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Abstract

We develop a computational model to study the interaction of a fluid with a poroelastic material. The coupling of Stokes
and Biot equations represents a prototype problem for these phenomena, which feature multiple facets. On one hand, it shares
common traits with fluid–structure interaction. On the other hand it resembles the Stokes–Darcy coupling. For these reasons, the
numerical simulation of the Stokes–Biot coupled system is a challenging task. The need of large memory storage and the difficulty
to characterize appropriate solvers and related preconditioners for the equations at hand are typical shortcomings of classical
discretization methods applied to this problem, such as the finite element method for spatial discretization and finite differences
for time stepping. The application of loosely coupled time advancing schemes mitigates these issues, because it allows to solve
each equation of the system independently with respect to the others, at each time step. In this work, we develop and thoroughly
analyze a loosely coupled scheme for Stokes–Biot equations. The scheme is based on Nitsche’s method for enforcing interface
conditions. Once the interface operators corresponding to the interface conditions have been defined, time lagging allows us to build
up a loosely coupled scheme with good stability properties. The stability of the scheme is guaranteed provided that appropriate
stabilization operators are introduced into the variational formulation of each subproblem. The error of the resulting method is
also analyzed, showing that splitting the equations pollutes the optimal approximation properties of the underlying discretization
schemes. In order to restore good approximation properties, while maintaining the computational efficiency of the loosely coupled
approach, we consider the application of the loosely coupled scheme as a preconditioner for the monolithic approach. Both
theoretical insight and numerical results confirm that this is a promising way to develop efficient solvers for the problem at hand.
c⃝ 2014 Elsevier B.V. All rights reserved.

Keywords: Fluid–structure interaction; Poroelasticity; Operator-splitting scheme; Nitsche’s method; Preconditioning

1. Introduction

Several phenomena in nature involve the interaction of a free fluid with a porous and deformable material.
In geomechanics, the behavior of aquifers and groundwater flow is significantly influenced by the interaction of
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deformation and flow at the pore scale. In the same context, the efficient extraction of oil and gas from the subsurface
relies on the ability to predict and control these phenomena. Another example from biology is the perfusion of living
tissues, where the fluid carried by the main vessels is distributed by filtration to the surrounding material. All these
phenomena are characterized by some common traits. In particular, they share a multiphysics nature, because they are
governed by the interaction of fluid and solid mechanics.

In the general framework of continuum mechanics, several models are available to describe these phenomena. To
model the free fluid, we consider for simplicity the Stokes equations, under the assumptions of incompressible and
Newtonian rheology. A well accepted model for characterizing the behavior of a poroelastic material is provided by
the Biot equations. The Biot system consists of the governing equations for the deformation of an elastic skeleton,
which is completely saturated with fluid. The average velocity of the fluid in the pores is modeled using the Darcy
equation, complemented with an additional term that depends on the volumetric deformation of the porous matrix.
Indeed, this term accounts for the poroelastic coupling. In this work we focus on the coupling of the Stokes and Biot
models, for phenomena where time and space dependence of the unknowns play a significant role.

The numerical discretization of the problem at hand features several difficulties. Loosely coupled schemes for
fluid–structure interaction (FSI) may turn out to be unconditionally unstable, under a particular range of the physical
parameters of the model [1,2]. This is the so called added-mass effect. Furthermore, accounting for a poroelastic
material model requires addressing issues typical of partitioned methods for flows [3–5] arising in particular for the
coupling of Stokes–Darcy models, which represents the paradigm for studying the interaction of free flows with
subsurface filtration [6–13]. An additional difficulty is combining the Eulerian description of the moving fluid domain
with the typical Lagrangian parametrization of the structure [14,15]. In this work we consider only fixed domains Ω f
and Ωp representing the reference (Lagrangian) configuration of the fluid and solid domains, respectively. This is a
common approach for fluid–structure interaction problems, see for example [16], that is adopted here to simplify
the complexity of the fluid–structure–porous interaction. Although simplified, this problem still retains the main
difficulties associated with the added-mass effect and with the fluid–porous media coupling. As a consequence of the
fixed domain assumption, the computational model that we propose is suitable in the range of small displacements. We
note that in recent work [17] we have studied the differences between the fixed and the moving domain approaches.
The results, obtained for a slightly different test problem than the one considered in Section 5, including the effect of
an elastic membrane at the interface of the fluid with the thick structure, indicate that in this particular case the effect
of geometric and convective nonlinearities is negligible.

The above observations suggest that the solution of the time dependent Biot–Stokes coupled equations is challeng-
ing from both the theoretical and computational standpoints. Concerning the analysis, the coupled problem and in
particular the formulation of appropriate interface conditions has been studied in [18–20]. From the computational
viewpoint, the multiple facets of the problem have been addressed in several studies. For example, the coupling of
subsurface flow and geomechanics have been recently addressed in [21–23]. Depending on the field of application,
different formulations are available to couple a free flow with a saturated poroelastic material. In the context of geo-
sciences, this coupled problem is used to model the interaction of the material with fractures, as in [24–28,19]. In
the context of biomedical applications, FSI studies involving poroelastic materials are scanty. Among the available
contributions, we mention [29,30], as well as our recent work [31].

The objective of this work is to develop and analyze a loosely coupled numerical solver for the coupled Biot–Stokes
system. More precisely, we design a time advancing scheme which allows us to independently solve the governing
equations of the system at each time step. Resorting to time splitting approaches mitigates the difficulty to identify
appropriate solvers for the coupled system and reduces the need of large memory storage. The main drawback of
loosely coupled splitting schemes is possible lack of stability and accuracy. To overcome these natural limitations,
we adopt a non-standard approach for the approximation of the coupling conditions, which is inspired by Nitsche’s
method for the enforcement of boundary conditions, and it consists of adding appropriate interface operators to the
variational formulation of the problem. Using time-lagging, the variational coupled problem can be split into three
independent subproblems involving the elasticity equation, Darcy equation for flow in porous media and the Stokes
problem, respectively. The stability analysis of the resulting scheme shows how to design appropriate stabilization
terms that guarantee the stability of the time advancing algorithm. The Nitsche’s coupling approach allows for treat-
ing the mixed form of Darcy flow and thus provides accurate approximation to the filtration velocity. This is an
alternative to the Lie-splitting scheme developed in [31], which is suitable for the pressure formulation of Darcy
flow.
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Fig. 1. Description of the domain and boundary decomposition for the two problem configurations addressed in this work, an arterial segment (left)
and a fractured reservoir (right). In the latter case, the fracture has a discoidal shape and it is completely embedded into the reservoir.

A Nitsche’s coupling has been proposed in [32,33] for the interaction of a fluid with an elastic structure. Here, we
extend those ideas to the case where a porous media flow is coupled to the fluid and the structure. Not only the coupling
conditions between the fluid and the porous matrix subregions become significantly more complicated, but also the
stability and error analysis involve the characteristic difficulties of both the FSI and Stokes–Darcy decomposition
methods. The main drawback of the scheme originally proposed in [32] is accuracy. In [33] the same authors address
several modifications of the scheme, mainly based on iterative corrections, to restore the optimal approximation
properties that are lost when the equations of the system are split. The splitting scheme proposed in this work also
affects the approximation properties of the underlying discretization methods. However, we mitigate this drawback
with a different approach than in [33]. Here, we develop a numerical solver where the loosely coupled scheme is acting
as a preconditioner for the monolithic problem formulation. In this way, we combine the computational efficiency of
the loosely coupled scheme with the accuracy of the discrete coupled problem. Our numerical experiments show that
the number of iterations needed to solve the preconditioned problem is almost independent of the spatial and temporal
discretization parameters.

The manuscript is organized as follows. In Section 2 we present the governing equations of the prototype problem
at hand, complemented by initial, boundary and interface conditions. The numerical discretization scheme, and in
particular the approximation of the interface conditions is discussed in Section 3. A thorough analysis of the stability
properties of the fully coupled discrete scheme is also presented. Section 4 is devoted to the development and analysis
of the loosely coupled scheme. At the end of this section, we exploit the stability analysis of the method to provide
insight on the properties of the loosely coupled scheme as a preconditioner for the monolithic scheme. Extensive
numerical experiments are discussed in Section 5. The corresponding results support and complement the available
theory.

2. Description of the problem

We consider the flow of an incompressible, viscous fluid in a channel bounded by a poroelastic medium. In
particular, we are interested in simulating flow through the deformable channel with a two-way coupling between
the fluid and the poroelastic structure. We model the flow using the Stokes equations for a viscous, incompressible,
Newtonian fluid at low speed:

ρ f
∂v
∂t

= ∇ · σ f + f in Ω f × (0, T ), (1)

∇ · v = g in Ω f × (0, T ), (2)

where v is the fluid velocity, σ f = −p f I + 2µ f D(v) is the fluid stress tensor, p f is the fluid pressure, ρ f is the fluid
density, µ f is the fluid viscosity and D(v) = (∇v + (∇v)T )/2 is the rate-of-strain tensor. A source term g > 0 will be
considered in Section 5.2 to model injection into the subsurface.

We consider two configurations: (i) the channel extends to the external boundary and (ii) the channel is surrounded
by the poroelastic media, see Fig. 1. Configuration (i) is suitable for FSI in arteries, while case (ii) applies to fractured
reservoirs. We present the method for configuration (i), which has more complex boundary conditions. In this case,
denote the inlet and outlet fluid boundaries by Γ in

f and Γ out
f , respectively. At the inlet and outlet boundary we prescribe

the following conditions:

σ f n f = −pin(t)n f or v = vin(t) on Γ in
f × (0, T ), (3)
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σ f n f = 0 on Γ out
f × (0, T ), (4)

where n f is the outward normal unit vector to the fluid boundaries and pin(t) is the pressure increment with respect
to the ambient pressure surrounding the channel.

The fluid domain is bounded by a deformable porous matrix consisting of a skeleton and connecting pores filled
with fluid, whose dynamics is described by the Biot model. In particular, we consider the problem formulation
analyzed in [20] and addressed in [26,25,24] for geomechanics,

ρp
∂2U
∂t2 − ∇ · σ p = h in Ωp × (0, T ), (5)

κ−1q = −∇ pp in Ωp × (0, T ), (6)

∂

∂t
(s0 pp + α∇ · U)+ ∇ · q = s in Ωp × (0, T ). (7)

The stress tensor of the poroelastic medium is given by σ p = σ E
− αppI, where σ E denotes the elasticity stress

tensor. With the assumption that the displacement U of the skeleton is connected to stress tensor σ E via the Saint
Venant–Kirchhoff elastic model, we have σ E (U) = 2µpD(U) + λptr(D(U))I, where λp and µp denote the Lamé
coefficients for the skeleton, and, with the hypothesis of “small” deformations, D(U) = (∇U+(∇U)T )/2. System (5)–
(7) consists of the momentum equation for the balance of total forces (5), Darcy’s law (6), and the storage equation (7)
for the fluid mass conservation in the pores of the matrix, where the flux q is the relative velocity of the fluid within
the porous structure and pp is the fluid pressure. The density of saturated porous medium is denoted by ρp, and the
hydraulic conductivity is denoted by κ . To account for anisotropic transport properties, κ is in general a symmetric
positive definite tensor. For simplicity of notation, but without loss of generality with respect to the derivation of
the numerical scheme, in what follows we consider it as a scalar quantity. The coefficient s0 ∈ (0, 1) is the storage
coefficient, and the Biot–Willis constant α is the pressure–storage coupling coefficient.

