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SM1. Introduction. In this supplementary material we illustrate the appli-
cability of the general theory to multiphysics problems by formulating and ana-
lyzing the flux-mortar mixed finite element method for coupled Stokes-Darcy prob-
lems [SM2, SM4, SM6, SM7]. In the presentation we reference sections, equations,
and definitions from the main document. The method is presented in section A.1.
Well-posedness and error estimates are established in section A.2. Finally, in sec-
tion A.3 we discuss a non-overlapping domain decomposition method via reduction
to an interface problem.

Appendix A. Coupled Stokes-Darcy systems. We combine the concepts
introduced in sections 3 and 4. Let ΩS and ΩD form a disjoint decomposition of Ω into
regions of Stokes and Darcy flow, respectively. For ease of presentation, we assume
that both ΩS and ΩD are simply connected domains. More general configurations
can also be treated, see, e.g. [SM6]. Let the Stokes-Darcy interface be given by
ΓSD := ∂ΩS∩∂ΩD. Let ΓS = ∂Ω∩∂ΩS and ΓD = ∂Ω∩∂ΩD. Denoting the restriction
of a function to ΩS or ΩD by a subscript S or D, respectively, the governing equations
of the coupled Stokes-Darcy problem are [SM7]:

σ := µ̃ϵ(uS)− pSI, in ΩS ,(A.1a)

−∇ · σ = gS , ∇ · uS = fS in ΩS ,(A.1b)

uD = −K∇pD, ∇ · uD = fD in ΩD,(A.1c)

ν × (σν) = −ν × (βuS), ν · uS = ν · uD on ΓSD,(A.1d)

ν · (σν) = −pD on ΓSD,(A.1e)

uS = 0 on ΓS , pD = 0 on ΓD.(A.1f)

Here, β is the Beavers-Joseph-Saffman (BJS) constant, ν is the unit normal to ΓSD

oriented outward with respect to ΩS , ν×v is the cross product if n = 3, and ν×v =
ν⊥ · v for n = 2 with ⊥ denoting a rotation of π/2.
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Let us continue by defining the function spaces V ×W :

V :=
{
v ∈ H(div,Ω) : vS ∈ (H1(ΩS))

n, vS |ΓS
= 0

}
, W := L2(Ω).

Next, we decompose the domain as in section 2.1 such that ΓSD is respected and define
the index sets IS and ID such that ΩS =

⋃
i∈IS

Ωi, ΩD =
⋃

i∈ID
Ωi, and IΩ = IS ∪ID.

The interfaces internal to ΩS and ΩD are denoted by ΓSS and ΓDD, respectively.
The variational formulation of problem (A.1) obtains the form (2.1) by defining

the bilinear forms ai and bi per subdomain as follows [SM6, SM7]:

ai(ui,vi) := (K−1ui,vi)Ωi , i ∈ ID,(A.2a)

ai(ui,vi) := (µ̃ε(ui), ε(vi))Ωi + (βνi × ui,νi × vi)Γi∩ΓSD
, i ∈ IS ,(A.2b)

bi(ui, wi) := (∇ · ui, wi)Ωi , i ∈ IΩ.(A.2c)

It is shown in [SM6, SM7] that this variational formulation has a unique solution.
In turn, (2.2) leads us to consider the following norms:

∥v∥V :=
∑
i∈IS

∥vi∥1,Ωi +
∑
i∈ID

∥vi∥div,Ωi , ∥w∥W :=
∑
i

∥wi∥Ωi .

Next, we define the local trace operators Tri. For i ∈ ID, let Tri vi = (ν · vi)|Γi ,
as in section 3. For i ∈ IS , let Tri vi = vi|Γi

as in section 4. Note that this leads to
a discrepancy on ΓSD because Tri vi is scalar-valued for i ∈ ID but vector-valued for
i ∈ IS . We then define the trace space

Λ := L2(ΓDD)⊕ (H1/2(ΓSS ∪ ΓSD))n.

Let Λi := {µ|Γi
, µ ∈ Λ}, where the meaning of the restriction on Γi ∩ ΓSD is either

the full vector µ|Γi∩ΓSD
for i ∈ IS or the normal component ν · µ|Γi∩ΓSD

for i ∈ ID.
The space Λ is endowed with the norm ∥µ∥Λ :=

∑
i ∥µi∥Λi , in which ∥µi∥Λi is given

by ∥µi∥Γi
for i ∈ ID and by (4.3) for i ∈ IS .

A.1. Discretization. For each i ∈ IΩ, we choose a finite element pair Vh,i ×
Wh,i ⊂ Vi ×Wi that is stable for the Darcy subproblem if i ∈ ID and for the Stokes
subproblem if i ∈ IS .

We next define the discrete flux space Λh ⊂ Λ. On ΓDD, Λh,D ⊂ L2(ΓDD) is
defined interface by interface as described in section 3.1. On ΓSS ∪ ΓSD, we define
Λh,S as the trace of a globally defined Lagrange finite element space, as in section 4.

