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Abstract

The flux-mortar mixed finite element method was recently developed in Boon et al. (2022) for a general class of domain
ecomposition saddle point problems on non-matching grids. In this work we develop the method for Darcy flow using the
ultipoint flux approximation as the subdomain discretization. The subdomain problems involve solving positive definite cell-

entered pressure systems. The normal flux on the subdomain interfaces is the mortar coupling variable, which plays the role
f a Lagrange multiplier to impose weakly continuity of pressure. We present well-posedness and error analysis based on
eformulating the method as a mixed finite element method with a quadrature rule. We develop a non-overlapping domain
ecomposition algorithm for the solution of the resulting algebraic system that reduces it to an interface problem for the
ux-mortar, as well as an efficient interface preconditioner. A series of numerical experiments is presented illustrating the
erformance of the method on general grids, including applications to flow in complex porous media.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

The flux-mortar mixed finite element method [1] is a domain decomposition method that allows for arbitrarily
on-matching grids between the subdomains. In the context of Darcy flow, the normal flux is chosen as the interface
ortar coupling variable. It is used as a Lagrange multiplier to impose weakly continuity of pressure. The method

an be implemented via a non-overlapping domain decomposition algorithm by reducing the global system to the
olution of a symmetric and positive definite interface problem for the mortar variable. When using a Krylov space
terative method, such as the conjugate gradient, for the solution of the interface problem, each iteration requires
olving subdomain problems with normal flux boundary conditions on the interior interfaces, which can be done in
arallel.

The flux-mortar mixed finite element method is dual to the pressure-mortar mixed finite element method [2,3],
here the interface pressure is the coupling variable used to impose weakly continuity of normal flux. Both
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pproaches were originally proposed in [4] in the case of matching subdomain grids. On non-matching grids
he flux-mortar method has the advantage of strong mass conservation across the subdomain interfaces due to
he choice of the normal flux as the mortar variable. While the pressure-mortar mixed finite element method has
een extensively studied, including multiphase and multiphysics flows in porous media [5], nonlinear elliptic [6]
nd parabolic [7] problems, mixed elasticity [8] and poroelasticity [9], Stokes–Darcy flows [10,11], flow in
ractured porous media [12], Stokes–Biot couplings [13], multiscale mortar multipoint flux mixed finite element
iscretizations [14], mortar mimetic finite difference methods [15], and coupling with DG methods [16], the flux-
ortar mixed finite element method has only recently received an increased attention. It has been applied in the

ontext of fracture flows [17] and coupled Stokes–Darcy flows [1,18]. The flux-mortar mixed finite element method
s related to the subgrid upscaling method proposed in [19]. The analysis in [19] is restricted to matching grids. The
ux-mortar method also has similarities with the multiscale hybrid-mixed method with local mixed solves [20,21],

he latter being restricted to subdomain grids that are nested refinements of a coarse global grid. We refer the
nterested reader to [1, Sec. 1] for a more detailed exposition of these relations.

In this paper we develop the flux-mortar mixed finite element method for Darcy flow using the multipoint
ux approximation (MPFA) method as the subdomain discretization. The proposed method thereby combines the
idely used MPFA method with the mass conservative flux-mortar domain decomposition approach. The MPFA
ethod [22–26] is a finite volume method that can handle general polytopal grids and full permeability tensors,
hich may be discontinuous from element to element. As is common with finite volume discretizations, the
PFA method preserves mass locally. On simplicial, quadrilateral, and hexahedral elements, the MPFA method

as been related to the multipoint flux mixed finite element (MFMFE) method [27–29], which uses a Brezzi–
ouglas–Marini BDM1-type space for the velocity and a vertex quadrature rule for the velocity bilinear form. On
eneral polytopal grids, the MPFA method has been formulated and analyzed as a mimetic finite difference (MFD)
ethod in [30]. We further note that on simplicial grids, as shown in [31], it is possible to reduce the lowest-order
aviart–Thomas–Nédélec mixed finite element method to a particular multipoint flux finite volume method for the
ressure.

We refer to our method as the flux-mortar MFMFE method, since we utilize the relation of the MPFA method
o the MFMFE method in our analysis. We note that our analysis allows for different polynomial degrees and
rids for the subdomain and mortar discretizations. In particular, the mortar grid can be chosen to be coarser than
he subdomain grids, resulting in a multiscale approximation. This feature is dual to the multiscale mortar mixed
nite element method with pressure-mortar developed in [3,5]. In our case, the solution is approximated locally on

he fine scale, while continuity of pressure is imposed on the coarse scale. From computational point of view, the
oarse mortar grid results in a smaller interface problem. Furthermore, even though this is beyond the scope of the
aper, similarly to the multiscale flux basis in [32], one can precompute a multiscale pressure basis by solving local
eumann subdomain problems for each flux-mortar degree of freedom. Thus, the computational cost of the method

an be made comparable to existing multiscale mixed finite element methods [19,20,33–35]. We emphasize that
ur method provides extra flexibility due to the non-matching subdomain and mortar grids and different polynomial
egrees for subdomain and mortar discretizations.

The main contributions of this work are as follows. First, we carry out the a priori analysis of the flux-mortar
FMFE method, including its stability and the error estimates. We consider simplicial grids as well as smooth

uadrilateral and hexahedral grids. In both cases, the multipoint approximation of the flux leads to an additional
uadrature error term, which we bound appropriately. Second, we present a non-overlapping domain decomposition
lgorithm for the solution of the resulting algebraic system that reduces it to an interface problem for the flux-mortar,
nd develop an efficient preconditioner for the interface problem. The interface operator requires solving Neumann
ubdomain problems at each iteration with a flux boundary condition on the interior interfaces. The preconditioner
nvolves solving Dirichlet subdomain problems with specified pressure on the interfaces. Both sets of subdomain
olves can be done in parallel, resulting in a scalable algorithm for distributed memory parallel computers. The
umerical results show that the number of iterations of the preconditioned Krylov method for the interface problem
xhibits a very weak dependence on the discretization parameter. Third, we present numerical experiments that
erify the expected convergence of the method as well as showcase the applicability of the method for involved
orous media flow problems and general grids. We test the method for faulted geologies in two and three dimensions
ith low and high permeable faults, where the subdomain and mortar grids are suitably chosen. We illustrate the

ultiscale capability of the method for one of the Society of Petroleum Engineers SPE10 benchmark problems.
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inally, we consider flow in a heterogeneous porous medium, where the different subdomain and mortar grids are
ocally chosen to resolve the variability of the permeability.

The article is organized as follows. Section 2 introduces the model problem and the notation conventions. The
ux-mortar MFMFE method is proposed in Section 3. Section 4 presents the a priori analysis of the method on

simplicial grids. The extension to quadrilateral and hexahedral grids is discussed in Section 5. In Section 6 we
present the domain decomposition algorithm and develop the preconditioner for the interface problem. Finally,
Section 7 shows the performance of the method through the use of four numerical test cases and Section 8 contains
the conclusions.

2. Model problem

Let Ω ⊂ Rn , n = 2, 3 be a bounded polygonal domain. Ω is decomposed into disjoint polygonal subdomains
Ωi indexed with i ∈ IΩ = {1, 2, . . . , nΩ }. Let νi denote the outward unit vector normal to the boundary ∂Ωi . The
(n−1)-dimensional interface between two subdomains Ωi and Ω j is denoted by Γi j := ∂Ωi ∩∂Ω j . Each interface Γi j
s assumed to be Lipschitz and endowed with a unique, unit normal vector ν such that ν := νi = −ν j on Γi j , i < j.
et Γ :=

⋃
i< j Γi j and Γi := Γ ∩ ∂Ωi . We categorize Ωi as an interior subdomain if ∂Ωi ⊆ Γ , i.e. if none of its

oundaries coincide with the boundary of the domain Ω . Let Iint := {i ∈ IΩ : ∂Ωi ⊆ Γ }.
We will use the following notation. A subscript i on a variable denotes its restriction to Ωi , i.e. wi := w|Ωi .

or G a domain in Rn , n = 2, 3, or a manifold in Rn−1, the Sobolev spaces on G are denoted by W k,p(G). Let
H k(G) := W k,2(G) and L2(G) := H 0(G). The L2(G)-inner product is denoted by (·, ·)G . For G ⊂ Rn , let

H (div, G) = {v ∈ (L2(G))n
: ∇ · v ∈ L2(G)}.

e use the following shorthand notation to denote the norms of these spaces:

∥ f ∥k,G := ∥ f ∥Hk (G), ∥ f ∥G := ∥ f ∥0,G, ∥v∥2
div,G := ∥v∥2

H (div,G) = ∥v∥2
G + ∥∇ · v∥2

G .

We use the binary relation a ≳ b to imply that a constant C > 0 exists, independent of the mesh size h, such that
≳ Cb. The relationship ≲ is defined analogously.
The model problem for single-phase flow in porous media is

u = −K∇ p, ∇ · u = f in Ω , p = 0 on ∂Ω , (2.1)

where u is the Darcy velocity, p is the pressure, K is a uniformly bounded symmetric positive-definite tensor field
epresenting the conductivity, and f ∈ L2(Ω ) is a source function. We assume that there exist 0 < kmin ≤ kmax < ∞

uch that ∀x ∈ Ω ,

kminξ
T ξ ≤ ξ T K (x)ξ ≤ kmaxξ

T ξ, ∀ξ ∈ Rn. (2.2)

he variational formulation of (2.1) is: Find (u, p) ∈ V × W := H (div,Ω ) × L2(Ω ) such that

(K −1u, v)Ω − (p, ∇ · v)Ω = 0, ∀v ∈ V, (2.3a)

(∇ · u, w)Ω = ( f, w)Ω , ∀w ∈ W. (2.3b)

t is well known that (2.3) has a unique solution [36]. Letting

ai (ui , vi ) := (K −1ui , vi )Ωi , a(u, v) :=

∑
i

ai (ui , vi ), bi (vi , pi ) := (∇ · vi , pi )Ωi , b(v, p) :=

∑
i

bi (vi , pi ),

he system (2.3) can be written as∑
i

ai (ui , vi ) −

∑
i

bi (vi , pi ) = 0, ∀v ∈ V, (2.4a)∑
i

bi (ui , wi ) = ( f, w)Ω , ∀w ∈ W. (2.4b)

For given Ωi , the local velocity and pressure function spaces are defined as Vi := H (div,Ωi ) and Wi := L2(Ωi ),
espectively. The global space V possesses continuity of the normal trace on Γ . In particular, it holds that

V =

{
v ∈

⨁
Vi : ν · vi = ν · v j on each Γi j

}
. (2.5)
i

3
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Fig. 1. Illustration of the definitions used in the description of the MPFA method.

The normal flux ν · u on Γ will be modeled by a Lagrange multiplier λ ∈ Λ, with

Λ := L2(Γ ).

