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A mixed finite element discretization on non-matching
multiblock grids for a degenerate parabolic equation
arising in porous media flow

IVAN YOTOV*

Abstract — Mixed finite element methods on multiblock domains are considered for nonlinear degenerate
parabolic equations arising in modeling multiphase flow in porous media. The subdomain grids need not
match on the interfaces, where mortar finite element spaces are introduced to properly impose flux-matching
conditions. The low regularity of the solution is treated through time integration, and the degeneracy of the
diffusion 1s handled analitically via the Kirchhoff transformation. With an appropriate choice of the mortar
spaces, the error for both a semidiscrete (continuous time) scheme and a fully discrete (backward Euler)
scheme 1s bounded entirely by approximation error terms of optimal order.
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Multiblock finite element techniques on non-matching grids have become increasingly popular
in recent years. They combine the flexibility of modeling irregularly shaped domains with the
convenience of constructing the grids locally. In porous media applications they also allow
accurate modeling of large scale geological features such as faults, layers, and fractures. We
define a multiblock domain to be a simply connected domain ) € R?, d = 2 or 3, that is
a union of non-overlapping subdomains or blocks ;, ¢+ = 1,....k. For the purpose of the
analysis we assume that each block §2; is convex.

In the numerical modeling of multiphase flow in porous media the coupled nonlinear
system of conservation equations is often written as an equation of elliptic or parabolic
type for some reference pressure and several saturation equations of advection-diffusion type
[7, 13]. The diffusion in the saturation equations is degenerate (is zero at extreme saturation
values). This causes a very low regularity of the solution and imposes difficulties for the
numerical method.

In this paper we study mixed finite element discretizations for the saturation equation
on multiblock domains. The local mass conservation property of the mixed methods is
particularly important in modeling porous media flow. We allow the subdomain grids to
be non-matching along the interfaces. To properly impose flux-matching conditions we
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introduce mortar finite element spaces along the subdomain boundaries. Mortar spaces have
been a common tool in standard and spectral finite element methods (see e.g. [9]). Recently
mortar [18, 29, 4] and non-mortar [6] techniques have been successfully applied in the context
of mixed finite element methods on multiblock grids.

Due to the degeneracy in the diffusion the solutions can have compact support, thus be-
having very differently form the solutions of non-degenerate parabolic problems. In addition,
certain error terms cannot be directly bounded in the analysis. Many authors introduce a
regularized problem and then approximate it [27, 17, 24, 15, 14]. The numerical error is then
a sum of the discretization error for the regularized problem and the difference between the
solutions to the regularized and the original problems.

Another common technique is to handle the degeneracy analytically via the Kirchhoff
transformation [27, 15, 14, 5, 28], which is the approach we take. We combine the use
of mortar finite elements along subdomain interfaces with techniques from [5], where mixed
discretizations for similar degenerate parabolic equations on a single block have been studied.

We consider a continuous time scheme and a fully discrete backward Euler scheme and
bound the discretization error in the two versions entirely by approximation error terms of
optimal order. Critical in the analysis is the choice of mortar spaces along the non-matching
interfaces. The mortar elements need to provide one order higher approximation than the
traces of the subdomain velocity spaces (see Remark 2.2). At the same time, the mortar
spaces should be controled by the subdomain spaces (see hypothesis (H1) and Remark 3.1).

Our analysis improve the single block results from [5] in several ways. We avoid the
assumption from [5] on smoothness of 92 by requiring a minimal smoothness for the flux
(see Lemma 2.2.). Also, we weaken the assumption ([5], A2) on the advective and the
source terms and only assume physically reasonable behavior (see (2.7), (2.8)). Finally, by
choosing a different flux test function in (3.4), we avoid a non-standard approximation error
term involving the divergence of the difference of two discrete projections of the flux, which
appears in the analysis in [5].

The rest of the paper is organized as follows. In the next section we illustrate how a
degenerate parabolic saturation equation arises in the fractional flow formulation of two
phase incompressible flow. In Section 2 we formulate the mortar mixed method for the
saturation equation. The analysis of the continuous in time and the fully discrete schemes
is presented in Sections 3 and 4, respectively.

1. FRACTIONAL FLOW FORMULATION FOR TWO PHASE FLOW
Two phase immiscible flow in porous media is modeled by the system of conservation equa-
tions [7, 13]
Iesipi)
ot
ki(SZ’)I(
[hi

i = w (wetting), n (non-wetting), coupled with

Sw + 8, =1, (1.3)

—I—V-piui:qi in ) x (O,T], (11)

(Vp — pigV D) in  x (0,71, (1.2)

u;, = —
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Pe(Sw) = Pr — Puws (1.4)

where s; is the phase saturation, p; is the phase density, ¢ is the porosity, ¢; is the source term,
u, is the Darcy velocity, p; is the phase pressure, K is the absolute permeability tensor, k;(s;)
is the phase relative permeability, p; is the phase viscosity, g is the gravitational constant,
D is the depth, and T' is the final time.