For configuration (i), we assume that the poroelastic structure is fixed at the inlet and outlet boundaries:

U = 0 on Γ in
p ∪ Γ out

p × (0, T ), (8)

that the external structure boundary Γ ext
p is exposed to external ambient pressure

np · σ E np = 0 on Γ ext
p × (0, T ), (9)

where np is the outward unit normal vector on ∂Ωp, and that the tangential displacement of the exterior boundary is
zero:

U · tp = 0 on Γ ext
p × (0, T ), (10)

where U · tp denotes the tangential component of the vector U. On the fluid pressure in the porous medium, we
impose following boundary conditions:

pp = 0 on Γ ext
p , q · np = 0 on Γ in

p ∪ Γ out
p × (0, T ). (11)

For configuration (ii) we assume U = 0 and q · np = 0 on ∂Ωp.
At the initial time, the fluid and the poroelastic structure are assumed to be at rest, with zero displacement from the

reference configuration

v = 0, U = 0,
∂U
∂t

= 0, pp = 0. (12)

The fluid and poroelastic structure are coupled via the following interface conditions, where we denote by n the
outward normal to the fluid domain and by t the tangential unit vector on the interface Γ . We assume that n, t coincide
with the unit vectors relative to the fluid domain Ω f . For mass conservation, the continuity of normal flux implies that

v −
∂U
∂t


· n = q · n on Γ . (13)
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We point out that the fluid velocity field is allowed to have a non-vanishing component transversal to the interface Γ ,
namely v · n. This velocity component accounts for the small deformations of the fluid domain around the reference
configuration Ω f , in the same spirit of transpiration interface conditions [34]. We also note that the displacement
of the solid domain U does not have to be equal to zero on the interface. There are different options to formulate a
condition relative for the tangential velocity field at the interface. A no-slip interface condition is appropriate for those
problems where fluid flow in the tangential direction is not allowed,

v · t =
∂U
∂t

· t on Γ . (14)

In alternative, a Beavers–Joseph–Saffman type condition may be prescribed [11,20],

β


v −
∂U
∂t


· t = −t · σ f n on Γ , (15)

where the parameter β quantifies the resistance that the porous matrix opposes to fluid flow in the tangential direction.
Concerning the exchange of stresses, the balance of normal components of the stress in the fluid phase gives:

n · σ f n = −pp on Γ . (16)

The conservation of momentum describes balance of contact forces. Precisely, it says that the sum of contact forces
at the fluid–porous medium interface is equal to zero:

n · σ f n − n · σ pn = 0 on Γ , (17)

t · σ f n − t · σ pn = 0 on Γ . (18)

3. Finite element approximation of the coupled problem using Nitsche’s method for the interface conditions

Nitsche’s method is a technique to weakly enforce coupling conditions at the discrete level [35]. For the spatial
discretization, we exploit the finite element method. Let T f

h and T p
h be fixed, quasi-uniform meshes defined on the

domains Ω f and Ωp. We require that Ω f and Ωp are polygonal or polyhedral domains and that they conform at the

interface Γ . We also require that the edges of each mesh lay on Γ . We denote with V f
h , Q f

h the finite element spaces
for the velocity and pressure approximation on the fluid domain Ω f , with Vp

h , Q p
h the spaces for velocity and pressure

approximation on the porous matrix Ωp and with Xp
h , Ẋp

h the approximation spaces for the structure displacement
and velocity, respectively. We assume that all the finite element approximation spaces comply with the prescribed
Dirichlet conditions on external boundaries ∂Ω f , ∂Ωp, without entering into the details of all possible variations for
cases (i) and (ii). The bilinear forms relative to the structure, namely Eq. (5), are:

as(Uh,ϕ p,h) := 2µp


Ωp

D(Uh) : D(ϕ p,h)dx + λp


Ωp

(∇ · Uh)(∇ · ϕ p,h)dx,

bs(pp,h,ϕ p,h) := α


Ωp

pp,h∇ · ϕ p,hdx.

For the free flow, Eqs. (1)–(2), and the filtration through the porous matrix, Eqs. (6)–(7), the bilinear forms are:

a f (vh,ϕ f,h) := 2µ f


Ω f

D(vh) : D(ϕ f,h)dx, ap(qh, rh) :=


Ωp

κ−1qh · rhdx,

b f (p f,h,ϕ f,h) :=


Ω f

p f,h∇ · ϕ f,hdx, bp(pp,h, rh) :=


Ωp

pp,h∇ · rhdx.

After integrating by parts the governing equations, in order to distribute over test functions the second spatial
derivatives of velocities and displacements as well as the first derivatives of the pressure, resorting to the dual-mixed
weak formulation of Darcy’s problem, the following interface terms appear in the variational equations,

IΓ =


Γ
(σ f,hn · ϕ f,h − σ p,hn · ϕ p,h + pp,hrh · n).



M. Bukač et al. / Comput. Methods Appl. Mech. Engrg. 292 (2015) 138–170 143

Starting from the expression of IΓ , Nitsche’s method allows us to weakly enforce the interface conditions (13)–(18).
More precisely, we separate IΓ into the normal and tangential components with respect to Γ and we use (16)–(18) to
substitute the components of σ f,h into σ p,h and pp,h . As a result IΓ can be rewritten as,

IΓ =


Γ

n · σ f,h(vh, p f,h)n

ϕ f,h − rh − ϕ p,h


· n +


Γ

t · σ f,h(vh, p f,h)n(ϕ f,h − ϕ p,h) · t.

Since the expression of the interface terms involves the stresses only on the fluid side, this formulation can be classified
as a one-sided variant of Nitsche’s method for interface conditions. We refer to [35] for an overview of different
formulations. The enforcement of the kinematic conditions ((13) and (14)) using Nitsche’s method is based on adding
to the variational formulation of the problem appropriate penalty terms. This results in the transformed integral,

−I ∗

Γ (vh, qh, p f,h, pp,h,Uh; ϕ f,h, rh, ψ f,h, ψp,h,ϕ p,h)

= −


Γ

n · σ f,h(vh, p f,h)n

ϕ f,h − rh − ϕ p,h


· n −


Γ

t · σ f,h(vh, p f,h)n(ϕ f,h − ϕ p,h) · t

+


Γ
γ f µ f h−1vh − qh − ∂t Uh


· n


ϕ f,h − rh − ϕ p,h


· n

+

vh − ∂t Uh


· t


ϕ f,h − ϕ p,h


· t


,

where γ f > 0 denotes a penalty parameter that will be suitably defined later on. Furthermore, in order to account
for the symmetric, incomplete or skew-symmetric variants of Nitsche’s method, see [35], we introduce the following
additional terms

−S∗,ς

Γ (vh, qh, p f,h, pp,h,Uh; ϕ f,h, rh, ψ f,h, ψp,h,ϕ p,h)

= −


Γ

n · σ f,h(ςϕ f,h,−ψ f,h)n

vh − qh − ∂t Uh


· n

−


Γ

t · σ f,h(ςϕ f,h,−ψ f,h)n(vh − ∂t Uh) · t,

which anyway do not violate the consistency of the original scheme because they vanish if the kinematic constraints
are satisfied. The flag ς ∈ {1, 0,−1} determines if we adopt a symmetric, incomplete or skew symmetric formulation,
respectively. We can also easily accommodate the weak enforcement of the Beavers–Joseph–Saffman condition,
namely (15). In this case, the interface operators become,

I +

Γ + S+,ς

Γ = −


Γ

n · σ f,h(vh, p f,h)n

ϕ f,h − rh − ϕ p,h


· n

−


Γ

n · σ f,h(ςϕ f,h,−ψ f,h)n

vh − qh − ∂t Uh


· n

+


Γ
γ f µ f h−1vh − qh − ∂t Uh


· n


ϕ f,h − rh − ϕ p,h


· n

+


Γ
β

vh − ∂t Uh


· t


ϕ f,h − ϕ p,h


· t.

By comparing I +

Γ +S+,ς

Γ and I ∗

Γ +S∗,ς

Γ we observe that the operators corresponding to (15) can be seen as a particular
form of the more general case that is obtained when no-slip conditions (14) are enforced weakly, namely I ∗

Γ + S∗,ς

Γ .
For this reason, we perform the analysis of the numerical scheme in the latter form.

For any t ∈ (0, T ), the coupled fluid/solid problem consists of finding vh, p f,h, qh, pp,h ∈ V f
h × Q f

h × Vp
h × Q p

h

and Uh, U̇h ∈ Xp
h × Ẋp

h such that for any ϕ f,h, ψ f,h, rh, ψp,h ∈ V f
h × Q f

h × Vp
h × Q p

h and ϕ p,h, ϕ̇ p,h ∈ Xp
h × Ẋp

h we
have,

ρp


Ωp

∂t U̇h · ϕ p,hdx + ρp


Ωp


U̇h − ∂t Uh


· ϕ̇ p,hdx + ρ f


Ω f

∂t vh · ϕ f,hdx

+ s0


Ωp

∂t pp,hψp,hdx + as(Uh,ϕ p,h)− bs(pp,h,ϕ p,h)+ bs(ψp,h, ∂t Uh)
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+ ap(qh, rh)− bp(pp,h, rh)+ bp(ψp,h, qh)+ a f (vh,ϕ f,h)− b f (p f,h,ϕ f,h)

+ b f (ψ f,h, vh)− (I ∗

Γ + S∗,ς

Γ )(vh, qh, p f,h, pp,h,Uh; ϕ f,h, rh, ψ f,h, ψp,h,ϕ p,h)

= F(t; ϕ f,h, rh, ψ f,h, ψp,h,ϕ p,h). (19)

Problem (19) is usually called the semi-discrete problem (SDP). For simplicity of notation, the bilinear form
corresponding to the left hand side of (19) will be denoted as Ah(·, ·). Eq. (19) must be complemented by suitable
initial conditions and F(·) accounts for boundary conditions and forcing terms, which vary from case (i) to case (ii).
For example, for case (i) we set f = h = 0, g = s = 0 and pin ≠ 0 or vin ≠ 0 on Γ in

f . For case (ii) we have f = h = 0,
s = 0, but we consider a non-vanishing flow source g ≠ 0. The corresponding forcing terms are,

(i) F(t; ϕ f,h) = −


Γ in

f

pin(t)ϕ f,h · n f , (ii) F(t; ϕ f,h) =


Ω f

g(x, t) ψ f,h .

To avoid addressing the ramifications relative to these particular cases in the forthcoming analysis, we denote by
F(t; ϕ f,h) a generic forcing term acting on the flow equations and we assume there exists a norm ∥F(t)∥ such that

F(t; ϕ f,h) 6 ∥F(t)∥ ∥D(ϕ f,h)∥Ω f , (20)

where from now on ∥ · ∥D denotes the L2-norm on the set D.
We now address the time discretization. Let τ denote the time step, tn = nτ, 0 6 n 6 N , and let the first order

(backward) discrete time derivative be defined as

dτun
:=

un
− un−1

τ
.

The fully discrete coupled fluid–solid problem is to find, at each tn , vn
h, pn

f,h, qn
h, pn

p,h ∈ V f
h × Q f

h × Vp
h × Q p

h and

Un
h , U̇n

h ∈ Xp
h × Ẋp

h such that for any ϕ f,h, ψ f,h, rh, ψp,h ∈ V f
h × Q f

h × Vp
h × Q p

h and ϕ p,h, ϕ̇ p,h ∈ Xp
h × Ẋp

h we
have,

ρp


Ωp

dτ U̇n
h · ϕ p,hdx + ρp


Ωp


U̇n

h − dτUn
h


· ϕ̇ p,hdx + ρ f


Ω f

dτ vn
h · ϕ f,hdx

+ s0


Ωp

dτ pn
p,hψp,hdx + as(Un

h ,ϕ p,h)− bs(p
n
p,h,ϕ p,h)+ bs(ψp,h, dτUn

h)

+ ap(qn
h, rh)− bp(p

n
p,h, rh)+ bp(ψp,h, qn

h)+ a f (vn
h,ϕ f,h)− b f (p

n
f,h,ϕ f,h)

+ b f (ψ f,h, vn
h)− (I ∗

Γ + S∗ς

Γ )(vn
h, qn

h, pn
f,h, pn

p,h,Un
h; ϕ f,h, rh, ψ f,h, ψp,h,ϕ p,h)

= F(tn; ϕ f,h). (21)

We denote problem (21) as the (fully) discrete problem with implicit coupling between the fluid and the structure
sub-problems (DIP). The bilinear form on the left hand side is represented with the symbol Ah(·, ·). We note that for
the time discretization of (21) we have adopted the Backward Euler (BE) method for both the flow and the structure
problem.

Remark. The structure problem may be also discretized using the Newmark scheme, which enjoys better energy
conservation properties than BE [36]. Switching to the Newmark scheme would not affect the discretization of the in-
terface conditions. In other words, their approximation using Nitsche’s method is completely independent on the time
discretization scheme. However, later on we will point out that the numerical dissipation artificially introduced when
using the BE method improves the stability of the scheme when loosely coupled splitting strategies are considered.

The next step consists of analyzing the stability of the fully coupled problem. Before proceeding, we define the
energy of the system, En

f,h and En
p,h for the fluid and the poroelastic structure respectively, as follows:

En
f,h :=

1
2
ρ f ∥vn

h∥
2
Ω f
,
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En
p,h :=

1
2


ρp∥U̇n

h∥
2
Ωp

+ 2µp∥D(Un
h)∥

2
Ωp

+ λp∥∇ · Un
h∥

2
Ωp

+ s0∥pn
p,h∥

2
Ωp


.