We note that Λ has more regularity than the normal trace of V on Γ , which is needed to define the L2(Γi )-orthogonal
projections utilized in the numerical scheme, cf. (3.11) and (3.14). For λ ∈ Λ, we use a subscript to indicate its
relative orientation with respect to the adjacent subdomains:

λi := λ, λ j := −λ on Γi j , i < j.

In particular, λi models νi · u and λ j models ν j · u on Γi j .
Next, we associate appropriate norms to the function spaces. The spaces W and Λ are equipped with the standard

L2(Ω ) and L2(Γ ) norms, respectively, and the space V is equipped with a broken H (div) norm:

∥v∥V :=

∑
i

∥vi∥div,Ωi , ∥w∥W := ∥w∥Ω , ∥µ∥Λ := ∥µ∥Γ .

3. Numerical method

We next describe the flux-mortar multipoint flux mixed finite element method for (2.4), based on [1]. We first
present the subdomain discretization, followed by the discretization of the interface variables, and end with the
definition of the flux-mortar method.

3.1. Subdomain discretization

For a subdomain Ωi , let Ωh,i be a shape-regular polytopal tessellation with typical mesh size h. The grids
Ωh,i and Ωh, j may be non-matching along the interface Γi j . For the subdomain discretizations we employ the
MPFA method [22,24–26]. More specifically, we will use the MPFA-O method, but omit the suffix for the sake of
readability. After describing the MPFA method in Section 3.1.1, we introduce the MFMFE method in Section 3.1.2
which provides the setting for a priori analysis.

3.1.1. Multipoint flux approximation finite volume method
In order to describe the MPFA Finite Volume method, we briefly introduce some geometric notation. Let xi be

the barycenter of cell ωi . Let γi j be the facet between cells ωi and ω j with barycenter xi j and unit normal νi j . The
vertices of the mesh are denoted rk with coordinates rk . A dual grid is created by connecting each xi with all xi j

and, if n = 3, with the barycenters of the edges. Each facet γi j is thereby subdivided into sub-facets γi j,k in which
the index k indicates that r is a vertex of γ (see Fig. 1).
k i j,k

4
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The MPFA method is constructed as follows. First, we endow each γi j,k with a sub-facet pressure pi j,k . With
hese sub-facet pressures, we compute a discrete gradient ∇

h
i,k p ∈ Rn that satisfies

(∇h
i,k p) · (xi j − xi ) = pi j,k − pi , (3.1)

or all indices j such that ω j is a neighbor of ωi that shares vertex rk . In order for ∇
h
i,k p to be well-defined, we

assume that each cell-vertex pair (i, k) has exactly n sub-facets γi j,k . This is true for polygonal grids in 2D and for
simplicial and hexahedral grids in 3D.

Second, we formulate the flux continuity condition across each sub-facet γi j,k . Let Ki be the conductivity in cell
ωi , then this condition is given by

νi j · (Ki∇
h
i,k p − K j∇

h
jk p) = 0. (3.2)

Third, we fix the vertex index k and collect (3.2) for all neighboring sub-facets γi j,k . Combined with (3.1), this
allows us to define the sub-facet pressures as a linear combination of the cell-center pressures. In turn, a substitution
in (3.1) effectively eliminates the sub-facet pressures and defines the discrete gradient ∇

h
i,k as a linear operator acting

n the cell-center pressures.
Finally, we let the discrete gradient define the flux across all facets γi j . Reusing our convention νi = νi j = −ν j

for i < j , the MPFA method then solves∑
j,k

∫
γi j,k

(−νi · (Ki∇
h
i,k p)) =

∫
ωi

f, ∀ωi ∈ Ωh . (3.3)

3.1.2. Multipoint flux mixed finite element method
On simplicial, quadrilateral, and hexahedral elements, the MPFA method has been related to the MFMFE

method [27–29], which is a MFE method with a BDM1-type space for the velocity and a vertex quadrature rule for
he velocity bilinear form a(·, ·). On general polytopal grids, the MPFA method has been formulated as a mimetic
nite difference (MFD) method in [30].

We focus first on simplicial grids and the MFMFE formulation of the MPFA method [27]. In Section 5 we discuss
mooth quadrilateral and hexahedral grids and comment on the extension to general quadrilateral and hexahedral,
s well as general polytopes.

For each i , let Vh,i × Wh,i ⊂ Vi × Wi be the BDM1 pair of spaces on simplices [37], defined as follows. Let ω̂ be
he reference triangle or tetrahedron. For each element ω ∈ Ωh there exists an affine bijection mapping Fω : ω̂ → ω.
enote the Jacobian of F by DFω and let Jω = |det(DFω)|. The BDM1 spaces are defined on the reference element

ˆ as

V̂ (ω̂) = P1(ω̂)n, Ŵ (ω̂) = P0(ω̂),

here Pk denotes the space of polynomials of degree at most k. Note that ∇̂ · V̂ (ω̂) = Ŵ (ω̂) and that for all
ˆ ∈ V̂ (ω̂) and for any facet γ̂ of ω̂, ν γ̂ · v̂ ∈ P1(γ̂ ). There are two degrees of freedom per facet in two dimensions
nd three in three dimensions, which can be chosen to be the values of ν γ̂ · v̂ at the vertices of γ̂ .

The BDM1 spaces on any element ω ∈ Ωh are defined via the transformations

v ↔ v̂ : v =
1
Jω

DFωv̂ ◦ F−1
ω , w ↔ ŵ : w = ŵ ◦ F−1

ω ,

here the Piola transformation is used for the velocity space. The BDM1 spaces on Ωh,i are given by

Vh,i = {v ∈ Vi : v|ω ↔ v̂, v̂ ∈ V̂ (ω̂), ∀ω ∈ Ωh,i },

Wh,i = {w ∈ Wi : w|ω ↔ ŵ, ŵ ∈ Ŵ (ω̂), ∀ω ∈ Ωh,i }.
(3.4)

The BDM1 pair is stable for the subproblem defined on Ωi , such that [37]

∇ · Vh,i = Wh,i , (3.5a)

∀ wh,i ∈ Wh,i , ∃ 0 ̸= vh,i ∈ Vh,i : (∇ · vh,i , wh,i )Ωi ≳ ∥vh,i∥div,Ωi ∥wh,i∥Ωi . (3.5b)
5
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The MFMFE method employs a vertex quadrature rule for the velocity bilinear form ai (·, ·). For any element-wise
continuous vector functions φ and ψ on Ωh,i , we denote by

(φ,ψ)Q,Ωi =

∑
ω∈Ωh,i

(φ,ψ)Q,ω

the application of the element-wise vertex quadrature rule for computing (φ,ψ)Ωi . The integration on any element
ω is performed by mapping to the reference element ω̂. Let φ̃ and ψ̃ be the mapped functions on ω̂, using the
standard change of variables. Since (φ,ψ)ω = (φ̃, ψ̃ Jω)ω̂, we define

(φ,ψ)Q,ω =
|ω̂|

s

s∑
i=1

φ̃(r̂ i ) · ψ̃(r̂ i )Jω(r̂ i ) =
|ω̂|

s

s∑
i=1

φ(r i ) · ψ(r i )Jω(r̂ i ),

where s is the number of vertices of ω and r i and r̂ i , i = 1, . . . , s, are the vertices of ω and ω̂, respectively. Using
this quadrature rule, the velocity bilinear form in the MFMFE is defined as

ah
i (ui , vi ) := (K −1ui , vi )Q,Ωi , ah(u, v) :=

∑
i

ah
i (ui , vi ).

The quadrature rule localizes the interaction of the velocity degrees of freedom around mesh vertices. This allows for
local elimination of the velocity, resulting in a cell-centered finite volume system for the pressure, which is closely
related to the MPFA system [23] from Section 3.1.1. However, the quadrature rule introduces a non-conforming
term in the numerical error, defined as

σ (φ,ψ) := a(φ,ψ) − ah(φ,ψ). (3.6)

A bound on this term is shown in Section 4.

3.2. Interface discretization and coupling

With the subdomain discretizations defined above, we turn to the coupling at the interfaces. Let V 0
h,i denote the

subspace of Vh,i with zero normal trace on Γi and let V Γ
h,i denote the trace space of Vh,i on Γi :

V 0
h,i := {v0

h,i ∈ Vh,i : (νi · v0
h,i )|Γi = 0}, V 0

h :=

⨁
i

V 0
h,i , (3.7)

V Γ
h,i := (νi · Vh,i )|Γi , V Γ

h :=

⨁
i

V Γ
h,i . (3.8)

Let SH be the following null-space:

SH,i := {wh,i ∈ Wh,i : bi (v0
h,i , wh,i ) = 0, ∀v0

h,i ∈ V 0
h,i }, SH :=

⨁
i

SH,i , (3.9)

in which the subscript H refers to the characteristic subdomain size. We note that in this case of Darcy flow, the
local spaces can be characterized as

SH,i =

{
R, i ∈ Iint ,

0, i /∈ Iint .
(3.10)

For the interfaces, we introduce a shape-regular tessellation of Γi j , denoted by Γh,i j , with a typical mesh size hΓ .
Let Γh =

⋃
i< j Γh,i j . Let the discrete interface space Λh,i j ⊂ L2(Γi j ) contain continuous or discontinuous piecewise

polynomials on Γh,i j of degree kΛ and let Λh =
⨁

i< j Λh,i j .
The method involves incorporating the mortar flux data as Neumann boundary condition for the subdomain

problems. Let Qh : Λ → V Γ
h be a chosen projection operator and let Qh,i : Λ → V Γ

h,i be its restriction to
V Γ

h,i . Following [1], we consider two choices for Qh,i , described in Sections 3.2.1 and 3.2.2. The extension of the

boundary data into the subdomains is described in Section 3.2.3.

6
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3

b

I
i

.2.1. Projection onto the normal trace space of the velocity
The first choice is Qh,i = Q♭

h,i , where the operator Q♭

h,i : Λ → V Γ
h,i is the L2(Γi )-orthogonal projection. It is

computed for each i by solving the problem: Given λ ∈ Λ, find Q♭

h,iλ ∈ V Γ
h,i such that

(λi − Q♭

h,iλ, ξh,i )Γi = 0, ∀ ξh,i ∈ V Γ
h,i . (3.11)

For the unique solvability of the mortar variable we need for the mortar space on a given interface to be controlled
y the normal traces of the neighboring velocity spaces. We make the following assumption.

A1. The following mortar condition holds:

∀µh ∈ Λh, ∥µh∥Γi j ≲ ∥Q♭

h,iµh∥Γi j + ∥Q♭

h, jµh∥Γi j , ∀Γi j . (3.12)

Remark 3.1. Assumption A1 for Q♭

h is the conventional mortar assumption, see e.g. [2,3], implying that the
mortar variable is controlled on each interface by its L2-projection onto the normal trace space on one of the two
neighboring subdomains. It has been shown to hold for some very general mesh configurations [3,38]. In particular,
it is easy to satisfy in practice by choosing a sufficiently coarse mortar grid Γh [3].

