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Abstract
We study flow and transport in fractured poroelastic media using Stokes flow in the
fractures and the Biot model in the porous media. The Stokes–Biot model is cou-
pled with an advection–diffusion equation for modeling transport of chemical species
within the fluid. The continuity of flux on the fracture-matrix interfaces is imposed via
a Lagrange multiplier. The coupled system is discretized by a finite element method
using Stokes elements, mixed Darcy elements, conforming displacement elements,
and discontinuous Galerkin for transport. The stability and convergence of the coupled
scheme are analyzed. Computational results verifying the theory aswell as simulations
of flow and transport in fractured poroelastic media are presented.

Keywords Fluid-poroelastic structure interaction · Stokes-Biot model · Coupled flow
and transport · Fractured poroelastic media

Mathematics Subject Classification 76S05 · 76D07 · 74F10 · 65M60 · 65M12

1 Introduction

Flow and transport in fractured poroelastic media occur in many applications, includ-
ing enhanced oil and gas recovery, hydraulic fracturing, groundwater hydrology, and
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subsurface waste repositories. These are challengingmultiphysics processes involving
interaction between a free fluid in the fractures with a fluid within the porous medium.
The fluid flow may cause and be affected by solid deformation. For example, geome-
chanics effects are critical in hydraulic fracturing, as well as in modeling phenomena
such as subsidence and compaction. Furthermore, the flow process may be coupled
with transport phenomena, with the substance of interest propagating both through
the fracture network and the porous matrix. Typical examples include tracking and
cleaning up groundwater contaminants, leakage of subsurface radioactive waste, and
proppant injection in hydraulic fracturing.

We use the Stokes equations to model the free fluid in the fractures and the Biot
poroelasticity model (Biot 1941) for the fluid in the poroelastic region. The latter is
based on a linear stress-strain constitutive relationship for the porous solid, andDarcy’s
law, which describes the average velocity of the fluid in the pores. The interaction
across the fracture-matrix interfaces exhibits features of both Stokes–Darcy coupling
(Discacciati et al. 2002; Girault and Rivière 2009; Layton et al. 2003; Rivière and
Yotov 2005; Vassilev et al. 2014) and fluid–structure interaction (FSI) (Galdi and
Rannacher 2010; Bazilevs et al. 2013; Bungartz and Schäfer 2006; Formaggia et al.
2010; Richter 2017). We refer to the Stokes–Biot coupling considered in this paper as
fluid–poroelastic structure interaction (FPSI). There has been growing interest in such
models in the literature. The well-posedness of the mathematical model was studied
in Showalter (2005). Numerical studies include variational multiscale methods for the
monolithic system and iterative partitioned scheme (Badia et al. 2009), a non-iterative
operator-splittingmethod (Bukac et al. 2015), a partitionedmethod based onNitsche’s
coupling (Bukac et al. 2015), and a Lagrange multiplier formulation for the continuity
of flux (Ambartsumyan et al. 2018b).

To simplify the presentation we consider a fixed domain in time. As presented, the
model is suitable for deformations that are small relative to the width of the fractures.
This is valid for scales that are zoomed-in on the fractures or for meso-scale inclusions
such as cavities. The model can be extended to account for the motion of the fluid
domain by using the Arbitrary Lagrangian-Eulerian (ALE) approach, which has been
done in Badia et al. (2009) and Bukac et al. (2015).

In this work we employ a monolithic scheme for the full-dimensional Stokes–Biot
problem to model flow in fractured poroelastic media. We note that an alternative
approach is based on a reduced-dimension fracture model, including the Reynolds
lubrication equation (Ganis et al. 2014; Girault et al. 2015; Lee et al. 2016b; Mikelić
et al. 2015) and an averaged Brinkman equation (Bukac et al. 2017). Works that do not
account for elastic deformation of the media include averaged Darcy models (Martin
et al. 2005; Frih et al. 2012; Morales and Showalter 2010; D’Angelo and Scotti 2012;
Fumagalli and Scotti 2012; Boon et al. 2018; Flemisch et al. 2018), Forchheimer
models (Frih et al. 2008), Brinkman models (Lesinigo et al. 2011), and an averaged
Stokes model that results in a Brinkman model for the fracture flow (Morales and
Showalter 2017).

For the discretization of the full-dimensional Stokes–Biot problem we consider
the mixed formulation for Darcy flow in the Biot system, which provides a locally
mass conservative flow approximation and an accurate Darcy velocity. This formu-
lation results in the continuity of normal velocity condition being of essential type,
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which is enforced through a Lagrange multiplier (Ambartsumyan et al. 2018b). The
discretization allows for the use of any stable Stokes spaces in the fracture region
and any stable mixed Darcy spaces (Boffi et al. 2013). For the elasticity equation we
employ a displacement formulation with continuous Lagrange elements.

The Stokes–Biot system is coupled with an advection diffusion equation for model-
ing transport of chemical species within the fluid. The transport equation is discretized
by a discontinuousGalerkin (DG)method.DGmethods (Arnold et al. 2001;Oden et al.
1998; Rivière et al. 1999; Cockburn and Shu 1998; Sun and Wheeler 2005b) exhibit
local mass conservation, reduced numerical diffusion, variable degrees of approxima-
tion, and accurate approximations for problems with discontinuous coefficients. Due
to their low numerical diffusion, DG methods are especially suited for advection–
diffusion problems (Cockburn and Shu 1998; Cockburn and Dawson 2002; Sun and
Wheeler 2005b; Dawson et al. 2004; Wheeler and Darlow 1980; Aizinger et al. 2000).
Coupled Darcy flow and transport problems utilizing DG for transport have been stud-
ied in Sun and Wheeler (2005a), Sun et al. (2002), Dawson (1999) and Wheeler and
Darlow (1980). Coupling of Stokes–Darcy flowwith transport using a local discontin-
uous Galerkin scheme was developed in Vassilev and Yotov (2009). A coupled phase
field-transport model for proppant-filled fractures is studied in Lee et al. (2016a). A
flow-transport reduced fracture model using Darcy flow in the fracture and the matrix
is developed in Fumagalli and Scotti (2013). To the best of our knowledge, the coupled
Stokes–Biot-transport problem has not been studied in the literature. Here we follow
the approach from Sun et al. (2002) for miscible displacement in porous media and
employ the non-symmetric interior penalty Galerkin (NIPG) method for the transport
problem. We note that the dispersion tensor in the transport equation is a nonlin-
ear function of the velocity. The work in Sun et al. (2002) handles this difficulty by
utilizing a cut-off operator. Here we avoid the need for the cut-off operator by estab-
lishing an L∞-bound for the computed Stokes–Biot velocity. As a result, the velocity
is directly incorporated into the transport scheme. We present a stability bound and
an error estimate for the solution of the transport equation. The analysis in this paper
is presented for saturated flow and linear transport. Extensions to unsaturated flow
in poroelastic media and nonlinear transport can also be studied, using for example
techniques developed in Both et al. (2018) and Radu et al. (2010).

The rest of the paper is organized as follows. The coupled Stokes–Darcy-transport
problem and its variational formulation are presented in Sect. 2. The semi-discrete
continuous-in-time approximation is developed in Sect. 3 and analyzed in Sect. 4.
Computational experiments confirming the convergence of themethod and illustrating
its performance for a range of applications of flow in fractured poroelastic media are
presented in Sect. 5.

2 Model problem

We consider a simulation domain � ⊂ R
d , d = 2, 3 which is a union of non-

overlapping and possibly non-connected regions � f and �p, where � f is a fracture
region and �p is a poroelasticity region, see Fig. 1. We denote by � f p = ∂� f ∩ ∂�p

the interface between� f and�p. We further denote by (u�, p�) the velocity-pressure
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Fig. 1 Schematic representation
of the physical domain

pairs in ��, � = f , p, by ηp the displacement in �p and by (f�, q�) the body force
and the external source or sink terms. The flow in the fracture region � f is governed
by the Stokes equations

−∇ · σ f (u f , p f ) = f f in � f × (0, T ], (2.1)

∇ · u f = q f in � f × (0, T ], (2.2)

where the deformation and stress tensors, ε(u) and σ f (u f , p f ), are given by

ε(u) = 1

2

(
∇u f + ∇uT

f

)
, σ f (u f , p f ) = −p f I + 2νε(u f ),

and ν denotes the fluid viscosity.
Let σ e(η) and σ p(η, p) be the elasticity and poroelasticity stress tensors, respec-

tively:
σ e(η) = λp(∇ · η)I + 2μpε(η), σ p(η, p) = σ e(η) − α ppI,

where αp is the Biot–Willis constant and λp, μp are the Lamé coefficients.
The poroelasticity region �p is governed by the quasi-static Biot system (Biot

1941)

− ∇ · σ p(ηp, pp) = fp, νK −1up + ∇ pp = 0 in �p × (0, T ], (2.3)

∂

∂t
(s0 pp + α∇ · ηp) + ∇ · up = qp in �p × (0, T ], (2.4)

where s0 is a storage coefficient and K is a symmetric and uniformly positive definite
permeability tensor.