We start by reformulating the problem in a standard way by writing it in a fractional
flow form (pressure and saturation equation). Let

)\i:_ i:w

denote the phase mobilities, and let
A=Ayt Ay

be the total mobility. Let
u=u, +u,

be the total velocity. For simplicity of the presentation, we assume incompressible flow and
medium (constant p; and ¢) and neglect gravity effects. Multiplying equations (1.1) by 1/p;
and adding them together, we get

V-u=gq, (1.5)

where ¢ = qu/pw + o/ pn. Let s = s, and define the global pressure [13] to be

p=pt [ (Ay) (v7110)) dc.

Thus
u=-—-AKVp. (1.6)

Equation (1.5), coupled with (1.6), is referred to as the pressure equation. Since A > 0 and
K is a symmetric positive definite tensor, this is an elliptic equation. For compressible flow
the pressure equation is parabolic.
To derive the saturation equation, we first observe that
Aw AwAn

—Uu = U,

Y D

KVp.(s).

Substituting this expression into the water conservation equation (1.1), we get the saturation
equation
Js . .
P TV (Bls)utals)KVpe(s)) = du, (1.7)
where 3(s) = Ay /A, a(s) = AyAn/A, and Gy = qu/pw. Note that p.(s) is a strictly monotone
decreasing function; therefore with

o(s) = —oz(s)aaic (1.8)
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equation (1.7) takes the advection-diffusion form

Js .
Yo + V- (B(s)u—o(s)KVs) = Gy (1.9)
The diffusion term vanishes at s = 0,1, the minimum and maximum saturation values.

This is due to the behavior of the relative permeability and the capillary pressure functions
(see, e.g., [8]). This double degeneracy is the main source of difficulties in the numerical
approximation. The solutions of degenerate parabolic equations have very low regularity. It

has been shown that (see [25, 16, 19, 2, 1, 3])

s € L(0,T; LY(Q)), (1.10)
% € L*0,T; H'(Q)). (1.11)

Since the saturation s satisfies 0 < s(x,t) <1, (x,t) € Q x [0,T], we also have
s € L=(0,T; L=(Q)). (1.12)

We handle the degeneracy in the diffusion analytically using the Kirchhoff transformation
[27, 15, 14, 5]. Let

Then

and (1.9) becomes
— 4+ V- (B(s)u— KVD(s)) = qu. (1.13)

2. A MORTAR MIXED METHOD FOR THE SATURATION EQUATION

In this section we present a multiblock variational formulation of (1.13) that respects the low
regularity of the solution, and a mixed finite element discretization using mortar elements on
the interfaces. For the rest of the paper we omit the porosity ¢, which is assumed constant
and does not effect the error analysis. The saturation s(x,t) satisfies

% + V- (B(s)u— KVD(s)) = Gu(s) in  x (0,71, (2.1)
(B(s)u— KVD(s))-v=0 on 0Q x [0,T], (2.2)
(,0) = sofe) in 0, (23)

where v is the outward unit normal vector to 9. For simplicity we assume that no flow
boundary conditions are imposed, although more general boundary conditions can also be
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treated. We need several assumptions on the coefficients of the above equation. We first
assume that

ﬁ1|5|y17 OSSSQM
o(s) >3 P, oy < s < ay, (2.4)
G|l — 5|2, ay, < s <1,

where (3;, 1 <1 < 3, are positive constants, and «; and v;, 1 = 1,2, satisfy
0<ap<1l/2<ay<l, 0<y <2

Note that (2.4) controls the rate of degeneracy of the diffusion. We also assume that there
exists a positive constant C' such that

|D(s1) — D(s2)||s < C(D(s1) — D(s2),81 — sq9), for s1,s, € L*(Q). (2.5)

Here and for the reminder of the paper (-,-)s and (-,-)5s denote the L*-inner product (or
duality pairing) on S C R? and 95 € R%"!, respectively, and || - |[o.s denotes the [?-norm
on S. We omit S if S = . A sufficient condition for (2.5) is

Ogaa—D(x,t;s)gc for (x,1) € Q x[0,7], 0 <s < 1. (2.6)
s

Bounds (2.4) and (2.6) follow from the physical behavior of the relative permeabilities and
the capillary pressure [3, 15]. Typical relations (see, e.g., [8, 20]) are

Ao(s) ~ 5% pu(s) ~ s as s — 0,
Ao(8) ~ (1 —5)% puls) ~ (1 — 5)52 as s — 1,
0<& <1, 0<é<l.