The following algebraic identity will be systematically used in the forthcoming derivations,
D

undτun
=

1
2

dτ∥un
∥

2
D +

1
2
τ∥dτun

∥
2
D. (22)

We will also use the following inverse inequality,

h∥D(uh)n∥
2
Γ 6 CT I ∥D(uh)∥

2
Ω f
, (23)

where CT I is a positive constant uniformly upper bounded with respect to the mesh characteristic size h, for a family of
shape-regular and quasi-uniform meshes [37], such as T f

h , T p
h previously defined. Since we solve the FSI problem on

fixed domains, the constant CT I does not depend on the solution. The following result shows that the time advancing
scheme used for the coupled problem is stable under conditions on the penalty parameters γ f .

Theorem 1. For anyϵ′f ,qϵ′f that satisfy

1 −
(ς + 1)

2
ϵ′f CT I −

qϵ′f

2
> 0

where ς ∈ {−1, 0, 1} provided that γ f > (ς + 1)(ϵ′f )−1, there exist constants 0 < c < 1 and C > 1, uniformly
independent of the mesh characteristic size h, such that

E N
f,h + E N

p,h + cτ
N

n=1


2µ f ∥D(vn

h)∥
2
Ω f

+ κ−1
∥qn

h∥
2
Ωp

+
τ

2


ρ f ∥dτ vn

h∥
2
Ω f

+ 2µp∥dτD(Un
h)∥

2
Ωp

+ s0∥dτ pp,h∥
2
Ωp

+ λp∥dτ∇ · Uh∥
2
Ωp


+µ f h−1

∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ + ∥


vn

h − dτUn
h


· t∥2

Γ


6 E0

f,h + E0
p,h + τ

N
n=1

C

µ f
∥F(tn)∥2. (24)

More precisely, we have

c < min


1 −

(ς + 1)
2

ϵ′f CT I −
qϵ′f

2


,

γ f − (ς + 1)(ϵ′f )

−1 ,
C > (2qϵ′f )

−1.

Proof. We test (21) with the following functions,

ϕ f,h = vn
h, rh = qn

h, ψ f,h = pn
f,h,

ψp,h = pn
p,h, ϕ p,h = dτUn

h , ϕ̇ p,h = dτ U̇n
h .

For the terms related to the flow problem we have,
Ω f

ρ f dτ vn
h · vn

h + a f (vn
h, vn

h)− b f (p
n
f,h, vn

h)+ b f (p
n
f,h, vn

h)+ ap(qn
h, qn

h)− bp(p
n
p,h, qn

h)+ bp(p
n
p,h, qn

h)

= dτ E f,h +
ρ f

2
τ∥dτ vn

h∥
2
Ω f

+ 2µ f ∥D(vn
h)∥

2
Ω f

+ κ−1
∥qn

h∥
2
Ωp
.

Furthermore, the interface terms for the coupling between the fluid and the structure can be bounded as follows,

−


Γ

n · σ f,h(vn
h, pn

f,h)n

vn

h − qn
h − dτUn

h


· n −


Γ

n · σ f,h(ςvn
h,−pn

f,h)n

vn

h − qn
h − dτUn

h


· n

= −(1 + ς)


Γ

n ·

2µ f D(vn

h)

n


vn

h − qn
h − dτUn

h


· n
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6 2µ f (1 + ς)∥D(vn
h)n∥Γ ∥


vn

h − qn
h − dτUn

h


· n∥Γ

6 µ f (1 + ς)ϵ′f CT I ∥D(vn
h)n∥

2
Ω f

+ µ f (1 + ς)(ϵ′f h)−1
∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ .

The interface terms containing the tangential component of the fluid stress, namely t · σ f,h(vn
h, pn

f,h)n can be estimated
analogously.

For the structure problem we have,

ρp


Ωp

dτ U̇n
h · dτUn

h + ρp


Ωp


U̇n

h − dτUn
h


· dτ U̇n

h

+ as(Un
h , dτUn

h)− bs(p
n
p,h, dτUn

h)+ bs(p
n
p,h, dτUn

h)+ cp(p
n
p,h, pn

p,h)

6 dτ E p,h +
τ

2


2µp∥dτD(Un

h)∥
2
Ωp

+ λp∥dτ∇ · Un
h∥

2
Ωp

+ s0∥dτ pn
p,h∥

2
Ωp


.

Lastly, owing to (20) we have

F(tn; vn
h) 6 (2qϵ′f µ f )

−1
∥F(tn)∥2

+
qϵ′f

2
µ f ∥D(vn

h)∥
2
Ω f
.

To conclude, we sum up with respect to the time index n = 1, . . . , N and we multiply by τ . As a result of the
previous inequalities, for anyϵ′f ,qϵ′f > 0, the following energy estimate holds true,

E N
f,h + E N

p,h + τ

N
n=1


2µ f


1 −

(ς + 1)
2

ϵ′f CT I −
qϵ′f

4


∥D(vn

h)∥
2
Ω f

+ κ−1
∥qn

h∥
2
Ωp

+
τ

2


ρ f ∥dτ vn

h∥
2
Ω f

+ 2µp∥dτD(Un
h)∥

2
Ωp

+ s0∥dτ pn
p,h∥

2
Ωp

+ λp∥dτ∇ · Un
h∥

2
Ωp


+


γ f − (ς + 1)(ϵ′f )

−1µ f h−1
∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ + ∥


vn

h − dτUn
h


· t∥2

Γ



6 E0
f,h + E0

p,h + τ

N
n=1

(2qϵ′f µ f )
−1

∥F(tn)∥2, (25)

which implies (24). �

4. A loosely coupled time advancing scheme

When enforced by Nitsche’s method, the interface conditions (13)–(18) appear in the variational formulation in
a modular form. As a result, using time lagging, it is straightforward to design various loosely coupled algorithms
to solve each equation of the problem independently from the others. The main issue is to identify those algorithms
which enjoy the best stability properties. Here, we address two interesting possibilities. The first loosely coupled or
explicit time advancing scheme can be obtained by solving at each time level tn the following sub-problems.

Algorithm (a). (a.1) Solve the Biot problem: writing the interface terms explicitly and using the unit normal and
tangential vectors relative to Ωp, given vn−1

h , pn−1
f,h ∈ V f

h × Q f
h we aim to find qn

h, pn
p,h,Un

h , U̇n
h ∈ Vp

h × Q p
h ×

Xp
h × Ẋp

h such that

ρp


Ωp

dτ U̇n
h · ϕ p,hdx + ρp


Ωp


U̇n

h − dτUn
h


· ϕ̇ p,hdx + s0


Ωp

dτ pn
p,hψp,hdx

+ as(Un
h ,ϕ p,h)+ ap(qn

h, rh)− bp(p
n
p,h, rh)+ bp(ψp,h, qn

h)

+ bs(ψp,h, dτUn
h)− bs(p

n
p,h,ϕ p,h)

+


Γ
γ f µ f h−1dτUn

h · tp ξh · tp +


Γ
γ f µ f h−1(qn

h + dτUn
h) · np (rh + ϕ p,h) · np
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= −


Γ

np · σ n−1
f,h np


−rh − ϕ p,h


· np −


Γ

tp · σ n−1
f,h np


−ϕ p,h


· tp

+


Γ
γ f µ f h−1vn−1

h · tp ϕ p,h · tp +


Γ
γ f µ f h−1vn−1

h · np

rh + ϕ p,h


· np. (26)

(a.2) Solve the fluid problem: using the fluid domain unit normal vectors on ∂Ω f , namely n f , t f respectively, given

qn
h, pn

p,h,Un
h ∈ Vp

h × Q p
h × Xp

h from the solution of the problem above, we aim to find vn
h, pn

f,h ∈ V f
h × Q f

h
such that

ρ f


Ω f

dτ vn
h · ϕ f,hdx + a f (vn

h,ϕ f,h)− b f (p
n
f,h,ϕ f,h)+ b f (ψ f,h, vn

h)

+ s f,p(dτ p f,h, ψ f,h)−


Γ

n f · σ f,h(ςϕ f,h,−ψ f,h)n f

vn

h − qn
h


· n f

−


Γ

t f · σ f,h(ςϕ f,h,−ψ f,h)n f vn
h · t f

+


Γ
γ f µ f h−1vn

h · n f ϕ f,h · n f +


Γ
γ f µ f h−1vn

h · t f ϕ f,h · t f

=


Γ

n · σ n−1
f,h n f ϕ f,h · n f +


Γ

t · σ n−1
f,h n f ϕ f,h · t f

+


Γ

n · σ f,h(ςϕ f,h,−ψ f,h)n f (−qn
h − dτUn

h) · n f

+


Γ

t · σ f,h(ςϕ f,h,−ψ f,h)n f (−dτUn
h) · t f +


Γ
γ f µ f h−1(qn

h + dτUn
h)

· n f ϕ f,h · n f +


Γ
γ f µ f h−1(dτUn

h) · t f ϕ f,h · t f ,+F(tn; ϕ f,h) (27)

where s f,p(dτ p f,h, ψ f,h) is a stabilization term proposed in [32] acting on the free fluid pressure, that helps to
restore the stability of the explicit time advancing scheme,

s f,p(dτ p f,h, ψ f,h) := γstab
hτ

γ f µ f


Γ

dτ pn
f,h ψ f,h .

We also notice that the terms involving σ f,h are evaluated at the previous time step, to improve the stability of
the explicit coupling.

Looking at the interface terms of Eqs. (26), (27), we observe that Algorithm (a) corresponds to a Dirichlet–
Neumann splitting, where Neumann type interface conditions, namely (16)–(18), are assigned to the structure
problem and the kinematic conditions (13)–(14) are enforced when solving the fluid problem. It has been shown
in [1] that this decomposition may lead to unconditionally unstable schemes. However, as originally highlighted
in [32], this is not the case when Nitsche’s enforcement of the interface conditions is adopted, in combination
with appropriate stabilization operators, such as s f,p(dτ p f,h, ψ f,h).

If we finally proceed to solve all the problems independently, we obtain the explicit algorithm reported below. We
also formulate explicitly the governing and interface conditions that are enforced in practice when each sub-problem
is solved.

Algorithm (b). (b.1) given vn−1
h , pn−1

f,h , qn−1
h , pn−1

p,h find Un
h , U̇n

h in Ωp such that

ρp


Ωp

dτ U̇n
h · ϕ p,h + ρp


Ωp


U̇n

h − dτUn
h


· ϕ̇ p,h + as(Un

h ,ϕ p,h)

+


Γ
γ f µ f h−1dτUn

h · tp ϕ p,h · tp +


Γ
γ f µ f h−1dτUn

h · np ϕ p,h · np

= bs(p
n−1
p,h ,ϕ p,h)−


Γ

np · σ n−1
f,h np


−ϕ p,h


· np −


Γ

tp · σ n−1
f,h np


−ϕ p,h


· tp

+


Γ
γ f µ f h−1vn−1

h · tp ϕ p,h · tp +


Γ
γ f µ f h−1vn−1

h − qn−1
h


· np ϕ p,h · np.
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This problem is equivalent to solving the elastodynamics equation, namely (5), where the pressure term has been
time-lagged, complemented with the following Robin-type boundary condition on Γ :

np · σ n
pnp = np · (σ f )

n−1np − γ f µ f h−1


dτUn
− vn−1

+ qn−1


· np, on Γ ,

tp · σ n
pnp = tp · (σ f )

n−1np − γ f µ f h−1


dτUn
− vn−1


· tp, on Γ .

(b.2) given vn−1
h , pn−1

f,h and Un
h , find qh, pn

p,h in Ωp such that

s0


Ωp

dτ pn
p,hψp,hdx + ap(qn

h, rh)− bp(p
n
p,h, rh)+ bp(ψp,h, qn

h)+ s f,q

dτqh · np, rh · np


+


Γ
γ f µ f h−1qn

h · np rh · np = −bs(ψp,h, dτUn
h)

+


Γ
γ f µ f h−1vn−1

h − dτUn−1
h


· np rh · np +


Γ

np · σ n−1
f,h np rh · np.

This problem consists of the dual-mixed weak form of Darcy equations (6)–(7) complemented with the following
boundary condition,

pn
p = −np · (σ f )

n−1np − γ f µ f h−1


vn−1
− dτUn−1

− qn
h


· np, on Γ .