Following Ambartsumyan et al. (2018b), Badia et al. (2009), and Showalter (2005),
on the fluid–poroelasticity interface � f p we prescribe the following interface condi-
tions: mass conservation, balance of normal stress, conservation of momentum, and
the Beavers–Joseph–Saffman (BJS) condition modeling slip with friction (Beavers
and Joseph 1967; Saffman 1971):

u f · n f +
(

∂ηp

∂t
+ up

)
· np = 0 on � f p × (0, T ], (2.5)
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− (σ f n f ) · n f = pp, σ f n f + σ pnp = 0 on � f p × (0, T ], (2.6)

− (σ f n f ) · τ f , j = ναB J S

√
K −1

j

(
u f − ∂ηp

∂t

)
· τ f , j on � f p × (0, T ], (2.7)

where n f and np are the outward unit normal vectors to ∂� f and ∂�p, respectively,
τ f , j , 1 ≤ j ≤ d − 1, is an orthogonal system of unit tangent vectors on � f p, K j =
(Kτ f , j ) · τ f , j and αB J S > 0 is an experimentally determined friction coefficient.

The above system of equations is complemented by a set of boundary and initial
conditions. Let � f = ∂� f \� f p, �p = ∂�p\� f p = �N

p ∪ �D
p . For simplicity we

assume homogeneous boundary conditions

u f = 0 on � f × (0, T ], up · np = 0 on �N
p × (0, T ], pp = 0 on �D

p × (0, T ],
ηp = 0 on �p × (0, T ].

We further set the initial conditions

pp(x, 0) = pp,0(x), ηp(x, 0) = ηp,0(x) in �p.

Throughout the paper we will use the following standard notation. For a domain
G ⊂ R

d , the L2(G) inner product and norm for scalar and vector valued functions are
denoted by (·, ·)G and ‖ · ‖G , respectively. The norms and seminorms of the Sobolev
spaces W k,p(G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G , respectively.
Conventionally, the norms and seminorms of Hilbert spaces Hk(G) are denoted by
‖ · ‖k,G and | · |k,G , respectively. For a section of the domain or element boundary
S ⊂ R

d−1 we write 〈·, ·〉S and ‖ · ‖S for the L2(S) inner product (or duality pairing)
and norm, respectively. We will also use the space

H(div; G) = {v ∈ L2(G) : ∇ · v ∈ L2(G)}

equipped with the norm

‖v‖div,G =
(
‖v‖2 + ‖∇ · v‖2

)1/2
.

For the weak formulation of the coupled Stokes–Biot equations we introduce the
following function spaces:

V f = {v f ∈ H1(� f )
d : v f = 0 on � f }, W f = L2(� f ), (2.8)

Vp = {vp ∈ H(div;�p) : vp · np = 0 on �N
p }, Wp = L2(�p), (2.9)

Xp = {ξ p ∈ H1(�p)
d : ξ p = 0 on �p}, (2.10)

equipped with the norms

‖v f ‖V f = ‖v f ‖1,� f , ‖w f ‖W f = ‖w f ‖� f ,

‖vp‖Vp = ‖vp‖div,�p , ‖wp‖Wp = ‖wp‖�p ,
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‖ηp‖Xp = ‖ηp‖1,�p .

The weak formulation is obtained by multiplying the equations in each region by the
corresponding test functions, integrating by parts the second order terms in space, and
utilizing the interface and boundary conditions. The integration by parts in (2.1) and
(2.3) leads to the bilinear forms, corresponding to the Stokes, Darcy and the elasticity
operators:

a f (·, ·) : V f × V f −→ R, a f (u f , v f ) := (2νε(u f ), ε(v f ))� f ,

ad
p(·, ·) : Vp × Vp −→ R, ad

p(up, vp) := (νK −1up, vp)�p ,

ae
p(·, ·) : Xp × Xp −→ R, ae

p(ηp, ξ p) := (2μpε(ηp), ε(ξ p))�p

+ (λp∇ · ηp,∇ · ξ p)�p ,

the bilinear forms

b�(·, ·) : V� × W� −→ R, b�(v, w) := −(∇ · v, w)��, � = f , p,

and the interface term

I� f p = −〈σ f n f , v f 〉� f p − 〈σ pnp, ξ p〉� f p + 〈pp, vp · np〉� f p .

To handle the interface term, we introduce a Lagrange multiplier λ with a meaning of
Darcy pressure on the interface (Ambartsumyan et al. 2018b)

λ = −(σ f n f ) · n f = pp on � f p.

Using (2.6)–(2.7), we obtain

I� f p = aB J S(u f , ∂tηp; v f , ξ p) + b�(v f , vp, ξ p; λ),

where

aB J S(u f , ηp; v f , ξ p) =
d−1∑
j=1

〈
νI αB J S

√
K −1(u f − ηp) · τ f , j , (v f − ξ p) · τ f , j

〉
� f p

,

b�(v f , vp, ξ p;μ) = 〈v f · n f + (ξ p + vp) · np, μ〉� f p .

We note that for the well-posedness of b� term, we require λ ∈ (Vp · np
∣∣
� f p

)′. The
normal trace theorem for vp ∈ Vp ⊂ H(div;�p) implies that vp ·np ∈ H−1/2(∂�p).
With our choice of boundary conditions, one can verify that vp · np ∈ H−1/2(� f p),
see Ambartsumyan et al. (2018b). Therefore, we take 	 = H1/2(� f p).

Stokes–Biot variational formulation: given pp(0) = pp,0 ∈ Wp, ηp(0) = ηp,0 ∈
Xp, find, for t ∈ (0, T ], u f (t) ∈ V f , p f (t) ∈ W f , up(t) ∈ Vp, pp(t) ∈ Wp,
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ηp(t) ∈ Xp, and λ(t) ∈ 	 such that for all v f ∈ V f , w f ∈ W f , vp ∈ Vp, wp ∈ Wp,
ξ p ∈ Xp, and μ ∈ 	,

a f (u f , v f ) + ad
p(up, vp) + ae

p(ηp, ξ p) + aB J S(u f , ∂tηp; v f , ξ p)

+ b f (v f , p f ) + bp(vp, pp) + αpbp(ξ p, pp)

+ b�(v f , vp, ξ p; λ) = (f f , v f )� f + (fp, ξ p)�p , (2.11)(
s0∂t pp, wp

)
�p

− αpbp
(
∂tηp, wp

) − bp(up, wp) − b f (u f , w f )

= (q f , w f )� f + (qp, wp)�p , (2.12)

b�

(
u f ,up, ∂tηp;μ

) = 0. (2.13)

The well-posedness of the above problem has been established in Ambartsumyan et al.
(2018a).

Theorem 2.1 For each f f ∈ W 1,1(0, T ;V′
f ), fp ∈ W 1,1(0, T ;X′

p), q f ∈ W 1,1(0, T ;
W ′

f ), qp ∈ W 1,1(0, T ; W ′
p), and pp(0) = pp,0 ∈ Wp, ηp(0) = ηp,0 ∈ Xp, there

exists a unique solution (u f (t), p f (t),up(t), pp(t), ηp(t), λ(t)) ∈ L∞(0, T ;V f ) ×
L∞(0, T ; W f )×L∞(0, T ;Vp)×W 1,∞(0, T ; Wp)×W 1,∞(0, T ;Xp)×L∞(0, T ;	)

of (2.11)–(2.13).

The Stokes–Biot problem is coupled with the transport equation in �:

φct + ∇ · (cu − D∇c) = qc̃, in � × (0, T ], (2.14)

where c(x, t) is the concentration of some chemical component, 0 < φ∗ ≤ φ(x) ≤ φ∗
is the porosity of the medium in �p (it is set to 1 in � f ), u is the velocity field over
� = � f ∪ �p, defined as u|� f = u f ,u|�p = up, q is the source term given by
q
∣∣
� f

= q f and q
∣∣
�p

= qp, and

c̃ =
{
injected concentration cw, q > 0,

resident concentration c, q < 0.

The diffusion/dispersion tensor D, which combines the effects of molecular diffusion
andmechanical dispersion, is a nonlinear function of the velocity, given by (Peaceman
1977)

D(u) = dmI + |u|{αlE(u) + αt (I − E(u))}, (2.15)

where dm = φτ Dm , τ is the tortuosity coefficient, Dm is the molecular diffusivity,
E(u) is the tensor that projects onto the u direction with (E(u))i j = ui u j

|u|2 , and αl , αt

are the longitudinal and transverse dispersion, respectively.
The model is complemented by the initial condition

c(x, 0) = c0(x) in �, (2.16)
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and the boundary conditions

(cu − D∇c) · n = (cinu) · n on �in × (0, T ], (2.17)

(D∇c) · n = 0 on �out × (0, T ], (2.18)

where �in := {x ∈ ∂� : u · n < 0}, �out := {x ∈ ∂� : u · n ≥ 0} and n is the unit
outward normal vector to ∂�.

Remark 2.1 We note that the coupling between the flow and transport problems is one
way. In particular, the transport equation uses the Stokes–Biot velocity, but the flow
problem does not depend on the concentration.