Therefore, with (1.8),

1—51 1+52

o(s) ~s as s = 0 and o(s) ~ (1 —s) as s — 1,

which implies both (2.4) and (2.6). Finally, we assume that, for 0 < sy, <1,
B(s1) = Bls2)|* < C(D(s1) = D(s2)) (51 = s2), (2.7)
|Gu(51) = Gu(s2)]* < C(D(s1) = D(s2))(s1 = s2)- (2.8)
Bounds (2.7) and (2.8) are justified by the following lemma, proven in [15].

LEMMA 2.1. Suppose o satisfies (2.4). If f € C'[0,1] and f'(0) = f'(1) = 0 with [’
Lipschitz at 0 and 1, then there exists a positive constant C such that

|f(a) = f(B)]> < C(D(a) — D(b))(a—1b) for0<a,b<l.

Note that the fractional flow function (3(s) satisfies the conditions of Lemma 2.1.. The well
term ¢, (s) satisfies the conditions of Lemma 2.1. at the injection wells. At the production
wells, Gu(s) ~ ky(s), so ¢,(0) = 0. Therefore (2.8) holds, if s < s* < 1 at the production
well, which covers all cases of physical interest.
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REMARK 2.1. The fractional flow function B(s) and the integrated diffusion function
D(s) are both S-shaped with zero derivatives at the end points. Bound (2.7) relates the
rates of degeneracy of the derivatives of the two functions and indicates, in a sense, that the
diffusion dominates the advection.

In the standard mixed variational formulation, equation (2.1) is multiplied by a test
function w € L*()) and integrated in space. In our case however, because of (1.11), the

integral (22,w) is not well defined. To avoid this problem we integrate (2.1) in time from 0
to ¢ [23, 5] to obtain the equivalent equation
¢ ¢
s(e, )+ V / pdr = / Gul(s)dr + so(x), in Q x [0, 7], (2.9)
0 0
where
Y =p(s)u— KVD(s). (2.10)

Before presenting the variational formulation, we give the following regularity result.

LEMMA 2.2. Assume that there exists some 0 < ¢ < 1/2 such that, for 1 < i <k,
/Otﬁ(s)udr € 17(0,T; H (). (2.11)
Then, for every ¢ € [0,T],
/Ot Gdr e (HE ()" 0 H(div; Q). (2.12)

Proof. The argument is similar to one from [5]. The assumption (2.11) is reasonable, since
the fractional flow function ((s) has zero derivatives at the degeneracy values s = 0,1. It

follows from (2.9) and (1.12) that
¢
/ o dr € H(div; Q).
0
Using (2.10) we have in ©;
¢ ¢ ¢
—v-Kv/ D(s)dr :v-/ ¢dr—v-/ (s)udr.
0 0 0

By (2.11) and elliptic regularity, f¢ D(s)dr € H'**(Q;), which, along with (2.10) and (2.11)
implies that

t
| wdr e (HE(90)", o
0
Let Fi,j = 6(22 N 8Qj, F = U1§i<]‘§kri7]‘, and FZ = 6(22 N F Let

V., ={ve (HE(Qi))d N H(div;Q;) : v-v =0 on 09}, V = @Vi,
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k
W, = L), W=@W:.=L*Q), A=H"7D).
=1
We are now ready to present the multiblock variational formulation of (2.9)-(2.10). With
a = K~! and letting v be the trace of D(s) on I', we have, for every time ¢ € [0,7] and
1<i<k

(arp,v)a, = (D(s),V - V), — (7, V-vi)r, + (aB(s)u, v)q,, v eV, (2.13)
(s,w)q, + (V . /Ot;/)dT, w)m = (/Ot Gu(s) dr, w)m + (s0, W), w € W, (2.14)
é</gt¢-md7’,/,¢>m =0, e A (2.15)

Note that, because of (2.12) and the definitions of V; and A, the boundary integrals in (2.13)
and (2.15) are well defined.

Let 73, be a finite element partition of €; with maximal element diameter h. We allow
for the possibility that 75,; and 75, ; need not match on I';;. Let Vj,;, x W}, be any of
the usual mixed spaces on Tp,; [26, 22, 12, 11, 10]. Let 7;?” be a finite element partition
of I'; ; with maximal element diameter h. Let A,;; C A;; be the space of continuous or
discontinuous piecewise polynomials of degree k4 1 on 7;?”, where k is associated with the
degree of the polynomials in Vj; - 1. More precisely, if d = 3, on any boundary element
K, Apijle = Pepa(K), if K is a triangle, and Ap; j|x = Qre1(K), if K is a rectangle. An
additional assumption on Aj;; and hence on 7;?” will be made later. The finite element
spaces on {2 are now defined as

k k
V=B Vi, Wa=FWe:, M= P Anij

i=1 i=1 1<i<j<j

REMARK 2.2. We refer to the interface spaces Ay ;; as “mortar” finite element spaces,
following a terminology for similar techniques used with the standard and spectral finite ele-
ment methods [9]. If the order of approximation for Ay, is the same as for V,, - v, then the
mortar mized methods for elliptic equations lose O(h'/?) from the optimal order of conver-
gence [29, 4]. A similar loss is observed for the equations considered here (see the theorems
below), which motivates the above choice of mortar spaces.

