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1. Introduction

Mixed finite element (MFE) methods16,37 are commonly used for modeling of fluid

flow and transport, as they provide accurate and locally mass conservative veloci-

ties and robustness with respect to heterogeneous, anisotropic, and discontinuous

coefficients. A disadvantage of the MFE methods in their standard form is that they

result in coupled velocity-pressure algebraic systems of saddle-point type, which

restricts the use of efficient iterative solvers. To address this issue, there has been

extensive work on developing modifications of MFE methods that can be reduced

to positive definite systems, such as hybridization10,16 or relating them to cell-

centered finite difference or finite volume methods. In the latter approach, a common

technique is to employ special quadrature rules, also referred to as mass lumping,

that allow for local velocity elimination, resulting in cell-centered pressure systems.

Early works of Refs. 13, 38 and 44 based on the lowest order Raviart–Thomas

(RT0) spaces36 were limited to two-point flux approximations, which were not

robust for general quadrilateral grids or tensor-valued coefficients. An extension to

higher order RT spaces, as well as the second-order Brezzi–Douglas–Fortin–Marini

(BDFM2) spaces16 was developed in Ref. 18, but was also limited to rectangular

grids and diagonal tensor coefficients. The expanded MFE method6,7 was designed

to handle full tensor coefficients and general grids, but suffered from reduced con-

vergence for problems with discontinuous coefficients.

More recently, a special MFE method, the multipoint flux mixed finite element

(MFMFE) method27,47 was developed, which reduces to cell-centered finite differ-

ences on quadrilateral, hexahedral and simplicial grids, and exhibits robust perfor-

mance for discontinuous full tensor coefficients. The method was motivated by the

multipoint flux approximation (MPFA) method,1–3,21,22 which was developed as a

finite volume method. Unlike the MPFA method, the variational formulation of the

MFMFE method allows for its complete theoretical study of well-posedness and

convergence. The MFMFE method is based on the lowest order Brezzi–Douglas–

Marini (BDM1) space
15,35 on simplices and quadrilaterals, and an enhanced Brezzi–

Douglas–Duran–Fortin (BDDF1) space
14,27 on hexahedra. The method utilizes the

trapezoidal quadrature rule for the velocity mass matrix, which reduces it to a

block-diagonal form with blocks associated with mesh vertices. The velocities can

then be easily eliminated, resulting in a cell-centered pressure system. A similar

approach was also presented independently in Ref. 17 for simplicial grids, and a

related formulation based on a broken Raviart–Thomas space was developed in

works of Refs. 29 and 30. Motivated by the work in Ref. 30, a nonsymmetric version

of the MFMFE method designed to converge on general quadrilateral and hexa-

hedral grids was developed in Ref. 45. A multiscale mortar MFMFE method on

multiple subdomains with non-matching grids was proposed in Ref. 46. In the work

of Ref. 33, a local flux mimetic finite difference method was developed on poly-

hedral grids, exploring connections to the MFMFE and MPFA methods, see also

related work in Refs. 28 and 40. Furthermore, on simplicial grids and for problems
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with full tensor coefficients, using the MPFA principle, it was shown in Refs. 41, 42

and 48 that the RT0 MFE method can be related to a finite volume method with

one pressure unknown per element.

To the best of our knowledge, the aforementioned MPFA and MFMFE methods

with theoretical convergence proofs are limited to the lowest order approximation.

In this paper, we develop a family of arbitrary order symmetric MFMFE methods

on h2-perturbed quadrilateral and hexahedral grids. The main obstacle in extending

the original lowest order BDM1 and BDDF1 MFMFE methods to higher order is

that the degrees of freedom of their higher order versions cannot be associated with

tensor-product quadrature rules. To circumvent this difficulty, we construct a new

family of mixed finite elements fulfilling this requirement. A key of the construction

is the finite element exterior calculus framework,11,12 which is used in the extension

of MFMFE to Hodge Laplace equations.31 However, we consider only the two- and

three-dimensional cases with H(div) element in this paper, so no prerequisite of

the exterior calculus language is necessary. The new spaces are enhanced Raviart–

Thomas spaces with bubbles that are curls of specially chosen polynomials, so that

each component of the velocity vector is of dimension Qk(Rd) and the velocity

degrees of freedom can be associated with the points of a tensor-product Gauss–

Lobatto quadrature rule.4 The application of this quadrature rule leads to a block-

diagonal velocity mass matrix with blocks corresponding to the nodes associated

with the velocity degrees of freedom. This allows for a local elimination of the fluxes

in terms of the pressures from the surrounding elements, either sharing a vertex,

or an edge/face. This procedure results in a symmetric and positive-definite cell-

based system for the pressures with a compact stencil, allowing for efficient solvers

to be used. The proposed technique allows for more straightforward and efficient

implementation and results in reduced computational time. We remark that the

lowest order version of our new elements has the same number of degrees of freedom

as the elements used in previous MFMFE methods, but they are different elements.