3 Semi-discrete continuous-in-time formulation

Let T f
h and T p

h be shape-regular and quasi-uniform affine element partitions of � f

and�p (Ciarlet 2002), respectively, both consisting of elementswithmaximal element
diameter h. The two partitions may be non-matching at the interface � f p. We also
consider a shape-regular and quasi-uniform affine element partition of �, denoted by
Th . We note that Th may be different from T f

h and T p
h . We denote by Eh the set of all

interior facets of Th and on each facet we arbitrarily fix a unit normal vector ne. We
further denote Eout

h and Ein
h the set of facets on �out and �in , for which ne coincides

with the outward unit normal vector.
For the discretization of the fluid velocity and pressure we choose finite element

spaces V f ,h ⊂ V f and W f ,h ⊂ W f , which are assumed to be inf-sup stable. Exam-
ples of such spaces include the MINI elements, the Taylor–Hood elements and the
conforming Crouzeix–Raviart elements (Boffi et al. 2013). For the discretization of
the porous medium problem we chooseVp,h ⊂ Vp and Wp,h ⊂ Wp to be any inf-sup
stablemixedfinite element spaces, such as theRaviart-Thomas or theBrezzi–Douglas–
Marini spaces (Boffi et al. 2013). We employ a conforming Lagrange finite element
space Xp,h ⊂ Xp to approximate the structure displacement. For the discretization of
the Lagrange multiplier variable we set

	h = Vp,h · np|� f p ,

which allows for optimal order approximation on non-matching grids (Layton et al.
2003). We note that this is a non-conforming choice, since 	h �⊂ H1/2(� f p). The
space is equippedwith the discrete H1/2-normanalogue, ‖μh‖2	h

= ‖μh‖2� f p
+|μh |2	h

(Ambartsumyan et al. 2018b; Galvis and Sarkis 2007) with the semi-norm

|μh |2	h
= ad

p(u
∗
p,h(μh),u∗

p,h(μh)), (3.1)

where (u∗
p,h(μh), p∗

p,h(μh)) ∈ Vp,h × Wp,h is the mixed finite element solution to
the Darcy problem with Dirichlet data μh on � f p:

ad
p(u

∗
p,h(μh), vp,h) + bp(vp,h, p∗

h(μh)) = −〈vp,h · np, μh〉� f p , ∀ vp,h ∈ Vp,h,
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bp(u∗
p,h(μh), wp,h) = 0, ∀wp,h ∈ Wp,h .

We denote by k f ≥ 1 and s f ≥ 1 the degrees of polynomials in the spaces V f ,h

and W f ,h respectively. Let kp ≥ 0 and sp ≥ 0 be the degrees of polynomials in the
spaces Vp,h and Wp,h respectively. Finally, let ks ≥ 1 be the polynomial degree in
Xp,h .

Semi-discrete Stokes–Biot problem: given pp,h(0) and ηp,h(0), for t ∈ (0, T ], find
u f ,h(t) ∈ V f ,h , p f ,h(t) ∈ W f ,h , up,h(t) ∈ Vp,h , pp,h(t) ∈ Wp,h , ηp,h(t) ∈ Xp,h ,
and λh(t) ∈ 	h such that for all v f ,h ∈ V f ,h , w f ,h ∈ W f ,h , vp,h ∈ Vp,h , wp,h ∈
Wp,h , ξ p,h ∈ Xp,h , and μh ∈ 	h ,

a f (u f ,h, v f ,h) + ad
p(up,h, vp,h) + ae

p(ηp,h, ξ p,h) + aB J S(u f ,h, ∂tηp,h; v f ,h, ξ p,h)

+ b f (v f ,h, p f ,h) + bp(vp,h, pp,h) + αbp(ξ p,h, pp,h)

+ b�(v f ,h, vp,h, ξ p,h; λh) = (f f , v f ,h)� f + (fp, ξ p,h)�p , (3.2)

(s0∂t pp,h, wp,h)�p − αbp(∂tηp,h, wp,h) − bp(up,h, wp,h) − b f (u f ,h, w f ,h)

= (q f , w f ,h)� f + (qp, wp,h)�p , (3.3)

b�(u f ,h,up,h, ∂tηp,h;μh) = 0. (3.4)

We take pp,h(0) = Q p,h pp,0 and ηp,h(0) = Is,hηp,0, where the operators Q p,h and
Is,h are defined in Sect. 4.

It was shown in Ambartsumyan et al. (2018b) that the above problem has a unique
solution satisfying

‖ηp − ηp,h‖L∞(0,T ;H1(�p)) + √
s0‖pp − pp,h‖L∞(0,T ;L2(�p))

+ ‖u f − u f ,h‖L2(0,T ;H1(� f ))
+ ‖up − up,h‖L2(0,T ;L2(�p))

+ ∣∣(u f − ∂tηp) − (u f ,h − ∂tηp,h)
∣∣
L2(0,T ;aB J S)

+‖p f − p f ,h‖L2(0,T ;L2(� f ))
+‖pp − pp,h‖L2(0,T ;L2(�p))+‖λ − λh‖L2(0,T ;	h)

≤ C

(
hrk f ‖u f ‖

L2(0,T ;H
rk f

+1
(� f ))

+ hrs f ‖p f ‖L2(0,T ;H
rs f (� f ))

+ hrk p ‖up‖L2(0,T ;H
rk p (�p))

+ hr̃k p

(
‖λ‖

L2(0,T ;H
r̃k p (� f p))

+ ‖λ‖
L∞(0,T ;H

r̃k p (� f p))
+ ‖∂tλ‖

L2(0,T ;H
r̃k p (� f p))

)

+ hrsp

(
‖pp‖L∞(0,T ;Hrsp (�p))+‖pp‖L2(0,T ;Hrsp (�p))+‖∂t pp‖L2(0,T ;Hrsp (�p))

)

+ hrks

(
‖ηp‖L∞(0,T ;Hrks +1

(�p))
+ ∥∥ηp

∥∥
L2(0,T ;Hrks +1

(�p))

+ ∥∥∂tηp

∥∥
L2(0,T ;Hrks +1

(�p))

) )
,

0 ≤ rk f ≤ k f , 0 ≤ rs f ≤ s f + 1, 1 ≤ {rkp , r̃kp } ≤ kp + 1,

0 ≤ rsp ≤ sp + 1, 0 ≤ rks ≤ ks, (3.5)
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where, for v f ∈ V f , ξ p ∈ Xp,

|v f − ξ p|2aB J S
= aB J S(v f , ξ p; v f , ξ p)

=
d−1∑
j=1

μαB J S‖K −1/4
j (v f − ξ p) · τ f , j‖2L2(� f p)

.

Wenote that the resultwas derived under the assumption |�D
p | �= 0, but can be extended

to the case of full Neumann boundary condition on �p by restricting the mean value
of the pressure over the entire domain to be zero.

Next, we derive the numerical method for the transport problem. Following Sun
et al. (2002), we adopt the DG scheme known as the non-symmetric interior penalty
Galerkin (NIPG) (Rivière et al. 1999).

For s ≥ 0, we define the space

Hs(Th) = {φ ∈ L2(�) : φ ∈ Hs(E), E ∈ Th}.

The jump and average for φ ∈ Hs(Th), s > 1/2 are defined as follows. Let Ei , E j ∈
Th and e = ∂ Ei ∩ ∂ E j ∈ Eh , with ne exterior to Ei . Let

[φ] = (φ|Ei )|e − (φ|E j )|e, {φ} = (φ|Ei )|e + (φ|E j )|e
2

.

For φ ∈ H1(Th) we define the broken seminorm

|||∇φ|||� =
⎛
⎝ ∑

E∈Th

‖∇φ‖2E
⎞
⎠

1/2

.

We consider the finite element space

Dr (Th) = {φ ∈ L2(�) : φ|E ∈ Pr (E), E ∈ Th},

where Pr (E) denotes the space of polynomials of degree less than or equal to r on E .
Let the bilinear form Buh (ch, ψh) and the linear functional Lh(ψh) be defined as

follows:

Buh (ch, ψh)

=
∑

E∈Th

∫

E
(D(uh)∇ch − chuh) · ∇ψh −

∑
e∈Eh

∫

e
{D(uh)∇ch · ne}[ψh]

+
∑
e∈Eh

∫

e
{D(uh)∇ψh · ne}[ch] +

∑
e∈Eh

∫

e
c∗

huh · ne[ψh]
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+
∑

e∈Eout
h

∫

e
chuh · neψh −

∫

�

chq−ψh + Jσ
0 (ch, ψh),

Lh(ψh) =
∫

�

cwq+ψh −
∑

e∈Ein
h

∫

e
cinuh · neψh . (3.6)

Here q+ = max(q, 0) is the injection part of the source term and q− = min(q, 0) is
the extraction part, c∗

h |e is the upwind value of concentration, defined as

c∗
h |e =

{
ch |E1 if uh · ne > 0,

ch |E2 if uh · ne < 0,
(3.7)

and Jσ
0 (ch, ψh) is the interior penalty term

Jσ
0 (ch, ψh) =

∑
e∈Eh

σe

he

∫

e
[ch][ψh], (3.8)

where, σ is a discrete positive function that takes constant value σe on the edge and is
bounded below by σ∗ > 0 and above by σ ∗, and he is the diameter of side of facet e.

