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Abstract. We present an expanded mixed finite element method for solving second-order elliptic
partial differential equations on geometrically general domains. For the lowest-order Raviart–Thomas
approximating spaces, we use quadrature rules to reduce the method to cell-centered finite differences,
possibly enhanced with some face-centered pressures. This substantially reduces the computational
complexity of the problem to a symmetric, positive definite system for essentially only as many
unknowns as elements. Our new method handles general shape elements (triangles, quadrilaterals,
and hexahedra) and full tensor coefficients, while the standard mixed formulation reduces to finite
differences only in special cases with rectangular elements. As in other mixed methods, we maintain
the local approximation of the divergence (i.e., local mass conservation). In contrast, Galerkin finite
element methods facilitate general element shapes at the cost of achieving only global mass conser-
vation. Our method is shown to be as accurate as the standard mixed method for a large class of
smooth meshes. On nonsmooth meshes or with nonsmooth coefficients one can add Lagrange mul-
tiplier pressure unknowns on certain element edges or faces. This enhanced cell-centered procedure
recovers full accuracy, with little additional cost if the coefficients or mesh geometry are piecewise
smooth. Theoretical error estimates and numerical examples are given, illustrating the accuracy and
efficiency of the methods.
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1. Introduction. We discuss numerical methods for solving a second-order el-
liptic problem posed on a possibly irregular domain Ω ⊂ Rd, d = 2 or 3. The problem
is to find (u, p) such that

u = −K∇p in Ω,(1.1a)
αp+∇ · u = f in Ω,(1.1b)

p = gD on ΓD,(1.1c)

u · ν = gN on ΓN ,(1.1d)

where α ≥ 0; f , gD, and gN are smooth functions; K is a symmetric, positive definite
second-order tensor with smooth or perhaps piecewise smooth components; ν is the
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outward unit normal vector on ∂Ω; and ∂Ω is decomposed into ΓD and ΓN . For
simplicity, assume ΓD 6= ∅ or α > 0 on Ω̄, so (1.1) has a unique solution.

We are interested in applications to flow in porous media, where p is the pres-
sure, u is the velocity field, K is related to the permeability tensor, and α is related
to the rock compressibility. In these applications, accurate velocity approximations
are required, and it is desirable that the conservation principle (1.1b) be satisfied
locally, element by element. This precludes the use of Galerkin finite element meth-
ods, which satisfy only (1.1b) globally. Mixed finite element methods [28, 6] satisfy
(1.1b) locally. The standard mixed method can be applied to general elements and
general coefficients at the cost of a computationally expensive saddle point linear
system. (For background on the standard mixed method, including convergence and
superconvergence results, see [31, 28, 13, 24, 17, 15, 16]).

Many techniques have been developed for solving the saddle point systems that
arise in the standard formulation [19, 18, 30, 11, 26, 10]. However, the saddle point
problem can be avoided altogether by introducing additional Lagrange multiplier pres-
sure unknowns on the boundaries of the elements [2]. This hybrid formulation allows
one to eliminate the velocity and the original pressure unknowns from the system.
A positive definite system results, but at the expense of greatly increasing the num-
ber of unknowns. For the lowest-order Raviart–Thomas mixed space RT0 [28, 25],
the hybrid form reduces to a face-centered finite difference method for the Lagrange
pressures, one for each edge (if d = 2) or face (if d = 3).

In flow in porous media applications such as petroleum reservoir simulation, mixed
finite element methods disguised as cell-centered finite difference methods have been
the standard approach for many years [27, 29]. The relationship between the mixed
method on rectangular meshes and cell-centered finite differences was first established
in [29], provided that K in (1.1) is a scalar or a diagonal matrix, and later for general
tensor K in [1] for a variant of the mixed method, the “expanded mixed method” [34,
22, 7, 1], again provided that the mesh is rectangular. If one uses the RT0 space and
applies appropriate quadrature rules, the velocity unknowns can be eliminated and
the method reduces to a positive definite, cell-centered finite difference method for
the pressure p with a stencil of 9 points if d = 2 and 19 points if d = 3 (but only 5 or
7, respectively, if K is diagonal). This method achieves superconvergence at certain
discrete points for both the pressure and the velocity [32, 23, 33, 1], and the number
of unknowns is reduced to the number of cells or elements (which is much less than
the number of edges or faces).

In this paper, we derive a numerical method as efficient as cell-centered finite
differences on rectangles, yet that accurately handles cases with a full tensor K, a
discontinuous K, nonaffine quadrilateral or hexahedral elements, triangular elements,
and nonsmooth hierarchical meshes. We present an appropriate, new, expanded mixed
variational formulation in section 2 and discretize it in section 3. In section 4 we
construct basis functions on general shaped elements, which we apply to the expanded
mixed method in section 5. In sections 6 and 7 we use quadrature rules to obtain
cell-centered finite difference methods on logically rectangular grids and triangular
meshes. Our method allows one to easily extend an existing rectangle based code
to handle tensors and quadrilaterals. We give convergence theorems in section 8 and
corresponding computational results in section 9. In sections 10 and 11, we discuss the
effects of nonsmooth meshes and coefficients. These are handled accurately by using
an enhancement of the cell-centered finite difference method given by adding Lagrange
multiplier pressures along the discontinuities. Finally we give some conclusions in the
last section.
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2. An expanded variational form. Let L2(R) denote the usual Sobolev space
of square-integrable functions on a domain R ⊂ Rd, d = 2, 3. We denote the L2(R)
inner product and norm by ( · , · )R and ‖ψ‖0,R = (ψ,ψ)1/2

R , respectively. Let 〈·, ·〉∂R
be the L2(∂R) inner product or duality pairing. Define

H(div;R) = {v ∈ (L2(R))d : ∇ · v ∈ L2(R)}.

When R = Ω, we may omit it in the definitions above.
The discrete schemes that we discuss for (1.1) may refer explicitly to internal

boundaries of Ω (cf. [19]). Let Ω be partitioned into one or more subdomains Ωi, and
let ΓI = ∪i∂Ωi \ ∂Ω be the union of the boundaries of the Ωi internal to the domain.
In section 10, we will take the internal boundaries to be along discontinuities in K, as
between rock strata within an aquifer, or along the boundaries of a multiblock mesh.
Define

HI(div) = {v ∈ (L2(Ω))d : ∇ · v|Ωi ∈ L2(Ωi)}.

We introduce the following expanded mixed variational form of (1.1):

(Gu, ṽ) = (GKGũ, ṽ), ṽ ∈ (L2(Ω))d,(2.1a)

(Gũ,v)−
∑
i

(p,∇ · v)Ωi(2.1b)

= −〈gD,v · ν〉ΓD −
∑
i

〈p,v · ν〉∂Ωi\ΓD , v ∈ HI(div),

(αp,w) +
∑
i

(∇ · u, w)Ωi = (f, w), w ∈ L2(Ω),(2.1c) ∑
i

〈u · ν, µ〉∂Ωi\ΓD = 〈gN , µ〉ΓN , µ ∈ H1/2(ΓN ∪ ΓI).(2.1d)

This is expanded from the standard mixed variational form in that we have introduced
a symmetric positive definite tensor field G and an additional unknown

ũ = −G−1∇p,(2.2)

which represents an “adjusted gradient.” In the recently introduced expanded for-
mulation [34, 22, 7, 1], G is the identity. If, instead, G = K−1, ũ = u and one
recovers the standard mixed method formulation. Later we define G based on the
local geometry.

3. An expanded mixed method. Let {Eh}h>0 be a regular family of finite
element partitions of Ω [9], where h is the maximal element diameter, such that
each element edge or face on the domain boundary is contained entirely within ei-
ther ΓD or ΓN and such that ΓI is contained in the union of the boundaries of the
elements.