In the continuous time mixed finite element method for approximating (2.13)—(2.15) we
seek, for each t € [0,T], ¢¥n(-,t) € Vi, sp(-,t) € Wy, and ~,(-,1) € Ay such that, for
1<i<k

(atn, V)a, = (D(s1), V- V)a, = (v, V- vi)r, + (aB(sp)u, v)q,, v EVy, (2.16)

t t
(sh,w)e, + (V/O @/ﬂth,w)Q = (/ C?w(Sh)dTaw)Q + (0,0, W), w € Wiy, (2.17)

i i

k t
Z </0 vy - v d7’,/,c>F =0, weE AN, (2.18)
=1 B



8 Tvan Yotov

where sq; € W), is an approximation of sg.

We next consider a backward Euler time discretization. Let {¢,})_, be a monotone
partition of [0, T] with to =0 and ty =T, let At" =t, —t,_1, and let f* = f(¢,).

In the fully discrete mixed method we seek, for any 0 < n < N, ¢ € Vp, s7 € Wy, and
v € Ay such that, for 1 <1 <k,

(a;/)}f,v)gi = (D(SZ)v V- V)Qi - <727V ) Vi>F,' + (aﬁ(SZ)unvv)Qm v € Vh,iv (219)

(527 w)Qi + (v ’ Z ¢2Atj7 w)
Jj=1 o)

= (Z Qw(si)At]7 w) —I_ (SOJU w)Q“ w e Whﬂ', (220)
7=1

Q;
k n ] ]
> <Z Wy, - wAt],/w> = 0. pE A, (2.21)

As noted in [5], by subtracting equation (2.20) for time levels n and n — 1, it can be
rewritten in the usual backward Euler form

P — Sn—l .

( : Atnh ,U)) + (v ) 77Z)27 w)Qz = (qw(SZ)v w)Q,‘y w e Wh,i, (222)
Q;

(Ssz)ﬂi = (So,hvw)ﬂm w e Whﬂ'. (2.23)

3. ERROR ANALYSIS OF THE SEMIDISCRETE SCHEME

We start this section with a lemma [29, 4] needed later in the analysis. The proof is included
for completeness.

LEMMA 3.1. For any function v € Vy,,,

Iv - villose, < Ch™Y2||v]log,-

Proof. All spaces under consideration admit nodal bases that include the degrees of freedom
of the normal traces on the element boundaries. Since for any element £ and any of its faces
(edges) e, |e| < Ch™|E|, the lemma follows. O

We need the following projections onto the finite element spaces. The standard mixed
projection operator Il : V; — V; ; satisfies, for q € V,,

(v ) (q - Hq)vw)ﬁi =0, w e Wh,i7 (31)
((a—Ha) - vi, v vi)aq, =0, Ve Vi (3.2)

It is known [21] that
IMdllmr@ive) < Clllall-0, + 1V - dlloq.)- (3.3)
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In the analysis we apply II to [j v, which is justified by Lemma 2.2.. Let, for any ¢ € W,
b € W), be its L:-projection, satisfying

(p—Q,w)=0, we W,

In a similar way we define the L*-projections Pj, : A — Ay, and Qp; : A = V- ;. For
smooth enough functions, these operators have optimal order approximation properties. As
in [29, 4], we make explicit the following assumption on the mortar space Aj,. There exists
a positive constant C' independent of i such that, for 1 < < j5 <k,

(H1) leellors, < CUIQmtllor:, + 1Qnjllors,)s Vi€ A

REMARK 3.1. Hypothesis (H1) imposes a mild condition on the mortar grids and spaces.
It implies that the dimension of the mortar space on a given interface, and the distribution
of its degrees of freedom, are controlled by the degrees of freedom of the traces of the velocity
spaces on the two sides. This condition prevents overconstraining the matching interface
conditions (2.21) and is easily satisfied in practice. See [29] for details.