Semi-discrete DG transport problem: find ch(t) ∈ Dr (Th) such that ∀ψh ∈ Dr (Th),

(φ∂t ch, ψh) + Buh (ch, ψh) = Lh(ψh), (3.9)

with initial condition ch(0) a suitable approximation of c0.
It is easy to verify that, if the solution to (2.14) is sufficiently regular, it satisfies

(3.9) with Buh replaced by Bu.

4 Analysis of the semi-discrete problem

In this section we discuss the stability and error estimates for the transport problem
(3.9). We note that a similar scheme has been used and analyzed in details in Sun
et al. (2002). The main difference and improvement in this work is the fact that the
numerically computed velocity field uh is directly incorporated into the scheme for
transport (3.9), while Sun et al. (2002) used a cut-off operator in order to ensure
stability of their method. We avoid the need for a cut-off operator by establishing
pointwise stability of the velocity solution in space and time, which is done in the next
two lemmas. We first establish an error estimate for the fluid velocity in L∞(0, T ).
The result requires control of u f ,h(0) and up,h(0). To simplify the analysis, we assume
that the initial pressure pp,0 and displacement ηp,0 are constants.

Lemma 4.1 Assume that pp,0 and ηp,0 are constants. If the solution of (2.11)–(2.13)
is sufficiently regular, there exists a positive constant C independent of h such that
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‖u f − u f ,h‖L∞(0,T ;H1(� f )) + ‖up − up,h‖L∞(0,T ;L2(�p))

≤C

[
h

rk f

(
‖u f ‖

L2(0,T ;H
rk f

+1
(� f ))

+‖u f ‖
L∞(0,T ;H

rk f
+1

(� f ))
+‖∂tu f ‖

L2(0,T ;H
rk f

+1
(� f ))

)

+ h
rs f

(
‖p f ‖

L2(0,T ;H
rs f (� f ))

+ ‖p f ‖
L∞(0,T ;H

rs f (� f ))
+‖∂t p f ‖

L2(0,T ;H
rs f (� f ))

)

+ h
rk p

(
‖up‖

L2(0,T ;H
rk p (�p))

+ ‖up‖
L∞(0,T ;H

rk p (�p))
+‖∂tup‖

L2(0,T ;H
rk p (�p))

)

+ h
r̃k p

(
‖λ‖

L2(0,T ;H
r̃k p (� f p))

+ ‖λ‖
L∞(0,T ;H

r̃k p (� f p))
+ ‖∂t λ‖

L2(0,T ;H
r̃k p (� f p))

)

+ hrsp
(
‖pp‖L∞(0,T ;H

rsp (�p))
+ ‖pp‖L2(0,T ;H

rsp (�p))
+‖∂t pp‖L2(0,T ;H

rsp (�p))

)

+ hrks

(∥∥ηp
∥∥

L∞(0,T ;Hrks +1
(�p))

+ ‖ηp‖
L2(0,T ;Hrks +1

(�p))
+‖∂t ηp‖

L2(0,T ;Hrks +1
(�p))

+‖∂t ηp‖
L∞(0,T ;Hrks +1

(�p))
+ ‖∂t t ηp‖

L2(0,T ;Hrks +1
(�p))

) ]
.

0 ≤ rk f ≤ k f , 0 ≤ rs f ≤ s f + 1, 1 ≤ {rk p , r̃k p } ≤ k p + 1,

0 ≤ rsp ≤ sp + 1, 0 ≤ rks ≤ ks . (4.1)

Proof We introduce the errors for all variables and split them into approximation and
discretization errors:

e f := u f − u f ,h = (u f − I f ,hu f ) + (I f ,hu f − u f ,h) := χ f + φ f ,h,

ep := up − up,h = (up − Ip,hup) + (Ip,hup − up,h) := χ p + φ p,h,

es := ηp − ηp,h = (ηp − Is,hηp) + (Is,hηp − ηp,h) := χ s + φs,h,

e f p := p f − p f ,h = (p f − Q f ,h p f ) + (Q f ,h p f − p f ,h) := χ f p + φ f p,h,

epp := pp − pp,h = (pp − Q p,h pp) + (Q p,h pp − pp,h) := χpp + φpp,h,

eλ := λ − λh = (λ − Qλ,hλ) + (Qλ,hλ − λh) := χλ + φλ,h, (4.2)

where the operator I = (
I f ,h, Ip,h, Is,h

)
satisfies, see Ambartsumyan et al. (2018b)

for details,
b�

(
I f ,hv f , Ip,hvp, Is,hξ p;μh

) = 0, ∀μh ∈ 	h, (4.3)

b f (I f ,hv f − v f , w f ,h) = 0, ∀w f ,h ∈ W f ,h, (4.4)

bp(Ip,hvp − vp, wp,h) = 0, ∀wp,h ∈ Wp,h, (4.5)

and Q f ,h, Q p,h and Qλ,h are the L2–projection operators such that

(p f − Q f ,h p f , w f ,h)� f = 0, ∀w f ,h ∈ W f ,h, (4.6)

(pp − Q p,h pp, wp,h)�p = 0, ∀wp,h ∈ Wp,h, (4.7)

〈λ − Qλ,hλ,μh〉� f p = 0, ∀μh ∈ 	h . (4.8)

The operators have the following approximation properties:

‖p f − Q f ,h p f ‖L2(� f )
≤ Chrs f ‖p f ‖H

rs f (� f )
, 0 ≤ rs f ≤ s f + 1, (4.9)
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‖pp − Q p,h pp‖L2(�p) ≤ Chrsp ‖pp‖Hrsp (�p), 0 ≤ rsp ≤ sp + 1, (4.10)

‖λ − Qλ,hλ‖L2(� f p) ≤ Chrk p ‖λ‖H
rk p (� f p)

, 0 ≤ r̃kp ≤ kp + 1, (4.11)

‖v f − I f ,hv f ‖H1(� f )
≤ Chrk f ‖v f ‖

H
rk f

+1
(� f )

, 0 ≤ rk f ≤ k f , (4.12)

‖ξ p − I s
h ξ p‖Hm (�p) ≤ Chrks −m‖ξ p‖Hrks (�p), m = 0, 1, 1 ≤ rks ≤ ks + 1,

(4.13)

‖vp − Ip,hvp‖L2(�p)

≤ C

(
hrk p ‖vp‖H

rk p (�p)
+ hrk f ‖v f ‖

H
rk f

+1
(� f )

+ hrks ‖ξ p‖Hrks +1
(�p)

)
,

1 ≤ rkp ≤ kp + 1, 0 ≤ rk f ≤ k f , 0 ≤ rks ≤ ks . (4.14)

To obtain a velocity bound in L∞(0, T ), we differentiate (2.11) and (3.2) in time,
and then subtract (3.2)–(3.3) from (2.11)–(2.12) to form the error equation

a f (∂te f , v f ,h) + ad
p(∂tep, vp,h) + ae

p(∂tes, ξ p,h) + aB J S(∂te f , ∂t tes; v f ,h, ξ p,h)

+ b f (v f ,h, ∂t e f p) + bp(vp,h, ∂t epp) + αbp(ξ p,h, ∂t epp)

+ b�(v f ,h, vp,h, ξ p,h; ∂t eλ) + (
s0 ∂t epp, wp,h

)

− αbp(∂t es, wp,h) − bp(ep, wp,h) − b f (e f , w f ,h) = 0.

Setting v f ,h = φ f ,h, vp,h = φ p,h, ξ p,h = ∂tφs,h, w f ,h = ∂tφ f p,h , and wp,h

= ∂tφpp,h , we have

a f (∂tχ f ,φ f ,h) + a f (∂tφ f ,h,φ f ,h) + ad
p(∂tχ p,φ p,h)

+ ad
p(∂tφ p,h,φ p,h) + ae

p

(
∂tχ s, ∂tφs,h

)

+ ae
p

(
∂tφs,h, ∂tφs,h

) + aB J S
(
∂tχ f , ∂t tχ s;φ f ,h, ∂tφs,h

)

+ aB J S
(
∂tφ f ,h, ∂t tφs,h;φ f ,h, ∂tφs,h

)

+ b f (φ f ,h, ∂tχ f p) + b f (φ f ,h, ∂tφ f p,h) + bp(φ p,h, ∂tχpp)

+ bp(φ p,h, ∂tφpp,h) + αbp
(
∂tφs,h, ∂tχpp

)

+ αbp
(
∂tφs,h, ∂tφpp,h

)

+ b�

(
φ f ,h,φ p,h, ∂tφs,h; ∂tχλ

) + b�

(
φ f ,h,φ p,h, ∂tφs,h; ∂tφλ,h

)

+ (
s0 ∂tχpp, ∂tφpp,h

) + (
s0 ∂tφpp,h, ∂tφpp,h

)

− αbp
(
∂tχ s, ∂tφpp,h

) − αbp
(
∂tφs,h, ∂tφpp,h

)

− bp(χ p, ∂tφpp,h) − bp(φ p,h, ∂tφpp,h)