Associate with Eh a mixed finite element space V Ih ×Wh × ΛI,Nh ⊂ HI(div) ×
L2(Ω) × L2(ΓI ∪ ΓN )—for example, any of the spaces defined in [31, 28, 25, 5, 4, 3,
8]. Each vector function in V Ih has continuous normal components on the edges or
faces between elements not contained in ΓI ; the space has no continuity constraint on
ΓI . Moreover, ΛI,Nh is the space of Lagrange multipliers; these functions are defined
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in a piecewise discontinuous manner on ΓI ∪ ΓN such that on an element edge or
face e ⊂ ΓI ∪ ΓN , ΛI,Nh |e = V Ih |e · ν. We need an additional finite element space Ṽh
such that V Ih ⊆ Ṽh ⊆ (L2(Ω))d; until section 11, we will generally take Ṽh = V Ih , for
reasons described below.

In our version of the expanded mixed method, we seek U ∈ V Ih , Ũ ∈ Ṽh, P ∈Wh,
and λ ∈ ΛI,Nh satisfying

(GU, ṽ) = (GKGŨ, ṽ), ṽ ∈ Ṽh,(3.1a)

(GŨ,v)−
∑
i

(P,∇ · v)Ωi(3.1b)

= −〈gD,v · ν〉ΓD −
∑
i

〈λ,v · ν〉∂Ωi\ΓD , v ∈ V Ih ,

(αP,w) +
∑
i

(∇ ·U, w)Ωi = (f, w), w ∈Wh,(3.1c) ∑
i

〈U · ν, µ〉∂Ωi\ΓD = 〈gN , µ〉ΓN , µ ∈ ΛI,Nh .(3.1d)

We are interested in three special cases. First, if there is only one subdomain,
then ΓI = ∅, V Ih ⊂ H(div; Ω), and Lagrange multipliers are used only to implement
Neumann boundary conditions. Second, if each Ωi is itself a single element in the
computational mesh, then ΓI is the set of all internal element faces, and we have the
full hybrid method with Lagrange multipliers on each face (cf. [2]). Third, we may
partition Ω into subdomains of intermediate size for purposes of domain decomposition
on parallel computers or to capture regions of smoothness in the coefficient K or in
the mesh, so that we need put Lagrange multipliers only on subdomain boundaries
(cf. [19]).

By choosing standard bases for the mixed finite element spaces, we reduce (3.1)
to a symmetric linear system of the form

A1 −A2 0 0
−AT2 0 BT −C

0 B D 0
0 −CT 0 0




ˇ̃U
Ǔ
P̌

λ̌

 =


0
ǧD

f̌
−ǧN

 ,(3.2)

where, in particular,

A1,ij = (GKGṽi, ṽj),(3.3)
A2,ij = (Gvi, ṽj),(3.4)

and {vi} and {ṽi} are bases for V Ih and Ṽh, respectively. This system is an indefinite
saddle point problem, and it is quite large.

If V Ih = Ṽh, then A2 is square, symmetric, and invertible. In that case, the size
of the linear system can be reduced by eliminating

Ǔ = A−1
2 A1

ˇ̃U,(3.5)
ˇ̃U = A−1

2 (BT P̌ − Cλ̌− ǧD)(3.6)



408 ARBOGAST, DAWSON, KEENAN, WHEELER, AND YOTOV

to obtain the Shur complement system

(BA−1
2 A1A

−1
2 BT +D)

(
P̌

λ̌

)
=
(

f̌
−ǧN

)
+ (BA−1

2 A1A
−1
2 )ǧD,(3.7)

where B = ( B
−CT ) and D = (D0

0
0 ). This system is symmetric, positive definite, and

relatively small. Unfortunately, although A2 is sparse, A−1
2 may not be. If it is not, an

iterative solution will require four matrix-vector multiplications and two solutions of
linear systems of the form A2x = b (or only one such solution if A1 is diagonal). That
is, we need inner iterations within our overall iterative solution, which can become
expensive. If A2 could be made diagonal (through a careful choice of mixed finite
element spaces and possibly through additional approximations), the cost of applying
an iterative procedure to the solution of the linear system would be greatly reduced.

In the hybrid method where each Ωi is a single element, A2 is elementwise block
diagonal and therefore easily inverted, although the resulting system is relatively large.

In the special case of RT0 spaces, a single subdomain, and rectangular elements,
applying the trapezoidal (or “trapezoidal-midpoint” [29]) quadrature rule to (3.3) and
(3.4) reduces A2 to a diagonal matrix [29, 1]. The full matrix in (3.7) then becomes
sparse. In fact, the method reduces to a cell-centered finite difference method, with
only as many unknowns as elements (up to some additional unknowns near ΓN and
ΓI). Moreover, the accuracy of the approximate solutions is not compromised [33,
1]. In this paper we remove the restriction to rectangular elements and a single
subdomain. We begin by considering carefully the finite element spaces on irregularly
shaped elements.

4. The mixed finite element spaces for general elements. Many mixed
finite element spaces are known [31, 28, 25, 5, 4, 3, 8]. The ones that we consider can
be constructed on a unit-sized standard, regular reference element Ê: an equilateral
triangle, regular simplex, square, cube, or regular prism. An affine map then gives
the definition on any triangle, tetrahedra, rectangular parallelepiped, or prism. The
construction of quadrilateral and hexahedral elements is more involved, and we review
here the basic theory of Thomas [31]. We then generalize the mixed spaces, defined
on Ê, to curved elements.

For any element E, let FE : Rd → Rd be a smooth (at least C1) mapping such
that FE(Ê) = E, and let FE be globally invertible on Ê. Denote by DF (x̂) the
Jacobian matrix of FE (DFij = ∂Fi/∂xj), and let

J(x̂) = |det(DF (x̂))|.

For any scalar function ϕ̂(x̂) on Ê, let

ϕ(x) = F(ϕ̂)(x) ≡ ϕ̂ ◦ F−1
E (x).(4.1)

To construct a subspace of H(div; Ωi), we need to preserve the normal components
of vector-valued functions across the boundaries of the elements. We use the Piola
transformation (see [31, 6]): For any function q̂ ∈ (L2(Ê))d, define

q(x) = G(q̂)(x) ≡
(

1
J
DF q̂

)
◦ F−1

E (x).(4.2)
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LEMMA 4.1.

(q,∇ϕ)E = (q̂, ∇̂ϕ̂)Ê , ϕ ∈ H1(E), q ∈ (L2(E))d,

(ϕ,∇ · q)E = (ϕ̂, ∇̂ · q̂)Ê , ϕ ∈ L2(E), q ∈ H(div;E),

〈µ,q · ν〉∂E = 〈µ̂, q̂ · ν̂〉∂Ê , q ∈ H(div;E), µ ∈ H1/2(∂E).

Remark. The last equation states that the normal trace of an H(div; Ê) function
is preserved in H−1/2(∂Ê) after transformation by G.