We now proceed with the error analysis. Subtracting (2.16)—(2.18) from (2.13)—(2.15),
we obtain the error equations

(a(y =), V)a, = (D(s) = D(sn), V- v)q,

= (v =y Ve vidr + (a(B(s) = Bsn))u, v)a;, v E Vi, (3.4)
(s —sp,w)g, + (V : /Ot(%/) — 4y dr, w) i

= (/Ot(qu(s) — Gqu(sn))dr, w) o + (S0 — So.hy W)y, w e Wy, (3.5)
Z;</Ot(;/) — ) - v dT,M> ,‘ =0, e Ny (3.6)

To simplify notations, let ®(¢) = II f5(x» — ¢,) dr. We choose sp; = § and take v = @,
w = l)/(\S) — Dfs\h), and p = Ppy — v in (3.4)—(3.6). Note that our choice for v differs
from this in [5], where v is taken to be an L*-projection of the flux error. Consequently, we
are able to avoid a non-standard error term involving the divergence of the difference of the
II-projection and the L2-projection of fj ¢ dr, which appears in [5]. We now have

(s — su, D(s) — D(s1)) + (a(v — v1), D)

= ([ @uls) ~ dulsn dr, DE) — D)
+Ha(B(s) = B(sn))u, @) = > (v = Pry. @ - vi)r,

=1
k

+Z<</Ot¢d7__ﬂ/ot¢d7)'Viaph7_7h>r- (3.7)
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We integrate (3.7) in time form 0 to ¢. The first term on the left becomes
t — — t
/0 (s — sn, D(5) — D(sp)) dr = /0 (s — sp, D(s) — D(s3)) dr + T, (3.8)

where
T = /Ot(g 5, D(s) — D(sp)) dr.

The second term on the left-hand side of (3.7) becomes

1/2/(%/) n) dr

[ et~ ), @) dr = o e (3.9)

1= [ (ote o1 [[wde— [T de) ar

Combining (3.7)-(3.9), we obtain

where

a1/2/ (Y — ) dT

/Ot(s — o, D(s) = D(sy)) dr + % Z T, (3.10)

where
Ty = [ ([ (6() = dulsn) &, DG) = D(sw) ) dr.
7= [ (a(3(s) = Bs1)u. B dr,
_ZZ;/OLLW — Py, ® - vi)r, dr,

T6=é/;<(/;¢d§—n/;¢d§) -V¢d§,77h7—7h>n dr.

We now bound each Ty, k=1, ...,6. Note that the terms T3 and T, are bounded differently
than in [5], using the weaker and physically reasonable assumptions (2.7) and (2.8), respec-
tively. The terms T and 7§ involve error on the non-matching interfaces and do not appear
in the case of a single block. For any ¢ > 0, we have

11 < dr 43 [ 1D() = D)3,
T < C [ [ (s = 50, Dls) = Disw))de dr+8 [ ID(s) = Disa) 3 d
73] <6 [ (s = 1, D(s) = Dis)) dr + C [ B

t to__
1 < C{nt [ = Puslicdr + [ @3 dr )
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using (2.8) for the bound of T, (2.7) for the bound of Ty, and Lemma 3.1. for the bound of

T5. To estimate Ty we integrate by parts in time:

n=-[ (/(;a(zb—@bh)df,%(H/(:zbdf—/;zbdﬁ)) dr
+([Law—wydr 1t [Cpdr— [Cpar);
therefore.
wugc{ét
i [ [
The term T i the most difficult to bound. Tntegration by parts in time gives
e ([ s ) [0
—I-Zk:<</0t;/}dr—ﬂ/ot¢dr) -I/Z'dr,/ot(Ph’y—’yh)dT>

=1

2
dr
0

it g (0 [ wie= [ vae)

Z}‘HSH/;(%/’—W)CZT

/OT(%/’ — by ) d§

2
0

dr

I

B

Therefore,

|T6|§C{/Ot
—|—H</Ot;/}dr—ﬂ/ot¢dr)-y

+ 2
+4 H/O (Pry — ) dr

%(/(:;z;dg—n/(:;z;dg) s

o,

2 7 t
dT} + 5/
or 0

/OT(PW — ) dE|  dT

2
0T

0T

To bound the last two terms, we consider, for 1 < ¢ < n and any fixed ¢ € (0,7], the
auxiliary problem

o —Ap =0, in ;, (3.11)

t
Vc,o V= / Qhﬂ'(Ph’y — ’Yh) dT, on 692 (3.12)
0

Note that the Neumann boundary data is in H'/275(;) for any ¢ > 0 and by elliptic
regularity

t
[elln-ca. < || [ QuilPiy =) dr 1 <m<2 (3.13)

)
m—e—3/2,08;
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We now integrate in time from 0 to ¢ and take v = IIVy in (3.4) to obtain

2

t
H/o Qni(Pry —n)dr

0,0€;

== ([ atw—enydruvie) ([ (D) - DG dre)

i i

¢ ¢
+ ([ a3 = Besudn Vo) 4 ([ QuiPrr =1)dn Vi)
— T7 —|— Tg —|— Tg —|— TIO- (314)
We bound the terms on the right-hand side of (3.14) as follows. For any ¢ > 0,