− b f (χ f , ∂tφ f p,h) − b f (φ f ,h, ∂tφ f p,h) = 0. (4.15)

The following terms simplify, due to the projection operators properties (4.7),(4.8),
(4.4), and (4.5):

b f (χ f , ∂tφ f p,h) = bp(χ p, ∂tφpp,h) = bp(φ p,h, ∂tχpp) = 0,
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(
s0 ∂tχpp, ∂tφpp,h

) = 〈φ p,h · np, ∂tχλ〉� f p = 0, (4.16)

where we also used that 	h = Vp,h · np|� f p for the last equality. We also have

b�

(
φ f ,h,φ p,h, ∂tφs,h; ∂tφλ,h

) = 0, b�

(
φ f ,h,φ p,h, ∂tφs,h; ∂tχλ

)

= 〈
φ f ,h · n f + ∂tφs,h · np, ∂tχλ

〉
� f p

,

where we have used (4.3) and (3.4) for the first equality and the last equality in (4.16)
for the second equality. Using these results, the error equation (4.15) becomes

1

2
∂t

(
a f (φ f ,h,φ f ,h) + ad

p(φ p,h,φ p,h) + ∣∣φ f ,h − ∂tφs,h

∣∣2
aB J S

)

+ ae
p(∂tφs,h, ∂tφs,h) + s0‖∂tφpp,h‖2L2(�p)

= a f (∂tχ f ,φ f ,h) + ad
p(∂tχ p,φ p,h) + ae

p

(
∂tχ s, ∂tφs,h

)

+
d−1∑
j=1

〈
ναB J S

√
K −1

j ∂t (χ f − ∂tχ s) · τ f , j , (φ f ,h − ∂tφs,h) · τ f , j

〉

� f p

− b f (φ f ,h, ∂tχ f p) − αbp(∂tφs,h, ∂tχpp) + αbp(∂tχ s, ∂tφpp,h)

− 〈φ f ,h · n f + ∂tφs,h · np, ∂tχλ〉� f p

≤ C
(
‖φ f ,h‖2H1(� f )

+‖φ p,h‖2L2(�p)
+ ∣∣φ f ,h − ∂tφs,h

∣∣2
aB J S

)
+ ε‖∂tφs,h‖2H1(�p)

+ C
(
‖∂tχ f ‖2H1(� f )

+ ‖∂tχ p‖2L2(�p)
+ ‖∂tχ s‖2H1(�p)

+ ‖∂t tχ s‖2H1(�p)

+αbp(∂tχ s, ∂tφpp,h) + ‖∂tχ f p‖2L2(� f )
+ ‖∂tχpp‖2L2(�p)

+ ‖∂tχλ‖2L2(� f p)

)
,

(4.17)

where we used the Cauchy–Schwartz, Young’s and trace inequalities. Using the coer-
civity of the bilinear forms a f (·, ·), ad

p(·, ·), and ae
p(·, ·), choosing ε small enough,

and integrating (4.17) in time from 0 to an arbitrary t ∈ (0, T ] gives

‖φ f ,h(t)‖2H1(� f )
+ ‖φ p,h(t)‖2L2(�p)

+ ∣∣φ f ,h(t) − ∂tφs,h(t)
∣∣2
aB J S

+
∫ t

0

(
‖∂tφs,h‖2H1(�p)

+ s0‖∂tφpp,h‖2L2(�p)

)
ds

≤ ‖φ f ,h(0)‖2H1(� f )
+ ‖φ p,h(0)‖2L2(�p)

+ ∣∣φ f ,h(0) − ∂tφs,h(0)
∣∣2
aB J S

+ C
∫ t

0

(
‖φ f ,h‖2H1(� f )

+ ‖φ p,h‖2L2(�p)
+ ∣∣φ f ,h − ∂tφs,h

∣∣2
aB J S

+ ‖∂tχ f ‖2H1(� f )
+ ‖∂tχ p‖2L2(�p)

+ ‖∂tχ s‖2H1(�p)
+ ‖∂t tχ s‖2H1(�p)

+‖∂tχ f p‖2L2(� f )
+ ‖∂tχpp‖2L2(�p)

+ ‖∂tχλ‖2L2(� f p)
+ αbp(∂tχ s, ∂tφpp,h)

)
ds.

(4.18)
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Using integration by parts for the last term, we get

∫ t

0
αbp(∂tχ s, ∂tφpp,h) ds = αbp(∂tχ s(t), φpp,h(t)) − αbp(∂tχ s(0), φpp,h(0))

−
∫ t

0
αbp(∂t tχ s,h, φpp,h) ds

≤ ε

(
‖φpp,h(t)‖2L2(�p)

+
∫ t

0
‖φpp,h‖2L2(�p)

)

+ C

(
‖∂tχ s(t)‖2H1(�p)

+ ‖φpp,h(0)‖2L2(�p)
+ ‖∂tχ s(0)‖2H1(�p)

+
∫ t

0
‖∂t tχ s‖2H1(�p)

ds

)
. (4.19)

Next, using an inf-sup condition for the Stokes–Darcy problem (Galvis and Sarkis
2007; Ambartsumyan et al. 2018b) and the error equation obtained by subtracting
(3.2) from (2.11) and taking ξ p,h = 0, we obtain

‖(φ f p,h, φpp,h, φλ,h)‖W f ×Wp×	h

≤ C sup
0 �=vh∈Vh

b f (v f ,h, φ f p,h) + bp(vp,h, φpp,h) + b�(v f ,h, vp,h, 0;φλ,h)

‖vh‖V

= C sup
0 �=vh∈Vh

(−a f (e f , v f ,h) − ad
p(ep, vp,h) − aB J S(e f , ∂tes; v f ,h, 0)

‖vh‖V
+ −b f (v f ,h, χ f p) − bp(vp,h, χpp) − b�(v f ,h, vp,h, 0;χλ)

‖vh‖V
)

.

We have bp(vp,h, χpp) = 0 and 〈vp,h · np, χλ〉� f p = 0. Then, using the continuity of
the bilinear forms and the trace inequality, we get

ε(‖φ f p,h‖2L2(� f )
+ ‖φpp,h‖2L2(�p)

+ ‖φλ,h‖2L2(� f p)
)

≤ Cε
(
‖φ f ,h‖2H1(� f )

+ ‖φ p,h‖2L2(�p)
+ ‖φs,h‖2H1(�p)

+ ∣∣φ f ,h − ∂tφs,h

∣∣2
aB J S

+ ‖χ f ‖2H1(� f )
+ ‖χ p‖2L2(�p)

+ ∥∥χ s

∥∥2
H1(�p)

+ ∥∥∂tχ s

∥∥2
H1(�p)

+‖χ f p‖2L2(� f )
+ ‖χpp‖2L2(�p)

+ ‖χλ‖L2(� f p)

)
. (4.20)

Finally, to control the error at t = 0, we note that the assumed solution regularity
on the right hand side of (4.1) implies that (2.11)–(2.13) and (3.2)–(3.4) hold at t = 0.
We subtract (3.2)–(3.3) from (2.11)–(2.12) at t = 0, sum the two equations, and take
v f ,h = φ f ,h, vp,h = φ p,h, ξ p,h = ∂tφs,h, w f ,h = φ f p,h , and wp,h = φpp,h , to
obtain

a f (φ f ,h(0),φ f ,h(0)) + ad
p(φ p,h(0),φ p,h(0)) + ∣∣φ f ,h(0) − ∂tφs,h(0)

∣∣2
aB J S

= − ae
p(φs,h(0), ∂tφs,h(0)) − s0(∂tφpp,h(0), φpp,h(0))�p
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+ a f (χ f (0),φ f ,h(0)) + ad
p(χ p(0),φ p,h(0)) + ae

p
(
χ s(0), ∂tφs,h(0)

)

+
d−1∑
j=1

〈
μαB J S

√
K −1

j (χ f (0) − ∂tχ s(0)) · τ f , j , (φ f ,h(0) − ∂tφs,h(0)) · τ f , j
〉
� f p

− b f (φ f ,h(0), χ f p(0)) + αbp(∂tφs,h(0), χpp(0)) + αbp(∂tχ s(0), φpp,h(0))

+ 〈φ f ,h(0) · n f + ∂tφs,h(0) · np, χλ(0)〉� f p .

Since pp,h(0) = Q p,h pp,0 and ηp,h(0) = Is,hηp,0, we have that φpp,h(0) = 0 and
φs,h(0) = 0. Since pp,0 and ηp,0 are constants, we also have that χ s = 0, χpp = 0,
and χλ = 0. It is then easy to see that

‖φ f ,h(0)‖2H1(� f )
+ ‖φ p,h(0)‖2L2(�p)

+ ∣∣φ f ,h(0) − ∂tφs,h(0)
∣∣2
aB J S

≤ C(‖χ f ‖2H1(� f )
+ ‖χ p‖2L2(�p)

+ ‖χ f p‖2L2(� f )
). (4.21)

The assertion of the lemma follows from combining (4.18)–(4.21) and using
Gronwall’s inequality, the triangle inequality, and the approximation properties (4.9)–
(4.14). ��
Lemma 4.2 Under the assumptions of Lemma 4.1, for any choice of stable spaces
when d = 2, and for k f ≥ 2, kp ≥ 1, sp ≥ 1, and ks ≥ 2 when d = 3, there exists
a positive constant M = M(u f , p f , up, pp, ηp, λ), such that, for t ∈ (0, T ], the
solution uh of (3.2)–(3.4) satisfies

‖uh‖L∞(�) ≤ M . (4.22)

Proof We recall that by definition

uh =
{
u f ,h in � f ,

up,h in �p.