Let V̂h(Ê) × Ŵh(Ê) ⊂ H(div; Ê) × L2(Ê) be any of our previously cited mixed
spaces defined on the reference element Ê, with Λ̂h(ê) the Lagrange multiplier space
on edge or face ê ⊂ ∂Ê. If Eh is a partition of Ω into elements of standard shape,
Thomas [31] defined, for each E ∈ Eh and e ⊂ ∂E,

Vh(E) = {v ∈ H(div;E) : v G←→ v̂ ∈ V̂h(Ê)},(4.3)

Wh(E) = {w ∈ L2(E) : w F←→ ŵ ∈ Ŵh(Ê)},(4.4)

Λh(e) = {µ ∈ L2(e) : µ F←→ µ̂ ∈ Λ̂h(ê)},(4.5)

and then

V Ih = {v : v ∈ HI(div) and v|E ∈ Vh(E), ∀E ∈ Eh},(4.6)

Wh = {w ∈ L2(Ω) : w|E ∈Wh(E), ∀E ∈ Eh},(4.7)

ΛI,Nh = {µ ∈ L2(ΓI ∪ ΓN ) : µ|e ∈ Λh(e), ∀ edge or face e of Eh in ΓI ∪ ΓN}.(4.8)

We also define Ṽh from ˆ̃V h, using (4.2) as in (4.3) and (4.6).
We generalize the mixed spaces to curved elements in a straightforward way. Let

Ω̂ be our computational reference domain, and let

F : Rd → Rd, F (Ω̂) = Ω

be a smooth (at least C2) invertible map. Let Êh be a regular family of partitions of
Ω̂ into standard shaped elements. This gives a mesh on Ω̂, and its image by F is a
curved mesh Eh on Ω. Let V̂ Ih × Ŵh × Λ̂I,Nh be any of the usual mixed spaces defined
over Êh. The mixed spaces on Eh are defined by (4.3)–(4.8).

5. Application to general geometry. We use F to map the problem (1.1)
and its mixed approximation on Ω to Ω̂ using the isomorphisms F and G, defined in
section 4, for mapping scalar and vector functions, respectively.

For the expanded method, we make a careful choice of G in (2.2) to simplify the
interaction of the basis functions in (3.4) on the computational domain Ω̂. Define

G(F (x̂)) =
(
J(DF−1)TDF−1)(x̂).(5.1)

Note that G is symmetric and positive definite. Then,

Gv · ṽ = J(DF−1)TDF−1
(

1
J
DF v̂

)
·
(

1
J
DF ˆ̃v

)
=

1
J

v̂ · ˆ̃v, v ∈ V Ih , ṽ ∈ Ṽh.(5.2)
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We obtain the following mixed formulation on the reference domain. Find Û ∈
V̂ Ih , ˆ̃U ∈ ˆ̃Vh, P̂ ∈ Ŵh, and λ̂ ∈ Λ̂I,Nh such that

(Û, ˆ̃v)Ω̂ = (K ˆ̃U, ˆ̃v)Ω̂,
ˆ̃v ∈ ˆ̃V h,(5.3a)

( ˆ̃U, v̂)Ω̂ −
∑

i

(P̂, ∇̂ · v̂)Ω̂i
(5.3b)

= −〈ĝD, v̂ · ν̂〉Γ̂D −
∑
i

〈λ̂, v̂ · ν̂〉∂Ω̂i\Γ̂D , v̂ ∈ V̂ Ih ,

(Jα̂P̂ , ŵ)Ω̂ +
∑
i

(∇̂ · Û, ŵ)Ω̂i = (Jf̂ , ŵ), ŵ ∈ Ŵh,(5.3c) ∑
i

〈Û · ν̂, µ̂〉∂Ω̂i\Γ̂D = 〈Jν̂ ĝN , µ̂〉Γ̂N , µ̂ ∈ Λ̂I,Nh ,(5.3d)

where the tensor K has been modified to

K = JDF−1K(DF−1)T ,(5.4)

and Jν̂(x̂) = J(x̂)|(DF−1)T ν̂|. Note that V̂ Ih × Ŵh× Λ̂I,Nh are the usual mixed spaces

on reference elements, and ˆ̃V h = F−1(Ṽh). Also, there are no coefficients in the
L2-vector inner-products on the left side of the first two equations.

6. Enhanced cell-centered finite differences on logically rectangular
grids. In this section we consider the RT0 [28, 31, 25] spaces on curved but logi-
cally rectangular grids generated by taking a rectangular computational domain Ω̂,
imposing on it a rectangular grid, and mapping it to Ω by the function F . We recall
the definition of the RT0 space in three space dimensions,

Wh =
{
w : w|E is constant ∀E ∈ Eh

}
,(6.1)

ΛI,Nh =
{
µ : µ|e is constant on each face e ⊂ ∂E ∩ (ΓI ∪ ΓN ) ∀E ∈ Eh

}
,(6.2)

and V Ih is defined by (4.6) from

Vh(E) =
{
v = (v1, v2, v3) : v` = a` + b`x`,(6.3)

` = 1, 2, 3, for some six constants a` and b`
}

(i.e., for v ∈ V Ih , v`|E is linear in the `-direction, constant in the other two directions,
and v` itself is continuous in the `th direction, except across ΓI). In its standard nodal
basis, Wh is defined at the element or cell centers, ΛI,Nh is defined at the appropriate
face centers, and V Ih is defined at the face centers, doubly defined along ΓI . A similar
definition gives RT0 if d = 2.

For geometrically irregular domains, the transformed coefficient K of (5.4) is
necessarily a full tensor except in trivial cases. Because of our choice (5.1) of G,
if there is a single subdomain boundary, the expanded problem on the computational
grid (5.3) is the same as that analyzed in [1]. It takes Ṽh = V Ih and (5.3c), (5.3d)
combined with

(Û, ˆ̃v)Ω̂,T = (K ˆ̃U, ˆ̃v)Ω̂,T,
ˆ̃v ∈ ˆ̃V h = V̂ Ih ,(6.4a)

( ˆ̃U, v̂)Ω̂,T −
∑

i

(P̂, ∇̂ · v̂)Ω̂i
(6.4b)

= −〈ĝD, v̂ · ν̂〉Γ̂D −
∑
i

〈λ̂, v̂ · ν̂〉∂Ωi\Γ̂D , v̂ ∈ V̂ Ih ,
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where ( · , · )R,T denotes the trapezoidal quadrature rule applied to the inner-product
integral over R. By the nodal definition of RT0, the trapezoidal quadrature rule
diagonalizes A2 in (3.4) on the computational domain:

Â2,ij = (v̂i, v̂j)Ω̂,T = Ĉijδij ,(6.5)

where Ĉij is a constant related to the mesh size. With a single subdomain, the method
reduces to cell-centered finite differences with a stencil (see [1]) of 19 points if d = 3
and 9 points if d = 2 for P̂ in the Shur complement form of (3.2), i.e., (3.7). This
is an approximation to the expanded mixed method. When multiple subdomains are
present, we call the method the enhanced cell-centered finite difference method, since
it is enhanced with face-centered variables along ΓI .

The approximation of our problem (1.1) is now relatively simple. A preprocessing
step can be done to transform the coefficients (by multiplication by either J or Jν̂ , or
by the tensor transformation (5.4)). Then (6.4), (5.3c), (5.3d) is solved as an entirely
rectangular problem. Finally, (4.1), (4.2) (i.e., F and G) map the results P̂ and Û
back to P and U on the physical domain as approximations to p and u.

7. Enhanced cell-centered finite differences on triangles. In this section
we consider d = 2 and a triangular mesh. Actually, on Ω̂, take a grid Êh of equilateral
triangles. As in the logically rectangular case, we take Ṽh = V Ih and seek a quadrature
rule that diagonalizes A2 of (3.4). The triangular RT0 spaces are defined as in (6.1)–
(6.3) above, now with E a triangle and (6.3) replaced by

Vh(E) =
{
v = (v1, v2) : v` = a` + bx`,(7.1)

` = 1, 2, for some three constants a` and b
}
.

