
East-West J. Numer. Math., Vol.0, No. 0, pp. 1{21 (1997)c VSP 1997A mixed �nite element discretization on non-matchingmultiblock grids for a degenerate parabolic equationarising in porous media owIVAN YOTOV�Abstract | Mixed �nite element methods on multiblock domains are considered for nonlinear degenerateparabolic equations arising in modeling multiphase ow in porous media. The subdomain grids need notmatch on the interfaces, where mortar �nite element spaces are introduced to properly impose ux-matchingconditions. The low regularity of the solution is treated through time integration, and the degeneracy of thedi�usion is handled analitically via the Kirchho� transformation. With an appropriate choice of the mortarspaces, the error for both a semidiscrete (continuous time) scheme and a fully discrete (backward Euler)scheme is bounded entirely by approximation error terms of optimal order.Keywords. Mixed �nite element, degenerate parabolic equation, nonlinear, mortar �nite element, multi-block, non-matching grids, error estimates, porous mediaAMS subject classi�cations. 65M60, 65M12, 65M15, 35K65, 76S05Multiblock �nite element techniques on non-matching grids have become increasingly popularin recent years. They combine the exibility of modeling irregularly shaped domains with theconvenience of constructing the grids locally. In porous media applications they also allowaccurate modeling of large scale geological features such as faults, layers, and fractures. Wede�ne a multiblock domain to be a simply connected domain 
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i, i = 1; :::; k. For the purpose of theanalysis we assume that each block 
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2 Ivan Yotovintroduce mortar �nite element spaces along the subdomain boundaries. Mortar spaces havebeen a common tool in standard and spectral �nite element methods (see e.g. [9]). Recentlymortar [18, 29, 4] and non-mortar [6] techniques have been successfully applied in the contextof mixed �nite element methods on multiblock grids.Due to the degeneracy in the di�usion the solutions can have compact support, thus be-having very di�erently form the solutions of non-degenerate parabolic problems. In addition,certain error terms cannot be directly bounded in the analysis. Many authors introduce aregularized problem and then approximate it [27, 17, 24, 15, 14]. The numerical error is thena sum of the discretization error for the regularized problem and the di�erence between thesolutions to the regularized and the original problems.Another common technique is to handle the degeneracy analytically via the Kirchho�transformation [27, 15, 14, 5, 28], which is the approach we take. We combine the useof mortar �nite elements along subdomain interfaces with techniques from [5], where mixeddiscretizations for similar degenerate parabolic equations on a single block have been studied.We consider a continuous time scheme and a fully discrete backward Euler scheme andbound the discretization error in the two versions entirely by approximation error terms ofoptimal order. Critical in the analysis is the choice of mortar spaces along the non-matchinginterfaces. The mortar elements need to provide one order higher approximation than thetraces of the subdomain velocity spaces (see Remark 2.2). At the same time, the mortarspaces should be controled by the subdomain spaces (see hypothesis (H1) and Remark 3.1).Our analysis improve the single block results from [5] in several ways. We avoid theassumption from [5] on smoothness of @
 by requiring a minimal smoothness for the ux(see Lemma 2.2.). Also, we weaken the assumption ([5], A2) on the advective and thesource terms and only assume physically reasonable behavior (see (2.7), (2.8)). Finally, bychoosing a di�erent ux test function in (3.4), we avoid a non-standard approximation errorterm involving the divergence of the di�erence of two discrete projections of the ux, whichappears in the analysis in [5].The rest of the paper is organized as follows. In the next section we illustrate how adegenerate parabolic saturation equation arises in the fractional ow formulation of twophase incompressible ow. In Section 2 we formulate the mortar mixed method for thesaturation equation. The analysis of the continuous in time and the fully discrete schemesis presented in Sections 3 and 4, respectively.1. FRACTIONAL FLOW FORMULATION FOR TWO PHASE FLOWTwo phase immiscible ow in porous media is modeled by the system of conservation equa-tions [7, 13] @('si�i)@t +r � �iui = qi in 
� (0; T ]; (1.1)ui = �ki(si)K�i (rpi � �igrD) in 
� (0; T ]; (1.2)i = w (wetting), n (non-wetting), coupled withsw + sn = 1; (1.3)



A multiblock mixed method for a degenerate parabolic equation 3pc(sw) = pn � pw; (1.4)where si is the phase saturation, �i is the phase density, ' is the porosity, qi is the source term,ui is the Darcy velocity, pi is the phase pressure, K is the absolute permeability tensor, ki(si)is the phase relative permeability, �i is the phase viscosity, g is the gravitational constant,D is the depth, and T is the �nal time.We start by reformulating the problem in a standard way by writing it in a fractionalow form (pressure and saturation equation). Let�i = ki�i ; i = w;n;denote the phase mobilities, and let � = �w + �nbe the total mobility. Let u = uw + unbe the total velocity. For simplicity of the presentation, we assume incompressible ow andmedium (constant �i and ') and neglect gravity e�ects. Multiplying equations (1.1) by 1=�iand adding them together, we get r � u = q; (1.5)where q = qw=�w + qn=�n. Let s = sw, and de�ne the global pressure [13] to bep = pw + Z pc(s)0  �n� !�p�1c (�)� d�:Thus u = ��Krp: (1.6)Equation (1.5), coupled with (1.6), is referred to as the pressure equation. Since � > 0 andK is a symmetric positive de�nite tensor, this is an elliptic equation. For compressible owthe pressure equation is parabolic.To derive the saturation equation, we �rst observe that�w� u = uw � �w�n� Krpc(s):Substituting this expression into the water conservation equation (1.1), we get the saturationequation '@s@t +r � (�(s)u+ �(s)Krpc(s)) = ~qw; (1.7)where �(s) = �w=�, �(s) = �w�n=�, and ~qw = qw=�w. Note that pc(s) is a strictly monotonedecreasing function; therefore with �(s) = ��(s)@pc@s (1.8)