Therefore, we prove (4.22) separately for u f ,h in the fluid domain and for up,h in
the poroelastic domain. Let S f ,h be the Scott-Zhang interpolant onto V f ,h (Scott and
Zhang 1990), satisfying

‖S f ,hv f ‖∞,� f ≤ C(‖v f ‖∞,� f + h‖∇v f ‖∞,� f ), ∀v f ∈ W 1,∞(� f ),

(4.23)

‖v f − S f ,hv f ‖� f ≤ Chrk f ‖v f ‖rk f ,� f , 1 ≤ rk f ≤ k f + 1, ∀v f ∈ Hrk f (� f ).

(4.24)

By the triangle inequality,

‖u f ,h‖L∞(� f ) ≤ ‖u f ,h − S f ,hu f ‖L∞(� f ) + ‖S f ,hu f ‖L∞(� f ). (4.25)
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To obtain a bound on ‖u f ,h − S f ,hu f ‖L∞(� f ), we use a scaling argument via mapping

to the reference element Ê . Recall that, due to shape regularity, the determinant of the
Jacobian matrix satisfies ‖JE‖∞,Ê ∼ hd . Therefore, for any E ∈ T f

h ∪ T p
h and any

polynomial vh on E , using norm equivalence on Ê , we have

‖vh‖∞,E ≤ ‖v̂h‖∞,Ê ≤ ‖v̂h‖Ê ≤ Ch−d/2‖vh‖E .

Using the above bound, we have

‖u f ,h − S f ,hu f ‖L∞(� f ) ≤ Ch−d/2‖u f ,h − S f ,hu f ‖L2(� f )

≤ Ch−d/2(‖u f − u f ,h‖L2(� f )
+ ‖u f − S f ,hu f ‖L2(� f )

),

which, combined with (4.25), implies

‖u f ,h‖L∞(� f ) ≤ Ch−d/2(‖u f − u f ,h‖L2(� f )
+ ‖u f − S f ,hu f ‖L2(� f )

)

+‖S f ,hu f ‖L∞(� f ). (4.26)

Next, we consider the MFE interpolant �p,h onto Vp,h that satisfies (Acosta et al.
2011)

‖�p,hvp‖∞,�p ≤ C
(‖vp‖∞,�p + h‖∇vp‖∞,�p

)
, ∀vp ∈ W 1,∞(�p),

(4.27)

‖vp − �p,hvp‖�p ≤ Chrk p ‖vp‖rk p ,�p , 1 ≤ rkp ≤ kp + 1, ∀vp ∈ Hrk p (�p).

(4.28)

Similarly to (4.26) we obtain

‖up,h‖L∞(�p) ≤ Ch−d/2(‖up − up,h‖L2(�p) + ‖up − �p,hup‖L2(� f )
)

+‖�p,hup‖L∞(�p). (4.29)

The proof is completed by combining (4.26), (4.29), (4.23)–(4.24), (4.27)–(4.28), and
(4.1). ��
Remark 4.1 We note that the above result assumes sufficient regularity of the solution,
as indicated by (4.23)–(4.24), (4.27)–(4.28), and (4.1).

We will utilize the following positive definite property of the dispersion tensor,
proved in Sun et al. (2002).

Lemma 4.3 Assume that for D(u) defined in (2.15), dm(x) ≥ dm,∗ > 0, αl(x) ≥ 0
and αt (x) ≥ 0 uniformly in �. Then D(u) is uniformly positive definite and for all
x ∈ �,

D(u)∇c · ∇c ≥ dm,∗|∇c|2. (4.30)

We next prove a Gȧrding’s inequality for the bilinear form Buh (·, ·). To simplify
the analysis we assume velocity boundary condition for the Darcy problem.
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Lemma 4.4 Under the assumptions of Lemma 4.2, and if �D
p = ∅, then the bilinear

form Buh (·, ·) defined in (3.6) satisfies, ∀t ∈ (0, T ],

Buh (ψh, ψh) ≥ C
(
|||∇ψh |||2� + Jσ (ψh, ψh) − ‖ψh‖2�

)
, ∀ψh ∈ D f (Th). (4.31)

Proof For any ψh ∈ D f (Th) we have

Buh (ψh, ψh) =
∑

E∈Th

∫

E
(D(uh)∇ψh − ψhuh) · ∇ψh −

∑
e∈Eh

∫

e
{D(uh)∇ψh · ne}[ψh]

+
∑
e∈Eh

∫

e
{D(uh)∇ψh · ne}[ψh] +

∑
e∈Eh

∫

e
ψ∗

huh · ne[ψh]

+
∫

�out

ψhuh · nψh −
∫

�

ψhq−ψh + Jσ
0 (ψh, ψh). (4.32)

Next we introduce the notation

J1 :=
∑

E∈Th

∫

E
(D(uh)∇ψh − ψhuh) · ∇ψh, J2 :=

∑
e∈Eh

∫

e
ψ∗

h [ψh]uh · ne,

J3 :=
∫

�out

ψ2
h uh · n −

∫

�

q−ψ2
h + Jσ

0 (ψh, ψh),

and rewrite (4.32) as

Buh (ψh, ψh) = J1 + J2 + J3. (4.33)

Using (4.22) and (4.30), we bound J1 as

J1 =
∑

E∈Th

∫

E
D(uh)∇ψh · ∇ψh −

∑
E∈Th

∫

E
ψhuh · ∇ψh ≥ dm,∗|||∇ψh |||2�

− M
∑

E∈Th

‖ψh‖E‖∇ψh‖E

≥ dm,∗|||∇ψh |||2� − Cε−1‖ψh‖2� − ε|||∇ψh |||2�. (4.34)

For J2 we have

J2 =
∑
e∈Eh

∫

e
ψ∗

h [ψh]uh · ne ≥ −M

∣∣∣∣∣∣
∑
e∈Eh

∫

e
ψ∗

h [ψh]
∣∣∣∣∣∣
≥ −M

∑
e∈Eh

‖ψ∗
h ‖e‖[ψh]‖e

≥ −
∑
e∈Eh

(
εσe

he
‖[ψh]‖2e + Che

ε
‖ψ∗

h ‖2e
)

≥ −ε Jσ (ψh, ψh) − Ch

ε

∑
E∈Th

h−1‖ψh‖2E

≥ − ε Jσ (ψh, ψh) − Cε−1‖ψh‖2�. (4.35)
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We bound J3, using that uh · n = u · n ≥ 0 on �out and that q− ≤ 0,

J3 =
∫

�out

ψ2
hu · n −

∫

�

q−ψ2
h + Jσ

0 (ψh, ψh) ≥ Jσ
0 (ψh, ψh). (4.36)

Combining (4.33)–(4.36) we obtain

Buh (ψh, ψh) ≥ (dm,∗ − ε)|||∇ψh |||2� − Cε−1‖ψh‖2� + (1 − ε)Jσ (ψh, ψh).

Choosing ε small enough completes the proof. ��
We are now ready to prove a stability bound for the solution of (3.9).

Theorem 4.1 Under the assumptions of Lemma 4.4, there exists a positive constant C
independent of h such that the solution ch(t) of (3.9) satisfies, ∀t ∈ (0, T ],

‖ch(t)‖2� +
∫ t

0
|||∇ch(s)|||2� ds ≤ C

(
‖ch(0)‖2� +

∫ t

0

(
‖cw(s)q+(s)‖2�

+‖cin(s)‖2�in

)
ds

)
.

Proof With the choice ψh = ch , (3.9) reads

∫

�

φch∂t ch + Buh (ch, ch) = Lh(ch).

Using (4.31), the definition (3.6) of Lh , and that uh · n = u · n, we obtain

φ
1

2
∂t‖ch‖2� + C

(
|||∇ch |||2� + Jσ (ch, ch)

)

≤ C‖ch‖2� +
∫

�

cwq+ch −
∫

�in

cinu · n ch .

Integrating in time from s = 0 to s = t for 0 < t ≤ T and using Cauchy–Schwarz
and Young’s inequalities, we obtain

‖ch(t)‖2� +
∫ t

0

(
|||∇ch(s)|||2� + Jσ (ch, ch)

)
ds

≤ C

(
‖ch(0)‖2� +

∫ t

0

(
‖ch(s)‖2� + ‖cw(s)q+(s)‖2�

+ ε−1‖cin(s)‖2�in
+ ε‖ch(s)‖2�in

)
ds

)
. (4.37)

The last term above is bounded as

‖ch‖2�in
≤ C

(
‖ch‖2� + |||∇ch |||2� + Jσ (ch, ch)

)
, (4.38)
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which can be shown following the argument presented in Brenner (2003). The theorem
follows from (4.37)–(4.38), taking ε small enough, and using Gronwall’s inequality.