Let T̂ represent the standard reference equilateral triangle with vertices at (−1, 0),
(1, 0), and (0,

√
3). Here let v̂k be the basis function of V̂h(T̂ ) associated with edge k,

denoted by êk, k = 1, 2, 3. We define our quadrature rule Q̂T̂ (ψ) on T̂ such that it is
exact for polynomials of degree one and such that Q̂T̂ (v̂k · v̂`) = 0 for k 6= `:

Q̂T̂ (ψ) =
√

3
6

[
ψ(−1, 0) + ψ(1, 0) + ψ(0,

√
3) + 3ψ

(
0,
√

3
3

)]
.(7.2)

The required properties follow easily from the definition of RT0. (Incidentally, this
rule is second-order accurate if the 6 is replaced by 12 and the 3 in front of the last
term is replaced by 9, but then orthogonality is lost.) There is no corresponding rule
on a nonequilateral triangle; it is necessary to consider the mapping to the reference
element.

The scheme is now (5.3c), (5.3d) combined with∑
T̂∈Êh

Q̂T̂ (Û · ˆ̃v) = (K ˆ̃U, ˆ̃v)Ω̂,
ˆ̃v ∈ ˆ̃V h = V̂ Ih ,(7.3a)

∑
T̂∈Êh

Q̂T̂ ( ˆ̃U · v̂)−
∑

i

(P̂, ∇̂ · v̂)Ω̂i
(7.3b)

= −〈ĝD, v̂ · ν̂〉Γ̂D −
∑
i

〈λ̂, v̂ · ν̂〉∂Ωi\Γ̂D , v̂ ∈ V̂ Ih .
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P

FIG. 7.1. Finite difference stencil for P .

Since the two integrals above approximated by quadrature are diagonal, in the interior
of a subdomain the method gives a 10-point cell-centered finite difference stencil for
P̂ in the Shur complement form of (3.2), as shown in Figure 7.1.

The approximation of our problem (1.1) can be solved as in the logically rectangu-
lar case (transform coefficients, solve the transformed problem, and map the solution
back to the physical domain). Since now the computational mesh is not orthogonal,
it may be simpler in practice to compute this approximation to the expanded mixed
method (3.1) directly on the physical mesh. We approximate on each triangle T ∈ Eh
in the integral evaluation routine

(Gv, ṽ)T = (v̂, ˆ̃v)T̂ ≈ Q̂T̂ (v̂, ˆ̃v).(7.4)

In three dimensions, regular tetrahedra do not fill space, so there is no regular
computational mesh. However, we can proceed in a local sense. Take a tetrahedral
mesh on Ω, such that each element E ∈ Eh is the image by FE of the standard reference
regular tetrahedron T̂ with vertices at x1 = (−1, 0, 0), x2 = (1, 0, 0), x3 = (0,

√
3, 0),

and x4 = (0,
√

3/3, 2
√

6/3). Proceeding element by element, we diagonalize A2 with
the first-order approximation:

Q̂T̂ (ψ) =
√

2
18

[
ψ(x1) + ψ(x2) + ψ(x3) + ψ(x4) + 8ψ

(
x1 + x2 + x3 + x4

4

)]
.(7.5)

In this case, the stencil has at most 17 nonzero entries. There is a problem with the
accuracy of this method, and we will return to it in section 10.

8. Some convergence results. With the notable exception of the work of
Thomas [31], most of the known convergence estimates apply only to affine elements
and special boundary elements. Recall that affine elements are the image by an
affine map of an equilateral triangle, square, cube, regular simplex, or regular prism
(i.e., the standard, regular reference elements) and that quadrilaterals and hexahedra
are not affine elements. One feature of these elements is that ∇ · V Ih = Wh. For
the curved elements defined in section 4, note that Lemma 4.1 and the fact that
(ϕ,∇ · u)E = (Jϕ̂, ∇̂ · u)Ê implies

∇ · u(x) = ∇̂ · u ◦ F−1(x) =
(

1
J
∇̂ · û

)
◦ F−1(x);(8.1)

thus, in general ∇ · V Ih 6= Wh, unless the map F is piecewise affine. In this section we
present some convergence results and extend them to the curved element case.

Let W j,q(Ω) be the usual Sobolev space of j-times differentiable functions in
Lq(Ω), with the norm ‖ · ‖j,q. Let Hj(Ω) = W j,2 with its norm ‖ · ‖j . We describe
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the approximation properties of the mixed finite element spaces by lV and lW , where

min
v∈Vh

‖q− v‖0 ≤ C‖q‖l hl, 1 ≤ l ≤ lV ,(8.2)

min
w∈Wh

‖ψ − w‖0 ≤ C‖ψ‖l hl, 0 ≤ l ≤ lW ,(8.3)

min
v∈Vh

‖∇ · (q− v)‖0 ≤ C‖∇ · q‖l hl, 0 ≤ l ≤ lW .(8.4)

For the spaces of [28, 31, 25, 4], lW = lV , while for the spaces of [5, 3], lW = lV − 1.
The spaces of [8] are a generalization of these other spaces on prisms.

To quantify dependencies on the mapping F ∈ (W `,∞(Ω̂))d×d, throughout this
section, CF,` will denote a generic positive constant that is independent of the dis-
cretization parameter h but may depend on Ω̂, ‖α‖0,∞, ‖K‖0,∞, ‖K−1‖0,∞, and also
F but only through ‖F‖`,∞, ‖F−1‖`,∞, ‖J‖0,∞, ‖J−1‖0,∞, ‖DF‖0,∞, and ‖DF−1‖0,∞.
To describe the superconvergence results for the pressure, denote the L2(Ω)-projection
operator onto Wh by PW ; that is, for ψ ∈ L2(Ω), we define PWψ by

(ψ − PWψ,w) = 0, w ∈Wh.

THEOREM 8.1. For the expanded mixed method (3.1) with F = I and either G = I
or G = K−1 on affine (and special boundary) elements or with G defined by (5.1) on
curved elements,

‖u−U‖0 + ‖ũ− Ũ‖0 ≤ CF,`+1(‖p‖l+1 + ‖u‖l)hl, 1 ≤ l ≤ lV ,(8.5)

‖p− P‖0 ≤ CF,`+1(‖p‖l+1 + ‖u‖l)hl, 1 ≤ l ≤ lW ,(8.6)

‖∇ · (u−U)‖0 ≤ CF,`+1(‖p− P‖0 + ‖∇ · u‖l hl), 0 ≤ l ≤ lW .(8.7)

Moreover, if lW = lV ,

‖PW p− P‖0 ≤ CF,`+3/2(‖p‖l+1 + ‖∇ · u‖l + ‖u‖l+1/2)hl+1, 1 ≤ l ≤ lW ,(8.8)

and, if lW < lV ,

(8.9) ‖PW p− P‖0 ≤
{
CF,`1+1(‖p‖l1+1 + ‖u‖l1 + ‖∇ · u‖l1)hl1+min{lW ,2}

+CF,`2+3/2(‖p‖l2+1 + ‖u‖l2+1/2)hl2+1}, 1 ≤ l1 ≤ lW , 1 ≤ l2 ≤ lV ,

where the CF,s depend also on ‖α‖1,∞ and ‖J‖1,∞ in (8.8) or, if lW < lV , on ‖K‖1,∞,
‖DF‖1,∞, and ‖DF−1‖1,∞ in (8.8), (8.9) and on ‖α‖2,∞ and ‖J‖2,∞ in (8.9).

Proof. When F = I, G = I, or G = K−1, and the usual affine (or special
boundary) elements are used, the theorem (with a straightforward modification for
the lower-order term and the boundary conditions) can be found in [31, 28, 13, 5, 3,
4, 8, 1, 7]. The results for curved elements follow from the case of the usual elements
applied to the transformed problem (5.3), using relations (4.1), (4.2), and (8.1).