(b.3) given qn
h, pn

p,h,Un
h , find vn

h, pn
f,h in Ω f such that

ρ f


Ω f

dτ vn
h · ϕ f,hdx + a f (vn

h,ϕ f,h)− b f (p
n
f,h,ϕ f,h)+ b f (ψ f,h, vn

h)

+ s f,p(dτ p f,h, ψ f,h)+ s f,v

dτ vn

h · n f ,ϕ f,h · n f


−


Γ

σ f,h(ςϕ f,h,−ψ f,h)n f · vn
h +


Γ
γ f µ f h−1vn

h · ϕ f,h

= F(tn; ϕ f,h)+


Γ

σ n−1
f,h n f · ϕ f,h −


Γ

t f · σ f,h(ςϕ f,h,−ψ f,h)n f dτUn
h · t f

−


Γ

n f · σ f,h(ςϕ f,h,−ψ f,h)n f

qn

h + dτUn
h


· n f

+


Γ
γ f µ f h−1qn

h + dτUn
h


· n f ϕ f,h · n f +


Γ
γ f µ f h−1dτUn

h · t f ϕ f,h · t f .

Before time-lagging of the term σ n−1
f,h n f · ϕ f,h , this problem corresponds to the fluid equations (1)–(2), where

the kinematic conditions,

vn
· n f =


qn

+ dτUn
· n f , vn

· t f = dτUn
· t f on Γ , (28)

have been enforced using the classical Nitsche’s method formulation for boundary conditions [35]. We observe
that new stabilization terms s f,v, s f,q have been introduced into the problem formulation. Their role is to control
the increment of vn

h, qn
h over two subsequent time steps, namely

s f,q

dτqn

h · n, rh · n


= γ ′

stabγ f µ f
τ

h


Γ

dτqn
h · nrh · n,

s f,v

dτ vn

h · n,ϕ f,h · n


= γ ′

stabγ f µ f
τ

h


Γ

dτ vn
h · nϕ f,h · n.

4.1. Stability analysis

Following Burman and Fernandez [32], the stability analysis of the explicit time advancing scheme is more easily
carried out by rewriting the method as a fully implicit scheme. As a result, suitable iteration residuals appear in the
equations. Then, the explicit method will share the same stability properties of the implicit one, provided that the
residuals can be controlled by means of the energy of the system.
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Denoting with Ah(·, ·) the collection of terms on the left hand side of Eq. (21), that is the monolithic problem
formulation, with yh = {Uh, U̇h, vh, p f,h, qh, pp,h} the vector of all the solution components and with zh the
corresponding discrete test function, the loosely coupled scheme is equivalent to solve a discrete problem governed byAh(·, ·) complemented by suitable residual terms. Below, we denote these additional terms by T n

∗ , ∗ = 1, 2, 3, 4. For
the sake of clarity, the dependence of terms T n

∗ on at least one of the basis functions ϕ f,h, rh,ϕ p,h has been explicitly
put into evidence, while the dependence on the numerical solution is hidden, but only the reference time step, n, is
reported. As a result, the loosely couple scheme is equivalent to find yn

h such that for any zh the following equation is
satisfied,Ah(yn

h, zh)+ s f,p(dτ pn
f,h, ψ f,h)+ ϑ


s f,q


dτqn

h · n, rh · n

+ s f,v


dτ vn

h · n,ϕ f,h · n


= F n(tn; zh)+


Γ
γ f µ f h−1vn

h − vn−1
h


· t


−ϕ p,h


· t  

term denoted as T n
1,a(ϕ f,h ,rh ,ϕ p,h)

+


Γ
ϑγ f µ f h−1(vn

h − vn−1
h )− dτ (Un

h − Un−1
h )


· n(−rh) · n  

term denoted as T n
1,b(ϕ f,h ,rh ,ϕ p,h)

+


Γ
γ f µ f h−1(vn

h − vn−1
h )− ϑ(qn

h − qn−1
h )


· n


−(1 − ϑ)rh − ϕ p,h


· n  

term denoted as T n,ϑ
1,c (ϕ f,h ,rh ,ϕ p,h)

+


Γ

2µ f

D(vn

h)− D(vn−1
h )


n ·


n


ϕ f,h − rh − ϕ p,h


· n + t (ϕ f,h − ϕ p,h) · t


  

term denoted as T n
2 (ϕ f,h ,rh ,ϕ p,h)

−


Γ

n ·


pn
f,h − pn−1

f,h


n


ϕ f,h − rh − ϕ p,h


· n  

term denoted as T n
3 (ϕ f,h ,rh ,ϕ p,h)

−


Ωp

αϑ


pn
p,h − pn−1

p,h


∇ · ϕ p,h  

term denoted as T n,ϑ
4 (ϕ f,h ,rh ,ϕ p,h)

. (29)

If the two step algorithm is addressed, namely Algorithm (a), then the parameter ϑ in (29) is ϑ = 0, while it
becomes ϑ = 1 when the fully uncoupled scheme is considered, that is Algorithm (b). To prove the stability of the
loosely coupled time advancing scheme, we show that an energy estimate similar to (25) holds true also in this case.
To this purpose, we apply to Eq. (29) the same test functions used for the proof of Theorem 1. Then, summing up with
respect to the index n and multiplying by τ and using an argument similar to the one for (25) we obtain:

E N
f,h + E N

p,h + τ
γstab

2
h

γ f µ f
∥pN

f,h∥
2
Γ + τ

γ ′

stab

2

γ f µ f

h
ϑ


∥vN

h · n f ∥
2
Γ + ∥qN

h · np∥
2
Γ


+ τ

N
n=1


2µ f


1 −

(ς + 1)
2

ϵ′f CT I −
qϵ′f

4


∥D(vn

h)∥
2
Ω f

+ κ−1
∥qn

h∥
2
Ωp

+
τ

2


ρ f ∥dτ vn

h∥
2
Ω f

+ 2µp∥dτD(Un
h)∥

2
Ωp

+ s0∥dτ pn
p,h∥

2
Ωp

+ λp∥dτ∇ · Un
h∥

2
Ωp


+


γ f − (ς + 1)(ϵ′f )

−1µ f h−1
∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ + ∥


vn

h − dτUn
h


· t∥2

Γ


+
γstab

2
h

γ f µ f
∥pn

f,h − pn−1
f,h ∥

2
Γ +

γ ′

stab

2

γ f µ f

h

×ϑ

∥(vn

h − vn−1
h ) · n f ∥

2
Γ + ∥(qn

h − qn−1
h ) · np∥

2
Γ


6 E0

f,h + E0
p,h + τ

N
n=1


T n

1,a + T n
1,b + T n,ϑ

1,c + T n
2 + T n

3 + T n,ϑ
4


(vn

h, qn
h, dτUn

h)
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+
γstab

2
τh

γ f µ f
∥p0

f,h∥
2
Γ +

γ ′

stab

2
γ f µ f

τ

h
ϑ


∥v0

h · n f ∥
2
Γ + ∥q0

h · np∥
2
Γ


+ τ

N
n=1

(2qϵ′f µ f )
−1

∥F(tn)∥2, (30)

where, owing to (22), we have applied the following identities to manipulate the stabilization terms,

τ

N
n=1

s f,p(dτ pn
f,h, pn

f,h) = τ

N
n=1

γstab

2
h

γ f µ f
∥pn

f,h − pn−1
f,h ∥

2
Γ

+ τ
γstab

2
h

γ f µ f


∥pN

f,h∥
2
Γ − ∥p0

f,h∥
2
Γ


,

τ

N
n=1

s f,v

dτ vn

h · n f , vn
h · n f


= τ

N
n=1

γ ′

stab

2

γ f µ f

h
∥(vn

h − vn−1
h ) · n f ∥

2
Γ

+ τ
γ ′

stab

2

γ f µ f

h


∥vN

h · n f ∥
2
Γ − ∥v0

h · n f ∥
2
Γ


,

τ

N
n=1

s f,q

dτqn

h · np, qh · np


= τ

N
n=1

γ ′

stab

2

γ f µ f

h
∥(qn

h − qn−1
h ) · np∥

2
Γ

+ τ
γ ′

stab

2

γ f µ f

h


∥qN

h · np∥
2
Γ − ∥q0

h · np∥
2
Γ


.

The stability of the considered loosely coupled schemes follows from (30) provided that the terms T n
1,a, T n

1,b,

T n
1,c, T n

2 , T n
3 , T n,ϑ

4 , defined in Eq. (29), are bounded by the energy of the discrete problem. To perform this
analysis, we extend the approach proposed by Burman and Fernandez in [32] to the case where the flow interacts
with a poroelastic structure. As a result, the residual terms defined in (29) are more complicated. Their bounds are
summarized in the following lemma.

Lemma 1. For any ϵ′′f ,qϵ
′′′

f ,ϵ′′′f , ϵ′′p > 0 the following upper bound holds true, where CT I is the constant of
inequality (23),

τ

N
n=1


T n

1,a + T n
1,b + T n,ϑ

1,c + T n
2 + T n

3 + T n,ϑ
4


(vn

h, qn
h, dτUn

h)

6
γ f µ f

2
τ

h


(1 + ϑ)∥v0

h · n∥
2
Γ + ∥v0

h · t∥2
Γ + ϑ∥q0
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2
Γ + ϑ∥dτU0
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2
Γ


+
ϵ′′f CT I

2
µ f ∥D(v0

h)∥
2
Ω f

+ τ

N
n=1

µ f

2h


γ f (qϵ

′′′

f +ϵ′′′f + ϑ)+ (ϵ′′f )
−1

× ∥

vn

h − qn
h − dτUn

h


· n∥

2
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γ f µ f

2h
∥

vn

h − dτUn
h


· t∥2

Γ

+ ϵ′′f CT Iµ f ∥D(vn
h)∥

2
Ω f

+ ϑ
α2

s0
τ∥dτ∇ · Un

h∥
2
Ωp

+
s0τ

4
∥dτ pn

p,h∥
2
Ωp


+
(ϵ′′′f )−1

2
h

γ f µ f
∥pn

f,h − pn−1
f,h ∥

2
Γ +

ϑ

(qϵ′′′f )

−1
− 1


2

γ f µ f

h

×


∥(vn

h − vn−1
h ) · n∥

2
Γ + ∥(qn

h − qn−1
h ) · n∥

2
Γ


. (31)

Proof. To estimate T n
1,a we proceed as follows:

T n
1,a(v

n
h, qn

h, dτUn
h) =


Γ
γ f µ f h−1(vn

h − vn−1
h ) · t


vn

h − dτUn
h


· t −


Γ
γ f µ f h−1(vn

h − vn−1
h ) · t vn

h · t

6
γ f µ f

2
h−1

∥

vn

h − dτUn
h


· t∥2

Γ +
γ f µ f

2
τ

h


τ∥dτ vn

h · t∥2
Γ − dτ∥vn

h · t∥2
Γ − τ∥dτ vn

h · t∥2
Γ


.
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When the fully uncoupled scheme is used, the control of the residual T n
1,b is analogous to the one of T n

1,a . For
simplicity of notation, we introduce uh = vh − dτUh . Then we obtain

T n
1,b(v

n
h, qn

h, dτUn
h) =


Γ
ϑγ f µ f h−1(un

h − un−1
h ) · n


un

h − qn
h


· n

−


Γ
ϑγ f µ f h−1(un

h − un−1
h ) · nun

h · n

6
ϑγ f µ f

2
h−1

∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ

+
ϑγ f µ f

2
τ

h


τ∥dτun

h · n∥
2
Γ − dτ∥un

h · n∥
2
Γ − τ∥dτun

h · n∥
2
Γ


=
ϑγ f µ f

2
h−1

∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ −

ϑγ f µ f

2
τ

h
dτ∥(vn

h − dτUn
h) · n∥

2
Γ .

To estimate T n,ϑ
1,c we introduce the auxiliary variable wh = vh − ϑqh at the interface Γ . Then, T n,ϑ

1,c becomes:

T n,ϑ
1,c (v

n
h, qn

h, dτUn
h) =


Γ
γ f µ f h−1(wn

h − wn−1
h ) · n


wn

h − (1 − ϑ)qn
h − dτUn

h


· n

−


Γ
γ f µ f h−1(wn

h − wn−1
h ) · nwn

h · n

6 qϵ′′′f
γ f µ f

2
h−1

∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ

+
γ f µ f

2
τ

h


τ(qϵ′′′f )

−1
∥dτwn

h · n∥
2
Γ − dτ∥wn

h · n∥
2
Γ − τ∥dτwn

h · n∥
2
Γ


6
γ f µ f

2
h−1


qϵ′′′f ∥


vn

h − qn
h − dτUn

h


· n∥

2
Γ

+

(qϵ′′′f )

−1
− 1


∥(vn

h − vn−1
h ) · n∥

2
Γ + ϑ


(qϵ′′′f )

−1
− 1


∥(qn

h − qn−1
h ) · n∥

2
Γ


−
γ f µ f

2
τ

h
dτ∥(vn

h − ϑqn
h) · n∥

2
Γ .