This work is not a direct extension of the previous MFMFE methods to higher order,

but a new framework for explicit construction of higher order MFMFE methods.

We present well-posedness and convergence analysis of the proposed family of

higher order methods. To this end, we establish unisolvency and approximation

properties of arbitrary order k of the new family of enhanced Raviart–Thomas

family of spaces. Since we study the symmetric version of the MFMFE method,

which relies on mapping to a reference element via the Piola transformation, the

analysis is limited to h2-perturbed parallelograms or parallelepipeds, similar to the

restriction in the lowest order symmetric MFMFE method.27,47 The convergence

analysis combines MFE analysis tools with quadrature error analysis, using that the

Gauss–Lobatto quadrature rule possesses sufficient accuracy to preserve the order

of convergence. We establish convergence of kth order for the velocity in the H(div)-

norm and the pressure in the L2-norm. We also employ a duality argument to show

that the numerical pressure is (k+1)st order superconvergent to the L2-projection



May 24, 2019 15:36 WSPC/103-M3AS 1950016

1040 I. Ambartsumyan et al.

of the pressure in the finite element space, which implies superconvergence at the

Gauss points. Moreover, we show that a variant of the local postprocessing devel-

oped in Ref. 39 results in a pressure that is (k + 1)st order accurate in the full

L2-norm. All theoretical results are verified numerically.

The rest of the paper is organized as follows. The new family of finite element

spaces and the general order MFMFE methods are developed in Sec. 2. The error

analyses for the velocity and pressure are presented in Secs. 3 and 4, respectively.

Numerical experiments are presented in Sec. 5.

2. Definition of the Method

2.1. Preliminaries

We consider a second-order elliptic PDE written as a system of two first-order

equations,

u = −K∇p, ∇ · u = f in Ω, (2.1)

p = g on ΓD, u · n = 0 on ΓN , (2.2)

where Ω ⊂ Rd (d = 2, 3) is an open bounded polytopal domain with a boundary

∂Ω = Γ̄D ∪ Γ̄N such that ΓD ∩ ΓN = ∅, with measure(ΓD) > 0. Here, n is the

outward unit normal vector field on ∂Ω, and K is symmetric and uniformly positive

definite tensor satisfying, for some 0 < k0 < k1 < ∞,

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ, ∀x ∈ Ω, ∀ ξ ∈ Rd. (2.3)

In applications related to modeling flow in porous media, p is the pressure, u is the

Darcy velocity, and K represents the permeability tensor divided by the viscosity.

The above choice of boundary conditions is made for the sake of simplicity. More

general boundary conditions, including nonhomogeneous full Neumann ones, can

also be treated.

Throughout the paper, we will use the following standard notation. For a domain

G ⊂ Rd, the L2(G) inner product and norm for scalar- and vector-valued functions

are denoted by
(
·, ·
)
G

and ‖ · ‖G, respectively. The norms and seminorms of the

Sobolev spaces W s,p(G), s ∈ R, p ≥ 1 are denoted by ‖ · ‖s,p,G and | · |s,p,G,
respectively. Conventionally, the norms and seminorms of Hilbert spaces Hs(G) are

denoted by ‖ · ‖s,G and | · |s,G, respectively. We omit G in the subscript if G = Ω.

For a section of the domain or element boundary S ⊂ Rd−1 we write 〈·, ·〉S and

‖ · ‖S for the L2(S) inner product (or duality pairing) and norm, respectively. For

a tensor-valued function M , let ‖M‖α = maxi,j ‖Mi,j‖α for any norm ‖M‖α. We

will also use the space

H(div; Ω) = {v ∈ L2(Ω,Rd) : ∇ · v ∈ L2(Ω)}

equipped with the norm

‖v‖div = (‖v‖2 + ‖∇ · v‖2)1/2.
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The weak formulation for (2.1)–(2.2) reads as follows: find (u, p) ∈ V × W such

that (
K−1u,v

)
−
(
p,∇ · v

)
= −〈g, v · n〉ΓD , v ∈ V, (2.4)(

∇ · u, w
)
=
(
f, w

)
, w ∈ W, (2.5)

where

V = {v ∈ H(div; Ω) : v · n = 0 on ΓN}, W = L2(Ω).