+3(IVelza, + IV - Vellsa,)

2
0,82;

2 t
+ﬂVﬁ%x%n—vww
0,82; 0

Tl < | [ -y ar

2

<C

)
0,0€;

/Ot(%/) — ) dt

using (3.3) for the first inequality and (3.13) for the last bound. Note that ¢ in the above
inequalities is an arbitrary small generic constant which may be different each time it appears.
Similarly,

2

)
0,0€;

t t
1 < € [ 1DG) = Disiliga, dr + 8| [ QuitPiy = ) dr
0 0

2

)
0,0€;

t t
Tyl < 0/0 (5 — 50, D(s) = D(sp)), dr + 6 H/O Q1 i(Pry — ) dr

2

t t
Tho| < C/O | Pry = 6,50, dT + 6 H/O Qhi(Pry — i) dr

0,0€; ‘
Combining together (3.14), the bounds on T7—Tyo, and (H1), we obtain

2

t
H/O (Pry — ) dr

o,
SC{A¢¢—HA¢¢@+@@%+AHm@—p@mwf
—I—/Ot(s — sp, D(s) — D(sy)) dr + /0"‘ IPwy = 7ller dr} : (3.15)

Combining (3.10), the bounds on 7175, (3.15), and using (2.5) and Gronwall’s inequality,
we arrive at the following result.

THEOREM 3.1. Assume that (2.4)-(2.8) and (H1) hold. For the semi-discrete mized fi-
nite element approximation (2.16)—(2.18) of problem (2.1)—(2.3), there exists a positive con-
stant C such that, for every t € [0,T],

2
0

[ =1 D6) = DG+ | [ 16 = ) ar
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1 1 1
gc{/ Hg—s”gdr+Hn/ ddr— [ pr
0 0 0 0

+h_1/()t"7_Ph7"?J,FdT+“(/(Jt¢dT_H/()t¢dT) Y

[l v
t]| o g i ’

#J, Jor Uy wdemnn [fwde) ] dT}'

Theorem 3.1. bounds the size of ||D(s) — D(sy)|lo by (2.5). It also allows us to derive a
bound on ||s — su||_1 (see also [5]), where || - ||—; is the H~*(2)-norm defined by

ol = sup 22
eermi(@) el

2

2

0T

THEOREM 3.2. Assume that (2.4)-(2.8) and (H1) hold. For the semi-discrete mized fi-
nite element approximation (2.16)—(2.18) of problem (2.1)—(2.3), there exists a positive con-
stant C such that, for every t € [0,T],

s, 8) = sul- )IIZ
SC{h2 §—5H3+/0t
—I—h_l/OtH’y—Ph’yHgIdr—l—H(/Ot;/)dr—ﬂ/ot;/;dr)-z/
#JJar () waen [ oae)
o[ g ([ v =n [[vae) v

Proof. For any ¢ € Hg (), we have

1 1
g—sugdr+Hn/ vdr— [ pdr
0 0

2
0
2

0T

2
dr
0
2
dr} )
0T

A A

(s =sp, ) =(5s—sm—@)+ (s —s1,0) =(s—5,0—@) + (5 — 51,9).

By (3.5) we have that

o)== (v (1 f = [Far) )+ ([0 - autonins).

For the first term on the right we write

(1 v fona) ), =3 (- (0 [ ) 0),
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k

Z(H/Ot;/)dr—/ot@/)th,th)Qi —§;<<H/Ot¢d7'—/ot¢hd7) 'Vi,99>r

=1

i(ﬂ/tﬁ;dr—/tde,V@)m —;<<H/Ot¢d7—/ot¢d7) 'Vi,99>ri

Z</ Y — tn) Vid7799—73h99> :

Iy

B

using (3.6) for the last equality. Therefore

L[¢dr—42mdr0+HQ{[¢dr—Zj¢m)-y

([ = s D(s) = Dlsw) dT)”Z} ol

(s = 51, )]

< c{hu

0T

‘|‘H/Ot(¢—¢h)d7 ot

using that
ollo < Chllgly

for the first term on the right, Lemma 3.1. and

le = Pugllor, < CRY2|lellg,

for the fourth term, and (2.8) for the last term. An application of Theorem 3.1. completes
the proof. O

4. DISCRETE TIME ERROR ANALYSIS
In this section we present the analysis for the fully discrete scheme (2.19)—(2.21). The
following error equations are obtained by subtracting (2.19)-(2.21) from (2.13)—(2.15) for
t=1".
(a(" = }), v)a, = (D(s") = D(sp), V- Vg,
3 A, () - S V. VE Vi (4]

(s" — st w)g, + (V- (/Ot ;/)dT—Z;/}iAtj) , W

Q;

tm n
= ( qw dT Z At] ) + (80 — Soﬁ,U))Qi, w e Whﬂ', (4.2)
0 —

Q;

k n n ) ]
Z< ; ;/)-VidT—Z;/)iL-l/iAt],/,L> =0, w e M, (4.3)
=1 7=1 .