3.2.2. Projection onto the space of weakly continuous velocities
The second option Qh,i = Q♯

h,i is the orthogonal projection to the space of weakly continuous velocities.
Following [2], let the space of weakly continuous fluxes Vh,c and the associated trace space V Γ

h,c be given
by

Vh,c :=

{
vh ∈

⨁
i

Vh,i :

∑
i

(νi · vh,i , µh)Γi = 0, ∀µh ∈ Λh

}
, (3.13a)

V Γ
h,c :=

{
ξh ∈ V Γ

h :

∑
i

(ξh,i , µh)Γi = 0, ∀µh ∈ Λh

}
. (3.13b)

We construct the projection Q♯

h : Λ → V Γ
h by solving the following auxiliary problem [1,2]: Given λ ∈ Λ, find

Q♯

hλ ∈ V Γ
h and χh ∈ Λh such that∑

i

(λi − Q♯

h,iλ − χh, ξh,i )Γi = 0, ∀ξh ∈ V Γ
h , (3.14a)∑

i

(Q♯

h,iλ, µh)Γi = 0, ∀µh ∈ Λh . (3.14b)

t is shown in [1, Lemma 3.1] that, if A1 holds, then problem (3.14) has a unique solution. Moreover, it is proved
n [1, Lemma 3.2] that Q♯

hλ is the L2-projection of λ onto V Γ
h,c, satisfying∑

i

(λi − Q♯

h,iλ, ξh,i )Γi = 0, ∀ξh ∈ V Γ
h,c.

For the unique solvability of the mortar variable in the case of Q♯

h,i , we make an assumption similar to assumption
A1.

A2. The following mortar condition holds:

∀µh ∈ Λh, ∥µh∥Γi j ≲ ∥Q♯

h,iµh∥Γi j + ∥Q♯

h, jµh∥Γi j , ∀Γi j . (3.15)

3.2.3. Discrete extension operator
Next, we define a discrete extension operator Rh,i : Λ → Vh,i . For given λ ∈ Λ, we consider the following

problem: Find (Rh,iλ, pλ
h,i , ri ) ∈ Vh,i × Wh,i × SH,i such that

ah
i (Rh,iλ, v0

h,i ) − bi (v0
h,i , pλ

h,i ) = 0, ∀v0
h,i ∈ V 0

h,i , (3.16a)

bi (Rh,iλ, wh,i ) − (ri , wh,i )Ωi = 0, ∀wh,i ∈ Wh,i , (3.16b)
λ
(ph,i , si )Ωi = 0, ∀si ∈ SH,i , (3.16c)

7
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νi · Rh,iλ = Qh,iλ, on Γi . (3.16d)

We note that (3.16d) is an essential boundary condition and that, for subdomains adjacent to ∂Ω , the boundary
condition pλ

i = 0 on ∂Ωi \ Γi is natural and has been incorporated in (3.16a). The use of the Lagrange
multiplier ri ∈ SH,i ensures that the subproblem is solvable and that the auxiliary variable pλ

h,i is uniquely defined,
i.e. orthogonal to SH,i .

Remark 3.2. The use of Qh,iλ = Q♭

h,iλ from (3.11) in (3.16d) leads to Rh,i = R♭

h,i , while Qh,iλ = Q♯

h,iλ from
(3.14) results in Rh,i = R♯

h,i . We will present the results that concern both variants by omitting the superscript.

3.3. Flux-mortar MFMFE method

Combining the subdomain and interface discretizations from Sections 3.1 and 3.2, let Rh :=
⨁

i Rh,i and let the
composite spaces Vh and Wh be defined as

Vh :=

⨁
i

(
V 0

h,i ⊕ Rh,iΛh
)

= V 0
h ⊕ RhΛh, Wh :=

⨁
i

Wh,i . (3.17)

We are now ready to define the flux-mortar MFMFE method for problem (2.4): Find (u0
h, λh, ph) ∈ V 0

h ×Λh × Wh

such that ∑
i

ah
i (u0

h,i + Rh,iλh, v
0
h,i ) − bi (v0

h,i , ph,i ) = 0, ∀v0
h ∈ V 0

h , (3.18a)∑
i

ah
i (u0

h,i + Rh,iλh,Rh,iµh) − bi (Rh,iµh, ph,i ) = 0, ∀µh ∈ Λh, (3.18b)∑
i

bi (u0
h,i + Rh,iλh, wh,i ) = ( f, wh)Ω , ∀wh ∈ Wh . (3.18c)

To shorten notation, let uh := u0
h + Rhλh and vh := v0

h + Rhµh . Then (3.18) can be equivalently written as: Find
uh ∈ Vh and ph ∈ Wh such that

ah(uh, vh) − b(vh, ph) = 0, ∀vh ∈ Vh, (3.19a)

b(uh, wh) = ( f, wh)Ω , ∀wh ∈ Wh . (3.19b)

Note that the flux-mortar mixed finite element method (3.19) is a non-conforming discretization of the weak
formulation (2.4), since in general Vh ̸⊂ V . We further emphasize that the discrete trial and test functions from Vh

are naturally decomposed into internal and interface degrees of freedom using Rh .

4. Well-posedness and error analysis on simplicial grids

This section concerns the a priori analysis of the flux-mortar MFMFE method proposed in Section 3. We first
show that the discrete problem is well-posed in Section 4.1 and then present the error analysis in Section 4.2.

4.1. Well-posedness

We follow the abstract analysis developed in [1, Section 2.4] with modifications to take into account the
non-conformity due to the use of the quadrature rule in ah(·, ·). We begin with a variant of [1, Theorem 2.1].

Theorem 4.1. Assume that problem (3.16) has a unique solution and the resulting extension operator Rh : Λ → Vh

is continuous, i.e.

∥Rhλ∥V ≲ ∥λ∥Λ, ∀ λ ∈ Λ. (4.1)

Assume in addition that the following four inequalities hold:

∀uh, vh ∈ Vh : ah(uh, vh) ≲ ∥uh∥V ∥vh∥V , (4.2a)
∀vh ∈ Vh and wh ∈ Wh : b(vh, wh) ≲ ∥vh∥V ∥wh∥W , (4.2b)

8
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∀vh ∈ Vh with b(vh, wh) = 0 ∀wh ∈ Wh : ah(vh, vh) ≳ ∥vh∥
2
V , (4.2c)

∀wh ∈ Wh, ∃ 0 ̸= vh ∈ Vh such that : b(vh, wh) ≳ ∥vh∥V ∥wh∥W . (4.2d)

hen the discrete problem (3.19) admits a unique solution that satisfies

∥uh∥V + ∥ph∥W ≲ ∥ f ∥Ω . (4.3)

roof. Assumption (4.1) ensures that the space Vh is well-defined. The well-posedness of the discrete problem
hen follows directly from (4.2) and classical saddle point theory [36]. □

The verification of the conditions of Theorem 4.1 is presented in the next two lemmas, the first of which is
roved in [1, Lemma 3.3].

emma 4.1. Problem (3.16) has a unique solution, which satisfies (4.1).

emma 4.2. The inequalities (4.2) hold.

roof. Inequalities (4.2a) and (4.2c) state the continuity and coercivity of the discrete bilinear form ah(·, ·). They
ave been verified in [27]. We note that, due to (3.5a), (4.2c) is equivalent to ah(vh, vh) ≳ ∥vh∥

2
Ω ∀vh ∈ Vh . The

ontinuity of b(·, ·) (4.2b) follows easily from its definition, while the inf-sup condition (4.2d) has been established
n [1, Lemma 3.4]. □

A combination of Theorem 4.1, Lemmas 4.1, and 4.2 implies the following result.

orollary 4.1. The discrete problem (3.19) has a unique solution that satisfies (4.3).

The next result, which is a variant of [1, Theorem 2.2], concerns the unique solvability of the mortar variable.

heorem 4.2. Let A1 hold in the case of Q♭

h,i and let A1 and A2 hold in the case of Q♯

h,i . Then the mortar solution
h of (3.19) is unique.

roof. We utilize the discrete trace inequality

∀ i ∈ IΩ , ∥νi · vh,i∥Γi ≲ h−
1
2 ∥vh,i∥Ωi , ∀vh,i ∈ Vh,i , (4.4)

which follows from a simple scaling argument. Since uh = u0
h + Rhλh , it holds that νi · uh,i = Qh,iλh . Then we

use A1 or A2 and (4.4) to obtain

∥λh∥Γ ≲
∑

i

∥Qh,iλh∥Γi =

∑
i

∥νi · uh,i∥Γi ≲ h−
1
2 ∥uh∥Ω .

The result now follows from (4.3). □

4.2. Error analysis

With the well-posedness of the discrete system verified, we continue with the error analysis. We begin by defining
suitable interpolation operators in Section 4.2.1, which are used to derive the a priori error estimates in Section 4.2.2.

4.2.1. Interpolation operators
We follow the construction in [1, Section 3.3]. The building blocks in the construction of the interpolant in Vh

are the canonical subdomain interpolation operators Π V
i : Vi ∩ (H ϵ(Ωi ))n

→ Vh,i with ϵ > 0, with the properties

(∇ · (vi − Π V
i vi ), wh,i )Ωi = 0, ∀wh,i ∈ Wh,i , (4.5)

(νi · (vi − Π V
i vi ), ξh,i )Γi = 0, ∀ξh,i ∈ V Γ

h,i . (4.6)

The interpolant Π V
i is locally constructed on each element and satisfies the continuity property

V 1

∀ ω ∈ Ωh,i , ∥Πi vi∥1,ω ≲ ∥vi∥1,ω, ∀ vi ∈ H (ω). (4.7)

9



W.M. Boon, D. Gläser, R. Helmig et al. Computer Methods in Applied Mechanics and Engineering 405 (2023) 115870

I
a
p

L
Π

n addition, let Π W
i : L2(Ωi ) → Wh,i and ΠΛ

i j : L2(Γi j ) → Λh,i j denote the L2-projection operators onto Wh,i

nd Λh,i j , respectively. Together with the projection Q♭

h,i onto V Γ
h,i introduced earlier, we recall the approximation

roperties [36]:

∥v − Π V
i v∥Ωi ≲ hrv∥v∥rv ,Ωi , 0 < rv ≤ 2, (4.8a)

∥∇ · (v − Π V
i v)∥Ωi ≲ hrw∥∇ · v∥rw,Ωi , 0 ≤ rw ≤ 1, (4.8b)

∥w − Π W
i w∥Ωi ≲ hrw∥w∥rw,Ωi , 0 ≤ rw ≤ 1, (4.8c)

∥µ − ΠΛ
i j µ∥Γi j ≲ hrΛ

Γ ∥µ∥rΛ,Γi j , 0 ≤ rΛ ≤ kΛ + 1, (4.8d)

∥µ − Q♭

h,iµ∥Γi j ≲ hrv∥µ∥rv ,Γi j , 0 ≤ rv ≤ 2. (4.8e)

et Π̃ V
:

⨁
i (Vi ∩ (H ϵ(Ωi ))n) →

⨁
i Vh,i , Π W

: W → Wh and ΠΛ
: Λ → Λh be defined as Π̃ V

:=
⨁

Π V
i ,

W
:=

⨁
i Π

W
i and ΠΛ

:=
⨁

i< j Π
Λ
i j , respectively.