Due to the boundary condition (A.1f), we redefine Iint := IS∪{i ∈ ID : ∂Ωi ⊆ Γ}.
In turn, the space SH , defined by (2.6), is given explicitly by (3.12).

We continue with the definition of the operator Qh,i : Λ → Tri Vh,i. For i ∈ IS ,
we define Qh,i as in section 4.1. For i ∈ ID, recall that the space Λ has a different
number of components on ΓDD and ΓSD. On Γi∩ΓSD, let Qh,iλ be the L2-projection
of ν · λ onto the normal trace space (Tri Vh,i)|Γi∩ΓSD

. On Γi ∩ ΓDD, let Qh,i be the
L2-projection Q♭

h,i from section 3.1.1.
We now define the extension operator Rh,i using (2.7) and the discrete spaces

Vh × Wh according to (2.8). The discrete Stokes-Darcy problem is then defined by
(2.10), posed on Vh ×Wh, with the bilinear forms from (A.2).

Remark A.1. The choice of a full vector λh on ΓSD is different from previously
developed pressure-mortar methods for the Stokes-Darcy problem [SM4, SM6, SM7,
SM8], where λh is a scalar on ΓSD modeling ν · (σν) = −pD and used to impose
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weakly ν ·uS = ν ·uD. In a domain decomposition implementation, the BJS bound-
ary condition is incorporated into the subdomain problems [SM6, SM8]. In contrast,
in our method, the BJS term (βν × ui,ν × vi)Γi∩ΓSD

is eliminated from the subdo-
main problems, since v0

h,i = 0 on ∂Ωi in (2.7a). The Stokes subdomain problems are
of Dirichlet type with data Qh,iµh. In turn, the BJS boundary condition is incorpo-
rated into the coupled system (2.10) via the BJS term in the bilinear form a(·, ·) in
(A.2). In the domain decomposition implementation, the BJS boundary condition is
incorporated into the interface operator.

A.2. Well-posedness and error estimates. We next verify the assumptions
in Theorems 2.1–2.3.

Lemma A.1 (A1). Problem (2.7) has a unique solution and the resulting exten-
sion operator Rh : Λ → Vh is continuous, i.e. ∥Rhλ∥V ≲ ∥λ∥Λ ∀λ ∈ Λ.

Proof. This is shown in Lemma 3.3 for i ∈ ID and in Lemma 4.1 for i ∈ IS .

Lemma A.2 (A2). The four inequalities (2.11) hold for a and b on Vh ×Wh.

Proof. The continuity and coercivity inequalities (2.11a)–(2.11c) have been es-
tablished for i ∈ ID in Lemma 3.4 and for i ∈ IS in Lemma 4.2, with a slight
addaptation for i ∈ IS , using that (βνi × ui,νi × vi)Γi∩ΓSD

≲ ∥uh,i∥1,Ωi
∥vh,i∥1,Ωi

and (βνi × vi,νi × vi)Γi∩ΓSD
≥ 0. Next, we prove the inf-sup condition (2.11d)

by constructing vh ∈ Vh for a given wh ∈ Wh. We follow the approach from Lem-
mas 3.4 and 4.2 and consider a global divergence problem on Ω, cf. (3.17) to construct
vw ∈ (H1(Ω))n with the properties

∇ · vw = wh in Ω, vw = 0 on ΓS , ∥vw∥1,Ω ≲ ∥wh∥Ω.

Given vw, the construction of µh on ΓSS ∪ ΓSD follows Lemma 4.2 and we define µh

on ΓDD according to Lemma 3.4. With the interface variable defined, each v0
h,i ∈ V 0

h,i

is then constructed using the stability of the local finite element pairs in Ωi (see
Lemmas 3.4 and 4.2) such that

∇ · v0
h,i = wh,i −∇ · Rh,iµh, ∥v0

h,i∥Vi
≲ ∥wh∥W .

The combination of these constructions gives us vh := v0
h +Rhµh ∈ Vh with∑

i

bi(vh,i, wh,i) = ∥wh∥2Ω,
∑
i

∥vh,i∥Vi ≲ ∥wh∥W ,(A.3)

implying the inf-sup condition (2.11d).

We next note that assumption A4 holds due to Lemma 3.5 and Lemma 4.3.
The interpolants are defined as in sections 3.3 and 4.3. In particular, we define

ΠW as the L2-projection onto Wh, Π
Λ as the L2-projection onto Λh, and ΠV Γ

i as the
L2-projection onto V Γ

h,i. The interpolant Π
V is as follows. First, for i ∈ ID, let ΠV

i be
the interpolant introduced in section 3.3 and for i ∈ IS , we use the interpolant from
section 4.3. Finally, ΠV is given as in (4.16). It satisfies

∥u−ΠV u∥V ≲
∑
i∈IS

∥u−ΠV
i u∥1,Ωi

+
∑
i∈ID

∥u−ΠV
i u∥div,Ωi

+ ∥λ−ΠΛλ∥Λ.(A.4)

Lemma A.3 (A5). The interpolation operator ΠV has the property

b(u−ΠV u, wh) = 0, ∀wh ∈ Wh.(A.5)
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Proof. The statement follows from Lemma 3.7 and Lemma 4.4.