4 Ivan Yotovequation (1.7) takes the advection-di�usion form'@s@t +r � (�(s)u� �(s)Krs) = ~qw: (1.9)The di�usion term vanishes at s = 0; 1, the minimum and maximum saturation values.This is due to the behavior of the relative permeability and the capillary pressure functions(see, e.g., [8]). This double degeneracy is the main source of di�culties in the numericalapproximation. The solutions of degenerate parabolic equations have very low regularity. Ithas been shown that (see [25, 16, 19, 2, 1, 3])s 2 L1(0; T ;L1(
)); (1.10)@s@t 2 L2(0; T ;H�1(
)): (1.11)Since the saturation s satis�es 0 � s(x; t) � 1, (x; t) 2 
� [0; T ], we also haves 2 L1(0; T ;L1(
)): (1.12)We handle the degeneracy in the di�usion analytically using the Kirchho� transformation[27, 15, 14, 5]. Let D(s) = Z s0 �(�) d�:Then rD(s) = �(s)rs;and (1.9) becomes '@s@t +r � (�(s)u�KrD(s)) = ~qw: (1.13)2. A MORTAR MIXED METHOD FOR THE SATURATION EQUATIONIn this section we present a multiblock variational formulation of (1.13) that respects the lowregularity of the solution, and a mixed �nite element discretization using mortar elements onthe interfaces. For the rest of the paper we omit the porosity ', which is assumed constantand does not e�ect the error analysis. The saturation s(x; t) satis�es@s@t +r � (�(s)u�KrD(s)) = ~qw(s) in 
� (0; T ]; (2.1)(�(s)u�KrD(s)) � � = 0 on @
� [0; T ]; (2.2)s(x; 0) = s0(x) in 
; (2.3)where � is the outward unit normal vector to @
. For simplicity we assume that no owboundary conditions are imposed, although more general boundary conditions can also be



A multiblock mixed method for a degenerate parabolic equation 5treated. We need several assumptions on the coe�cients of the above equation. We �rstassume that �(s) � 8><>: �1jsj�1 ; 0 � s � �1;�2; �1 � s � �2;�3j1 � sj�2 ; �2 � s � 1; (2.4)where �i, 1 � i � 3, are positive constants, and �i and �i, i = 1; 2, satisfy0 < �1 < 1=2 < �2 < 1; 0 < �i � 2:Note that (2.4) controls the rate of degeneracy of the di�usion. We also assume that thereexists a positive constant C such thatkD(s1)�D(s2)k20 � C(D(s1)�D(s2); s1 � s2); for s1; s2 2 L2(
): (2.5)Here and for the reminder of the paper (�; �)S and h�; �i@S denote the L2-inner product (orduality pairing) on S � Rd and @S 2 Rd�1, respectively, and k � k0;S denotes the L2-normon S. We omit S if S = 
. A su�cient condition for (2.5) is0 � @D@s (x; t; s) � C for (x; t) 2 
� [0; T ]; 0 � s � 1: (2.6)Bounds (2.4) and (2.6) follow from the physical behavior of the relative permeabilities andthe capillary pressure [3, 15]. Typical relations (see, e.g., [8, 20]) are�w(s) � s2; pc(s) � s��1 as s! 0;�o(s) � (1� s)2; pc(s) � (1 � s)�2 as s! 1;0 < �1 < 1; 0 < �2 < 1:Therefore, with (1.8),�(s) � s1��1 as s! 0 and �(s) � (1� s)1+�2 as s! 1;which implies both (2.4) and (2.6). Finally, we assume that, for 0 � s1; s2 � 1,j�(s1)� �(s2)j2 � C(D(s1)�D(s2))(s1 � s2); (2.7)j~qw(s1)� ~qw(s2)j2 � C(D(s1)�D(s2))(s1 � s2): (2.8)Bounds (2.7) and (2.8) are justi�ed by the following lemma, proven in [15].Lemma 2.1. Suppose � satis�es (2.4). If f 2 C1[0; 1] and f 0(0) = f 0(1) = 0 with f 0Lipschitz at 0 and 1, then there exists a positive constant C such thatjf(a)� f(b)j2 � C(D(a)�D(b))(a� b) for 0 � a; b � 1:Note that the fractional ow function �(s) satis�es the conditions of Lemma 2.1.. The wellterm ~qw(s) satis�es the conditions of Lemma 2.1. at the injection wells. At the productionwells, ~qw(s) � kw(s), so ~q0w(0) = 0. Therefore (2.8) holds, if s � s� < 1 at the productionwell, which covers all cases of physical interest.