Remark. Other known estimates in H−s and Lp norms for affine elements [13,
3, 4, 17, 1] can also be transformed for curved elements. If the grid is rectangular,
Raviart–Thomas spaces [28, 31, 25] are used, and K is a diagonal matrix, we also
have superconvergence in the standard mixed method for the velocity error in certain
discrete norms [24, 15, 16]. However, since the map F introduces a nondiagonal
transformation of K, these results do not carry over directly to curved elements.
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Remark. If multilinear, quadrilateral, and hexahedral elements are used, F is not
continuous; however, we have approximation results because they hold element by
element. If F is locally bilinear, then (see [31])

‖DF‖0,∞ ≤ Ch−1 and ‖DF‖j,∞ ≤ Ch−2, j ≥ 1,

and the results are nonoptimal. However, for the Raviart–Thomas elements in two di-
mensions, Thomas [31] extracted somewhat sharper estimates for the standard mixed
method. Similar results can be obtained for the expanded mixed method.

To describe the results for logically rectangular grids, we need some additional
notation, given here in two dimensions for simplicity. Denote grid points on Ω̂ by

(x̂i+1/2, ŷj+1/2),

and then define

x̂i =
1
2

(x̂i+1/2 + x̂i−1/2) and ŷj =
1
2

(ŷj+1/2 + ŷj−1/2).

For any function ψ̂(x̂, ŷ), let ψ̂ij denote ψ̂(x̂i, ŷj), let ψ̂i+1/2,j denote ψ̂(x̂i+1/2, ŷj),
etc. Similar definitions hold for functions and points without carets.

Let ( · , · )R,M denote an application of the midpoint quadrature rule to the L2(R)
inner product on R with respect to Eh. For w ∈ L2(Ω) ∩ C0(Ω̄) and v ∈ (L2(Ω))d ∩
(C0(Ω̄))d let

‖w‖2M = (w,w)M, ‖v‖2TM = (v,v)TM, and ‖v‖2M = (v,v)M;

these can also be defined on Wh or Ṽh. On Wh and V Ih , the first two are norms, and
the third is a seminorm. For E = Eij ∈ Eh, define

‖v‖2ν,E =
[
(v · ν)2

i−1/2,j + (v · ν)2
i+1/2,j + (v · ν)2

i,j−1/2 + (v · ν)2
i,j+1/2

]
|E|,

‖v‖2ν =
∑
E

‖v‖2ν,E ,

where ν is the unit normal vector to the edges of the elements; this is a norm on V Ih .
The following definition concerning mesh refinement is needed for the next two

results (cf. [1, Definition 5.2]).
DEFINITION 8.2. For ` ≥ 1, an asymptotic family of meshes is said to be generated

by a C` map if there is a fixed map F such that each mesh is an image by F of a mesh
that is composed of standard, regular, reference elements. Here F must be in C`

(
Ω̂
)

with J > 0.
THEOREM 8.3. For the cell-centered finite difference method on a logically rectan-

gular grid, if p ∈ C3,1(Ω̄), u ∈
(
C1(Ω̄)∩W 2,∞(Ω)

)d, and K ∈
(
C1(Ω̄)∩W 2,∞(Ω)

)d×d,
then there exists a constant CF,3, independent of h but dependent on the solution, K,
and F as indicated, such that

‖u−U‖M + ‖ũ− Ũ‖M ≤ CF,3hr,(8.10)

‖u−U‖ν + ‖ũ− Ũ‖ν ≤ CF,3hr,(8.11)

‖∇ · (u−U)‖M ≤ CF,3h2,(8.12)

‖p− P‖M ≤ CF,3h2,(8.13)

where r = 2 if K in (5.4) is diagonal and ΓD = ∅ and r = 3/2 otherwise.
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The proof is given in the appendix.
Remark. The above results imply L2 superconvergence for the computed pressure,

velocity, and its divergence at the midpoints of the elements. The normal component
of the velocity at the midpoints of the edges or faces is also superconvergent. Moreover,
full second-order superconvergence of the velocities is obtained in the strict interior
of the domain [1, Theorem 5.10].

THEOREM 8.4. For the triangular cell-centered finite difference method, if the
computational grid is generated by a C3 map, then

‖u−U‖0 + ‖ũ− Ũ‖0 ≤ CF,3h,(8.14)
‖p− P‖0 ≤ CF,3h,(8.15)
‖∇ · (u−U)‖0 ≤ CF,3h.(8.16)

These results are new, and their proof is given in the appendix.
Remark. Experimentally we find that, for smooth problems, p is O(h2) supercon-

vergent at the centroids of the triangles. Moreover, on three-line meshes, the normal
fluxes are also O(h2) superconvergent [14].

9. Computational results. We present some numerical results that illustrate
the theory by solving elliptic problems in two and three dimensions. The results
come from two different computer codes, one implemented to solve the problem on a
logically rectangular grid and the other implemented to use more general meshes.

9.1. Logically rectangular. The logically rectangular code was developed ini-
tially as a rectangular code following the ideas of [1] to treat tensors. A preprocessor
was added to modify the coefficients of the problem as described in sections 5 and 6
above, and a postprocessor was added to transform the reference solution (P̂ , Û) to
the solution (P,U) on the physical domain.

In these examples, ΓI = ∅ and the true domain Ω is defined as the image of the
unit square under the smooth map

F

(
x̂
ŷ

)
=

(
x̂+ 1

10cos(3ŷ)

ŷ + 1
10 sin(6x̂)

)
=
(
x
y

)
.

A uniform, rectangular grid on Ω̂ maps to a curved grid on Ω. Derivatives of the
map are evaluated numerically, using only the coordinates of the grid points. We test
diagonal and full permeability tensors; however, the problem on the computational
domain always has a full tensor (see (5.4)). The permeability is

K = KD =
(

10 0
0 1

)
or K = KF =

(
(x+ 2)2 + y2 sin(xy)

sin(xy) 1

)
,

and the true solution is

p(x, y) = x3y + y4 + sin(x) cos(y),

with f defined accordingly by (1.1) and with (1.1c) or (1.1d) replaced by the proper
boundary condition. The problem is shown in Figure 9.1.

Convergence rates for the test cases are given in Table 9.1. The rates were estab-
lished by running the test case for six levels of grid refinement. We assume the error
has the form Chα and compute C and α by a least squares fit to the data. As can
be seen, the pressures and velocities are superconvergent to the true solution in the
discrete norms. This verifies (8.13) and (8.10) with r = 3/2.
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Ω̂

F−→

Ω

FIG. 9.1. The logically rectangular test example. The computed pressure and velocity are
shown on both the computational and true domains for the case using KF with Dirichlet boundary
conditions.

TABLE 9.1
Discrete norm convergence rates for the logically rectangular test example: ‖P −p‖M ≤ Cp hαp

and ‖U− u‖M ≤ Cu hαu .

Tensor Boundary condition Cp αp Cu αu
KD Dirichlet 0.417 2.260 0.588 1.659
KD Neumann 7.380 2.138 0.466 1.633
KF Dirichlet 0.435 2.205 0.611 1.710
KF Neumann 10.09 2.130 0.648 1.754

FIG. 9.2. The mesh for a typical example.

9.2. General meshes. The second code [20] is written in C++ for flexibility and
implements a collection of mixed method formulations on two- and three-dimensional
meshes composed of triangular, quadrilateral, tetrahedral, and hexahedral elements.
This code operates element by element, and thus we approximate the map F locally
by affine or bi/trilinear mappings, as mentioned in section 7.

We examined a large suite of test problems. In each case the boundary conditions
and the forcing term were constructed to match the prescribed solution. We report
in detail on a typical case and then summarize the results from the full test suite.

A typical case. Among the domains considered was that shown in Figure 9.2.
This figure illustrates the initial decomposition of the domain into elements. Cubic
splines were used to describe the mesh and all of its refinements. The resulting family
of meshes is smooth according to Definition 8.2.