Next, we introduce the composite interpolant Π V
: V → Vh , where V = {v ∈ V : v|Ωi ∈ (H ϵ(Ωi ))n and (ν ·

u)|Γ ∈ Λ} with ϵ > 0. Given u ∈ V with normal trace λ := (ν · u)|Γ ∈ Λ, we define Π V u ∈ Vh as

Π V
♭ u := R♭

hΠ
Λλ + Π̃ V (u − R♭

hλ) = R♭

h(ΠΛλ − λ) + Π̃ V u, (4.9a)

Π V
♯ u := R♯

hΠ
Λλ + Π̃ V (u − R♭

hλ) = Π V
♭ u − R♭

hΠ
Λλ + R♯

hΠ
Λλ. (4.9b)

We note that (3.16d) for R♭

h,iλ, and (4.6) imply νi ·Π
V

i (ui −R♭

h,iλ) = Q♭

h,iλ−Q♭

h,iλ = 0, so (4.9) gives Π V
♭ u ∈ V ♭

h

and Π V
♯ u ∈ V ♯

h . In the following, the use of Π V indicates that the result is valid for both choices.

Lemma 4.3 ([1, Lemma 3.7]). The interpolation operator Π V is b-compatible:

b(u − Π V u, wh) = 0, ∀ wh ∈ Wh . (4.10)

The approximation properties of the interpolants Π V
♭ and Π V

♯ are given below.

Lemma 4.4 ([1, Lemma 3.8]). Assuming that u has sufficient regularity, then

∥u − Π V
♭ u∥V ≲ hrv

∑
i

∥u∥rv ,Ωi + hrw
∑

i

∥∇ · u∥rw,Ωi + hrΛ
Γ

∑
i< j

∥λ∥rΛ,Γi j , (4.11a)

∥u − Π V
♯ u∥V ≲ hrv

∑
i

∥u∥rv ,Ωi + hrw
∑

i

∥∇ · u∥rw,Ωi + hrΛ
Γ

∑
i< j

∥λ∥rΛ,Γi j + hr̃v
∑
i< j

∥λ∥r̃v ,Γi j , (4.11b)

for 0 < rv ≤ 2, 0 ≤ rw ≤ 1, 0 ≤ rΛ ≤ kΛ + 1, and 0 ≤ r̃v ≤ 2.

4.2.2. Error estimate
We proceed with the error estimate in the case of simplicial grids. The following theorem is a variant of [1,

Theorem 2.3], accounting for the quadrature error.

Theorem 4.3. It holds that

∥u − uh∥V + ∥p − ph∥W ≲ ∥Π̃ V u − u∥V + ∥Π V u − u∥V + ∥Π W p − p∥W + Ec + Eσ , (4.12)

with Ec the consistency error defined as

Ec := sup
0̸=vh∈Vh

a(u, vh) − b(vh, p)
∥vh∥V

, (4.13)

and Eσ the quadrature error defined as

Eσ := sup
0̸=vh∈Vh

σ (Π̃ V u, vh)
∥vh∥V

(4.14)

with σ (·, ·) from (3.6).
10
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roof. The proof is a modification of the proof of [1, Theorem 2.3], with the main difference being in forming
he error equations. In particular, from (3.19) and (2.4b) we obtain the error equations

ah(Π V u − uh, vh) − b(vh,Π
W p − ph) = ah(Π V u, vh) − b(vh, p), (4.15a)

b(Π V u − uh, wh) = 0, (4.15b)

or all (vh, wh) ∈ Vh × Wh , where in (4.15b) we used the b-compatibility of Π V (4.10) and the fact that Wh ⊂ W .
e manipulate the right hand side of (4.15a) as follows:

ah(Π V u, vh) − b(vh, p) = ah(Π V u − Π̃ V u, vh) + ah(Π̃ V u, vh) − a(Π̃ V u, vh)

+ a(Π̃ V u − u, vh) + a(u, vh) − b(vh, p).
(4.16)

e recognize that the second and third terms on the right in (4.16) form the numerator of the quadrature error Eσ

rom (4.14), and the last two terms form the numerator of the consistency error Ec from (4.13). We next set the test
unctions in (4.15) as

vh := Π V u − uh − δv
p
h , wh := Π W p − ph . (4.17)

ere v p
h ∈ Vh is constructed, using the inf-sup condition on b (4.2d), to satisfy

b(v p
h ,Π W p − ph) = ∥Π W p − ph∥

2
W , ∥v

p
h ∥V ≲ ∥Π W p − ph∥W , (4.18)

and δ > 0 is a constant to be chosen later. Now (4.15), in combination with (4.16), leads to

ah(Π V u − uh,Π
V u − uh) + δ∥Π W p − ph∥

2
W = ah(Π V u − uh, δv

p
h )

+ ah(Π V u − Π̃ V u, vh) − σ (Π̃ V u, vh) + a(Π̃ V u − u, vh) +
(
a(u, vh) − b(vh, p)

)
.

(4.19)

or the left-hand side of (4.19), (4.15b) and the coercivity of ah (4.2c) imply

∥Π V u − uh∥
2
V ≲ ah(Π V u − uh,Π

V u − uh). (4.20a)

or the first term on the right in (4.19), using the continuity of ah (4.2a), Young’s inequality with ϵ1 > 0, and the
ound on v p

h from (4.18), we obtain

ah(Π V u − uh, δv
p
h ) ≲

ϵ1

2
∥Π V u − uh∥

2
V +

1
2ϵ1

δ2
∥Π W p − ph∥

2
W . (4.20b)

Similarly, for the second and fourth terms on the right-hand side of (4.19) we derive, respectively, with ϵ2 > 0 and
ϵ3 > 0,

ah(Π V u − Π̃ V u, vh) ≲
(

1
2ϵ2

+
1
2

)
∥Π V u − Π̃ V u∥

2
V +

ϵ2

2
∥Π V u − uh∥

2
V +

1
2
δ2

∥Π W p − ph∥
2
W , (4.20c)

and

a(Π̃ V u − u, vh) ≲
(

1
2ϵ3

+
1
2

)
∥Π̃ V u − u∥

2
V +

ϵ3

2
∥Π V u − uh∥

2
V +

1
2
δ2

∥Π W p − ph∥
2
W . (4.20d)

or the third term on the right in (4.19) we write, with ϵ4 > 0,

σ (Π̃ V u, vh) ≤ ∥vh∥VEσ ≲
ϵ4

2
∥Π V u − uh∥

2
V +

1
2
δ2

∥Π W p − ph∥
2
W +

(
1

2ϵ4
+

1
2

)
E2

σ . (4.20e)

Finally, for the last two terms in (4.19) we obtain, with ϵ5 > 0,

a(u, vh) − b(vh, p) ≤ ∥vh∥VEc ≲
ϵ5

2
∥Π V u − uh∥

2
V +

1
2
δ2

∥Π W p − ph∥
2
W +

(
1

2ϵ5
+

1
2

)
E2

c . (4.20f)

Collecting (4.20) and setting all ϵi sufficiently small, we arrive at

∥Π V u − uh∥
2
V + δ∥Π W p − ph∥

2
W ≲ ∥Π̃ V u − u∥

2
V + ∥Π V u − u∥

2
V + δ2

∥Π W p − ph∥
2
W + E2

c + E2
σ .

e now set δ sufficiently small to obtain

∥Π V u − uh∥V + ∥Π W p − ph∥W ≲ ∥Π̃ V u − u∥V + ∥Π V u − u∥V + Ec + Eσ . (4.21)
ombining this with the triangle inequality gives us (4.12). □

11



W.M. Boon, D. Gläser, R. Helmig et al. Computer Methods in Applied Mechanics and Engineering 405 (2023) 115870

i

t
c

W

L

(

e

w

L

P

a

T
i

To complete the error estimate, we need to control Ec and Eσ . For the consistency error Ec we write, using
ntegration by parts on Ωi and the boundary condition p = 0 on ∂Ω ,

Ec = sup
vh∈Vh

∥vh∥
−1
V

(
(K −1u, vh)Ω −

∑
i

(p, ∇ · vh)Ωi

)
= sup

vh∈Vh

∥vh∥
−1
V

∑
i

−(p, νi · vh,i )Γi , (4.22)

where we used that K −1u = −∇ p from (2.1). This error has been bounded in [1] for both variants R♯

h and R♭

h . In
he case of Rh = R♯

h , an additional interpolation operator is utilized. Denoting the discrete subspace consisting of
ontinuous mortar functions by Λh,c ⊂ Λh , let ΠΛ

c : H 1(Γ ) → Λh,c be the Scott–Zhang interpolant [39] into Λh,c.
This interpolant has the approximation property

∥p − ΠΛ
c p∥sΛ,Γ ≲ hrΛ−sΛ

Γ ∥p∥rΛ,Γ , 1 ≤ rΛ ≤ kΛ + 1, 0 ≤ sΛ ≤ 1. (4.23)

e next state the bounds on Ec established in [1].

emma 4.5. Let A1 hold. In the case Rh = R♭

h , it holds that

Ec ≲ h−
1
2
∑

i

∥p − Q♭

h,i p∥Γi . (4.24)

In the case Rh = R♯

h , it holds that

Ec ≲ ∥p − ΠΛ
c p∥ 1

2 ,Γ . (4.25)

Proof. The bound in the case Rh = R♭

h is given in [1, (3.34)] and the bound in the case Rh = R♯

h is given in [1,
3.33)]. □

The quadrature error σ (·, ·) has been bounded in [27]. In particular, assuming that K −1
|ω ∈ W 1,∞(ω) for all

lements ω, it is shown in [27, Lemma 3.5] for each subdomain Ωi that

σi (q, v) ≲
∑

ω∈Ωh,i

h∥K −1
∥1,∞,ω∥q∥1,ω∥v∥ω ∀ q, v ∈ Vh,i , (4.26)

here σi := σ |Ωi . We then obtain the following bound.

emma 4.6. Assuming that K −1
|ω ∈ W 1,∞(ω) for all elements ω, it holds that

Eσ ≲ h
∑

i

∥u∥1,Ωi . (4.27)

roof. The result follows from the definition (4.14) of Eσ , bound (4.26), and the continuity of Π̃ (4.7). □

Combining Theorem 4.3, Lemmas 4.5, 4.6, and the approximation properties (4.8), (4.11), and (4.23), we arrive
t the following error estimate.

heorem 4.4. Assume that A1 holds and that the solution to (2.3) is sufficiently smooth. Then, in the case Rh = R♭

h ,
t holds that

∥u − uh∥V + ∥p − ph∥W ≲ h
∑

i

(
∥u∥1,Ωi + ∥∇ · u∥1,Ωi + ∥p∥1,Ωi + ∥p∥ 3

2 ,Γi

)
+ hkΛ+1

Γ

∑
i< j

∥λ∥kΛ+1,Γi j .