6 Ivan YotovRemark 2.1. The fractional ow function �(s) and the integrated di�usion functionD(s) are both S-shaped with zero derivatives at the end points. Bound (2.7) relates therates of degeneracy of the derivatives of the two functions and indicates, in a sense, that thedi�usion dominates the advection.In the standard mixed variational formulation, equation (2.1) is multiplied by a testfunction w 2 L2(
) and integrated in space. In our case however, because of (1.11), theintegral (@s@t ; w) is not well de�ned. To avoid this problem we integrate (2.1) in time from 0to t [23, 5] to obtain the equivalent equations(x; t) +r � Z t0  d� = Z t0 ~qw(s) d� + s0(x); in 
� [0; T ]; (2.9)where  = �(s)u�KrD(s): (2.10)Before presenting the variational formulation, we give the following regularity result.Lemma 2.2. Assume that there exists some 0 < " < 1=2 such that, for 1 � i � k,Z t0 �(s)u d� 2 L2(0; T ;H"(
i)): (2.11)Then, for every t 2 [0; T ], Z t0  d� 2 (H"(
i))d \H(div; 
i): (2.12)Proof. The argument is similar to one from [5]. The assumption (2.11) is reasonable, sincethe fractional ow function �(s) has zero derivatives at the degeneracy values s = 0; 1. Itfollows from (2.9) and (1.12) that Z t0  d� 2 H(div; 
i):Using (2.10) we have in 
i�r �Kr Z t0 D(s) d� = r � Z t0  d� �r � Z t0 �(s)u d�:By (2.11) and elliptic regularity, R t0 D(s) d� 2 H1+"(
i), which, along with (2.10) and (2.11)implies that Z t0  d� 2 (H"(
i))d: 2Let �i;j = @
i \ @
j, � = [1�i<j�k�i;j , and �i = @
i \ �. LetVi = fv 2 (H"(
i))d \H(div; 
i) : v � � = 0 on @
g; V = kMi=1Vi;



A multiblock mixed method for a degenerate parabolic equation 7Wi = L2(
i); W = kMi=1Wi = L2(
); � = H1=2�"(�):We are now ready to present the multiblock variational formulation of (2.9){(2.10). Witha = K�1 and letting  be the trace of D(s) on �, we have, for every time t 2 [0; T ] and1 � i � k,(a ;v)
i = (D(s);r � v)
i � h;v � �ii�i + (a�(s)u;v)
i; v 2 Vi; (2.13)(s;w)
i + �r � Z t0  d�;w�
i = �Z t0 ~qw(s) d�;w�
i + (s0; w)
i; w 2 Wi; (2.14)kXi=1 �Z t0  � �i d�; ���i = 0; � 2 �: (2.15)Note that, because of (2.12) and the de�nitions of Vi and �, the boundary integrals in (2.13)and (2.15) are well de�ned.Let Th;i be a �nite element partition of 
i with maximal element diameter h. We allowfor the possibility that Th;i and Th;j need not match on �i;j. Let Vh;i � Wh;i be any ofthe usual mixed spaces on Th;i [26, 22, 12, 11, 10]. Let T �i;jh be a �nite element partitionof �i;j with maximal element diameter h. Let �h;i;j � �i;j be the space of continuous ordiscontinuous piecewise polynomials of degree k+1 on T �i;jh , where k is associated with thedegree of the polynomials in Vh;i � �i. More precisely, if d = 3, on any boundary elementK, �h;i;jjK = Pk+1(K), if K is a triangle, and �h;i;jjK = Qk+1(K), if K is a rectangle. Anadditional assumption on �h;i;j and hence on T �i;jh will be made later. The �nite elementspaces on 
 are now de�ned asVh = kMi=1Vh;i; Wh = kMi=1Wh;i; �h = M1�i<j�j �h;i;j:Remark 2.2. We refer to the interface spaces �h;i;j as \mortar" �nite element spaces,following a terminology for similar techniques used with the standard and spectral �nite ele-ment methods [9]. If the order of approximation for �h is the same as for Vh � �, then themortar mixed methods for elliptic equations lose O(h1=2) from the optimal order of conver-gence [29, 4]. A similar loss is observed for the equations considered here (see the theoremsbelow), which motivates the above choice of mortar spaces.In the continuous time mixed �nite element method for approximating (2.13){(2.15) weseek, for each t 2 [0; T ],  h(�; t) 2 Vh, sh(�; t) 2 Wh, and h(�; t) 2 �h such that, for1 � i � k,(a h;v)
i = (D(sh);r � v)
i � hh;v � �ii�i + (a�(sh)u;v)
i; v 2 Vh;i; (2.16)(sh; w)
i + �r � Z t0  h d�;w�
i = �Z t0 ~qw(sh) d�;w�
i + (s0;h; w)
i ; w 2 Wh;i; (2.17)kXi=1 �Z t0  h � �i d�; ���i = 0; � 2 �h; (2.18)