It was shown16,37 that (2.4)–(2.5) has a unique solution.

2.2. A finite element mapping

Let Th be a finite element partition of Ω consisting of quadrilaterals in 2d or hexa-

hedra in 3d, where h = maxE∈Th
diam(E). We assume Th to be shape regular and

quasi-uniform.22 For any element E ∈ Th there exists a bilinear (trilinear) bijec-

tion mapping FE : Ê → E, where Ê = [−1, 1]d is the reference square (cube).

Denote the Jacobian matrix by DFE , and let JE = |det(DFE)|. Denote the inverse

mapping by F−1
E , its Jacobian matrix by DF−1

E , and let JF−1
E

= |det(DF−1
E )|. For

x̂ = F−1
E (x) we have that

DF−1
E (x) = (DFE)

−1(x̂), JF−1
E

(x) =
1

JE(x̂)
.

Denote by r̂i, i = 1, . . . , 2d, the vertices of Ê, where r̂1 = (0, 0)T , r̂2 = (1, 0)T , r̂3 =

(1, 1)T , and r̂4 = (0, 1)T in 2d, and r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T , r̂3 = (1, 1, 0)T ,

r̂4 = (0, 1, 0)T , r̂5 = (0, 0, 1)T , r̂6 = (1, 0, 1)T , r̂7 = (1, 1, 1)T , and r̂8 = (0, 1, 1)T in

3d. Let ri, i = 1, . . . , 2d, be the corresponding vertices of element E. The outward

unit normal vector fields to the facets of E and Ê are denoted by ni and n̂i,

i = 1, . . . , 2d, respectively, where facet is a face in 3d or an edge in 2d. The bilinear

(trilinear) mapping is given by

FE(r̂) = r1 + r21x̂+ r41ŷ + (r34 − r21)x̂ŷ, in 2d, (2.6)

FE(r̂) = r1 + r21x̂+ r41ŷ + r51ẑ + (r34 − r21)x̂ŷ + (r65 − r21)x̂ẑ

+(r85 − r41)ŷẑ + ((r21 − r34)− (r65 − r78))x̂ŷẑ, in 3d, (2.7)

where rij = ri − rj . For the 3d case, we note that the elements can have nonplanar

faces.

Let φ̂(x̂) be defined on Ê, and let φ = φ̂ ◦ F−1
E . Using the classical formula

∇φ = (DF−1
E )T ∇̂φ̂, it is easy to see that for any facet ei ⊂ ∂E

ni =
1

Jei
JE(DF−1

E )T n̂i, Jei = |JE(DF−1
E )T n̂i|Rd , (2.8)
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where | · |Rd denotes the Euclidean vector norm in Rd. Another straightforward

calculation shows that, for all element types, the mapping definitions and the shape-

regularity and quasi-uniformity of the grids imply that

‖DFE‖0,∞,Ê ∼ h, ‖JE‖0,∞,Ê ∼ hd, and

‖DF−1
E ‖0,∞,E ∼ h−1, ‖JF−1

E
‖0,∞,E ∼ h−d,

(2.9)

where the notation a ∼ b means that there exist positive constants c0, c1 indepen-

dent of h such that c0b ≤ a ≤ c1b.

2.3. The Raviart–Thomas mixed finite element spaces

Let Pk denote the space of polynomials of total degree ≤ k and let Qk denote

the space of polynomials of degree ≤ k in each variable. We will make use of the

Raviart–Thomas spaces for the construction of the spaces needed for the proposed

method. The RTk spaces are defined for k ≥ 0 on the reference cube as

V̂k
RT (Ê) =



Qk +Qkx̂

Qk +Qkŷ

Qk +Qkẑ


, Ŵ k(Ê) = Qk(Ê). (2.10)

The definition on the reference square can be obtained naturally from the one above.

It holds that

∇̂ · V̂k
RT (Ê) = Ŵ k(Ê) and v̂ · n̂ê ∈ Qk(ê) ∀ v̂ ∈ V̂k

RT (Ê), ∀ ê ⊂ ∂Ê.