In the case Rh = R♯

h , it holds that

∥u − uh∥V + ∥p − ph∥W ≲ h

⎛⎝∑
i

(
∥u∥1,Ωi + ∥∇ · u∥1,Ωi + ∥p∥1,Ωi

)
+

∑
i< j

∥λ∥1,Γi j

⎞⎠
+ hkΛ+1

Γ

∑
∥λ∥kΛ+1,Γi j + h

kΛ+
1
2

Γ ∥p∥kΛ+1,Γ .
i< j

12
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. Extension to quadrilateral and hexahedral grids

In this section we discuss the flux-mortar MFMFE method for quadrilateral and hexahedral grids. We follow the
ame steps as in the simplicial case and thus first define the discrete function spaces in Section 5.1, in analogy with
ection 3. Second, we show that the discrete system is well-posed in Section 5.2, similar to Section 4.1. Finally,
e derive error estimates in Section 5.3.

.1. Numerical method

For each i , let Vh,i × Wh,i ⊂ Vi × Wi be the BDM1 spaces on quadrilaterals [37] or the enhanced BDDF1 spaces
on hexahedra [28]. On the reference square or cube, the spaces are defined as

V̂ (ω̂) := P1(ω̂)n
+ Sn, Ŵ (ω̂) := P0(ω̂),

where the space S2 is the span of two divergence-free curl vectors and the space S3 is the span of twelve divergence-
free curl vectors. Thus, dim(V̂ (ω̂)) = 8 in R2 and dim(V̂ (ω̂)) = 24 in R3. The vector functions in Sn are specially
hosen, so that ν γ̂ · v̂ ∈ P1(γ̂ ) on any facet γ̂ of ω̂ in R2 and ν γ̂ · v̂ ∈ Q1(γ̂ ) on any facet γ̂ of ω̂ in R3, where Q1

is the space of bilinear functions. As a result, there are two degrees of freedom per facet in two dimensions and
four in three dimensions, which can be chosen to be the values of ν γ̂ · v̂ at the vertices of γ̂ . We note the original
BDDF1 space [40] is of dimension 18 and contains only three degrees of freedom per facet. It was enhanced in [28]
for the purpose of the MFMFE method. The spaces Vh,i and Wh,i are defined as in (3.4).

Here we focus on h2-parallelograms or h2-parallelepipeds and a symmetric quadrature rule, which have been
studied in [27,28]. In two dimensions, an element ω is an h2-parallelogram if

|a⃗ − b⃗|R2 ≲ h2,

where a⃗ and b⃗ are any two opposite facets of ω and | · |R2 is the Euclidean vector norm. In three dimensions, an
element ω is an h2-parallelepiped if all of its facets are h2-parallelograms.

Remark 5.1. The developments in this section can be extended to general quadrilaterals and hexahedra using a
non-symmetric quadrature rule and employing the techniques developed in [29,41], as well as to general polytopes
using the MFD formulation of the MPFA method and the theory developed in [30].

The main difference from the case of simplicial elements is that the space Sn contains quadratic functions. As a
result, the quadrature error bound (4.26) no longer holds. In order to obtain a similar bound, one needs to restrict
the second argument v in σi (q, v) to be at most piecewise linear. To this end, following [14,27,28], we consider the
lowest order Raviart–Thomas (RT0) spaces, which are defined on the reference square or cube as

V̂ RT(ω̂) := P0(ω̂)n
+ (α1x1, . . . , αn xn)T , Ŵ RT(ω̂) = W (ω̂) = P0(ω̂),

where αi are real numbers. The spaces V RT
h,i and W RT

h,i are defined as in (3.4).
Let V Γ ,RT

h , V RT
h,c , and V Γ ,RT

h,c be the RT0 counterparts of the spaces V Γ
h , Vh,c, and V Γ

h,c defined in (3.8), (3.13a),
and (3.13b), respectively. We modify the projection operator Qh,i as follows. In the first option we set Qh,i = Q♭,RT

h,i ,
where Q♭,RT

h,i : Λ → V Γ ,RT
h,i is the L2(Γi )-orthogonal projection satisfying

(λi − Q♭,RT
h,i λ, ξh,i )Γi = 0, ∀ ξh,i ∈ V Γ ,RT

h,i .

The mortar condition A1 is replaced by

1RT. The following mortar condition holds:

∀µh ∈ Λh, ∥µh∥Γi j ≲ ∥Q♭,RT
h,i µh∥Γi j + ∥Q♭,RT

h, j µh∥Γi j , ∀Γi j . (5.1)

In the second option we set Qh,i = Q♯,RT
h,i , where Q♯,RT

h : Λ → V Γ ,RT
h,c is the L2-projection of λ onto V Γ ,RT

h,c ,
satisfying∑

(λi − Q♯,RT
h,i λ, ξh,i )Γi = 0, ∀ξh ∈ V Γ ,RT

h,c .
i

13
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he mortar condition A2 is replaced by

2RT. The following mortar condition holds:

∀µh ∈ Λh, ∥µh∥Γi j ≲ ∥Q♯,RT
h,i µh∥Γi j + ∥Q♯,RT

h, j µh∥Γi j , ∀Γi j . (5.2)

The above modifications affect the discrete extension operator Rh,i defined in (3.16), cf. (3.16d), and conse-
uently the definition of the discrete velocity space Vh , cf. (3.17). With these modifications, the flux-mortar MFMFE
ethod on quadrilateral and hexahedral grids is defined as in (3.19).

.2. Well-posedness

Similar to Corollary 4.1, the well-posedness of the discrete problem follows directly.

orollary 5.1. The discrete problem (3.19) in the case of h2-parallelograms or h2-parallelepipeds has a unique
olution that satisfies (4.3).

roof. The statement follows from Theorem 4.1. In particular, Lemma 4.1 still holds in this case. Inequalities
4.2a) and (4.2c) for these types of elements have been verified in [27,28]. The continuity of b(·, ·) (4.2b) and the
nf-sup condition (4.2d) follow as in the case of simplices. □

The proof of the following theorem is the same as the proof of Theorem 4.2.

heorem 5.1. Let A1RT hold in the case of Q♭,RT
h,i and let A1RT and A2RT hold in the case of Q♯,RT

h,i . Then the
ortar solution λh of (3.19) is unique.

.3. Error analysis

In this section, we follow the same steps as in Section 4.2 to present the a priori error analysis. Thus, we first
efine suitable interpolation operators in Section 5.3.1 and present the error estimates in Section 5.3.2.

.3.1. Interpolation operators
The definition of the composite interpolant Π V

: V → Vh is modified from (4.9) to

Π V
♭ u := R♭,RT

h ΠΛλ + Π̃ V (u − R♭

hλ) = R♭,RT
h (ΠΛλ − λ) + R♭,RT

h λ − R♭

hλ + Π̃ V u, (5.3a)

Π V
♯ u := R♯,RT

h ΠΛλ + Π̃ V (u − R♭

hλ) = Π V
♭ u − R♭,RT

h ΠΛλ + R♯,RT
h ΠΛλ. (5.3b)

s in (4.9), Π V
i (ui − R♭

h,iλ) ∈ V 0
i , so (5.3) gives Π V

♭ u ∈ V ♭

h and Π V
♯ u ∈ V ♯

h . We next note that Lemma 4.3 still
olds. We also have the following approximation properties.

emma 5.1. Assuming that u has sufficient regularity, then

∥u − Π V u∥V ≲ hrv
∑

i

∥u∥rv ,Ωi + hrw
∑

i

∥∇ · u∥rw,Ωi + hrΛ
Γ

∑
i< j

∥λ∥rΛ,Γi j + hr̃v
∑
i< j

∥λ∥r̃v ,Γi j , (5.4)

or 0 < rv ≤ 2, 0 ≤ rw ≤ 1, 0 ≤ rΛ ≤ kΛ + 1, and 0 ≤ r̃v ≤ 1.

Proof. Compared to the second expression in (4.9a), there is an additional term R♭,RT
h λ − R♭

hλ in (5.3a). Since
this is the discrete extension (3.16) with boundary data Q♭,RT

h,i λ − Q♭

h,iλ in (3.16d), the continuity of Rh,i (4.1), cf.
Lemma 4.1, implies that ∥R♭,RT

h,i λ − R♭

h,iλ∥Ωi ≲ ∥Q♭,RT
h,i λ − Q♭

h,iλ∥Ωi , which leads to the last term in (5.4). The
rest of the terms are bounded as in the proof of Lemma 4.4, cf. [1, Lemma 3.8]. We note that both variants of
Π V u now have the same approximation properties. We also remark that, compared to the range of the index r̃v in
(4.11b), we now have 0 ≤ r̃v ≤ 1. The reason for the change is that the space V Γ ,RT

h,i contains piecewise constant
Γ
functions, rather than piecewise linears, as is the case for Vh,i . □

14
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Let Π RT
i : Vi ∩ (H ϵ(Ωi ))n

→ V RT
h,i be the canonical mixed interpolant of RT0, with properties

(∇ · (vi − Π RT
i vi ), wh,i )Ωi = 0, ∀ wh,i ∈ Wh,i , (5.5a)

(νi · (vi − Π RT
i vi ), ξh,i )Γi = 0, ∀ ξh,i ∈ V Γ ,RT

h,i , (5.5b)

∥Π RT
i vi∥1,ω ≲ ∥vi∥1,ω, ∀ vi ∈ H 1(ω). (5.5c)

Moreover, Π RT
i preserves the divergence and is continuous:

∇ · Π RT
i vh,i = ∇ · vh,i , ∀ vh,i ∈ Vh,i , (5.6a)

∥Π RT
i vh,i∥ω ≲ ∥vh,i∥ω, ∀ vh,i ∈ Vh,i . (5.6b)

5.3.2. Error estimate
Using the interpolation operators from Section 5.3.1, we arrive at the following error estimate.

Theorem 5.2. In the case of h2-parallelograms or h2-parallelepipeds, it holds that

∥u − uh∥V + ∥p − ph∥W ≲ ∥Π̃ V u − u∥V + ∥Π V u − u∥V + ∥Π W p − p∥W + ERT
c + ERT

σ + ERT
h , (5.7)

where

ERT
c := sup

0̸=vh∈Vh

a(u,Π RTvh) − b(Π RTvh, p)
∥vh∥V

, (5.8a)