As a result of the above estimates, we have

τ

N
n=1

T n
1 (v

n
h, qn

h, dτUn
h) = τ

N
n=1


T n

1,a + T n
1,b + T n,ϑ

1,c


(vn

h, qn
h, dτUn

h)

6
γ f µ f

2
τ

h


(1 + ϑ)∥v0

h · n∥
2
Γ + ∥v0

h · t∥2
Γ + ϑ∥q0

h · n∥
2
Γ + ϑ∥dτU0

h · n∥
2
Γ


+ τ

N
n=1

γ f µ f

2h


∥

vn

h − dτUn
h


· t∥2

Γ + (ϑ + qϵ′′′f )∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ


+


(qϵ′′′f )

−1
− 1


∥(vn

h − vn−1
h ) · n∥

2
Γ + ϑ


(qϵ′′′f )

−1
− 1


∥(qn

h − qn−1
h ) · n∥

2
Γ


.

For terms T n
2 and T n

3 we proceed as in the derivation of the energy estimate:

T n
2 (v

n
h, qn

h, dτUn
h) 6 ϵ′′f CT Iµ f


∥D(vn

h)∥
2
Ω f

+ ∥D(vn−1
h )∥2

Ω f


+ (ϵ′′f )

−1h−1µ f

∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ + ∥


vn

h − dτUn
h


· t∥2

Γ


,

T n
3 (v

n
h, qn

h, dτUn
h) 6 (ϵ′′′f )−1 h

2γ f µ f
∥pn

f,h − pn−1
f,h ∥

2
Γ +ϵ′′′f γ f µ f

2
h−1

∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ .
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To determine an appropriate upper bound for T n,ϑ
4 it is important to take into account of the magnitude of the physical

parameters s0, α, λp, for which we have approximately s0 ≪ 1 ≃ α ≪ λp. Then, for T n,ϑ
4 we have

T n,ϑ
4 (vn

h, qn
h, dτUn

h) = ϑατ


Ωp


dτ pp,h

 
dτ∇ · Un

h


6 ϑ

s0

2
τ∥dτ pn

p,h∥
2
Ωp

+ ϑ
α2

2s0
τ∥dτ∇ · Un

h∥
2
Ωp
. �

The stability of the loosely coupled scheme is just a direct consequence of (30) combined with (31), which gives

E N
f,h + E N

p,h + τ
γstab

2
h

γ f µ f
∥pN

f,h∥
2
Γ + τϑ

γ ′

stab

2

γ f µ f

h


∥vN

h · n f ∥
2
Γ + ∥qN

h · np∥
2
Γ


+ τ

N
n=1


µ f


2 − (ς + 1)ϵ′f CT I −

qϵ′f

2
− 2ϵ′′f CT I


∥D(vn

h)∥
2
Ω f

+ κ−1
∥qn

h∥
2
Ωp

+
τ

2


ρ f ∥dτ vn

h∥
2
Ω f

+ 2µp∥dτD(Un
h)∥

2
Ωp

+ (1 − ϑ)s0∥dτ pn
p,h∥

2
Ωp

+ λp


1 − ϑ

α2

λps0


∥dτ∇ · Un

h∥
2
Ωp


+

1
2


γ f (2 − (qϵ′′′f +ϵ′′′f + ϑ))− 2(ς + 1)(ϵ′f )−1

− 2(ϵ′′f )
−1µ f h−1

∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ +

1
2


γ f − 2(ς + 1)(ϵ′f )−1

− 2(ϵ′′f )
−1

∥

vn

h − dτUn
h


· t∥2

Γ


+

1
2
(γstab − (ϵ′′′f )−1)

h

γ f µ f
∥pn

f,h − pn−1
f,h ∥

2
Γ

+
1
2
(γ ′

stab − ((qϵ′′′f )
−1

− 1))
γ f µ f

h


∥(vn

h − vn−1
h ) · n f ∥

2
Γ + ϑ∥(qn

h − qn−1
h ) · np∥

2
Γ


6 E0

f,h + E0
p,h +

ϵ′′f CT I

2
µ f ∥D(v0

h)∥
2
Ω f

+
γ f µ f

2
τ

h


(1 + ϑ)∥v0

h · n∥
2
Γ + ∥v0

h · t∥2
Γ

+ϑ∥q0
h · n∥

2
Γ + ϑ∥dτU0

h · n∥
2
Γ


+ ϑ

γ ′

stab

2
γ f µ f

τ

h


∥v0

h · n f ∥
2
Γ + ∥q0

h · np∥
2
Γ


+
γstab

2
τh

γ f µ f
∥p0

f,h∥
2
Γ + τ

N
n=1

(2qϵ′f µ f )
−1

∥F(tn)∥2. (32)

The stability of the loosely coupled scheme is summarized by the following result.

Theorem 2. For anyϵ′f ,qϵ′f , ϵ′′f ,qϵ′′′f ,ϵ′′′f > 0 such that

(2 − (ς + 1)ϵ′f CT I − 2ϵ′′f CT I − qϵ′f /2) > 0, (2 − (qϵ′′′f +ϵ′′′f + ϑ)) = δ > 0,

provided that the penalty and stabilization parameters are large enough, more precisely

γstab > (ϵ′′′f )−1, γ ′

stab > (qϵ′′′f )
−1

− 1,

γ f >
2(ς + 1)(ϵ′f )−1

+ 2(ϵ′′f )
−1

δ
,

that the problem coefficients satisfy the following restriction

ϑ
α2

λps0
< 1, (33)

and that, asymptotically, the ratio τ/h is bounded, namely that the CFL-type condition τ < Ch is satisfied, for a
given positive constant C, there exist constants 0 < c′

f < 1 < C ′

f , uniformly independent of the mesh characteristic
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size, such that

E N
f,h + E N

p,h + τ
γstab

2
h

γ f µ f
∥pN

f,h∥
2
Γ + τϑ

γ ′

stab

2

γ f µ f

h


∥vN

h · n f ∥
2
Γ + ∥qN

h · np∥
2
Γ


+ c′

f τ

N
n=1


µ f ∥D(vn

h)∥
2
L2(Ω f )

+ κ−1
∥qn

h∥
2
L2(Ωp)

+µ f h−1
∥(vn

h − qn
h − dτUn

h) · n∥
2
Γ + ∥


vn

h − dτUn
h


· t∥2

Γ


+ τ


ρ f ∥dτ vn

h∥
2
Ω f

+ 2µp∥dτD(Un
h)∥

2
Ωp

+ s0∥dτ pn
p,h∥

2
Ωp

+ λp∥dτ∇ · Un
h∥

2
Ωp


6 E0

f,h + E0
p,h + C ′

f µ
−1
f τ

N
n=1

∥F(tn)∥2
+ C ′

f µ f

∥v0

h · n∥
2
Γ

+ ∥v0
h · t∥2

Γ + ∥q0
h · n∥

2
Γ + ∥dτU0

h · n∥
2
Γ + ∥D(v0

h)∥
2
L2(Ω f )

+ µ−2
f ∥p0

f,h∥
2
Γ


. (34)

More precisely, we have

c′

f < min{(2 − (ς + 1)ϵ′f CT I − 2ϵ′′f CT I − qϵ′f /2),

1 − ϑ

α2

λps0


, . . .

. . .

γ f (2 − (qϵ′′′f +ϵ′′′f + ϑ))− 2(ς + 1)(ϵ′f )−1

− 2(ϵ′′f )
−1, (γ f − 2(ς + 1)(ϵ′f )

−1
− 2(ϵ′′f )

−1
},

C ′

f > max


(2qϵ′f )

−1,
ϵ′′f CT I

2
,
γstab

2
τh

γ f
, ϑ
γ ′

stab

2
γ f


.

Corollary 1. When the Biot problem is not decoupled, namely when ϑ = 0, the stability constraints can be relaxed
as follows:

– inequality (33) is always satisfied.
– it is possible to choose qϵ′′′f = 1 and 0 <ϵ′′′f < 1 to satisfy (2 − (qϵ′′′f +ϵ′′′f + ϑ)) = δ > 0. As a result γ ′

stab = 0 is
an admissible choice, namely the stabilization operators s f,q and s f,v are no longer needed.

The numerical experiments that will be presented later on suggest that the loosely couple scheme in Algorithm (b)
turns out to be stable in practice even when the stabilization terms s f,q and s f,v are omitted, namely when we choose
γ ′

stab = 0. This behavior can be explained by the following stability result, which is a variant of Theorem 2.

Corollary 2. Under the ranges of ϵ′f ,qϵ′f , ϵ′′f ,qϵ′′′f ,ϵ′′′f , γ f , γstab that satisfy the assumptions of Theorem 2 and
provided that (33) holds true, the following additional conditions are sufficient to guarantee stability when ϑ = 1
and γ ′

stab = 0:

∃C > 0 s.t. τ < Ch2 and ρ f >
1
2
((qϵ′′′f )

−1
− 1)γ f µ f CT I C,

κ−1 > ((qϵ′′′f )
−1

− 1)CT I h−2.

Proof. The result follows by isolating the last term of (31). It provides an upper bound in terms of the energy norm,
without resorting to the stabilization operators s f,q and s f,v . In particular, we have

h−1
∥(vn

h − vn−1
h ) · n∥

2
Γ =

τ 2

h
∥dτ vn

h · n∥
2
Γ 6

τ 2

h2 CT I ∥dτ vn
h∥

2
Ω f

6 CCT I τ∥dτ vn
h∥

2
Ω f
,

provided that τ < Ch2. As a result we obtain,

γ f µ f

h

ϑ

(qϵ′′′f )

−1
− 1


2

∥(vn
h − vn−1

h ) · n∥
2
Γ 6 γ f µ f CCT I

ϑ

(qϵ′′′f )

−1
− 1


2

τ∥dτ vn
h∥

2
Ω f
.
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The term above can be combined with τρ f ∥dτ vn
h∥

2
Ω f

on the left hand side of (34). For the second part of the considered
residuals we have,

τ

N
n=1

h−1
∥(qn

h − qn−1
h ) · n∥

2
Γ 6 τ

N
n=1

2CT I h−2
∥qn

h∥
2
Ωp

+
τ

h
∥q0

h∥
2
Ωp
,

that is

ϑ

(qϵ′′′f )

−1
− 1


2

γ f µ f

h
τ

N
n=1

∥(qn
h − qn−1

h ) · n∥
2
Γ

6 γ f µ f
ϑ


(qϵ′′′f )

−1
− 1


2


τ

N
n=1

2CT I h−2
∥qn

h∥
2
Ωp

+
τ

h
∥q0

h∥
2
Ωp


,

which can be in turn combined with κ−1
∥qn

h∥
2
Ωp

. �

4.2. Splitting error analysis

Adopting a loosely coupled scheme may affect the accuracy of the underlying approximation methods, in particular
for time discretization. In this section we highlight these additional sources of error and analyze how they affect
the accuracy of the scheme. To keep the technical details of the analysis to a minimum, without disregarding a
rigorous approach, we mainly focus on the time discretization error. As a result, the analysis consists of comparing
the following problems:

Semidiscrete problem (SDP): find yh(t) s.t. Ah(yh(t), zh) = F(t; zh)

Discrete problem, implicit coupling (DIP): findyn
h s.t. Ah(yn

h, zh) = F n(zh)

Discrete problem, explicit coupling (DEP): findyn
h s.t. Ah(yn

h, zh) = F n(zh)

where for simplicity of notation we denote with yh = {Uh, U̇h, vh, p f,h, qh, pp,h} the vector of all the solution
components and with zh the corresponding discrete test function. At the same time, we introduce a compact notation
for the norms that we have used to prove the stability of (DIP) and (DEP), in Theorems 1 and 2, respectively. For the
one used in Theorem 1 we have

|||yh |||
2
♥, N := E N

f,h(yh)+ E N
p,h(yh)

|||yh |||
2
∇, n := 2µ f ∥D(vn

h)∥
2
Ω f

+ κ−1
∥qn

h∥
2
Ωp

+
τ

2


ρ f ∥dτ vn

h∥
2
Ω f

+ 2µp∥dτD(Un
h)∥

2
Ωp

+ s0∥dτ pn
p,h∥

2
Ωp

+ λp∥dτ∇ · Un
h∥

2
Ωp


+µ f h−1

∥

vn

h − qn
h − dτUn

h


· n∥

2
Γ + ∥


vn

h − dτUn
h


· t∥2

Γ


.