(2.11)

The projection operator Π̂k
RT : H1(Ê,Rd) → V̂k

RT (Ê) satisfies

for k ≥ 0, 〈(q̂ − Π̂k
RT q̂) · nê, p̂〉ê = 0, ∀ p̂ ∈ Qk(ê), ∀ ê ⊂ ∂Ê, (2.12)

for k ≥ 1,
(
Π̂k

RT q̂− q̂, p̂
)
Ê
= 0, ∀ p̂ ∈




(
Pk−1(x̂)⊗ Pk(ŷ)

Pk−1(ŷ)⊗ Pk(x̂)

)
in 2d,



Pk−1(x̂)⊗Qk(ŷ, ẑ)

Pk−1(ŷ)⊗Qk(x̂, ẑ)

Pk−1(ẑ)⊗Qk(x̂, ŷ)


 in 3d.

(2.13)

The Raviart–Thomas spaces on any quadrilateral or hexahedral element E ∈ Th
are defined via the transformations

v ↔ v̂ : v =
1

JE
DFEv̂ ◦ F−1

E , w ↔ ŵ : w = ŵ ◦ F−1
E , (2.14)

where the contravariant Piola transformation is used for the velocity space. Under

this transformation, the normal components of the velocity vectors on the facets
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are preserved. In particular,16

∀ v̂ ∈ V̂k
RT (Ê), ∀ ŵ ∈ Ŵ k(Ê),(

∇ · v, w
)
E
=
(
∇̂ · v̂, ŵ

)
Ê

and 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê,
(2.15)

which imply

v · ne =
1

Je
v̂ · n̂ê, ∇ · v(x) =

(
1

JE
∇̂ · v̂

)
◦ F−1

E (x). (2.16)

The RTk spaces on Th are given by

Vk
RT,h =

{
v ∈ V :v|E ↔ v̂, v̂ ∈ V̂k

RT (Ê), E ∈ Th
}
,

W k
h =

{
w ∈ W :w|E ↔ ŵ, ŵ ∈ Ŵ k(Ê), E ∈ Th

}
.

(2.17)

Using the Piola transformation, we define a projection operator Πk
RT from V ∩

H1(Ω,Rd) onto Vk
RT,h satisfying on each element

Πk
RTq ↔ Π̂k

RTq, Π̂k
RTq = Π̂k

RT q̂. (2.18)

Using (2.16), (2.12)–(2.13) and (2.18), it is straightforward to show that Πk
RTq · n

is continuous across element facets, so Πk
RTq ∈ H(div; Ω). Similarly, one can see

that Πk
RTq · n = 0 on ΓN if q · n = 0 on ΓN , so Πk

RTq ∈ Vk
RT,h. Details of these

arguments can be found in Refs. 9, 16, 27, 43, 47.

2.4. Enhanced Raviart–Thomas finite elements

In this section we develop a new family of enhanced Raviart–Thomas spaces, which

is used in our method. We present the definitions of shape functions and degrees of

freedom and discuss their unisolvency. The idea of the construction is to enhance the

Raviart–Thomas spaces with bubbles that are curls of specially chosen polynomials,

so that each component of the velocity vector is of dimension Qk(Rd) and the

velocity degrees of freedom can be associated with the points of a tensor-product

Gauss–Lobatto quadrature rule.

2.4.1. Shape functions

In this subsection we adopt a convention for compact notation that w−1 = 0 for

a polynomial variable w unless it is multiplied by w. For example, it holds that

x̂−1(x̂, ŷ, x̂2ẑ)T = (1, 0, x̂ẑ)T . For k ≥ 1 and integers d1, d2, d3, define

Bk
1(Ê) = span





x̂d1 ŷd2 ẑd3

0

0


 : 0 ≤ d1, d2, d3 ≤ k, d2 = k or d3 = k


,
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Bk
2(Ê) = span






0

x̂d1 ŷd2 ẑd3

0


 : 0 ≤ d1, d2, d3 ≤ k, d1 = k or d3 = k


,

Bk
3(Ê) = span






0

0

x̂d1 ŷd2 ẑd3


 : 0 ≤ d1, d2, d3 ≤ k, d1 = k or d2 = k




on the reference element Ê. While the above construction was done explicitly in

3d, it translates naturally to 2d by omitting the ẑ terms. We now define the space

Bk as

Bk(Ê) =
d⋃

i=1

Bk
i . (2.19)

It is clear from the above definition that Qk(Ê,Rd) = V̂k−1
RT (Ê) ⊕ Bk(Ê) in both

2d and 3d.