ERT
σ := sup

0̸=vh∈Vh

σ (Π̃ V u,Π RTvh)
∥vh∥V

, (5.8b)

ERT
h := sup

0̸=vh∈Vh

ah(Π̃ V u, vh − Π RTvh)
∥vh∥V

. (5.8c)

roof. We start with the error equations (4.15) from the proof of Theorem 4.3, but now we manipulate the right
and side of (4.15a) in a different way:

ah(Π V u, vh) − b(vh, p) = ah(Π V u − Π̃ V u, vh) + ah(Π̃ V u, vh − Π RTvh)

+ ah(Π̃ V u,Π RTvh) − a(Π̃ V u,Π RTvh) + a(Π̃ V u − u,Π RTvh) + a(u,Π RTvh) − b(Π RTvh, p),

here we used (5.6a) for the last term. We recognize that the second term on the right forms the numerator of the
rror ERT

h from (5.8c), the third and fourth terms form the numerator of the quadrature error ERT
σ from (5.8b), and

he last two terms form the numerator of the consistency error ERT
c from (5.8a). The rest of the proof follows the

roof of Theorem 4.3. □

We proceed with the bounds of the three error terms on the right in (5.7). For ERT
c , recalling (4.22), we write

ERT
c = sup

vh∈Vh

∥vh∥
−1
V

∑
i

−(p, νi · Π RT
i vh,i )Γi = sup

vh∈Vh

∥vh∥
−1
V

∑
i

−(p, νi · vh,i )Γi , (5.9)

where we used that Π RT
i satisfies (5.5b) and that by construction vh,i ∈ V Γ ,RT

h,i . Therefore, the arguments leading to
(3.33) and (3.34) in [1] also hold in this case, leading the following result, similar to Lemma 4.5.

Lemma 5.2. Let A1RT hold. In the case Rh = R♭,RT
h , it holds that

ERT
c ≲ h−

1
2
∑

i

∥p − Q♭,RT
h,i p∥Γi . (5.10)

n the case Rh = R♯,RT
h , it holds that

ERT ≲ ∥p − ΠΛ p∥ 1 . (5.11)
c c 2 ,Γ

15
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For the quadrature error, we refer to [27, Lemma 3.5] for h2-parallelograms and [28, Lemma 3.8] for
h2-parallelepipeds, where it is shown that

σi (q, v) ≲
∑

ω∈Ωh,i

h∥K −1
∥1,∞,ω∥q∥1,ω∥v∥ω ∀ q ∈ Vh,i , v ∈ V RT

h,i . (5.12)

emma 5.3. Assuming that K −1
|ω ∈ W 1,∞(ω) for all elements ω, it holds that

ERT
σ ≲ h

∑
i

∥u∥1,Ωi . (5.13)

roof. The result follows from the definition (5.8b) of ERT
σ , bound (5.12), and the continuity properties (4.7) and

5.6b). □

Finally, ERT
h has been bounded in [27, Lemma 3.3] for h2-parallelograms and [28, Lemma 3.7] for h2-

arallelepipeds.

emma 5.4. Assuming that K −1
|ω ∈ W 1,∞(ω) for all elements ω, it holds that

ERT
h ≲ h

∑
i

∥u∥1,Ωi . (5.14)

Combining Theorem 5.2, Lemmas 5.2–5.4, and the approximation properties (4.8), (4.11), and (4.23), we arrive
t the main error estimate.

heorem 5.3. Assume that A1RT holds, that the solution to (2.3) is sufficiently smooth, and that the grids consist
of h2-parallelograms or h2-parallelepipeds. Then, in the case Rh = R♭,RT

h , it holds that

∥u − uh∥V + ∥p − ph∥W ≲ h

⎛⎝∑
i

(
∥u∥1,Ωi + ∥∇ · u∥1,Ωi + ∥p∥1,Ωi

)
+

∑
i< j

∥λ∥1,Γi j

⎞⎠
+ hkΛ+1

Γ

∑
i< j

∥λ∥kΛ+1,Γi j +

∑
i

h
1
2 ∥p∥1,Γi .

In the case Rh = R♯,RT
h , it holds that

∥u − uh∥V + ∥p − ph∥W ≲ h

⎛⎝∑
i

(
∥u∥1,Ωi + ∥∇ · u∥1,Ωi + ∥p∥1,Ωi

)
+

∑
i< j

∥λ∥1,Γi j

⎞⎠
+ hkΛ+1

Γ

∑
i< j

∥λ∥kΛ+1,Γi j + h
kΛ+

1
2

Γ ∥p∥kΛ+1,Γ .

6. Non-overlapping domain decomposition

In this section we present a non-overlapping domain decomposition algorithm for the solution of the algebraic
system of the flux-mortar MFMFE method. It is based on reduction to an interface problem for the flux-mortar
variable. We further develop a preconditioner for the resulting interface problem. The general domain decomposition
methodology is based on techniques developed in [4]. We refer to [1, Section 2.5] for a detailed presentation and
analysis of the method.

6.1. Reduction to an interface problem

We assume that A1 hold in the case of Q♭

h,i and that A1 and A2 hold in the case of Q♯

h,i , in which case the
mortar solution λ of (3.19) is unique, see Theorem 4.2.
h
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In the solution process we utilize the extension R̃hµ ∈
⨁

i Vh,i with Tr R̃h,iµ = Qh,iµ on Γi , such that all
of its degrees of freedom not associated with Γi are equal to zero. We also utilize the orthogonal decomposition
Λh = Λ0

h ⊕ Λh , where

Λ0
h := {µ ∈ Λh : b(R̃hµ, s) = 0, ∀s ∈ SH }. (6.1)

Let B : Λh → S′

H be defined as: ∀ µ ∈ Λh, ⟨Bµ, s⟩ := b(R̃hµ, s) ∀ s ∈ SH .
The solution method has the following five steps.

1. Find λ f ∈ Λh such that

b(R̃hλ f , s) = ⟨ f, s⟩, ∀s ∈ SH . (6.2)

This is a global coarse problem Bλ f = f in S′

H , which captures the influence of f in (3.18c) with respect
to the space SH , c.f. (3.10).

2. Use λ f to solve independent, local subproblems to satisfy (3.18a) and capture the remaining influence of f
in (3.18c): Find (u0

f , p0
f , r f ) ∈ V 0

h × Wh × SH such that

ah(u0
f , v

0) − b(v0, p0
f ) = −ah(R̃hλ f , v

0) + ⟨g, v0
⟩, ∀v0

∈ V 0
h , (6.3a)

b(u0
f , w) − (r f , w)Ω = −b(R̃hλ f , w) + ⟨ f, w⟩, ∀w ∈ Wh, (6.3b)

(p0
f , s)Ω = 0, ∀s ∈ SH . (6.3c)

We note that setting w = r f ∈ SH and using (6.2) with (3.9) implies that r f = 0. Therefore, the variable
u f := u0

f + R̃hλ f satisfies (3.18c). In addition, u f and p0
f satisfy (3.18a).

3. Satisfy the continuity equation (3.18b) in Λ0
h by solving the interface problem: Find λ0

∈ Λ0
h such that

ah(Rhλ
0, R̃hµ

0) − b(R̃hµ
0, pλ0

) = −ah(u f , R̃hµ
0) + b(R̃hµ

0, p0
f ), ∀µ0

∈ Λ0
h, (6.4)

where (Rhλ
0, pλ0

) solve the discrete extension problem (3.16).
4. Guarantee that (3.18b) holds in Λh and obtain the correct variable p: Find pλ ∈ SH such that

b(R̃hµ, pλ) = ah(u f + Rhλ
0, R̃hµ) − b(R̃hµ, pλ0

+ p0
f ), ∀µ ∈ Λh, (6.5)

which is a coarse grid problem BT pλ = g in Λ
′

h .
5. Construct:

u := u f + Rhλ
0

= u0
f + Rhλ

0
+ R̃hλ f , p := p0

f + pλ0
+ pλ, λ = λ0

+ λ f . (6.6)

The following equivalence is easy to check.

emma 6.1. The constructions in (6.6) give (u, p) ∈ Vh × Wh that solve the global flux-mortar MFMFE problem
(3.19).

The main computational cost in the above algorithm is the solution of the interface problem (6.4), which is of the
type aΓ (λ0, µ0) = ⟨r, µ0

⟩, where aΓ (λ0, µ0) := ah(Rhλ
0, R̃hµ

0) − b(R̃hµ
0, pλ0

). It is shown in [1, Lemma 2.5]
hat aΓ (λ0, µ0) = ah(Rhλ

0,Rhµ
0) and that it is symmetric and positive definite on Λ0

h × Λ0
h . Let the interface

roblem (6.4) be written in an operator form as

Sλ0
= r in (Λ0

h)′, (6.7)

here S : Λh → Λ′

h is a symmetric and positive definite defined as follows: ∀ λ ∈ Λh , ⟨Sλ, µ⟩ = aΓ (λ, µ) ∀ µ ∈ Λh .
herefore the interface problem (6.7) can be solved using a Krylov space iterative method such as the Conjugate
radient or GMRES. Each iteration requires computing the action of the interface operator S. This involves solving
set of subdomain problems (3.16), which can be done in parallel. The rest of the computational cost is solving two

oarse grid problems, cf. steps 1 and 4, each involving the solution of a linear system with dimension not greater
han the number of subdomains, as well as one additional set of subdomain solves in step 2.
17
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.2. Preconditioner for the interface problem

To speed up the convergence of the iterative interface solver for (6.7) we develop a Dirichlet–Dirichlet type
reconditioner, cf. the FETI Dirichlet preconditioner for the primal formulation [42], which requires solving local
irichlet problems at each iteration: Given g ∈ L2(Γ ), for i = 1, . . . , nΩ , find (ug

h,i , pg
h,i ) ∈ Vh,i × Wh,i such that

ah
i (ug

h,i , vh,i ) − bi (vh,i , pg
h,i ) = (g, vh,i · νi )Γi , ∀vh,i ∈ Vh,i , (6.8a)

bi (u
g
h,i , wh,i ) = 0, ∀wh,i ∈ Wh,i . (6.8b)

The preconditioner M−1
: Λ′

h → Λ′

h is defined as follows:

∀ g ∈ Λ′

h, ⟨M−1g, µ⟩ =

nΩ∑
i=1

(ug
h,i · νi , µ)Γi ∀µ ∈ Λh .