8 Ivan Yotovwhere s0;h 2 Wh is an approximation of s0.We next consider a backward Euler time discretization. Let ftngNn=0 be a monotonepartition of [0; T ] with t0 = 0 and tN = T , let �tn = tn � tn�1, and let fn = f(tn).In the fully discrete mixed method we seek, for any 0 � n � N ,  nh 2 Vh, snh 2 Wh, andnh 2 �h such that, for 1 � i � k,(a nh;v)
i = (D(snh);r � v)
i � hnh ;v � �ii�i + (a�(snh)un;v)
i; v 2 Vh;i; (2.19)(snh; w)
i + 0@r � nXj=1 jh�tj; w1A
i= 0@ nXj=1 ~qw(sjh)�tj; w1A
i + (s0;h; w)
i; w 2 Wh;i; (2.20)kXi=1 * nXj=1 jh � �i�tj; �+�i = 0: � 2 �h; (2.21)As noted in [5], by subtracting equation (2.20) for time levels n and n � 1, it can berewritten in the usual backward Euler form snh � sn�1h�tn ; w!
i + (r �  nh ; w)
i = (~qw(snh); w)
i; w 2 Wh;i; (2.22)(s0h; w)
i = (s0;h; w)
i ; w 2 Wh;i: (2.23)3. ERROR ANALYSIS OF THE SEMIDISCRETE SCHEMEWe start this section with a lemma [29, 4] needed later in the analysis. The proof is includedfor completeness.Lemma 3.1. For any function v 2 Vh;i,kv � �ik0;@
i � Ch�1=2kvk0;
i:Proof. All spaces under consideration admit nodal bases that include the degrees of freedomof the normal traces on the element boundaries. Since for any element E and any of its faces(edges) e, jej � Ch�1jEj, the lemma follows. 2We need the following projections onto the �nite element spaces. The standard mixedprojection operator � : Vi ! Vh;i satis�es, for q 2 Vi,(r � (q��q); w)
i = 0; w 2 Wh;i; (3.1)h(q��q) � �i;v � �ii@
i = 0; v 2 Vh;i: (3.2)It is known [21] that k�qkH(div;
i) � C(kqk";
i + kr � qk0;
i): (3.3)



A multiblock mixed method for a degenerate parabolic equation 9In the analysis we apply � to R t0  , which is justi�ed by Lemma 2.2.. Let, for any ' 2 W ,'̂ 2 Wh be its L2-projection, satisfying('� '̂; w) = 0; w 2 Wh:In a similar way we de�ne the L2-projections Ph : � ! �h, and Qh;i : � ! Vh;i � �i. Forsmooth enough functions, these operators have optimal order approximation properties. Asin [29, 4], we make explicit the following assumption on the mortar space �h. There existsa positive constant C independent of h such that, for 1 � i < j � k,(H1) k�k0;�i;j � C(kQh;i�k0;�i;j + kQh;j�k0;�i;j); 8� 2 �h:Remark 3.1. Hypothesis (H1) imposes a mild condition on the mortar grids and spaces.It implies that the dimension of the mortar space on a given interface, and the distributionof its degrees of freedom, are controlled by the degrees of freedom of the traces of the velocityspaces on the two sides. This condition prevents overconstraining the matching interfaceconditions (2.21) and is easily satis�ed in practice. See [29] for details.We now proceed with the error analysis. Subtracting (2.16){(2.18) from (2.13){(2.15),we obtain the error equations(a( �  h);v)
i = (D(s) �D(sh);r � v)
i� h � h;v � �ii�i + (a(�(s)� �(sh))u;v)
i; v 2 Vh;i; (3.4)(s� sh; w)
i + �r � Z t0 ( �  h) d�;w�
i= �Z t0 (~qw(s)� ~qw(sh)) d�;w�
i + (s0 � s0;h; w)
i; w 2 Wh;i; (3.5)kXi=1 �Z t0 ( �  h) � �i d�; ���i = 0; � 2 �h: (3.6)To simplify notations, let �(t) = � R t0( �  h) d� . We choose s0;h = ŝ0 and take v = �,w = dD(s) � dD(sh), and � = Ph � h in (3.4){(3.6). Note that our choice for v di�ersfrom this in [5], where v is taken to be an L2-projection of the ux error. Consequently, weare able to avoid a non-standard error term involving the divergence of the di�erence of the�-projection and the L2-projection of R t0  d� , which appears in [5]. We now have(s� sh; dD(s) � dD(sh)) + (a( �  h);�)= �Z t0 (~qw(s)� ~qw(sh)) d�; dD(s) � dD(sh)�+(a(�(s)� �(sh))u;�)� kXi=1h �Ph;� � �ii�i+ kXi=1 ��Z t0  d� �� Z t0  d�� � �i;Ph � h��i : (3.7)