In Table 9.2 we give detailed results for a test problem using Dirichlet boundary
conditions,

K =
(

1 0.5
0.5 3

)
,(9.1)
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TABLE 9.2
The errors in pressure and velocity for a typical example.

h ‖P − p‖M ‖U− u‖M
Mixed Cell-centered Mixed Cell-centered

0.1 0.09366 0.09648 5.70698 5.92678
0.05 0.02577 0.02422 2.93120 2.97586
0.025 0.00668 0.00608 1.47783 1.48691
Rate h2 h2 h h

and the analytic solution

p(x, y) = 1− 2.1 cos y + 3.1 cos 2y + 4 cos 3y

+ cosx(5 + 6.2 cos y − 7.1 cos 2y + 8 cos 3y)

+ cos 2x(9− 10 cos y + 1.1 cos 2y + 12 cos 3y).

(9.2)

We report errors in the pressure and velocity approximations for both the standard
mixed method and the cell-centered finite difference approximation described in sec-
tions 5 and 7. As can be seen, the mixed and cell-centered methods are equally
accurate and converge at the expected rate.

Summary of the test suite. We conducted approximately 200 experiments,
varying the domain, the shape of the elements, the type of mesh refinement used, the
boundary conditions, and the tensor K. We summarize results for ΓI = ∅, smooth
K, and smooth meshes that contain no tetrahedra. As we discuss in the next section,
nonsmoothness can degrade the accuracy.

In all smooth cases, the error in the pressure converged approximately like O(h2)
for the standard mixed method and the cell-centered finite difference method. Simi-
larly, the error in the flux converged at least as well as O(h) (grids of quadrilaterals
or hexahedra perform better, as noted above).

Using a conjugate gradient solver with no preconditioning, the mixed method im-
plemented as a saddle point problem took much longer than the unenhanced (ΓI = ∅)
cell-centered finite difference method (approximately 50 times longer on 2000 ele-
ments). On typical smooth problems, the unenhanced cell-centered method took
approximately half as much CPU time as the face-centered hybrid method (where we
take ΓI as large as possible).

On rectangles, velocities are superconvergent at special points and can be post-
processed to yield second-order accurate vector approximations everywhere [15]. A
postprocessing scheme for triangular meshes developed by one of the authors [21]
achieves a convergence rate for the postprocessed flux generally between h1.5 and h2,
depending in part on the smoothness of the mesh refinement process. As shown in [14],
on three-lines meshes, this and related postprocessing schemes recover second-order
accurate velocity fields, and they can be designed to conserve mass locally.

10. Nonsmooth meshes and tensors. In this section we discuss the case in
which K is not smooth; i.e., the mesh defined by F or the tensor K is not smooth.
In practice, it is common to define F from the mesh points themselves; therefore, the
mesh refinement process we use determines the smoothness of F . A mesh refinement
process is called hierarchical if an initial coarse mesh is refined using a smooth refine-
ment process (as in Definition 8.2) inside each of the original coarse elements; that is,
the meshes form a smooth family within each coarse element, but not necessarily as
a whole. In practice, most applications can use meshes and refinement schemes that
are smooth or hierarchical.
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(0,1)

(1,0)(-1,0)
(-1,0)

FIG. 10.1. A nonsmooth mesh.

FIG. 10.2. Pressure error on a hierarchically refined mesh using unenhanced cell-centered finite
differences.

We observed numerically that the accuracy of our unenhanced (ΓI = ∅) cell-
centered finite difference approach breaks down when K is not smooth. We demon-
strate this by two simple but typical examples with K = I. First consider the two-
triangle, “nonsmooth” mesh shown in Figure 10.1. Using Dirichlet boundary condi-
tions and taking the true solution p(x, y) = y, the standard mixed method reproduces
p at the centroids of the triangles and u exactly, as it must for O(h)-order accuracy.
The unenhanced cell-centered finite difference method, in contrast, fails to compute
either function correctly; for instance, it yields P = 0.357 instead of 0.333.

Figure 10.2 shows the error P − p for a second example on a hierarchical mesh
constructed from applying uniform refinement to a coarse mesh of two dissimilar
triangles. Within each coarse triangle, the mesh is smooth. Darker shades indicate
larger errors. Clearly, it is the jump in DF across the central line that produces the
main errors.

Since the normal component of û = −K∇̂p̂ is continuous across an interface, ˆ̃u
must be discontinuous across any interface where K changes discontinuously. Since
Ṽh = V Ih is discontinuous along ΓI , we align the discontinuities in K along ΓI . As
we refine our mesh, we add Lagrange multipliers only along ΓI . For the problem of
Figure 10.1, this enhanced method gives the exact solution in the case of linear p.

A typical case. We illustrate the enhanced cell-centered finite difference method
on a typical example posed on the domain and coarse hierarchical mesh shown in
Fig. 10.3. The domain is neither simply connected nor convex; moreover, we use both
rectangles and triangles. The domain was refined uniformly by replacing each triangle
or rectangle with four smaller but geometrically similar ones. The finest mesh had
2432 elements. The mapping F is clearly not smooth across edges of the coarse mesh
(i.e., ΓI), but it is smooth elsewhere.

In Table 10.1, we give results for a test problem using Dirichlet boundary condi-
tions, K defined by (9.1), and true solution (9.2). Indeed, the unenhanced method
loses accuracy (about one half power of h in this example, but in other examples
even more) in both pressure and flux as compared to the standard mixed method;
however, there is no loss in accuracy for the enhanced cell-centered finite difference
method. Moreover, if instead of this hierarchical refinement procedure, we use a
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FIG. 10.3. A complex domain with a hierarchical mesh.

TABLE 10.1
The pressure error ‖P − p‖M and the velocity error ‖U− u‖M for a hierarchical example.

h Mixed Unenhanced Enhanced
cell-centered cell-centered

p u p u p u
0.16 0.39 6.0 0.48 9.3 0.59 6.4
0.08 0.11 3.1 0.12 5.9 0.11 3.5
0.04 0.029 1.5 0.043 3.7 0.026 1.6
0.02 0.0076 0.77 0.019 2.5 0.0062 0.80
Rate h2 h h1.4 h0.6 h2 h

smooth procedure on the domain, then the unenhanced cell-centered finite difference
method achieves the same order of convergence as the other methods.

Summary of the test suite. We also considered the enhanced method and non-
smooth meshes in our test suite of the last section. For all methods, the convergence
rate was approximately O(h2) for the error in the pressure and at least as well as
O(h) for the error in the flux, except in the case of the unenhanced cell-centered
finite difference method on nonsmooth meshes. The enhanced method “corrects”
the cell-centered method in the presence of nonsmooth meshes or K. Moreover, on
hierarchical meshes that have coarse blocks with smooth, logically rectangular meshes,
the enhanced method achieved the usual superconvergence.

Recall that we used a conjugate gradient solver with no preconditioning. Gener-
ally, the enhanced method was somewhat slower than the hybrid method on coarse
meshes, since in the hybrid method we can further eliminate the pressures and solve
only for the Lagrange multipliers. By around four levels of mesh refinement, the two
methods took the same amount of time to solve, since the enhanced method does
not need Lagrange multipliers on every edge. The enhanced method outperforms the
hybrid method when additional refinement is used.

In many cases, Lagrange multipliers are needed only on the boundaries of a few el-
ements, as between rock strata in an aquifer. A similar situation arises when applying
the domain decomposition techniques described in [19], where Lagrange multipliers are
introduced only on the element faces between subdomains. In the enhanced method,
the multipliers are needed to preserve accuracy of the numerical solution; however, as
a side effect, they can be used to introduce parallelism into the solution process. In
[19, 18, 11, 10], various methods for solving such a system on parallel computers are
developed and analyzed.