We now take v =& =11 (fgn pdr — 30, @/}iAtj), w= D(s")— D(S\Z), and p = Ppy" — 7,

to obtain

(s" — sp, D(s") — D(s})) + (a(e" — ¢}),8")
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" n —
=N
= [} 3o = (A D) = D) ) + a3 = A )

k — tn "
STy .Vi>rl+z<(o pir = [ de) v P o) G
=1 ¢ =1

Iy

We replace n by j in the above equation, multiply by A#/ and sum on j. The first term on
the left in (4.4) becomes

n

Z:g — sl D(s)) - D(s] INAY =3"(s' — 53, D(s7) — D(s,)) At — T, (4.5)

7=1

where
n

Ty ==Y (si — s/, D(s7) — D(s})) At

i=1

To manipulate the terms involving @ we rewrite it as
—n " 38 n t . ) n
o =1I ;/;dr—/ L/)dT—I—Z( ¢dr—¢]At])+Z — )AL, (4.6)
0 0 o e =

Note that @ " is represented as a sum of an approximation error term, a time discretization
error term, and an error term we are trying to bound. Using (4.6), the second term on the
left in (4.4) becomes

S (0 — 4]), )AL

i=1

n J
= S (a(p =), S (0 — ) AYAY — Ty — Ty

1 L L
o1 P ww
7=1

12 , . ,
o3 ot - A - T =T, (@)
0 j=1
where

TQZ_Z a(¢f_ Z),H Ot ;/)dr—/ot L/JdT) Atf7

S
Ty = — zn: (a(w — @bi),zjj (/t;_ll W dr — WAH)) At

=1

For the second equality in (4.7) we used the well known identity, for any sequence {o;},
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Combining (4.4), (4.5), and (4.7), we arrive at

S( = s D) = D(s})AY
D ST

i=1

1
+—

2
; 15 LETREIV WD S RIS
0 j=1 m=1

where
o i - . 4
n=% ( [ () dr = S aulshar, D) - D(si)) AV,
0 =1

Ts =Y (a(B(s) — B(s)))u!, @7 )AL,

7=1
n k
Ts = —ZZ<7j —Ph’y],q)] 1/2> A
7=11=1
T7=ZZ ( t @/}dT—H/t ;/)dr) -Vi,Ph’yj—’yZ> At
7=11=1 0 0 T,

We next bound the terms 7,,, m = 1,...,7. For any ¢ > 0 we have

T < O3 ||s? — s |2At + 83" ||D(s') — D(s}))]]2AE,

=1 7=1
n 7 # J
<oy z(/ S dr — s ) #3060 = b DI = D(sL))AL b A
7=1 1 =1
+5ZHD sllgAr,

15 < 530 = s, DIs’) = DAL + O3 [8 3,
Jj=1 7=1
7ol < €3 AR = Pur e + 1715 A2,
7=1
where we used (2.8) for the bound of T4, (2.7) for the bound of T, and Lemma 3.1. for the
bound of Ts. To bound the rest of the terms we need the following discrete integration by
parts identity. For sequences {A;}7_; and {3;}7_,

Z A;(Bj11 — Z (A; — A;21)B5 + AnBn — Aofo. (4.9)

We will apply (4.9) for A; = Y7_, oy, where {a;}7_, is another sequence. In this case Ag = 0
and (4.9) leads to

Zn:%ﬂj = —nZ_:Zaz(ﬁm — B;) + Zn:ajﬁn. (4.10)

j=11=1
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To estimate Ty, we apply (4.10) with a; = a(y’ — @/}i)Atj and 3; = I [ pdr — [F o dr.

z_j (Za TN MH (H/; ;/)dr—/tt ¢dr)) A

=1 J J

Mz

1

e
Il

a(i — i) MH/ ;Z)dr—/otn;/;dr)