10 Ivan YotovWe integrate (3.7) in time form 0 to t. The �rst term on the left becomesZ t0 (s� sh; dD(s) � dD(sh)) d� = Z t0 (s� sh;D(s) �D(sh)) d� + T1; (3.8)where T1 = Z t0 (ŝ� s;D(s)�D(sh)) d�:The second term on the left-hand side of (3.7) becomesZ t0 (a( �  h);�) d� = 12 a1=2 Z t0 ( �  h) d�20 + T2; (3.9)where T2 = Z t0 �a( �  h);� Z �0  d� � Z �0  d�� d�:Combining (3.7){(3.9), we obtainZ t0 (s� sh;D(s) �D(sh)) d� + 12 a1=2 Z t0 ( �  h) d�20 = 6Xk=1 Tk; (3.10)where T3 = Z t0 �Z �0 (~qw(s)� ~qw(sh)) d�; dD(s) � dD(sh)� d�;T4 = Z t0 (a(�(s)� �(sh))u;�) d�;T5 = � kXi=1 Z t0 h �Ph;� � �ii�i d�;T6 = kXi=1 Z t0 ��Z �0  d� �� Z �0  d�� � �i d�;Ph � h��i d�:We now bound each Tk, k = 1; :::; 6. Note that the terms T3 and T4 are bounded di�erentlythan in [5], using the weaker and physically reasonable assumptions (2.7) and (2.8), respec-tively. The terms T5 and T6 involve error on the non-matching interfaces and do not appearin the case of a single block. For any � > 0, we havejT1j � C Z t0 kŝ� sk20 d� + � Z t0 kD(s)�D(sh)k20 d�;jT3j � C Z t0 Z �0 (s� sh;D(s)�D(sh)) d� d� + � Z t0 kD(s)�D(sh)k20 d�;jT4j � � Z t0 (s� sh;D(s) �D(sh)) d� + C Z t0 k�k20 d�;jT5j � C �h�1 Z t0 k �Phk20;� d� + Z t0 k�k20 d�� ;



A multiblock mixed method for a degenerate parabolic equation 11using (2.8) for the bound of T3, (2.7) for the bound of T4, and Lemma 3.1. for the bound ofT5. To estimate T2 we integrate by parts in time:T2 = � Z t0  Z �0 a( �  h) d�; @@� �� Z �0  d� � Z �0  d��! d�+�Z t0 a( �  h) d�;� Z t0  d� � Z t0  d�� ;therefore,jT2j � C8<:Z t0 Z �0 ( �  h) d�20 d� + Z t0  @@� �� Z �0  d� � Z �0  d��20 d�+ � Z t0  d� � Z t0  d�20) + � Z t0 ( �  h) d�20The term T6 is the most di�cult to bound. Integration by parts in time givesT6 = � kXi=1 Z t0 * @@� �Z �0  d� �� Z �0  d�� � �i; Z �0 (Ph � h) d�+�i d�+ kXi=1 ��Z t0  d� �� Z t0  d�� � �i d�; Z t0 (Ph � h) d���i :Therefore,jT6j � C 8<:Z t0  @@� �Z �0  d� �� Z �0  d�� � �20;� d�+ �Z t0  d� �� Z t0  d�� � �20;� d�)+ � Z t0 Z �0 (Ph � h) d�20;� d�+� Z t0 (Ph � h) d�20;� :To bound the last two terms, we consider, for 1 � i � n and any �xed t 2 (0; T ], theauxiliary problem '��' = 0; in 
i; (3.11)r' � �i = Z t0 Qh;i(Ph � h) d�; on @
i: (3.12)Note that the Neumann boundary data is in H1=2�"(
i) for any " > 0 and by ellipticregularity k'km�";
i � C Z t0 Qh;i(Ph � h) d�m�"�3=2;@
i ; 1 � m � 2: (3.13)



12 Ivan YotovWe now integrate in time from 0 to t and take v = �r' in (3.4) to obtainZ t0 Qh;i(Ph � h) d�20;@
i= ��Z t0 a( �  h) d�;�r'�
i + �Z t0 ( dD(s) � dD(sh)) d�; '�
i+�Z t0 a(�(s)� �(sh))u d�;�r'�
i + �Z t0 Qh;i(Ph � ) d�;r' � �i�@
i= T7 + T8 + T9 + T10: (3.14)We bound the terms on the right-hand side of (3.14) as follows. For any � > 0,jT7j � C Z t0 ( �  h) d�20;
i + �(kr'k2";
i + kr � r'k20;
i)� C Z t0 ( �  h) d�20;
i + � Z t0 Qh;i(Ph � h) d�20;@
i ;using (3.3) for the �rst inequality and (3.13) for the last bound. Note that � in the aboveinequalities is an arbitrary small generic constant which may be di�erent each time it appears.Similarly, jT8j � C Z t0 kD(s) �D(sh)k20;
i d� + � Z t0 Qh;i(Ph � h) d�20;@
i ;jT9j � C Z t0 (s� sh;D(s) �D(sh))
i d� + � Z t0 Qh;i(Ph � h) d�20;@
i ;jT10j � C Z t0 kPh � k20;@
i d� + � Z t0 Qh;i(Ph � h) d�20;@
i :Combining together (3.14), the bounds on T7{T10, and (H1), we obtainZ t0 (Ph � h) d�20;�� C (Z t0  d� �� Z t0  d�20 + k�(t)k20 + Z t0 kD(s) �D(sh)k20 d�+ Z t0 (s� sh;D(s)�D(sh)) d� + Z t0 kPh � k20;� d�� : (3.15)Combining (3.10), the bounds on T1{T6, (3.15), and using (2.5) and Gronwall's inequality,we arrive at the following result.Theorem 3.1. Assume that (2.4){(2.8) and (H1) hold. For the semi-discrete mixed �-nite element approximation (2.16){(2.18) of problem (2.1){(2.3), there exists a positive con-stant C such that, for every t 2 [0; T ],Z t0 (s� sh;D(s) �D(sh)) d� + Z t0 ( �  h) d�20