We proceed similarly for the norm of Theorem 2, for which ||| · |||∇, n remains unchanged and we define

|||yh |||
2
�, N := |||yh |||

2
♥, N +

τh

γ f µ f
∥pN

f,h∥
2
Γ + ϑγ f µ f

τ

h


∥vN

h · n f ∥
2
Γ + ∥qN

h · np∥
2
Γ


.

Our analysis stems form the assumption that the discrete problem with fully implicit coupling is asymptotically
consistent with respect to time discretization. In particular, let problem (SDP) be rearranged such that

Ah(yh(tn), zh) = Ah(yh(tn), zh)− Rh(yh(tn), zh) = F(tn; zh). (35)

As a result, subtracting (DIP) from (SDP) we obtain the following equation foren
h := yh(tn)−yn

h ,Ah(en
h, zh) =


F(tn; zh)− F n(zh)


+ Rh(yh(tn), zh).

Assumption 1. There exists CDIP > 0 such that, for any ϵ > 0 the following estimates hold true

|F(t;en
h)− F n(en

h)| 6 CDIPτ

N
n=1


1
2ϵ

|||F(tn;en
h)− F n(en

h)|||
2
+
ϵ

2
|||en

h |||
2
∇, n


,
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Rh(yh(tn),en
h) 6 CDIPτ

N
n=1


1
2ϵ

|||Rh(yh(tn))|||
2
+
ϵ

2
|||en

h |||
2
∇, n


.

Furthermore, there exists p > 0 such that

τ

N
n=1

|||F(tn;en
h)− F n(en

h)|||
2

= O(τ 2p) and τ

N
n=1

|||Rh(yh(tn))|||
2

= O(τ 2p).

The previous properties combined with Theorem 1 ensure that the time discretization error of (DIP) converges
with order p in the norm ||| · |||♥, N + τ

N
n=1 ||| · |||∇, n . We also assume that the trace, Poincaré and Korn inequalities,

respectively reported below,

∥vh∥Γ 6 CT ∥vh∥
1/2
Ω f

∥∇vh∥
1/2
Ω f
, ∥vh∥Ω f 6 CP∥∇vh∥Ω f , ∥∇vh∥Ω f 6 CK ∥D(vh)∥Ω f ,

where constants CP ,CT and CK depend on the domain Ω , see [37] for details, are satisfied by the finite element
approximation space for the free flow velocity.

Starting from this background, we now analyze the time discretization error of (DEP). We observe that the bilinear
form corresponding to (DEP) can be split into the following parts,

Ah(yn
h, zh) = Ah(yn

h, zh)+ Sh(yn
h, zh)+ Rh(yn

h, zh), (36)

where Sh(·, ·) denotes the collection of the previously defined stabilization terms

Sh(·, ·) = s f,p(·, ·)+ ϑ

s f,v(·, ·)+ s f,q(·, ·)


and Rh(·, ·) is the splitting error residual, as defined in (29). Furthermore, proceeding as in (35), we rearrange (SDP)
as follows,

Ah(yh(tn), zh) = Ah(yh(tn), zh)− Rh(yh(tn), zh) = F(tn; zh), (37)

where Rh(·, ·) is the time discretization residual relative to (DEP). Combining (36) and (37) with (SDP) we obtainAh(yh(tn), zh)+ Sh(yh(tn), zh)+ Rh(yh(tn), zh) = F(tn; zh)+ Rh(yh(tn), zh),

which, owing to (35), is equivalent to the following additive decomposition of Rh(·, ·)Rh(yh(tn), zh) = Rh(yh(tn), zh)+ Sh(yh(tn), zh)+ Rh(yh(tn), zh).

In conclusion, subtracting (DEP) from (SDP), we obtain the following equation that combines the time discretization
error relative to (DEP), namely en

h := yh(tn) − yn
h , with the residuals quantifying the consistency error due to

stabilization terms, equation splitting and time discretization respectively,

Ah(en
h, zh) =


F(tn; zh)− F n(zh)


+ Sh(yh(tn), zh)+ Rh(yh(tn), zh)+ Rh(yh(tn), zh). (38)

As a consequence of the stability estimate for the explicit scheme, we know thatyn
h converges to yh(tn), provided that

the right hand side of (38) vanishes when τ, h → 0.
The asymptotic good behavior of Rh(yh(tn), zh) has been previously discussed, as a consequence of the assumption

that time discretization of (DIP) is consistent. In what follows, we focus our attention on the analysis of the residuals
related to the loosely coupled scheme, namely Sh(yh(tn), zh) and Rh(yh(tn), zh). The different components of the
time discretization error are denoted asen

h := {en
U,h,̇en

U,h,en
v,h,en

p, f,h,en
q,h,en

p,p,h}. The results are summarized in the
following lemmas.

Lemma 2. For any ϵ > 0, the stabilization terms s f,p(·, ·), s f,v(·, ·), s f,q(·, ·) satisfy the following upper bounds,
respectively,

τ

N
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Γ

 T

0
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2dt ds + ϵτ
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2
Γ


,
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.

As a result, there exists a constant CS = max{γstab, γ
′

stab} such that
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The splitting error residuals have already been analyzed in Lemma 1 to prove the stability of (DEP). There is
however a substantial difference between Lemma 1 and the upper bounds needed to ensure convergence. Here, the
splitting error residual Rh(yh(tn), zh) must be tested using zh = en

h . As a consequence, part of the estimates derived
in Lemma 1 are no longer valid. Following a different approach, we are able to prove the result below.

Lemma 3. For any ϵ > 0 the splitting error residuals satisfy the following upper bounds
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As a result, under the restriction of the time discretization step τ 6 Ch, there exists a constant CR such that
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The proof of Lemma 3 is postponed at the end of this section. From the inequality above we observe that the
splitting error residuals generate three types of consistency errors, respectively proportional to

τ

h
, τ 2, ϑτ.

It is clear that the first and the last items of the list are sub-optimally convergent when τ, h → 0. In particular, the first
item is not even asymptotically convergent in general. Such errors arise when splitting the penalty terms introduced
for enforcing the kinematic coupling conditions by Nitsche’s method. A similar behavior has been observed in [33].
An additional restriction on τ, h will be introduced later on to override this drawback.

To sum up, choosing ϵ small enough in the upper bounds of the splitting error residuals, analyzed in Lemmas 2, 3,
and combining them with the stability of (DEP), reported in Theorem 2, we can easily prove that there exist positive
constants cE = max{CDIP,CR,CS} and CE = ϵ−1 max{CDIP,CR,CS} such that

|||eN
h |||
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2

.

As a consequence of the discrete Gronwall Lemma we obtain the following error estimate.

Theorem 3. Under the assumptions of Theorem 2 and Lemma 3, the following result holds true

|||eN
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.

If Assumption 1 is satisfied together with the restriction of the time discretization step size τ 6 ch2, then the right
hand side is such that

τ
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2 ).

We observe that the constraint τ 6 ch2 arises to make sure that the residuals
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are asymptotically convergent when τ, h → 0. Furthermore, these terms converge with a sub-optimal rate O(τ
1
2 ).

This drawback is common to the two variants of loosely coupled schemes that we have considered, indeed the terms
above do not vanish if we set ϑ = 0. This behavior completely agrees with what was observed in [33]. In addition, the
following residuals that scale with a suboptimal rate with respect to τ, h appear when elasticity and Darcy equations
are split in the Biot problem,

ϑτ
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Proof of Lemma 3. We choose zh = en
h in (38) and we proceed to analyze each term of the decomposition of Rh

adopted in Lemma 1, that is

τ

N
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Rh(yh(tn),en
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(yh(tn);en

h),
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Since the semidiscrete solution yh(t) is time-continuous, terms of type ∥g(tn)− g(tn−1)∥
2
Γ are bounded as follows
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4.3. Using the loosely coupled schemes as preconditioners

The error analysis shows that poor accuracy is the main drawback of the loosely coupled methods (DEP), in contrast
to their significant advantage in terms of computational efficiency, if compared to the fully implicit or monolithic
scheme (DIP). This issue has been investigated in [32,33] for a similar scheme, where the authors propose to use
subiterations between the subproblems defining the loosely coupled algorithm, among other options. The numerical
investigation addressed in [33] confirms that this approach may cure the aforementioned drawbacks. However, a
thorough stability analysis of these more accurate variants of the loosely coupled schemes is not available yet.
Furthermore, the results presented in [33] refer to the coupling of a linear flow model with an elastic structure. The
extension to poroelastic problem is a completely open subject.

Another approach to blend the computational efficiency of loosely coupled schemes with the accuracy of the
monolithic ones is to use the former schemes as preconditioners for the solution of the latter. As a result, we will end
up with a method which shares the desirable properties of the two approaches. As we will show later on, the stability
analysis that we have performed for the DIP and DEP schemes suggests that the loosely coupled method may perform
as an optimal preconditioner for the solution of the algebraic problem related to DIP. The key factor to prove this
property is the spectral equivalence of the stiffness matrices related to DIP and DEP respectively.

The stability analysis preformed in Theorems 1 and 2 informs us about the spectra of the matrices related to the
bilinear forms Ah(·, ·) and Ah(·, ·). To start with, let us consider the monolithic scheme complemented with the
pressure stabilization operator s f,p(·, ·). Let us denote with As

h(·, ·) the resulting scheme. Considering this variant of
DIP will significantly facilitate the forthcoming analysis, but does not affect the stability and convergence properties
of the method, as confirmed by the error analysis. Let us denote with As

h and Ah , the generalized stiffness matrices
corresponding to the bilinear forms As

h and Ah , respectively. We notice that As
h and Ah are neither symmetric nor

positive definite. Furthermore, let Y be the vector of degrees of freedom corresponding to the finite element function
yh . For the sake of clarity, the block structure of the algebraic monolithic problem is illustrated below:
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.

We notice that the matrix above has a remarkable structure, combining symmetric and skew symmetric blocks. In
particular, all the matrices related to diagonal blocks are symmetric. The loosely coupled scheme is equivalent to the
following upper block-triangular system, according to the fact that each sub-problem can be solved independently, but
to ensure stability they must be addressed in a precise order,
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Before proceeding, we introduce the energy norm related to the bilinear form As
h , which will be used to prove the

spectral equivalence of As
h and Ah :
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More precisely the term by term definition of the energy norm is the following:
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The stability analysis of the schemes DIP and DEP can be reformulated in order to show that the following
properties hold true.

Lemma 4. Under the assumptions of Theorem 1, As
h satisfies the following property: there exist constants C >c > 0

independent on τ, h such thatc|||yh |||
2 6 As

h(yh, yh) 6 C |||yh |||
2 for any yh .

Under the assumptions of Theorem 2, Corollary 1 if ϑ = 0 or Corollary 2 when ϑ = 1, Ah satisfies the following
property: there exist constants C >c > 0 independent on τ, h such thatc|||yh |||

2 6 Ah(yh, yh) 6 C |||yh |||
2 for any yh .

Proof. The positivity of As
h and Ah , namely the lower bounds, is a consequence of Theorems 1 and 2, respectively.

The desired results can be shown by applying Theorems 1 and 2 to the particular case of a single time step, using
F(tn

; ϕ f,h) = 0 and yn−1
h = 0. In particular, the analysis leading to (24) and (34) should be adapted using the test

functions,

ϕ f,h = vn
h, rh = qn

h, ψ f,h = pn
f,h, ψp,h = pn

p,h, ϕ p,h = Un
h , ϕ̇ p,h = U̇n

h .

Using the same strategy, the upper bound of As
h follows naturally form the definition of the bilinear form. According

to Eq. (29), the upper bound of Ah is a consequence of the previous property combined with inequality (31), which in
turn must be considered using yn−1

h = 0. �

Lemma 4 allows us to prove the following sequence of inequalities,

cC Ah(yh, yh) 6 As
h(yh, yh) 6

Cc Ah(yh, yh) for any yh . (39)

Applying the equivalence between the functional and algebraic representation of the discrete problem,As
h(yh, yh) = YT As

hY and Ah(yh, yh) = YT AhY for any Y,

the inequalities (39) can be rewritten as follows,

cC 6
YT As

hY

YT AhY
6

Cc for any Y s.t. YT AhY ≠ 0. (40)
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Property (40) can be interpreted as the spectral equivalence of matrices As
h and Ah , and suggests that Ah is a good

candidate for preconditioning the monolithic system As
h . This evidence is further supported by the following well

known estimate of the GMRES algorithm [38], when applied to the generic left-preconditioned system P−1 AY =

P−1F.