In other words, the preconditioner takes Dirichlet mortar data on the interfaces, solves subdomain problems, and
returns the jump in flux. This is known as a Dirichlet-to-Neumann operator. The preconditioned problem (6.7) is

M−1Sλ0
= M−1r in (Λ0

h)′,

which is implemented as solving

P M−1S Pλ = P M−1r in Λ′

h

and setting λ0
= Pλ, where P = I − BT (B BT )−1 B is the projection operator onto Λ0

h = ker(B). In practice, one
of the applications of P on the left hand side can be omitted, since the iterate is in Λ0

h . In particular, we solve
P M−1Sλ = P M−1r in Λ′

h . We note that B BT
: SH → S′

H , thus the application of (B BT )−1 involves solving a
coarse problem. In fact, this is the same coarse operator as in (6.2), which is implemented as solving B BT r f = f
in S′

H and setting λ f = BT r f , as well as in (6.5), which is implemented as solving B BT pλ = Bg in S′

H . We note
that the operator B BT is invertible, since B is an isomorphism from Λh to S′

H , which is shown in [1, Lemma 2.4].
In total, the computational cost at each iteration associated with the preconditioner is one set of subdomain solves
(6.8) for computing M−1S and one coarse-grid solve for computing the action of (B BT )−1.

The analysis of the condition number of the preconditioned operator M−1S is beyond the scope of this work.
n [42, Theorem 6.15] it is shown that in the case of the primal formulation for elliptic problems with matching
ubdomain grids the condition number is O(1 + log( H

h ))2, where H is the subdomain size. This implies that the
number of iterations of the preconditioned Krylov solver grows very weakly when the grids are refined. We observe
a similar behavior in our numerical experiments.

7. Numerical results

In this section, we present several numerical experiments in order to verify the analytical results and illustrate
the flexibility of the proposed method. The method is implemented for parallel computers using the reduction
to an interface problem described in Section 6.1 and applying the preconditioner developed in Section 6.2. The
experiments are subdivided into four examples. The first is presented in Section 7.1 and investigates the orders of
convergence with respect to the mesh size for different element types, as well as the efficiency of the interface
preconditioner. Section 7.2 concerns an example that simulates a geological case with low permeable layers and
a highly conductive fault zone. Third, we present an example with a highly heterogeneous permeability based on
the Society of Petroleum Engineers SPE10 benchmark in Section 7.3, which illustrates the multiscale capabilities
of the method. Finally, in the example in Section 7.4 the subdomain grids are chosen according to the local spatial
frequency of the permeability, resulting in a suitable local resolution of the solution.

The numerical tests are performed using an implementation of the method in DuMuX1,2,3 [43], which uses the
PFA method of Section 3.1.1 as the local discretization of the subdomain problems. Due to the close relationship
ith the MFMFE method, we expect the analytical results of Sections 4.2 and 5.3 to remain valid for the MPFA
ethod.

1 Git repository: https://git.iws.uni-stuttgart.de/dumux-pub/boon2022.
2 Source code: https://doi.org/10.18419/darus-3257.
3 Results: https://doi.org/10.18419/darus-3261.
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Fig. 2. Example 1 (2D): numerical solution on the first mesh refinement. Left: pressure on triangular grids. Middle and right: x and y
omponents of the velocity on quadrilateral grids. The mortar grid vertices are indicated by white circles and the tubes in the velocity plots
how the mortar solution.

.1. Example 1: Convergence tests

The a priori analysis presented in Theorems 4.4 and 5.3 shows that the flux-mortar MFMFE is expected to
onverge with first order in both the pressure and velocity variables. We test this by considering examples with
nown solutions in two and a three dimensions. The domains are decomposed into subdomains of equal size. Starting
ith an initial coarse discretization with non-matching meshes, we run a sequence of uniform mesh refinements. We

nvestigate the rates of convergence in the L2-norm for all variables except for u, for which we use the following
discrete error norm, which is equivalent to the L2-norm in the space Vh :

eu =

√ ∑
ωi ∈Ωh

|ωi |
∑

γi j ⊂∂ωi

1
|γi j |

∫
γi j

(u · n − uh · n)2. (7.1)

For both setups, we choose a continuous, piecewise linear mortar space P1 on Γ and investigate both variants
f the projection operator Q♭

h and Q♯

h .

.1.1. Two-dimensional setup
Let the domain Ω = (0, 2) × (0, 2), the permeability K = I , and the pressure be given by:

p̃ (x, y) = y2
(

1 −
y
3

)
+ x (2 − x) y sin (2πx) . (7.2)

Dirichlet boundary conditions are used and are given by Eq. (7.2). The domain is decomposed into 3 × 3 subdomains
of equal size, discretized by unstructured meshes composed of either triangles or quadrilaterals. On the coarsest level
the subdomain grids have either six or eight elements along each subdomain side, while the mortar grid has three
elements on each interface. We note that on the coarsest level the quadrilateral mesh has general quadrilaterals, but
the uniform refinement strategy results in h2-parallelograms. Fig. 2 shows the pressure and velocity distributions
after the first refinement, while Tables 1 and 2 show the errors and rates obtained on all refinements. First-order
convergence can be observed for p and u on both meshes and with both projection operators. We further observe
that the number of iterations increases slightly upon refinement, which is consistent with the expected condition
number O(1 + log( H

h ))2 of the preconditioned interface operator, cf. Section 6.2.

.1.2. Three-dimensional setup
Let the domain now be Ω = (0, 2) × (0, 2) × (0, 2). Based on (7.2), we construct a three-dimensional analytical

solution by multiplying p(x, y) with cos (2π z) and use it as Dirichlet boundary condition. The domain is subdivided
into 8 subdomains, and we again consider two grid types comprising tetrahedra or hexahedra. On the coarsest level,
the subdomain tetrahedral grids have either two or three elements along each subdomain edge, while the hexahedral
grids have either three or five elements. In both cases the mortar grid is 2 × 2 quadrilateral on each interface.
Similarly to the 2D case, the uniform refinement in the hexahedral grids results in h2-parallelepiped elements.
19
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Table 1
Example 1 (2D): errors and convergence rates on triangular grids.

hmin e♭
u r ♭

u e♭
p r ♭

p e♭
λ r ♭

λ e♭

Qλ r ♭

Qλ #i t

7.11e−02 1.42e+00 1.58e−01 1.93e−01 4.47e−01 29
3.56e−02 7.21e−01 0.98 7.88e−02 1.01 8.23e−02 1.23 2.18e−01 1.04 33
1.78e−02 3.64e−01 0.99 3.93e−02 1.00 4.82e−02 0.77 1.14e−01 0.93 36
8.89e−03 1.83e−01 0.99 1.97e−02 1.00 3.27e−02 0.56 6.42e−02 0.83 37
4.44e−03 9.15e−02 1.00 9.83e−03 1.00 2.37e−02 0.46 3.93e−02 0.71 38
2.22e−03 4.58e−02 1.00 4.92e−03 1.00 1.79e−02 0.41 2.65e−02 0.57 39

hmin e♯
u r ♭

u e♯
p r ♯

p e♯
λ r ♯

λ e♯

Qλ r ♯

Qλ #i t

7.11e−02 1.42e+00 1.58e−01 1.94e−01 4.48e−01 29
3.56e−02 7.21e−01 0.98 7.88e−02 1.01 8.23e−02 1.23 2.18e−01 1.04 33
1.78e−02 3.64e−01 0.99 3.93e−02 1.00 4.82e−02 0.77 1.14e−01 0.93 35
8.89e−03 1.83e−01 0.99 1.97e−02 1.00 3.27e−02 0.56 6.42e−02 0.83 37
4.44e−03 9.15e−02 1.00 9.83e−03 1.00 2.37e−02 0.46 3.93e−02 0.71 38
2.22e−03 4.58e−02 1.00 4.92e−03 1.00 1.79e−02 0.41 2.65e−02 0.57 39

Table 2
Example 1 (2D): errors and convergence rates on quadrilateral grids.

hmin e♭
u r ♭

u e♭
p r ♭

p e♭
λ r ♭

λ e♭

Qλ r ♭

Qλ #i t

8.31e−02 1.17e+00 2.16e−01 2.74e−01 5.24e−01 30
4.12e−02 6.19e−01 0.91 1.06e−01 1.01 1.02e−01 1.40 2.34e−01 1.15 34
2.03e−02 3.21e−01 0.93 5.29e−02 0.99 5.05e−02 1.00 1.17e−01 0.99 36
1.01e−02 1.64e−01 0.96 2.64e−02 1.00 3.11e−02 0.69 6.30e−02 0.88 38
5.05e−03 8.32e−02 0.98 1.32e−02 1.00 2.19e−02 0.50 3.76e−02 0.74 39
2.52e−03 4.18e−02 0.99 6.61e−03 1.00 1.65e−02 0.41 2.49e−02 0.59 40

hmin e♯
u r ♭

u e♯
p r ♯

p e♯
λ r ♯

λ e♯

Qλ r ♯

Qλ #i t

8.31e−02 1.17e+00 2.16e−01 2.74e−01 5.25e−01 30
4.12e−02 6.19e−01 0.91 1.06e−01 1.01 1.02e−01 1.40 2.34e−01 1.15 34
2.03e−02 3.21e−01 0.93 5.29e−02 0.99 5.05e−02 0.99 1.17e−01 0.99 36
1.01e−02 1.64e−01 0.96 2.64e−02 1.00 3.11e−02 0.69 6.30e−02 0.88 38
5.05e−03 8.32e−02 0.98 1.32e−02 1.00 2.19e−02 0.50 3.75e−02 0.75 39
2.52e−03 4.18e−02 0.99 6.61e−03 1.00 1.65e−02 0.41 2.49e−02 0.59 40

Fig. 3 shows the pressure distributions obtained on the second refinement, and Tables 3 and 4 list the errors and
convergence rates for all refinements. First-order convergence in p and u is again observed for both meshes and
projection operators. The number of iterations grows slowly with the refinement level, however the dependence is
more pronounced compared to the two-dimensional tests. This may be due to the effect of the projection between the
mortar space and the normal trace of the subdomain velocity spaces, which in 3D are defined on two-dimensional
grids. Moreover, using the projection operator Q♯

h requires several more iterations in comparison with Q♭

h , possibly
aused by the fact that the preconditioner from Section 6.2 is based on the L2-projection Q♭

h .

.2. Example 2: Faulted geology

This example illustrates the flexibility of the method with respect to the choice of computational meshes in
ifferent parts of the domain. This is particularly useful in geological applications, which often involve layered
tructures of materials with different properties, as well as faults and fractures.

.2.1. Two-dimensional setup
We consider a faulted geology consisting of two permeable layers on top and bottom, separated by a low-

ermeable barrier and cut through by a high-permeable fault. Dirichlet boundary conditions are applied on the left
nd right boundaries in the permeable layers, while no-flow conditions are imposed on all remaining boundaries. An

llustration of the domain, the computational grid, and the chosen Dirichlet boundary conditions is given in Fig. 4(a).

20
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Fig. 3. Example 1 (3D): numerical solution on the second mesh refinement. Left: pressure on tetrahedral grids. Middle and right: x and y
components of the velocity on hexahedral grids. The white lines visualize the mortar grid.