A multiblock mixed method for a degenerate parabolic equation 13� C (Z t0 kŝ� sk20 d� + � Z t0  d� � Z t0  d�20+h�1 Z t0 k �Phk20;� d� + �Z t0  d� �� Z t0  d�� � �20;�+ Z t0  @@� �Z �0  d� �� Z �0  d��20 d�+ Z t0  @@� �Z �0  d� �� Z �0  d�� � �20;� d�9=; :Theorem 3.1. bounds the size of kD(s) � D(sh)k0 by (2.5). It also allows us to derive abound on ks� shk�1 (see also [5]), where k � k�1 is the H�1(
)-norm de�ned byk � k�1 = sup'2H1(
) ( � ; ')k'k1 :Theorem 3.2. Assume that (2.4){(2.8) and (H1) hold. For the semi-discrete mixed �-nite element approximation (2.16){(2.18) of problem (2.1){(2.3), there exists a positive con-stant C such that, for every t 2 [0; T ],ks(�; t)� sh(�; t)k2�1� C (h2kŝ� sk20 + Z t0 kŝ� sk20 d� + � Z t0  d� � Z t0  d�20+h�1 Z t0 k �Phk20;� d� + �Z t0  d� �� Z t0  d�� � �20;�+ Z t0  @@� �Z �0  d� �� Z �0  d��20 d�+ Z t0  @@� �Z �0  d� �� Z �0  d�� � �20;� d�9=; :Proof. For any ' 2 H10 (
), we have(s� sh; ') = (s� sh; '� '̂) + (s� sh; '̂) = (s� ŝ; '� '̂) + (s� sh; '̂):By (3.5) we have that(s� sh; '̂) = � kXi=1 �r � �� Z t0  d� � Z t0  h d�� ; '̂�
i + �Z t0 (~qw(s)� ~qw(sh)) d�; '̂� :For the �rst term on the right we write� kXi=1 �r � �� Z t0  d� � Z t0  h d�� ; '̂�
i = � kXi=1 �r � �� Z t0  d� � Z t0  h d�� ; '�
i



14 Ivan Yotov= kXi=1�� Z t0  d� � Z t0  h d�;r'�
i � kXi=1��� Z t0  d� � Z t0  h d�� � �i; '��i= kXi=1�� Z t0  d� � Z t0  h d�;r'�
i � kXi=1��� Z t0  d� � Z t0  d�� � �i; '��i� kXi=1 �Z t0 ( �  h) � �i d�; '�Ph'��i ;using (3.6) for the last equality. Thereforej(s� sh; ')j� C (hks� ŝk0 + � Z t0  d� � Z t0  h d�0 + �� Z t0  d� � Z t0  d�� � �0;�+ Z t0 ( �  h) d�0 + �Z t0 (s� sh;D(s) �D(sh)) d��1=2) k'k1;using that k'� '̂k0 � Chk'k1for the �rst term on the right, Lemma 3.1. andk'�Ph'k0;�i � Ch1=2k'k1;
ifor the fourth term, and (2.8) for the last term. An application of Theorem 3.1. completesthe proof. 24. DISCRETE TIME ERROR ANALYSISIn this section we present the analysis for the fully discrete scheme (2.19){(2.21). Thefollowing error equations are obtained by subtracting (2.19){(2.21) from (2.13){(2.15) fort = tn.(a( n �  nh);v)
i = (D(sn)�D(snh);r � v)
i� hn � nh ;v � �ii�i + (a(�(sn)� �(snh))un;v)
i; v 2 Vh;i; (4.1)(sn � snh; w)
i + 0@r � 0@Z tn0  d� � nXj=1 jh�tj1A ; w1A
i= 0@Z tn0 ~qw(s) d� � nXj=1 ~qw(sjh)�tj; w1A
i + (s0 � s0;h; w)
i ; w 2 Wh;i; (4.2)kXi=1 *Z tn0  � �i d� � nXj=1 jh � �i�tj; �+�i = 0; � 2Mh: (4.3)We now take v = �n � � �R tn0  d� �Pnj=1  jh�tj�, w = dD(sn)� dD(snh), and � = Phn�nh ,to obtain(sn � snh; dD(sn)� dD(snh)) + (a( n �  nh);�n)