Theorem 4. Provided that P is symmetric positive definite, the residuals computed by GMRES at the kth iteration
satisfy

∥P−1Rk
∥P

∥P−1R0∥P
6


1 − µ1µ2

k/2
, (41)

where µ1 and µ2 are defined by

µ1 := min
Z≠0

ZT AZ
ZT PZ

, µ2 := min
Z≠0

ZT A−1Z
ZT P−1Z

,

where ∥ · ∥P denotes the norm induced by P.

We observe that the constant µ1 can be heuristically related to cC and µ2 to cC . Unfortunately, we cannot combine
this Theorem with (40) to determine a rigorous estimate of the GMRES convergence rate, when it is applied to
(Ah)

−1As
h . There are two shortcomings of the available properties of the proposed computational scheme: (i) Ah is

not symmetric; (ii) Ah is only positive semidefinite. The latter conclusion is a consequence of Lemma 4. It shows that
|||yh |||

2 is equivalent to YT AhY. However, |||yh |||
2 is only a seminorm because it does not provide control on ∥pn

f,h∥Ω f ,

but only on ∥pn
f,h∥Γ . In conclusion, (40) only qualitatively suggests that Ah may be a good preconditioner for As

h ,
and we will thoroughly investigate this conjecture with numerical experiments addressed in the forthcoming sections.

5. Numerical results and discussion

The numerical experiments that will be addressed in this section have multiple purposes. On one hand, we aim
at supporting the theoretical results on the accuracy and computational efficiency of the proposed methods. On
the other hand, we aim to show that the proposed computational framework is suitable for a broad spectrum of
applications. In particular, we will focus our attention on prototype problems arising from cardiovascular mechanics
and geomechanics. For this reason, this section is mainly split in two parts, each referring to one specific application.
All the numerical tests are implemented using the finite element library FreeFem++ [39,40].

5.1. Analysis of the scheme applied to fluid–structure interaction in arteries

We consider a classical benchmark problem used for FSI problems, see [41,32] and references therein, which
consists in studying the propagation of a single pressure wave whose amplitude is comparable to the pressure
difference between systolic and diastolic phases of the heartbeat.

Description of the problem. For simplicity, we adopt a two-dimensional (2D) geometrical model that consists of a
2D elastic structure superposed to a 2D fluid channel. The fluid–structure interaction is excited by the following
time-dependent pressure profile, prescribed at the inflow of the channel

pin(t) =


pmax

2


1 − cos


2π t

Tmax


if t 6 Tmax,

0 if t > Tmax,

where pmax = 13 334 dyne/cm2 and Tmax = 0.003 s. To make this test case represent more closely the behavior of
an artery, we also slightly modify the governing equation for elastic skeleton as follows,

ρp
D2U
Dt2 + ξU − ∇ · σ p = 0.

The additional term ξU comes from the axially symmetric formulation, accounting for the recoil due to the
circumferential strain. Namely, it acts like a spring term, keeping the top and bottom structure displacements connected
in 2D, see, e.g., [42].



162 M. Bukač et al. / Comput. Methods Appl. Mech. Engrg. 292 (2015) 138–170

Table 1
Geometry, fluid and structure parameters.

Parameter Symbol Units Reference value

Radius R (cm) 0.5
Length L (cm) 6
Poroelastic wall thickness r p (cm) 0.1
Poroelastic wall density ρp (g/cm3) 1.1
Fluid density ρ f (g/cm3) 1
Dyn. viscosity µ (g/cm s) 0.035
Lamé coeff. µp (dyne/cm2) 1.07 × 106

Lamé coeff. λp (dyne/cm2) 4.28 × 106

Hydraulic conductivity κ (cm3 s/g) 5 × 10−9

Mass storativity coeff. s0 (cm2/dyne) 5 × 10−6

Biot–Willis constant α 1
Spring coeff. ξ (dyne/cm4) 5 × 107

Fig. 2. Pressure surface plot at times 1.5, 3.5 and 5.5 ms top to bottom. Units are Pa. The propagation of a wave is clearly visible. To show
simultaneously the pressure and the interface displacement, we plot the pressure field on the deformed fluid domain that is calculated on a
postprocessing phase. In particular, the displacement of each point of the reference fluid domain is the harmonic extension of the interface
displacement. Furthermore, for visualization purposes, the deformation of the domain is magnified 100 times.

The reference values of the parameters used in this study fall within the range of physiological values for blood
flow and are reported in Table 1. The propagation of the pressure wave is analyzed over the time interval [0, 0.006] s.
The final time is selected such that the pressure wave barely reaches the outflow section. In this way, the non-physical
reflected waves that will originate at the outflow section for longer simulation times do not pollute the considered
results.

Some visualizations of the solution, calculated using the settings addressed below, are reported in Figs. 2 and 3.
The former, qualitatively shows the propagation of a pressure wave along the channel, together with the corresponding
deformation of the fluid domain at times t1 = 1.5, t2 = 3.5, t3 = 5.5 ms. For visualization purposes, the vertical
displacement is magnified 100 times in Fig. 2. In Fig. 3, top panel, we show the vertical displacement of the interface
along the longitudinal axis of the channel. These plots show that the variable inflow pressure combined with the
fluid–structure interaction mechanisms, generates a wave in the structure that propagates from left to right. This
simulation is qualitatively similar to the ones obtained in [31] using a different discretization approach to model
FSI, including an additional thin layer in the arterial wall. On the bottom panel, we show intramural flow qh · n at
different planes cutting the arterial wall in the longitudinal direction. These planes are located at the interface, at
the intermediate section and at the outer layer. These plots show that the peaks of the intramural flow coincide with
the ones of structure displacement and the corresponding peak of arterial pressure. Furthermore, we notice that the
intramural velocity, qh · n, decreases as far as the fluid penetrates further into the wall. This is a consequence of Eq.
(7), which prescribes that ∇ · qh is not locally preserved, but depends on the rate of change in pressure and volumetric
deformation of the structure. Indeed, this is how the poroelastic coupling shows up in the results.

Finite element approximation. The proposed scheme is rather flexible with respect to the definition of the finite element
spaces for each unknown, namely V f

h , Q f
h , Vp

h , Q p
h , Xp

h , Ẋp
h previously introduced. Owing to the weak enforcement

of the interface conditions, in principle it does not require any restriction on the choice of the discrete approximation
spaces on each side of the interface, provided that appropriate quadrature methods are adopted to calculate the
integrals of test functions evaluated at the interface. Considering the heterogeneous nature of the equations that are



M. Bukač et al. / Comput. Methods Appl. Mech. Engrg. 292 (2015) 138–170 163

Fig. 3. Top panel: displacement of the fluid–structure interface at times 1.5, 3.5 and 5.5 ms from left to right. Bottom panel: intramural flow qh · n
at different planes in the arterial wall, located at the interface, at the intermediate section and at the outer layer.

coupled though the interface conditions, this is an interesting property of the scheme. Nevertheless, in the forthcoming
numerical experiments we will consider some simple choices. To facilitate the exchange of information across the
interface, we use the same finite elements for the approximation of the unknowns vh, qh, Uh that are combined in the
interface conditions, see for example Eq. (13).

One of the drawbacks of using the Nitsche’s method for interface conditions is that the stability of the scheme relies
on the appropriate quantification of the penalty and stabilization operators, namely γ f , γstab, γ

′

stab. More precisely,
these parameters must satisfy the requirements of Theorem 2 or Corollaries 1 and 2, where the explicit expression of
the constant CT I may not be available in general, but only their order of magnitude can be reasonably quantified. As
a result, γ f , γstab, γ

′

stab should be manually tuned for each specific application. For the particular case of FSI related
to blood flow in arteries, the sensitivity of the numerical solution on γ f and γstab has been carefully addressed in [32]
for a scheme similar to the one addressed here. According to these results combined with the insight provided by
Corollary 2 on the choice of γ ′

stab, we have used the following values: γ f = 2500, γstab = 1, γ ′

stab = 0.

Convergence analysis. The objective of this section is to support the theoretical results on the accuracy of the proposed
scheme, given in Theorem 3. The available theory shows that the main shortcomings of the scheme in terms of
accuracy arise in the time approximation and are related to the splitting of the equations within each time step. For this
reason, we limit our investigation to the variation of the time step τ . As reference solution, since the analytical one is
not available in this case, we use the numerical solution calculated using the monolithic scheme with a small time step
equal to τ = 10−6 s. This way, we make sure that the splitting error is not polluting the solution, and the approximation
error related to the time discretization scheme is negligible. This solution will be denoted with the subscript re f . To
guarantee a sufficient spatial resolution as well as inf–sup stability, we use P2

− P1 approximations for velocity and
pressure in the blood flow, combined with P2

− P1 approximation of Darcy’s equation and P2 approximation of the
structure displacement and velocity. We investigate the convergence properties of the scheme in the norm ||| · |||

2
♥, N

that is used in Theorem 3. More precisely, we split it in four parts:

E N
f,h := ρ f ∥vN

h − vN ,ref
h ∥

2
L2(Ω f )

, E N
p,h(a) := ρp∥U̇N

h − U̇N ,ref
h ∥

2
L2(Ωp)

,
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Table 2
Convergence in time of the monolithic and the partitioned scheme, respectively.

Monolithic


E N
f,h Rate


E N

p,h(a) Rate


E N
p,h(b) Rate


E N

p,h(c) Rate

τ0 = 10−4 2.14E−01 1.48E−01 5.24E−01 1.32E−02
τ0/2 1.05E−01 1.02 7.89E−02 0.91 2.82E−01 0.90 6.95E−03 0.92
τ0/4 5.13E−02 1.04 4.03E−02 0.97 1.44E−01 0.97 3.53E−03 0.98
τ0/8 2.45E−02 1.07 1.98E−02 1.03 7.07E−02 1.03 1.72E−03 1.03

Partitioned


E N
f,h Rate


E N

p,h(a) Rate


E N
p,h(b) Rate


E N

p,h(c) Rate

τ0 = 10−4 2.87E−01 1.84E−01 7.71E−01 1.96E−02
τ0/2 1.49E−01 0.94 9.91E−02 0.89 4.15E−01 0.90 1.01E−02 0.95
τ0/4 7.58E−02 0.98 5.16E−02 0.94 2.13E−01 0.96 5.09E−03 0.99
τ0/8 3.75E−02 1.01 2.59E−02 0.99 1.06E−01 1.01 2.49E−03 1.03

E N
p,h(c) := s0∥pN

p,h − pN ,ref
p,h ∥

2
L2(Ωp)

,

E N
p,h(b) := 2µp∥D(UN

h − UN ,ref
h )∥2

L2(Ωp)
+ λp∥∇ · (UN

h − UN ,ref
h )∥2

L2(Ωp)
,

corresponding to the fluid kinetic energy, the structure kinetic energy, the structure elastic stored energy and the
pressure, respectively. We calculate the error between the reference solution and solutions obtained using τ =

τ0, τ0/2, τ0/4, τ0/8 with τ0 = 10−4 for simulations up to the final time T = 10−3 s. The mesh discretization step is
h = 0.05 cm for all cases.

In Table 2 we show the convergence rate relative to the error indicators above calculated using both the monolithic
and the loosely coupled scheme. We observe that, as expected, the error indicators scale as Cτ when the monolithic
scheme is used. This result confirms the statement of Assumption 1 with p = 1, since we use the Backward Euler
scheme for the time discretization of all the time dependent equations. Looking at the error of the loosely coupled
scheme, we notice that for each of the indicators the magnitude of the error increases with respect to the monolithic
scheme. This is the contribution of the splitting error. However, quite surprisingly, we observe that the total error of the
loosely coupled scheme scales as Cτ , although Lemma 3 shows that the splitting error should asymptotically behave

as


C1
τ
h + C2τ 2 + C3ϑτ . Combining these observations, we conclude that the splitting error is non negligible, but

the dominant term among these three contributions is
√

C2τ . In other words, for the problem at hand, the available
results suggest that C2 ≫ C1, C3.

The loosely coupled scheme as a preconditioner for the monolithic formulation. In order to simplify the management
of the algebraic degrees of freedom related to the finite element spaces, for this test case we adopt a P1

− P1

approximations for velocity and pressure respectively. It is well known that this choice does not satisfy the inf–sup
stability condition [37,36]. Resorting to a pressure stabilization method on the whole fluid domain is mandatory.
Owing to its simplicity of implementation, we opt for the Brezzi–Pitkäranta scheme [43], that is

sp(p
n
f,h, ψ f,h) := γph2


Ω f

∇ pn
f,h · ∇ψ f,hdx,

where the stabilization parameter is selected as γp = 10−2 on the basis of numerical experiments. The same type
of spaces are used for the intramural filtration and pressure, namely qh, pp,h . Since Eq. (7) is not enforcing the
divergence-free constraint exactly, but the material turns out to be slightly compressible, equal order approximation is
stable. We also use P1 finite elements to approximate the structure velocity and displacement.