Table 3
Example 1 (3D): errors and convergence rates on tetrahedral grids.

hmin e♭
u r ♭

u e♭
p r ♭

p e♭
λ r ♭

λ e♭

Qλ r ♭

Qλ #i t

3.43e−01 1.62e+01 1.28e+00 3.40e+00 8.24e+00 67
1.71e−01 8.93e+00 0.86 6.13e−01 1.06 1.80e+00 0.92 4.10e+00 1.01 89
8.57e−02 4.72e+00 0.92 3.02e−01 1.02 5.63e−01 1.67 1.93e+00 1.08 105
4.28e−02 2.41e+00 0.97 1.51e−01 1.00 2.70e−01 1.06 9.71e−01 1.00 125

hmin e♯
u r ♭

u e♯
p r ♯

p e♯
λ r ♯

λ e♯

Qλ r ♯

Qλ #i t

3.43e−01 1.64e+01 1.28e+00 5.49e+00 8.95e+00 76
1.71e−01 8.94e+00 0.88 6.13e−01 1.06 1.85e+00 1.57 4.13e+00 1.12 96
8.57e−02 4.73e+00 0.92 3.02e−01 1.02 5.77e−01 1.68 1.94e+00 1.09 112
4.28e−02 2.41e+00 0.97 1.51e−01 1.00 2.74e−01 1.07 9.72e−01 1.00 133

Table 4
Example 1 (3D): errors and convergence rates on hexahedral grids.

hmin e♭
u r ♭

u e♭
p r ♭

p e♭
λ r ♭

λ e♭

Qλ r ♭

Qλ #i t

3.17e−01 2.02e+01 1.48e+00 3.91e+00 8.87e+00 57
1.47e−01 9.21e+00 1.02 6.45e−01 1.08 1.89e+00 0.95 4.38e+00 0.92 73
7.13e−02 4.45e+00 1.01 3.10e−01 1.01 5.98e−01 1.59 2.10e+00 1.02 88
3.42e−02 2.21e+00 0.96 1.54e−01 0.96 3.31e−01 0.81 1.07e+00 0.92 105

hmin e♯
u r ♭

u e♯
p r ♯

p e♯
λ r ♯

λ e♯

Qλ r ♯

Qλ #i t

3.17e−01 2.02e+01 1.46e+00 3.87e+00 9.12e+00 58
1.47e−01 9.22e+00 1.02 6.44e−01 1.07 1.85e+00 0.96 4.38e+00 0.95 74
7.13e−02 4.45e+00 1.01 3.10e−01 1.01 5.82e−01 1.60 2.10e+00 1.02 88
3.42e−02 2.21e+00 0.96 1.54e−01 0.96 3.27e−01 0.79 1.07e+00 0.92 106

We use K = I in the top and bottom layers, while K = 103 I and K = 10−4 I are used in the fault zone and
the barrier layers, respectively. The subdomain mesh sizes are chosen depending on the permeability such that
highly-permeable regions are discretized with finer meshes, yielding a total number of cells of 24 262.

The computed solution is shown in Fig. 4(c). For comparison, a monolithic reference solution is shown
in Fig. 4(d), which is computed on a fine conforming mesh with 66 020 cells given in Fig. 4(b). Despite the
difference in the number of degrees of freedom, a very good agreement in both pressure p and the velocity u can
be observed. Furthermore, plots of the pressure along the diagonal of the domain and the flux along the interface
highlighted in Fig. 4(a) are shown in Fig. 5 for both the flux-mortar and the fine scale solutions. Again, even
though the flux-mortar solution uses coarser subdomain grids that do not match along the interfaces, as well as

coarse mortar grids, it matches very well with the fine scale solution in both the pressure and interface flux.
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l
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7

d

Fig. 4. Example 2 (2D): (a) Domain, grid and boundary conditions. The gray circles depict the vertices of the mortar mesh and the white
ine illustrates the interface across which the fluxes are plotted in Fig. 5. (b) The fine conforming mesh for comparison of the results. (c)
nd (d) Pressure and velocity distributions obtained with the flux-mortar method and on the fine mesh, respectively.

.2.2. Three-dimensional setup
A three-dimensional variant of the setup shown in Fig. 4(a) is obtained by extrusion of the domain in the third

imension, and we modify the boundary conditions to incorporate a pressure drop of ∆p = 0.25 in the y-direction.
The computational grid consists of 86 266 cells in total, and we again compare the results against a monolithic
reference solution obtained on a conforming grid with 133 626 cells. Fig. 6 provides an illustration of the domain,
the grids and the results. As in the 2D case, we observe very good agreement between the flux-mortar and fine scale
solutions. Fig. 7 shows plots of the pressure along the diagonal of the domain and the interface flux along the purple
line shown in Fig. 6(a). It can be observed that the pressure agrees very well with the reference solution inside
the fault and in the permeable layers, while larger deviations seem to occur inside the barrier layers. However, the
good match outside the barrier layers indicates that this is likely a post-processing artifact, resulting from plotting
a piecewise-constant function on the intersection of the one-dimensional diagonal with the three-dimensional grid,
which is rather coarse in the barrier layers. On the other hand, the match in the interface flux is very good, despite

the coarse mortar meshes used in the flux-mortar method.

22
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s

Fig. 5. Example 2 (2D): (a) Pressure along the diagonal of the domain; (b) Interface flux along the white line depicted in Fig. 4(a).

Fig. 6. Example 2 (3D): computed pressure (top) and velocity (bottom). Left column: flux-mortar solution. Right column: fine scale reference
olution. The line depicted in Fig. 6(a) illustrates the segment along which the plots of Fig. 7 were created.
23
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E
p

Fig. 7. Example 2 (3D): (a) Pressure along the diagonal of the domain; (b) Interface flux along the line depicted in Fig. 6(a).

Fig. 8. Example 3: permeability (left), pressure (center) and velocity (right). Pressure and velocity are depicted for both the flux-mortar
solution (left of the legend) and a fine scale solution (right of the legend). In the flux-mortar solution, the mortar interface is visualized by
white lines, while the absolute value of the mortar flux is depicted in the visualization of the velocity as tubes.

7.3. Example 3: Based on benchmark SPE10

Following [32, Example 2], we consider a permeability field from the second data set of the Society of Petroleum
ngineers (SPE) Comparative Solution Project SPE10 (see spe.org/csp/). The data set describes a two-dimensional
ermeability field that varies six orders of magnitude on a domain consisting of 60 × 220 cells, depicted in Fig. 8.

The goal of this example is to illustrate the multiscale capability of the flux-mortar method for highly heterogeneous
porous media. To this end, we decompose the domain into 3 × 5 subdomains, which yields subdomain grids with
20 × 44 cells. We consider a coarse scale piecewise-linear mortar space with 10 cells per interface. We impose a
unit pressure drop from right to left with no-flow on the top and bottom boundaries. As in the previous test case,
we compare the results obtained from the flux-mortar method to a conforming fine scale solution. The pressure and
velocity distributions obtained from the two methods are in very good agreement, as shown in Fig. 8.

7.4. Example 4: Locally adapted grids

In this example we choose the subdomain mesh size according to the local spatial frequency of the permeability

field to illustrate the method’s flexibility of refining the grid locally where needed. We again consider a permeability

24
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Fig. 9. Example 4: permeability distribution (left) and locally refined grids (right).

field from the second data set of the SPE10 benchmark. For Kxx the permeability given in the dataset, we define the

permeability tensor K = R−1
(

Kxx 0
0 0.2Kxx

)
R, with R being the two-dimensional rotation matrix in clockwise

direction around an angle of 20◦. This results in a full-tensor permeability, which is correctly handled by the
MFMFE discretization. A square region with 60 × 60 cells of the original permeability data set is chosen as
the domain of interest, which is further decomposed into 4 × 4 subdomains. Depending on the spatial frequency
of the permeability, the subdomain grids are refined between 0 and 3 times. This procedure results in 5 of the 25
subdomains being refined (see Fig. 9) and a total of 36 675 cells. Each interface is discretized with 10 cells and
piecewise-linear mortars. For comparison, a monolithic solution is computed on a conforming mesh with a cell size
corresponding to that of the third level, yielding a mesh with 230 400 cells.

A unit pressure drop is applied to the left and right domain boundaries, while a no-flow condition is imposed
on the top and bottom boundaries. Fig. 10 depicts the pressure and velocity distributions obtained from the flux-
mortar method and on the conforming fine grid. The two solutions are in very good agreement despite the large
differences in the number of cells of the discretizations. In particular, the flux-mortar method captures very well the
high velocities occurring in the highly-permeable channels near the upper right corner. We do observe that in the
lower left corner of the domain the locally coarser grid used in the flux-mortar method does not fully capture the
velocity field. However, the flexibility of the method would allow for a further subdivision of the lower-left block,
using a finer mesh where the highly-permeable channel is located. The generation of locally adapted subdomain and
mortar grids could be automated with the use of a posteriori error estimates, which is a topic of future research.

8. Conclusions

We proposed the flux-mortar MFMFE method (Section 3) that uses the MPFA method as the subdomain
discretization in a flux-mortar domain decomposition setting. The a priori analysis shows that an additional

uadrature error arises from the multipoint flux approximation. However, this term decays linearly with the mesh
ize, for simplicial (Section 4), h2-parallelogram, and h2-parallelepiped grids (Section 5). In turn, the flux-mortar

FMFE method converges linearly in both flux and pressure. In Section 6, we showed how the system can be
educed to an interface problem and proposed a Dirichlet-to-Neumann operator as preconditioner. The numerical
xperiments of Section 7 verify the theoretical results and moreover show that the method provides the flexibility to
andle general grids and complex porous media flow problems containing, for example, discontinuous and highly
eterogeneous permeability fields. The theoretical and numerical results also illustrate the capability of the method
o compute an accurate single-valued approximation of the normal flux, thus providing strong mass conservation
cross the subdomain interfaces. It is well known that using mass conservative velocity fields is critical in transport
imulations, since non-conservative velocities may lead to non-physical mass sources in the transported quantity,
specially for the types of heterogeneous porous media considered in Examples 2–4. Exploring this advantage of
he flux-mortar method is a subject of further investigations.
25
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Fig. 10. Example 4: computed pressure (left column) and velocity (right column). The top row depicts the solution from a monolithic solve
on a fine grid with 480 × 480 cells, while the bottom row shows the flux-mortar solution with 4 × 4 subdomains and locally refined grids
(see Fig. 9).

As noted in Remark 5.1, the analysis can be further extended to general quadrilaterals and hexahedra using a
non-symmetric quadrature rule [29,41], as well as to general polytopes through the MFD interpretation of the MPFA
method [30]. These topics will be considered in future research.

Another possible future extension is to combine the flux-mortar and pressure-mortar methods through the use

of subdomain solves with Robin boundary conditions on the interfaces. Such an approach is studied in [44] in the
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ase of matching subdomain grids, where it is illustrated that it could provide better approximation of the velocity
nd pressure for a suitable choice of the Robin condition parameter.
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