A multiblock mixed method for a degenerate parabolic equation 15= 0@Z tn0 ~qw(s) d� � nXj=1 ~qw(sjh)�tj; dD(sn)� dD(snh)1A + (a(�(sn)� �(snh))un;�n)� kXi=1 Dn �Phn;�n � �iE�i + kXi=1 * Z tn0  d� � � Z tn0  d�! � �i;Phn � nh+�i :(4.4)We replace n by j in the above equation, multiply by �tj and sum on j. The �rst term onthe left in (4.4) becomesnXj=1(sj � sjh; dD(sj)� dD(sjh))�tj = nXj=1(sj � sjh;D(sj)�D(sjh))�tj � T1; (4.5)where T1 = � nXj=1( bsj � sj;D(sj)�D(sjh))�tjTo manipulate the terms involving �n we rewrite it as�n = � Z tn0  d� � Z tn0  d� + nXj=1 Z tjtj�1  d� �  j�tj!+ nXj=1( j �  jh)�tj: (4.6)Note that � n is represented as a sum of an approximation error term, a time discretizationerror term, and an error term we are trying to bound. Using (4.6), the second term on theleft in (4.4) becomesnXj=1(a( j �  jh);� j)�tj= nXj=1(a( j �  jh); jXl=1( l �  lh)�tl)�tj � T2 � T3= 12 a1=2 nXj=1( j �  jh)�tj20 + 12 nXj=1 a1=2( j �  jh)�tj20 � T2 � T3; (4.7)where T2 = � nXj=1 a( j �  jh);� Z tj0  d� � Z tj0  d�!�tj;T3 = � nXj=10@a( j �  jh); jXl=1  Z tltl�1  d� �  l�tl!1A�tj:For the second equality in (4.7) we used the well known identity, for any sequence f�jg,0@ nXj=1�j1A2 + nXj=1�2j = 2 nXj=10@�j jXl=1 �l1A :



16 Ivan YotovCombining (4.4), (4.5), and (4.7), we arrive atnXj=1(sj � sjh;D(sj)�D(sjh))�tj+12 a1=2 nXj=1( j �  jh)�tj20 + 12 nXj=1 a1=2( j �  jh)�tj20 = 7Xm=1Tm; (4.8)where T4 = nXj=10@Z tj0 ~qw(s) d� � jXl=1 ~qw(slh)�tl; dD(sj)� dD(sjh)1A�tj;T5 = nXj=1(a(�(sj)� �(sjh))uj;� j)�tj;T6 = � nXj=1 kXi=1 Dj �Phj;� j � �iE�i �tj;T7 = nXj=1 kXi=1 * Z tj0  d� �� Z tj0  d�! � �i;Phj � jh+�i �tj:We next bound the terms Tm, m = 1; :::; 7. For any � > 0 we havejT1j � C nXj=1 k bsj � sjk20�tj + � nXj=1 kD(sj)�D(sjh))k20�tj;jT4j � C nXj=18><>: jXl=1  Z tltl�1 ~qw(s) d� � ~qw(sl)�tl!20 + jXl=1(sl � slh;D(sl)�D(slh))�tl9>=>;�tj+� nXj=1 kD(sj)�D(sjh)k20�tj;jT5j � � nXj=1(sj � sjh;D(sj)�D(sjh))�tj + C nXj=1 k� jk20�tj;jT6j � C nXj=1nh�1kj �Phjk20;� + k� jk20o�tj;where we used (2.8) for the bound of T4, (2.7) for the bound of T5, and Lemma 3.1. for thebound of T6. To bound the rest of the terms we need the following discrete integration byparts identity. For sequences fAjgnj=0 and f�jgnj=0,n�1Xj=0Aj(�j+1 � �j) = � nXj=1(Aj �Aj�1)�j +An�n �A0�0: (4.9)We will apply (4.9) for Aj =Pjl=1 �l, where f�jgnj=1 is another sequence. In this case A0 = 0and (4.9) leads to nXj=1�j�j = � n�1Xj=1 jXl=1 �l(�j+1 � �j) + nXj=1�j�n: (4.10)



A multiblock mixed method for a degenerate parabolic equation 17To estimate T2, we apply (4.10) with �j = a( j �  jh)�tj and �j = � R tj0  d� � R tj0  d� .T2 = n�1Xj=1 0@ jXl=1 a( l �  lh)�tl; 1�tj+1  � Z tj+1tj  d� � Z tj+1tj  d�!1A�tj+1�0@ nXj=1 a( j �  jh)�tj;� Z tn0  d� � Z tn0  d�1A� C1 n�1Xj=1  jXl=1 a( l �  lh)�tl20�tj+ n�1Xj=1  1�tj+1  � Z tj+1tj  d� � Z tj+1tj  d�!20�tj+1+�  nXj=1 a( j �  jh)�tj20 + C � Z tn0  d� � Z tn0  d�20 ;where we assumed that there exists a constant C > 0 such that�tj+1 � C1�tj; 1 � j � N � 1: (4.11)Similarly, jT3j � C1 n�1Xj=1  jXl=1 a( l �  lh)�tl20�tj+ n�1Xj=1  1�tj+1  Z tj+1tj  d� �  j+1�tj+1!20�tj+1+�  nXj=1 a( j �  jh)�tj20 + C Z tn0  d� � nXj=1 j�tj20 ;and jT7j � � n�1Xj=1  jXl=1(Phl � lh)�tl20;��tj+C n�1Xj=1  1�tj+1  Z tj+1tj  d� �� Z tj+1tj  d�! � �20;��tj+1+�  nXj=1(Phj � jh)�tj20;� + C  Z tn0  d� �� Z tn0  d�! � �20;� :To further estimate the �rst and the third terms, we consider, for 1 � i � k and any �xed1 � n � N , the auxiliary problem'��' = 0; in 
i; (4.12)r' � �i = nXj=1Qh;i(Phj � jh)�tj; on @
i; (4.13)