��

In the next theorem we state the error estimate for the transport problem (3.9). Deriva-
tion of the bound follows the steps in the proof of Theorem 4.1 in Sun et al. (2002),
using the estimate (4.22), rather than a boundedness property of the “cut-off” operator.
For the sake of space, we omit the proof and the reader is referred to Sun et al. (2002)
for the details.

Theorem 4.2 Under the assumptions of Lemma 4.4, and assuming further that the
solution of (2.14)–(2.18) satisfies c ∈ L∞(0, T ; W 1,∞(�)) ∩ L2(0, T ; Hr+1(�)),
there exists a positive constant C independent of h such that, ∀t ∈ (0, T ],

‖c(t) − ch(t)‖� +
(∫ t

0
|||∇(c(s) − ch(s))|||2� ds

)1/2

≤Chmin{k f ,s f +1,kp+1,sp+1,ks ,r}.

5 Numerical results

In this section, we present results from several computational experiments in two
dimensions. The computations are performed using a fully discrete schemewith Back-
ward Euler time discretization. The method is implemented using the finite element
package FreeFem++ (Hecht 2012). We use a monolithic solver for the Stokes–Biot
system at each time step. It is possible to design a non-overlapping domain decompo-
sition algorithm, similar to the Stokes–Darcy problem, see e.g. Vassilev et al. (2014).
One can also use various splitting schemes for the Biot system (Mikelić and Wheeler
2013;Kimet al. 2011b, a).Wefirst present a numerical test that confirms the theoretical
convergence rates for the Biot-Stokes-transport problem using an analytical solution,
followed by five examples with simulations of fluid flow in a fractured reservoir with
physically realistic parameters.

5.1 Convergence test

In this test we study the convergence of the spatial discretization using an analytical
solution. The domain is a rectangle � = [0, 1] × [−1, 1]. We associate the upper half
with the Stokes flow,while the lower half represents the flow in the poroelastic structure
governed by the Biot system. The appropriate interface conditions are enforced along
the interface y = 0. Following the example from Ambartsumyan et al. (2018b), the
solution in the Stokes region is

u f = π cos(π t)

(−3x + cos(y)

y + 1

)
, p f = et sin(πx) cos

(π y

2

)
+ 2π cos(π t).
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Table 1 Relative numerical errors and convergence rates

Pb
1 − P1, RT 0 − P0, P1, P0 and Pdc

1

‖u f − u f ,h‖l2(H1(� f )) ‖up − up,h‖l2(L2(�p))
|||c − ch |||l2(H1(�)) ‖c − ch‖l∞(L2(�))

h Error Rate Error Rate Error Rate Error Rate

1/4 1.79E-02 – 2.10E−01 – 2.24E−01 – 2.52E−02 –

1/8 8.96E−03 1.0 1.05E−01 1.0 1.14E−01 1.0 6.17E−03 2.0

1/16 4.47E−03 1.0 5.23E−02 1.0 5.71E−02 1.0 1.56E−03 2.0

1/32 2.24E−03 1.0 2.61E−02 1.0 2.87E−02 1.0 3.96E−04 2.0

1/64 1.12E−03 1.0 1.31E−02 1.0 1.44E−02 1.0 1.00E−04 2.0

The Biot solution is chosen accordingly to satisfy the interface conditions (2.5)–(2.7):

up = πet
(
cos(πx) cos(π y

2 )
1
2 sin(πx) sin(π y

2 )

)
, pp = et sin(πx) cos

(π y

2

)
,

ηp = sin(π t)

(−3x + cos(y)

y + 1

)
.

The right hand side functions f f , q f , fp and qp are computed from (2.1)–(2.4) using
the above solution. The model problem is then complemented with the appropriate
Dirichlet boundary conditions and initial data. The total simulation time for this test
case is T = 10−3 and the time step is �t = 10−4. The time step is chosen sufficiently
small, so that the time discretization error does not affect the convergence rates. The
transport solution is set to

c = t (cos(πx) + cos(π y)) /π,

with the diffusion tensor D = 10−3I and porosity φ = 1.
For the spatial discretization we use the MINI elements Pb

1 − P1 for Stokes, the
Raviart-Thomas RT 0 − P0 for Darcy, continuous Lagrangian P1 elements for the
displacement, and piecewise constant Lagrange multiplier P0. The transport equation
is discretized using discontinuous piecewise linears, Pdc

1 . For simplicity the Stokes
and Biot meshes are made matching along the interface and the transport mesh is the
same as the flow mesh. Theorem 4.2 predicts first order convergence for all variables,
which is confirmed by the results reported in Table 1. We also observe second order
convergence for the concentration in the l∞(L2(�)) norm. Here the notation l2(·) and
l∞(·) refers to discrete-in-time norms.

5.2 Applications to coupled flow and transport through fractured poroelastic
media

We present five examples with simulations of fluid flow in a fractured reservoir with
physically realistic parameters. The examples are designed to illustrate the robustness
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Fig. 2 Computational domains

of themethodwith respect to reservoir and fracture geometry, rock heterogeneities, and
various flow and transport scenarios. The computational domains for the five examples
are shown in Fig. 2. Examples 1 and 2 aremotivated by hydraulic fracturing. Example 1
features irregularly shaped fracture and reservoir, with fluid injected in the center of the
fracture. Example 2 has heterogeneous permeability, porosity, and Young’s modulus,
with fluid injected into the fracture via inflowboundary condition. Examples 3-5model
flow and transport through vuggy or naturally fractured poroelastic media. The flow
is induced by a pressure drop between the left and right boundaries. The transport
equation models the concentration of a tracer, which enters the domain with the fluid
along the inflow boundary. The reservoir in Example 3 has a large irregularly shaped
cavity. Examples 4 and 5 consider a network of channels and fractures, respectively.
The latter is the computationally most challenging example, due to the small fracture
thickness and sharp angles at the fracture intersections. For all examples in this section
the physical units are meters for length, seconds for time, and kPa for pressure.

5.2.1 Example 1: fluid and tracer injection into a fracture

For this example,we first introduce the reference domain �̂ given by a square [−1, 1]×
[−1, 1]. A fracture, representing the reference fluid domain �̂ f , is then described by
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Table 2 Poroelasticity and fluid parameters in Example 1

Parameter Symbol Units Values

Young’s modulus E (kPa) 107

Poisson’s ratio ν 0.2

Lamé coefficient λp (kPa) 5/18 × 107

Lamé coefficient μp (kPa) 5/12 × 107

Dynamic viscosity μ (kPa s) 10−6

Permeability K (m2) diag(200, 50) × 10−12

Mass storativity s0 (kPa−1) 6.89 × 10−2

Biot–Willis constant α 1.0

Beavers–Joseph–Saffman coefficient αB J S 1.0

its top and bottom boundaries, as follows

ŷ2 = 82(x̂ − 0.35)2(x̂ + 0.35)2, x̂ ∈ [−0.35, 0.35].

The physical domain, see Fig. 2a, is obtained from the reference one �̂ via themapping

[
x
y

]
=

[
x̂

8
(
cos

(
π x̂+ŷ
100

)
+ ŷ

4

)
]

.

This example models the interaction between a fracture filled with fluid and a sur-
rounding poroelastic reservoir. The physical parameters are given in the Table 2. They
are taken from Girault et al. (2015) and are realistic for hydraulic fracturing.

The Lamé coefficients are determined from the Young’s modulus E and the Pois-
son’s ratio ν via the well-known relationships

λp = Eν

(1 + ν)(1 − 2ν)
, μp = E

2(1 + ν)
.

The boundary conditions are

pp = 1000, ηp = 0 on �p.

The initial conditions are set accordingly to ηp(0) = 0 and pp(0) = 1000. The initial
concentration is c(0) = 0. The total simulation time is T = 100 s with a time step of
size �t = 1s.

The flow is driven by the injection of the fluid into the fracture with the constant
rate 5 · 10−3 kg/s. The fluid is injected into a region obtained from mapping a disk of
radius 0.017m at the center of the reference fracture �̂ f . A tracer is injected in this
same region, continuously over the entire simulation period, i.e. cw = 1 in the region
specified above.
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Fig. 3 Example 1, computed Stokes–Biot solution at t = 100 s

Recall, see (2.15), that the diffusion tensor is given as

D(u) = dmI + |u|{αlE + αt (I − E)}.

For all examples in this section, in � f we set dm = 10−6 m/s, αl = αt = 0, i.e.,
D = 10−6I m/s. In �p we set dm = 10−4 m/s, αl = αt = 10−4. The porosity is set
to φ = 0.4.

In all examples we use the Taylor–HoodP2−P1 elements for the fluid velocity and
pressure in the fracture region, the Raviart-ThomasRT 1−Pdc

1 elements for the Darcy
velocity and pressure, continuous Lagrangian P1 elements for the displacement, and
the Pdc

1 elements for the Lagrange multiplier. We use discontinuous piecewise linears
Pdc
1 for the concentration.
Figure 3 shows the computed velocity and pressure in the reservoir, the displace-

ment, and the velocity in the fracture at the final time T = 100s. We observe
channel-like flow in the fracture region, from the center to the tips. The leak-off into
the reservoir is highest at the fracture tips, but there is also a noticeable leak-off along
the fracture length. The structure displacement is small, but it is highest in the vicinity
of the fracture and indicates a slight opening of the fracture, as expected.

