method at substantially reduced cost.
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