18 Ivan YotovNote that the Neumann boundary data is in H1=2�"(
i) for any " > 0 and by ellipticregularity k'km�";
i � C  nXj=1Qh;i(Phj � jh)�tjm�"�3=2;@
i ; 1 � m � 2: (4.14)We now replace n by j in (4.1), multiply by �tj, sum on 1 � j � n, and take v = �r' toobtain nXj=1Qh;i(Phj � jh)�tj20;@
i= �0@ nXj=1 a( j �  jh)�tj;�r'1A
i + 0@ nXj=1( dD(s) � dD(sh))�tj; '1A
i+0@ nXj=1 a(�(sj)� �(sjh))uj�tj;�r'1A
i + * nXj=1Qh;i(Phj � j)�tj;r' � �i+@
i= T8 + T9 + T10 + T11: (4.15)We now have, for any small generic constant � > 0,jT8j � C  nXj=1( j �  jh)�tj20;
i + �k�r'k20;
i� C  nXj=1( j �  jh)�tj20;
i + �(kr'k2�;
i + kr � r'k20;
i� C  nXj=1( j �  jh)�tj20;
i + �  nXj=1Qh;i(Phj � jh)�tj0;@
i ;using (3.3) for the second inequality and (4.14) for the third inequality. Similarly,jT9j � C nXj=1 kD(s) �D(sh)k20;
i�tj + �  nXj=1Qh;i(Phj � jh)�tj0;@
i ;jT10j � C nXj=1(s� sh;D(s) �D(sh))
i�tj + �  nXj=1Qh;i(Phj � jh)�tj0;@
i ;jT11j � C nXj=1 kPhj � jk20;@
i�tj + �  nXj=1Qh;i(Phj � jh)�tj0;@
i :Combining (4.15), the bounds on T8{T11, and (H1), we conclude that nXj=1(Phj � jh)�tj20;� � C 8><>: nXj=1( j �  jh)�tj20 + nXj=1 kD(sj)�D(sjh)k20�tj



A multiblock mixed method for a degenerate parabolic equation 19+ nXj=1(sj � sjh;D(sj)�D(sjh))�tj + nXj=1 kPhj � jk20;��tj9=; : (4.16)Putting together (4.8), the bounds on T1{T7, (4.16), manipulating � j in T5 and T6 as in (4.6),applying (2.5) and the discrete Gronwall's inequality, we obtain the following estimate.Theorem 4.1. Assume that (2.4){(2.8) and (H1) hold, and that there exists a constantC1 > 0 such that �tj+1 � C1�tj; 1 � j � N � 1:For the fully discrete mixed �nite element approximation (2.19){(2.21) of (2.1){(2.3), thereexists a positive constant C such that, for any 1 � n � N ,nXj=1(sj � sjh;D(sj)�D(sjh))�tj +  nXj=1( j �  jh)�tj20 + nXj=1 k( j �  jh)�tjk20� C nXj=18><>:k bsj � sjk20 +  jXl=1  Z tltl�1 ~qw(s) d� � ~qw(sl)�tl!20+  1�tj  � Z tjtj�1  d� � Z tjtj�1  d�!20 +  1�tj  Z tjtj�1  d� �  j�tj!20+  1�tj  � Z tjtj�1  d� � Z tjtj�1  d�! � �20;� + h�1kPhj � jk20;�9=;�tj:The following theorem can be shown as in the proof of Theorem 3.2..Theorem 4.2. Under the assumptions of Theorem 4.1., there exists a positive constantC such that, for any 1 � n � N ,ksn � snhk2�1� C nXj=18><>:k bsj � sjk20 +  jXl=1  Z tltl�1 ~qw(s) d� � ~qw(sl)�tl!20 + h�1kPhj � jk20;�+  1�tj  � Z tjtj�1  d� � Z tjtj�1  d�!20 +  1�tj  Z tjtj�1  d� �  j�tj!20+  1�tj  � Z tjtj�1  d� � Z tjtj�1  d�! � �20;�9=;�tj + Ch2kcsn � snk20:Remark 4.1. The estimates from Theorems 3.1.{4.2. bound the discretization error byoptimal order approximation terms in time or space. The term h�1=2k �Phk0;� providesapproximation of order h1=2 higher then the other terms, assuming enough regularity of ,since the functions in �h are piece-wise polynomials of one degree higher than these in Vh ��.
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