Lemma A.4. If A3 holds, then the consistency error Ec satisfies

Ec ≲
∑
i∈IS

∥σν −ΠV Γ

i (σν)∥Γi
+ h−1/2

∑
i∈ID

∥pD −Qh,ipD∥Γi

Proof. We consider the numerator of the definition (2.15) of Ec. We recall the
definitions of the bilinear forms in (A.2) and apply integration by parts. Since (u, p)
is the solution to (A.1), we substitute the momentum balance (A.1b), Darcy’s law
(A.1c), the BJS interface condition in (A.1d), and the boundary conditions (A.1f) to
derive∑

i∈IS

(
ai(u,vh)− bi(vh, p)− (gS ,vh)Ωi

)
+

∑
i∈ID

(
ai(u,vh)− bi(vh, p)

)
=

∑
i∈IS

(
(σνi,vh,i)Γi

+ (βνi × ui,νi × vh,i)Γi∩ΓSD

)
+

∑
i∈ID

−(pD,νi · vh,i)Γi

=
∑
i∈IS

(
(σνi,vh,i)Γi∩ΓSS

+ (νi · σνi,νi · vh,i)Γi∩ΓSD

)
+

∑
i∈ID

−(pD,νi · vh,i)Γi .

The terms on ΓDD and ΓSS are bounded in section 3.4.2, cf. (3.33), and Lemma 4.5,
respectively. It remains to bound the terms on ΓSD. Note that there are contributions
from ΩS and ΩD. For i ∈ IS , we first note that the locality of the orthogonality (4.9)
for each flat face F implies that (νi · (Qh,iλ − λ),νi · χh,i)Γi∩ΓSD

= 0 ∀χh,i ∈ V F
h,i.

Using this, the term (νi · σνi,νi · vh,i)Γi∩ΓSD
is manipulated as in Lemma 4.5, while

the Darcy term −(pD,νi · vh,i)Γi∩ΓSD
is manipulated as in section 3.4.2. The two

expressions are combined using the interface condition (A.1e), resulting in the bound∑
i∈IS

(νi · σνi,νi · vh,i)Γi∩ΓSD
+

∑
i∈ID

−(pD,νi · vh,i)Γi∩ΓSD

≲
∑
i∈IS

∥σνi −ΠV Γ

i (σνi)∥Γi∩ΓSD
∥vh,i∥1,Ωi

+ h−1/2
∑
i∈ID

∥pD −Qh,ipD∥Γi∩ΓSD
∥vh,i∥Ωi

.

The proof is completed by collecting the bounds on ΓDD, ΓSS , and ΓSD.

Theorem A.5. The discrete Stokes-Darcy problem (2.10) has a unique solution
(uh, ph) ∈ Vh × Wh. If A3 holds, then there is a unique mortar solution λh ∈ Λh.
Moreover, the following error bound holds with respect to the solution (u, p) of (2.1):

∥u− uh∥V + ∥p− ph∥W
≲

∑
i∈IS

∥u−ΠV
i u∥1,Ωi

+
∑
i∈ID

∥u−ΠV
i u∥div,Ωi

+ ∥λ−ΠΛλ∥Λ +
∑
i∈IΩ

∥p−ΠW
i p∥Wi

+ h−1/2
∑
i∈ID

∥pD −Qh,ipD∥Γi +
∑
i∈IS

∥σν −ΠV Γ

i (σν)∥Γi .

Proof. With assumptions A1–A5 verified above, the proof is based on Theo-
rems 2.1–2.3. The error estimate follows by combining (2.14), the approximation
property (A.4), and the estimate on the consistency error from Lemma A.4.
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A.3. Interface problem. The four steps from section 2.5 reduce the coupled
Stokes-Darcy problem to a flux-mortar interface problem. For that, we verify the
following inf-sup condition.

Lemma A.6 (A6). The following inf-sup condition holds for the spaces Λh×SH :

∀sH ∈ SH , ∃0 ̸= µh ∈ Λh such that b(Rhµh, sH) ≳ ∥µh∥Λ∥sH∥W .

Proof. Setting wh := sH ∈ SH ⊆ Wh in the proof of the inf-sup condition (2.11d)
in Lemma A.2 leads to a pair (v0

h, µh) with v0
h = 0 that satisfies (A.3).

Remark A.2. The reduction to interface problem results in a new non-overlapping
domain decomposition method for the Stokes-Darcy problem, which satisfies velocity
or flux continuity at each iteration. A related approach in the two-subdomain case
is studied in [SM1], where the mortar variable on ΓSD is λ = ν · uS = ν · uD.
In earlier works, flux continuity is either relaxed via the use of Robin transmission
conditions [SM3] or it is satisfied only at convergence using pressure and normal stress
mortars [SM5, SM8].
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