Tetrahedral meshes. We close this section by returning to tetrahedral meshes.
Since regular tetrahedra do not fill space (whereas equilateral triangles do tile the
plane), tetrahedral meshes unavoidably produce discontinuous K everywhere. There-
fore, the cell-centered approach described in section 7 requires ΓI to include all element
faces. Experimentally we observe that the enhanced method gives O(h2) accuracy for
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the pressure and O(h) accuracy for the flux; however, since there are now Lagrange
multiplier pressures on every face, this is not necessarily an improvement on the hybrid
form of the standard mixed method.

11. An observation on the standard mixed method. Recall from the last
section that when K is discontinuous, its discontinuities need to align with ΓI and Ũ
must be discontinuous. Numerically, it has been observed that the standard mixed
method (G = K−1) performs well for discontinuous K even when ΓI = ∅. In this
case, as we now show, ũ is automatically approximated in a discontinuous space.

We rewrite the standard method in the following form. Find U ∈ V Ih , Ũ ∈ Ṽh,
P ∈Wh, and λ ∈ ΛI,Nh satisfying (3.1c), (3.1d) and

(K−1U, ṽ) = (Ũ, ṽ), ṽ ∈ Ṽh,(11.1a)

(Ũ,v)−
∑
i

(P,∇ · v)Ωi(11.1b)

= −〈gD,v · ν〉ΓD −
∑
i

〈λ,v · ν〉∂Ωi\ΓD , v ∈ V Ih .

Since V Ih ⊂ Ṽh, these two equations combine to give the standard mixed method.
Suppose that Ṽh is fully discontinuous (i.e., V Ih when each element is a subdo-

main), take the orthogonal decomposition Ṽh = V Ih ⊕V dh with respect to the L2 inner
product, and expand

Ũ = Ũc + Ũd, Ũc ∈ V Ih , and Ũd ∈ V dh .(11.2)

By orthogonality Ũc replaces Ũ in (11.1b); moreover, (11.1a) becomes the pair of
equations

(K−1U, ṽc) = (Ũc, ṽc), ṽc ∈ V Ih ,(11.3a)

(K−1U, ṽd) = (Ũd, ṽd), ṽd ∈ V dh .(11.3b)

That is, the combination of (11.1b) and (11.3a), together with (3.1c), (3.1d) forms
the standard mixed method, solvable without reference to Ũ. Then (11.3a) defines
the continuous part of Ũ, and (11.3b) defines the discontinuous part.

12. Some conclusions. The enhanced cell-centered finite difference method has
been defined rigorously as a quadrature approximation of the expanded mixed method
for general meshes of quadrilaterals, triangles, hexahedra, and tetrahedra. We saw
both theoretically and computationally that if K is smooth, the unenhanced method
is accurate and efficient on smooth meshes that are either logically rectangular or
triangular with six triangles per interior vertex (it appears to be about twice as fast as
competing methods). When K or the mesh is not smooth, the method loses accuracy,
but the enhanced variant of the method does not. This enhanced method is more
efficient than the hybrid form of the mixed method when the coarse subdomains are
sufficiently refined so that the enhanced method uses many fewer Lagrange multiplier
unknowns than the hybrid method, as when hierarchical meshes are used and/or when
K is continuous over relatively large subdomains. Meshes of tetrahedral elements,
however, are never smooth, so the unenhanced cell-centered finite difference method
always loses accuracy and either the standard hybrid method or the enhanced method
with Lagrange multipliers on every face should be used.
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Appendix. Proofs of Theorems 8.3 and 8.4.
Proof of Theorem 8.3. The theorem is the transformation of the results of [1, The-

orems 5.6 and 5.8]. To prove (8.10), we write

‖u−U‖2M =
∥∥J−1DF (û− Û)

∥∥2
M ≤ C‖û− Û‖2M.

Now, denoting v = (vx, vy) for v ∈ R2,

‖ûx − Ûx‖2M =
∑
Ê

(ûx − Ûx)2
ij |Ê|

≤
∑
Ê

{
1
2
[
(ûx − Ûx)i−1/2,j + (ûx − Ûx)i+1/2,j

]
+ Cĥ2

}2

|Ê|

≤ C
(
‖û− Û‖2T + ‖û− Û‖Tĥ2 + ĥ4) ≤ CF,3h2r,

using a result from [1] for the last inequality. A similar bound for ‖ûy − Ûy‖M
completes the proof of (8.10). Estimate (8.11) follows trivially from the bound of
‖û− Û‖T in [1] and the fact that v · ν = J−1

ν̂ v̂ · ν̂ for v ∈ H(div; Ω). To prove (8.12),
we observe that ∇̂ · Û = PŴ ∇̂ · û implies

‖∇̂ · (û− Û)‖M ≤ C‖∇̂ · û‖2ĥ2,

and, since ∇̂ · u = J−1∇̂ · û,

‖∇ · (u−U)‖M ≤ C‖∇̂ · (û− Û)‖M ≤ CF,3h2.

Finally, (8.13) follows from the estimate ‖PŴ p̂− P̂‖0 ≤ Cĥ2 proven in [1].
Proof of Theorem 8.4. Assume the grid consists of equilateral triangles; the general

case follows for curved elements as previously. Let

EQ(ψ) =
∑
T∈Eh

[ ∫
T

ψ dx−QT (ψ)
]

denote the quadrature error. It is well known [12] that

|EQ(ψ)| ≤
∑
T∈Eh

∑
i,j

∫
T

∣∣∣∣ ∂2ψ

∂xi∂xj

∣∣∣∣dxh2.(A.1)

If q ∈ (H2(Ω))d and v ∈ Vh, then v is piecewise linear and

|EQ(q · v)| ≤
∑
T∈Eh

∑
i,j

∫
T

(∣∣∣∣ ∂2q
∂xi∂xj

· v
∣∣∣∣+
∣∣∣∣ ∂q
∂xi
· ∂v
∂xj

∣∣∣∣)dxh2(A.2)

≤ C‖q‖2 ‖v‖1 h2 ≤ C‖q‖2 ‖v‖0 h

by an inverse inequality [9].
Let QV : (L2(Ω))d → Vh denote the discrete (L2)d-projection operator defined by∑

T∈Eh

QT ((QV q− q) · v) = 0, v ∈ Vh.
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Clearly [12],

‖QV q− q‖0 ≤ C‖q‖1 h.(A.3)

Let Π : (H1(Ω))d ⊕ Vh → Vh be the flux preserving projection [28, 13] defined by∑
E∈Eh

〈(Πq− q) · ν, µ〉∂E = 0, µ ∈ Λh.

By the divergence theorem, (∇ · (Πq − q), w) = 0 for w ∈ Wh, and approximation
theory gives that

‖Πq− q‖0 ≤ C‖q‖1 h,(A.4)
‖∇ · (Πq− q)‖0 ≤ C‖∇ · q‖1 h.(A.5)

Let PΛ : L2 → ΛNh denote the L2 projection defined by

〈PΛϕ− ϕ, µ〉ΓN = 0, µ ∈ ΛNh .