Figure 4 shows the solution obtained for the concentration at various timemoments.
At early times, the tracer propagates in accordance with the Stokes velocity field,
moving preferentially in horizontal directions towards the tips of the fracture. At later
times, despite the small permeability, the tracer penetrates into the reservoir and it is
further transported/diffused in it, following the Darcy velocity. We note that, due to
the singular shape of the fracture tips, the Darcy velocity at the tips is slightly higher
than the Stokes velocity inside the fracture near the tips. This acceleration effect leads
to slightly lower concentration values at the fracture tips. This example demonstrates
the ability of the method to handle irregularly shaped domains and fractures with a
computationally challenging set of parameters.

5.2.2 Example 2: flow and transport through a fractured heterogeneous reservoir

As in the previous example, this example is motivated by hydraulic fracturing, while
we illustrate the ability of the method to handle heterogeneous permeability, porosity,
and Young’s modulus. The domain � is given by the rectangle [0, 1]m × [−1, 1]m.
A fracture, which represents the fluid domain � f is then positioned in the middle of
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Fig. 4 Example 1, computed concentration solution

the rectangle, with the boundaries defined by

x2 = 200(0.05 − y)(0.05 + y), y ∈ [−0.05, 0.05],

see Fig. 2b. Fluid is injected into the opening of the fracture on the left boundary. The
external boundary of �p is split into �p,�, where � ∈ {le f t, right, top, bottom}.
The boundary conditions are

u f · n f = 10, u f · τ f = 0 on � f ,in f low,

up · np = 0 on �p,le f t ,

pp = 1000 on �p,top ∪ �p,right ∪ �p,bottom,

ηp · np = 0 on �p,top ∪ �p,right ∪ �p,bottom,

(σ pnp) · τ p = 0 on �p,top ∪ �p,right ∪ �p,bottom,

σ pnp = 0 on �p,le f t ,

(cu − D∇c) · n = (cinu) · n, cin = 1 on � f ,in f low,

(D∇c) · n = 0 on ∂�\� f ,in f low.

The initial conditions are η p(0) = 0 and pp(0) = 1000. The same physical parameters
as in Example 1 from Table 2 are used, except for the porosity φ, the permeability
K , and the Young’s modulus E . The permeability and porosity data is taken from
a two-dimensional cross-section of the data provided by the Society of Petroleum
Engineers (SPE) Comparative Solution Project 10.1 The SPE data, which is given on

1 http://www.spe.org/csp.
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Fig. 5 Example 2, material properties and computed Stokes–Biot solution at t = 100 s

a rectangular 60 × 220 grid is projected onto the triangular grid on the domain �,
and visualized in Fig. 5a–c. We note that the permeability tensor is isotropic in this
example. Given porosity φ, the Young’s modulus is determined from the relationship
(Kovacik 1999)

E = E0

(
1 − φ

β

)2.1

,

where E0 = 107 is the Young’s modulus for the non-porous material and the constant
β = 0.5 represents the porosity at which the effective Young’s modulus becomes zero.
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The computed Darcy velocity, pressure, and displacement at the final time are
shown in Fig. 5d, e, respectively. We observe that most of the leak-off is through
the fracture tip and the Darcy velocity is largest in a channel-like high permeability
region near the tip of the fracture. The displacement field indicates that the fracture
opens up as fluid is injected. We also note that the heterogeneities featuring higher
permeability and porosity, and correspondingly less stiff material, result in overall
larger displacement compared to the previous homogeneous example. Five snapshots
of the concentration solution at various time steps are given in Fig. 6. At the early times
the tracer propagates along the fracture following the Stokes velocity and penetrates
into the high permeability reservoir regions near the middle top, middle bottom, and
tip of the fracture. At later times, the tracer is diffused in the poroelastic region;
however the overall profile of the concentration front roughly resembles the underlying
permeability field.

5.2.3 Example 3: irregularly shaped fluid-filled cavity

The next two examples feature highly irregularly shaped fractures and grids that con-
form to the fracture geometries. They are motivated by modeling flow and transport
through vuggy or naturally fractured reservoirs or aquifers. The domain in this example
has a large fluid-filled cavity, see Fig. 2c. The flow is driven from left to right via a pres-
sure drop of 1 kPa. We take the Darcy pressure boundary condition values to be 1 and
0, which can be considered as an offset from a reference pressure. We note that includ-
ing the reference pressure in the boundary conditions for Darcy and Stokes, the latter
being set through (σ f n f ) ·n f , produces similar results. The boundary conditions are

pp = 1 on �p,le f t ,

pp = 0 on �p,right ,

up · np = 0 on �p,top ∪ �p,bottom,

σ p np = 0 on �p,le f t ,

ηp = 0 on �p,right ,

(σ p np) · np = 0, ηp · τ p = 0 on �p,top ∪ �p,bottom,

(σ f n f ) · n f = 0, u f · τ f = 0 on � f ,right ,

(cu − D∇c) · n = (cinu) · n, cin = 1 on �p,le f t ,

(D∇c) · n = 0 on ∂�\�p,le f t .

The physical parameters for this test case are chosen as in the previous example, except
for the permeability, which is K = 10−8I m2. The total simulation time is 10s, with
time step size �t = 0.1s.

The velocity fields in the poroelastic and fracture regions are shown in Fig. 7a, c,
respectively, while the rock displacement is given in Fig. 7b. The Darcy velocity is
largest in the region between the left inflow boundary and the cavity. This results in
a larger displacement in this region. The Stokes velocity in the cavity is an order of
magnitude larger than in the poroelastic region. A channel-like flow profile is clearly
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Fig. 6 Example 2, computed concentration solution

visible within the cavity, with the largest velocity along a central path away from the
cavity walls. Four snapshots of the concentration solution at different time moments
are shown in Fig. 8. As expected, the tracer follows the flow, and tends to get into the
free fluid region through the nearest fracture tip. After that, it is transported quickly
toward the opening in the right boundary, following the Stokes velocity profile and
with very little diffusion. In particular, the tracer follows a narrow central path within
the cavity away from the walls. This behavior agrees qualitatively with the parameters
in the transport equation.
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Fig. 7 Example 3, computed velocity, pressure, and displacement fields

Fig. 8 Example 3, computed concentration solution

Fig. 9 Example 4, computed velocity, pressure, and displacement fields

123

Author's personal copy



   11 Page 30 of 34 GEM - International Journal on Geomathematics            (2019) 10:11 

Fig. 10 Example 4, computed concentration solution

5.2.4 Example 4: flow through poroelastic media with channel network

The domain for this example is given in Fig. 2d. It features an irregularly shaped
network of channels. The physical parameters and boundary and initial conditions for
both flow and transport are as in Example 3 except for the boundaries of the Stokes
region. Since the channel network has openings at both the left and right boundaries,
we set

u f · n f = 0.2, u f · τ f = 0 on � f ,le f t ,

(σ f n f ) · n f = 0, u f · τ f = 0 on � f ,right ∪ � f ,top.

We present the computed velocity fields in the poroelastic and fracture regions in
Fig. 9a, c and the structure displacement in Fig. 9b. Four snapshots of the concentration
solution at different times are shown in Fig. 10. The qualitative behavior of the flow
and transport solution is similar to Example 3, with channel-like flow profile and
higher velocity within the channel network. The tracer propagates much faster through
the channel network, following the widest channel as a preferential path to reach the
outflowboundary.Another interesting feature is that in some channels, the tracer enters
both from the channel network and from the porous media. Since the diffusion in the
channels is very low, this results in two coexisting tracer streams in close proximity to
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Fig. 11 Example 5, computed velocity, pressure, and displacement fields

Fig. 12 Example 5, computed concentration solution

each other, but not mixing, being transported by the free fluid, see the upper outflow
at time t = 5s.
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5.2.5 Example 5: flow through poroelastic media with fracture network

The final example is the most challenging, since it involves a network of thin fractures
that intersect at sharp angles, see Fig. 2e. The setting for this test case matches the
one from Example 4, including physical parameters, initial and boundary conditions,
The computed velocity fields in the poroelastic region and the fracture network are
visualized in Fig. 11a, c, while the displacement of the porous media skeleton is shown
in Fig. 11b. We note that the velocity in the fractures is higher than the velocity in
the channels in the previous example, due to the smaller fracture thickness. Also, the
velocity is highest in branches of the network where fluid enters from two different
branches and that have connection to the outflow boundary. As seen in the plots of the
concentration solution in Fig. 12, the tracer is transported quickly through the fractures
toward the outflow boundary. Initially it follows well the fracture network geometry,
despite the sharp angles between the branches, However, due to relatively small size of
the fracture outflow boundaries, the concentration eventually builds up in the fracture
region and the tracer starts to penetrate and diffuse into the porous matrix. This can
be seen at the later times near the right boundary.
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