. 2
n—1 J
<O DD alwt =) A AY
7=1 ||i=1 0
n—1 1 11 11 2 4
+1
—|—Z; W (H i 77de— i 77de) OAt]
]:
n : ? " n 2
+6[ S a(e? — gAY —|—CHH bdr — | wdr| |
] . 0 0 o

where we assumed that there exists a constant C' > 0 such that

AT <CIAY, 1<j<N-—1. (4.11)
Similarly,
n—1 7 2
1T < C YY" a(y! — vp) A AP
7=1 ||i=1 0
n—1 £+1 4 2 4
T tf+1 ( y @/)dT—@/)H—lAt]H) AP
J=1 0
" 2 o " 2
Z —DAY| +C pdr =S YAV
and
n—1 ] 2
17| < Z Z Pyt —AAL A
J=1|i=1 o,r

n—1 2

+C >
7=1

$+1

1 $+1 )
+1

or
2 m

SO (Puy? — )AL +CH( ¢dr—n/ ¢dr)-y

Jj=1 0

To further estimate the first and the thlrd terms, we consider, for 1 <1 < k and any fixed
1 <n < N, the auxiliary problem

o —Ap =0, in ;, (4.12)

n

+4

0T

Vc,o V= Z Qhﬂ'(Ph’yj - ’)/Z)Atj, on 692, (4.13)

i=1
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Note that the Neumann boundary data is in H'/275(;) for any ¢ > 0 and by elliptic
regularity
O3 QuilPuy? — 4) A 1<m<2. (4.14)

i=1

[@llm—e0; <

Y

m—e—3/2,08;

We now replace n by j in (4.1), multiply by A#/, sum on 1 < j < n, and take v = [IV¢ to
obtain
2

3 Qui(Pry — i) A

i=1

0,0€;

(Zi:a ;/)h At] HV(,Q) (Zn: ))At],c,o)

J=1 Q;

+ (Zn: a(ﬁ(sj) — ﬁ(s%))ujAtj7 va«o) + <Zn: Qhﬂ'(’thyj _ Vj)Atj7 VS‘Q . Vi>
7=1 Q a0

i=1

=T+ Ty + Tho + 111. (4.15)
We now have, for any small generic constant § > 0,
B 2
|T8| <C Z ¢h At] + 5HHV‘PH(2J,m

2

(v — DAL +3(|Velia, + IV - Velie,

NE

<C

o
i
L

o

2

S| Qui(Puy? — 4h) Al

i=1

(V7 — o)) A

NE

<C

Y

0,0€;

o
Il
—

0,£2;

using (3.3) for the second inequality and (4.14) for the third inequality. Similarly,

3 Qui(Pry — i) A

i=1

Y

| T5] < C 3 21ID(s) = D(sn) g0, At + 6

i=1 0,50
[Tiol < C Y (s — s, D(s) = D(sa))a, A + 6|37 Qui(Pin? — 1) A :
i=1 i=1 0,09
T < OX NP =¥ G 00, A + 82 Qui(Pin? — ) AF
j=1 j=1 0,50
Combining (4.15), the bounds on Ts-T4;, and (H1), we conclude that
e 2 e
Y (P’ —)Ar| < C{ S — AP+ Z 1D (s’ sp)llAr
j=1 or j=1 0
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+Z@twamawiwbmﬂ+2wﬂv—V%ﬂw}. (1.16)
7=1

i=1

Putting together (4.8), the bounds on T1-T%, (4.16), manipulating 3’ in Ts and Tg as in (4.6),
applying (2.5) and the discrete Gronwall’s inequality, we obtain the following estimate.

THEOREM 4.1. Assume that (2.4)—(2.8) and (H1) hold, and that there exists a constant
C > 0 such that
AL < CIAY, 1<j<N-—1.

For the fully discrete mized finite element approximation (2.19)—(2.21) of (2.1)—(2.3), there
exists a positive constant C such that, for any 1 <n < N,

2
n

Z — )AL

n

+ 207 = o)) AE|S

o =1

é ( / " Gl dr - qw(s’)ml)

Z(Sj — 32, D(s") — D(s3))At +
7=1

2

<OY {87 — |2+
7=1

0
2

! II ! d ! d
H( tJ—177Z) T tﬂ—l¢ T)

HM ( N ;/;dr—/ilg/)dr) v

The following theorem can be shown as in the proof of Theorem 3.2..

_|_

HAtJ ( - 1¢dr—¢jAtj)

+ TPy — ’YjH(ZJ,r} Al

0

0T

THEOREM 4.2. Under the assumptions of Theorem 4.1., there exists a positive constant
C such that, for any 1 <n < N,

[ [
2

+ APy — Ao

0

HAtJ ( - 1¢dr—¢jAt])

} At 4 CR? |57 — s™||2.
oI

zij (/t s)dr — Guls ’)At’)

+J +J
11 dr — d
H A ( ti—1 77Z) 4 =1 ¢ T)

3
HAZ‘J (H - Ydr — ;/)dT) .

REMARK 4.1. The estimates from Theorems 3.1.-4.2. bound the discretization error by
optimal order approzimation terms in time or space. The term h™'%||y — Pyyllor provides
approzimation of order h'/? higher then the other terms, assuming enough reqularity of ~,
since the functions in Ay, are piece-wise polynomials of one degree higher than these in Vy -v.

n Fay .
<Y qlls? =g+
i=1

2

0
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