Eq. (40) suggests that the partitioned scheme may act as an efficient preconditioner for the monolithic equation.
On one hand, the corresponding matrices share similar spectral properties. On the other hand, the computational cost
of solving the partitioned scheme is significantly lower than the one related to the monolithic formulation. Indeed,
matrix Ah features a block upper triangular structure that enables us to solve the structure, Darcy and blood flow
problems independently. The performance of matrix Ah used as a preconditioner of As

h is quantified by the numerical
experiments reported in Table 3. As an indicator of the system conditioning, we look at the number of GMRES
iterations required to reduce below a given tolerance the relative residual, defined as the left hand side of (41). In the
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Table 3
Average number of GMRES iterations (# GMRES) required to reduce
the relative residual of a factor 10−6. The values are calculated on the
basis of the first 10 time steps of the simulation.

Artery test case (i)

τ = 10−4 h = 0.05 h = 0.025 h = 0.0125

# GMRES(As
h ) 211.4 446.4 1282.9

# GMRES((Ah)
−1As

h ) 10.9 12 13.9

Artery test case (i)

τ = 10−5 h = 0.05 h = 0.025 h = 0.0125

# GMRES(As
h ) 362.1 498.3 1194.4

# GMRES((Ah)
−1As

h ) 8 10 12.9

Fractured reservoir test case (ii)

τ = 10−3 h = 1.06 h = 0.450 h = 0.212

# GMRES(As
h ) 53.8 101.7 245.4

# GMRES((Ah)
−1As

h ) 2 2 2

special case of positive definite matrices, a manipulation of (41) allows us to show that the number of iterations (#

GMRES) required to reduce the relative residual of a factor 10p, can be estimated as # GMRES ≃ p


K (P−1 A)

,

where K (·) is the spectral condition number. Since the initial relative residual is one, by definition, (# GMRES) is
equivalent to the number of iterations performed until the relative residual is less than 10−p. In the experiments that
follow, we have used p = 6. As a result, knowing that the conditioning of the FEM stiffness matrices scales as the
square of the number of degrees of freedom, we expect that # GMRES linearly scales with the number of degrees
of freedom in absence of preconditioners. Optimal preconditioners are those where the number of GMRES iterations
becomes independent of the dimension of the discrete problem.

The results of Table 3 nicely agree with the general GMRES convergence theory, namely Theorem 4, and confirm
that Ah behaves as an optimal preconditioner for As

h . Not only the number of iterations to solve the preconditioned
system is nearly insensitive with respect to the mesh characteristic size, and consequently the number of degrees of
freedom of the discrete problem, but the number of iterations is significantly smaller than in the non preconditioned
case. Reminding that the inversion of Ah is a relatively inexpensive operation, the preconditioned algorithm turns out
to be a very effective solution method. Table 3 also suggests that the conditioning of the monolithic problem slightly
increases when the time step is refined, especially for coarse meshes, while the good preconditioner performance
seems to be unaffected. It indeed slightly improves, according to the fact that the loosely coupled scheme, and
the related preconditioner, becomes more accurate and effective when the time discretization step decreases. We
have tested this algorithm also using quadratic finite elements, P2, for all velocities and displacement fields. In
the case of the coarsest mesh h = 0.05 cm, GMRES converges in 613.5 (average) iterations, while solving the
preconditioned only requires 11 iterations. The preconditioner seems to scale well also with respect to the FEM
polynomial degree. The good results on preconditioner performance also correspond to a decrease in the computational
time. For h = 0.05, τ = 10−4, the calculation of 60 time steps of the monolithic scheme require 4.73 s, while for the
preconditioned method the time is 1.85 s. For τ = 10−4 and 600 time steps the computational times are respectively,
65.8 and 14.6 s. Finally, we observe that these considerations apply also to the test case (ii), addressed in the next
section, which represents a prototype problem for flow though a fractured reservoir.

5.2. Application of the scheme to flow through fractured reservoirs

In this example we focus on fluid–structure interaction in the context of modeling the interaction between a
stationary fracture filled with fluid and the surrounding poroelastic medium. We consider a general case where the
hydraulic conductivity is a tensor given by κ =

K
µ f

, where K is the permeability tensor. Since the effect of the porous
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Fig. 4. Left: Physical computational domain Ω = Ω f
∪ Ω p in 2D. Middle: Physical domain Ω p in 3D. Right: Physical domain Ω f in 3D.

media on the conduit flow at the interface is more prominent in this application, we replace the no-slip condition (14)
by the Beavers–Joseph–Saffman condition (15) with the coefficient

β =
αµ f

√
3

√
tr(K)

. (42)

We consider 2D and 3D test cases. In 2D, our reference domain is a square [−100, 100]
2 m. A fracture is positioned

in the middle of the square, whose boundary is given by

ŷ2
= 0.0082(x̂ − 35)2(x̂ + 352).

The fracture represents the reference fluid domain Ω̂ f , while the reference poroelastic structure domain is given as
Ω̂ p

= Ω̂ \ Ω̂ f . Following the approach in [25], to obtain a more realistic domain, we transform the reference domain
Ω̂ onto the physical domain Ω via the mapping


x
y


(x̂, ŷ) =

 x̂

5 cos


x̂ + ŷ

100


cos


π x̂ + ŷ

100

2

+ ŷ/5 − x̂/10

 . (43)

The extension to the 3D test case consists of introducing a reference domain Ω̂ = Ω̂ f
∪ Ω̂ p which is a cube

[−100, 100]
3 m. A circular fracture with radius of 35 m and maximum height of 20 m is positioned in the middle of

the cube. Then, we apply the mapping

x
y
z

 (x̂, ŷ, ẑ) =


x̂

5 cos

π ẑ + x̂ + ŷ

100


cos


π x̂ + ŷ

100

2

+ ŷ/5 + x̂(ẑ/100 − 1)/10

ẑ

 . (44)

Fig. 4 shows the physical domain Ω in 2D (left) and 3D (right).
The flow is driven by the injection of the fluid into the fracture with the constant rate g = 25 kg/s. The fluid is

injected into a region of radius 7 m in the center of the reference fracture Ω̂ f . On all external boundaries, we prescribe
the no flow condition q·n = 0, zero normal displacement U ·n = 0, and zero shear traction t·σ pn = 0. The simulation
time is T = 5.1 h. The problem was solved using the time step 1t = 0.1 s. The remaining parameters are given in
Table 4. These parameters are similar to the ones in [25], and are taken to be within realistic range for applications to
hydraulic fracturing. Since at the initial time all the variables and in particular the reservoir pressure are set to zero, as
in Eq. (12), the results we show provide a qualitative indication of the pressure fluctuations with respect to the mean
reservoir pressure.

We adopt the P1
− P1 approximation for the fluid velocity and pressure, complemented with the pressure

stabilization sp(p f,h, ψ f,h). For the Darcy fluid-pressure approximation in the poroelastic medium, as for the structure
velocity and displacement, we again use the P1

− P1 finite elements. However, due to the large time-step in this
example, we are numerically closer to the divergence-free regime. Thus, we add a Darcy pressure stabilization given
by

sq(pp,h, ψp,h) = γq h2

Ωp

∇ pp,h · ∇ψp,hdx,
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Table 4
Fluid and structure parameters.

Parameter Symbol Units Value

Poroelastic wall density ρp (kg/m3) 897
Fluid density ρ f (kg/m3) 897
Dyn. viscosity µ (Pa s) 10−3

Lamé coeff. µp (Pa) 2.92 × 1010

Lamé coeff. λp (Pa) 1.94 × 1010

Hydraulic conductivity (2D) κ (m2/Pa s) diag(200, 50)× 10−12

Hydraulic conductivity (3D) κ (m2/Pa s) diag(200, 50, 200)× 10−12

Mass storativity coeff. s0 (Pa−1) 6.9 × 10−5

Biot–Willis constant α 1
Beavers–Joseph–Saffman coefficient (2D) β (Pa s/m) 3.47 · 103

Beavers–Joseph–Saffman coefficient (3D) β (Pa s/m) 2.57 · 103

Total simulation time T (s) 18 600

Fig. 5. Top: Fluid pressure in 2D (left) and a slice of the pressure in the middle of the fracture in 3D (right) at final time T . Bottom: Fluid velocity
in 2D (left) and a slice of the velocity in the middle of the fracture in 3D (right) at final time T .

Fig. 6. Fluid pressure in 3D at time t = 5 s (left) and at the final time T (right).

where the stabilization parameter is selected as γq = 10−3. Finally, the choice of the penalty and stabilization
parameters is γ f = 1500, γstab = 1, γ ′

stab = 0.
The visualization of the injection of the fluid into the fracture, and the fluid leakoff to the surrounding rock at the

final time T is shown in a sequence of figures, numbered from 5–10.
Fig. 5 shows the pressure (top) and the velocity (bottom) in the fracture for the 2D (left) and 3D (right) test cases,

at final time T . The 3D plots are obtained by taking a slice through the center of the domain. A top view of the
fluid pressure in the fracture is shown in Fig. 6 (as the pressure range is very narrow in the right panel, small mesh
dependent fluctuations of the pressure are visible from the pressure contour plot). At the beginning of the process the
simulations capture the expected local pressure increase in the region of fluid injection, while at the final time, the
fluid pressure is the largest at the tip of the crack in both 2D and 3D test cases. Fig. 7 shows the comparison of Darcy
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Fig. 7. Fluid velocity in the surrounding medium in 2D (left) and 3D (right) at final time T .

Fig. 8. Fluid pressure (left) and displacement (right) in surrounding medium in 2D at final time T .

Fig. 9. Top: Pressure in the poroelastic medium at final time T . Bottom: Displacement in the poroelastic medium at final time T .

Fig. 10. Displacement of the poroelastic medium in 3D in the vertical (left) and axial (right) direction at final time T .

velocity in the surrounding medium obtained in 2D (left) and 3D (right) at final time T . Pressure and displacement are
shown in the surrounding medium, in the 2D case in Fig. 8, and in the 3D test case in Fig. 9. Finally, the displacement
of the surrounding medium in the vertical (left) and axial (right) direction is shown in Fig. 10.

This example demonstrates the ability of our algorithm to handle complex, three-dimensional simulations in
different applications. Retaining the advantages of a monolithic scheme, the computational time is significantly
reduced due to a well-designed preconditioner. Our model includes Darcy equations in the mixed formulation which
are necessary to compute accurately the Darcy velocity in the surrounding rock. Furthermore, we are able to capture
displacement of the fracture which has a complex, very slender domain with sharp edges.
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6. Conclusions

We have studied the interaction of a free fluid with a poroelastic material. After setting appropriate governing
equations on adjacent domains and discussing the corresponding interface conditions, we have considered the
discretization of the problem in the framework of the finite element method. Particular attention must be devoted
to the approximation of the interface conditions, which are non standard with respect to the ones that arise in the
coupling of homogeneous partial differential equations. We have shown that the Nitsche’s method, used for the
weak approximation of boundary and interface conditions for elliptic or parabolic problems, is appropriate to enforce
the interface constraints in the variational formulation. The resulting discrete, fully coupled problem features good
stability properties. Since all the interface conditions correspond to suitable operators in the variational problem,
time-lagging allows to split the fully coupled problem into subproblems, relative to the main governing equations,
such as free fluid flow, Darcy filtration and elastodynamics. Also the resulting loosely coupled problem formulation
turns out to be stable, provided that it is combined with suitable stabilization operators. This solution approach is
very effective from the computational standpoint, but suffers from low accuracy, as we have pointed out in the error
analysis of the scheme. In order to merge the computational efficiency of the loosely coupled scheme with the good
accuracy and stability properties of the monolithic formulation, we develop a numerical solver where the former
scheme acts as a preconditioner for the latter. The theory and the numerical results suggest that this approach is very
effective because the loosely coupled scheme behaves as an optimal preconditioner for the monolithic formulation.
This solution algorithm turns out to be very robust with respect to the characteristic physical parameters of the
problem. Indeed, we have successfully applied it to the analysis of a problem related to blood flow in arteries as
well as to the study of subsurface flow and deformation of a fractured reservoir.
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