Easily, the L2-projection errors are

‖PΛϕ− ϕ‖0,ΓN ≤ C‖ϕ‖H1(ΓN ) h,(A.6)

‖PWψ − ψ‖0 ≤ C‖ψ‖1 h.(A.7)

For simplicity assume α is constant; the variable coefficient case follows as a
slight perturbation of the proof in the standard way. Subtracting the weak form of
the problem, (2.1) with G = I, from the discrete method, (5.3c), (5.3d), (7.3) with F
as the identity mapping, and inserting our projections operators give∑

T∈Eh

QT ((U−QV u) · ṽ) = (K(Ũ− ũ), ṽ) + EQ(u · ṽ), ṽ ∈ Vh,(A.8a)

∑
T∈Eh

QT ((Ũ−QV ũ) · v)− (P − PW p,∇ · v)(A.8b)

= −〈λ− PΛp,v · ν〉ΓN + EQ(ũ · v), v ∈ Vh,
(α(P − PW p), w) + (∇ · (U−Πu), w) = 0, w ∈Wh,(A.8c)

〈(U−Πu) · ν, µ〉ΓN = 0, µ ∈ ΛNh .(A.8d)

Take ṽ = Ũ−QV ũ, v = U−Πu, w = P−PW p, and µ = λ−PΛp. A combination
of the resulting equations yields

(α(P − PW p), P − PW p) + (K(Ũ−QV ũ), Ũ−QV ũ)

= EQ(ũ · (U−Πu))− EQ(u · (Ũ−QV ũ)) + (K(ũ−QV ũ), Ũ−QV ũ)

+
∑
T∈Eh

QT ((Ũ−QV ũ) · (Πu−QV u)).

Since
{∑

T∈Eh QT (v · v)}1/2 is equivalent to the L2-norm for v ∈ Vh, standard esti-
mates, (A.2), and (A.3) allow us to conclude that

‖
√
α(P − PW p)‖0 + ‖Ũ−QV ũ‖0(A.9)

≤ C{
[
‖ũ‖2 + ‖u‖2

]
h+ ‖Πu−QV u‖0}+ ε‖U−Πu‖0
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for any ε > 0. If we take ṽ = U−QV u in (A.8a), then∑
T∈Eh

QT ((U−QV u) · (U−QV u)) = (K(Ũ− ũ),U−QV u) + EQ(u · (U−QV u)),

and so

‖U−QV u‖0 ≤ C{‖u‖2 h+ ‖Ũ− ũ‖0}.(A.10)

If w = ∇ · (U−Πu) in (A.8c) and we manipulate the expression as above, then

‖∇ · (U−Πu)‖0 ≤ C‖
√
α(P − PW p)‖0.(A.11)

Finally, let v ∈ Vh be chosen such that for some ψ,

∇ · v = P − PW p− PW (αψ),
‖ψ‖0 + ‖v‖0 ≤ C‖P − PW p‖0,
v · ν = 0 on ΓN .

Such a v exists [28, 13]; for example, solve

αψ −∇ ·K∇ψ = P − PW p in Ω,

ψ = 0 on ΓD,

K∇ψ · ν = 0 on ΓN ,

and then define v = −ΠK∇ψ, which preserves the normal flux and divergence of
−K∇ψ by the properties of Π and which bounds the norms by approximation and
elliptic regularity theory. This v in (A.8b) gives

‖P − PW p‖0 ≤ C{‖ũ‖2 h+ ‖Ũ−QV ũ‖0 + ‖
√
α(P − PW p)‖0}.(A.12)

The theorem follows from the approximation properties of the projections and (A.9)–
(A.12).
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[15] R. DURÁN, Superconvergence for rectangular mixed finite elements, Numer. Math., 58 (1990),

pp. 287–298.
[16] R. E. EWING, R. D. LAZAROV, AND J. WANG, Superconvergence of the velocity along the Gauss

lines in mixed finite element methods, SIAM J. Numer. Anal., 28 (1991), pp. 1015–1029.
[17] L. GASTALDI AND R. NOCHETTO, Optimal L∞-error estimates for nonconforming and mixed

finite element methods of lowest order, Numer. Math., 50 (1987), pp. 587–611.
[18] R. GLOWINSKI, W. KINTON, AND M. F. WHEELER, Acceleration of domain decomposition

algorithms for mixed finite elements by multi-level methods, in Proceedings of the Third
International Symposium on Domain Decomposition Methods for Partial Differential Equa-
tions, T. F. Chan, R. Glowinski, J. Periaux, and O. B. Widlund, eds., SIAM, Philadelphia,
PA, 1990, pp. 263–289.

[19] R. GLOWINSKI AND M. F. WHEELER, Domain decomposition and mixed finite element methods
for elliptic problems, in First International Symposium on Domain Decomposition Meth-
ods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and
J. Periaux, eds., SIAM, Philadelphia, PA, 1988, pp. 144–172.

[20] P. T. KEENAN, RUF 1.0 User Manual: The Rice Unstructured Flow Code, Technical Re-
port TR94–30, Department of Computational and Applied Mathematics, Rice University,
Houston, TX, 1994.

[21] P. T. KEENAN, An Efficient Postprocessor for Velocities from Mixed Methods on Triangular
Elements, Technical Report TR94–22, Department of Computational and Applied Mathe-
matics, Rice University, Houston, TX, 1994.

[22] J. KOEBBE, A computationally efficient modification of mixed finite element methods for flow
problems with full transmissivity tensors, Numer. Methods Partial Differential Equations,
9 (1993), pp. 339–355.

[23] H.-O. KREISS, T. A. MANTEUFFEL, B. K. SWARTZ, B. WENDROFF, AND A. B. WHITE, Supra-
convergent schemes on irregular grids, Math. Comp., 47 (1986), pp. 511–535.

[24] M. NAKATA, A. WEISER, AND M. F. WHEELER, Some superconvergence results for mixed
finite element methods for elliptic problems on rectangular domains, in The Mathematics
of Finite Elements and Applications V, J. R. Whiteman, ed., Academic Press, New York,
1985.

[25] J. C. NEDELEC, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315–341.
[26] V. J. PARR, Preconditioner Schemes for Elliptic Saddle-Point Matrices Based upon Jacobi

Multi-Band Polynomial Matrices, Ph.D. thesis, Department of Computational and Applied
Math., Rice University, Houston, TX, 1994.

[27] D. W. PEACEMAN, Fundamentals of Numerical Reservoir Simulation, Elsevier, New York,
1977.

[28] R. A. RAVIART AND J. M. THOMAS, A mixed finite element method for 2nd order elliptic
problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math.
606, Springer-Verlag, New York, 1977, pp. 292–315.

[29] T. F. RUSSELL AND M. F. WHEELER, Finite element and finite difference methods for con-
tinuous flows in porous media, Chapter II, in The Mathematics of Reservoir Simulation,
Frontiers Appl. Math. 1, R. E. Ewing, ed., SIAM, Philadelphia, PA, 1983, pp. 35–106.

[30] T. RUSTEN, Iterative Methods for Mixed Finite Element Systems, Ph.D. thesis, Department of
Informatics, University of Oslo, 1991.

[31] J. M. THOMAS, Sur l’analyse numerique des methodes d’elements finis hybrides et mixtes,
These de Doctorat d’etat, l’Universite Pierre et Marie Curie, Paris, France, 1977.



ENHANCED CELL-CENTERED FINITE DIFFERENCES 425

[32] A. N. TIKHONOV AND A. A. SAMARSKII, Homogeneous difference schemes on non-uniform
nets, Zh. Vychisl. Mat. i Mat. Fiz., 2 (1962), pp. 812–832 (in Russian); USSR Comput.
Math. and Math. Phys., 2 (1962), pp. 927–953 (in English).

[33] A. WEISER AND M. F. WHEELER, On convergence of block-centered finite-differences for el-
liptic problems, SIAM J. Numer. Anal., 25 (1988), pp. 351–375.

[34] M. F. WHEELER, K. R. ROBERSON, AND A. CHILAKAPATI, Three-dimensional bioremediation
modeling in heterogeneous porous media, in Computational Methods in Water Resources
IX, Vol. 2: Mathematical Modeling in Water Resources, T. F. Russell et al., eds., Compu-
tational Mechanics Publications, Southampton, U.K., 1992, pp. 299–315.