For q̂ ∈ Bk(Ê), we then consider ∇̂ × (x̂ × q̂). Here, we use the regular curl

and cross product operators in 3d. The cross product applies to a 2d vector by

representing the vector as a 3d one, with zeroed out third component, resulting in a

scalar function, i.e. x̂×q̂ = x̂q2 − ŷq1 for q̂ = (q1, q2)
T . In 2d, ∇̂× applies to a scalar

function φ by representing the scalar function as a 3d vector with zero first and

second components, and the first and second components of the result is defined as

∇̂ × φ, i.e. ∇̂ × φ = (−∂2φ, ∂1φ)
T . Therefore, if q̂ = (q1, 0)

T with q1 = x̂a1 ŷa2 ,

∇̂ × (x̂× q̂) = x̂a1−1ŷa2

(
(a2 + 1)x̂

−a1ŷ

)
.

We are now ready to construct a space isomorphic to Bk(Ê), which is better suited

for the analysis as well as for practical implementation. More precisely, we define

B̃k

i (Ê) = ∇̂ × (x̂×Bk
i (Ê)), i = 1, . . . , d, and B̃k

(Ê) =

d⋃
i=1

B̃k

i (Ê).

One can check that in 2d,

B̃k

1(Ê) = span

{
x̂a1−1ŷa2

(
(a2 + 1)x̂

−a1ŷ

)
: 0 ≤ a1, a2 ≤ k, a2 = k

}
, (2.20)

B̃k

2(Ê) = span

{
x̂b1 ŷb2−1

(
−b2x̂

(b1 + 1)ŷ

)
: 0 ≤ b1, b2 ≤ k, b1 = k

}
, (2.21)

and in 3d,

B̃k

1(Ê) = span


x̂a1−1ŷa2 ẑa3



(a2 + a3 + 2)x̂

−a1ŷ

−a1ẑ


 :

0 ≤ a1, a2, a3 ≤ k,

a2 = k or a3 = k


, (2.22)
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B̃k

2(Ê) = span


x̂b1 ŷb2−1ẑb3




−b2x̂

(b1 + b3 + 2)ŷ

−b2ẑ


 :

0 ≤ b1, b2, b3 ≤ k,

b1 = k or b3 = k


, (2.23)

B̃k

3(Ê) = span


x̂c1 ŷc2 ẑc3−1




−c3x̂

−c3ŷ

(c1 + c2 + 2)ẑ


 :

0 ≤ c1, c2, c3 ≤ k,

c1 = k or c2 = k


. (2.24)

We define the enhanced Raviart–Thomas space V̂k(Ê) as

V̂k(Ê) = V̂k−1
RT (Ê) + B̃k

(Ê). (2.25)

Theorem 2.1. The sum (2.25) is a direct sum, i.e. V̂k(Ê) = V̂k−1
RT (Ê)⊕ B̃k

(Ê),

and dim V̂k(Ê) = dimQk(Ê,Rd).

Proof. We will prove that the space B̃k
(Ê) is isomorphic to Bk(Ê). It suffices to

show that the map q̂ �→ ∇̂ × (x̂× q̂) is injective on Bk(Ê). To see it, suppose that

a linear combination of the elements of (2.22)–(2.24) is zero. Note that all elements

in each space of (2.22)–(2.24) have distinct polynomials degrees. Therefore, for a

component of fixed degrees of x̂, ŷ, ẑ in the linear combination, only one element

of each space is used to generate the component. This implies that

αx̂a1−1ŷa2 ẑa3



(a2 + a3 + 2)x̂

−a1ŷ

−a1ẑ


+ βx̂b1 ŷb2−1ẑb3




−b2x̂

(b1 + b3 + 2)ŷ

−b2ẑ




+ γx̂c1 ŷc2 ẑc3−1




−c3x̂

−c3ŷ

(c1 + c2 + 2)ẑ


 = 0,

with some coefficients α, β, γ and

a1 = b1 + 1 = c1 + 1, b2 = a2 + 1 = c2 + 1, c3 = a3 + 1 = b3 + 1. (2.26)

We will prove that α = β = γ = 0. If a2 = k, then β = 0 due to 0 ≤ ai, bi, ci ≤ k

and (2.26). Comparing the components of the above equation, we have

−αa1 − γ(a3 + 1) = 0, −αa1 + γ(a1 + a2 + 1) = 0,

and therefore α = γ = 0. Similarly, γ = 0 if a3 = k due to (2.26), and a similar

argument gives

−αa1 − β(a3 + 1) = 0, −αa1 + β(a1 + a2 + 1) = 0,

which results in α = β = 0. Since this argument holds for any component of

the same polynomial degrees, the map q̂ �→ ∇̂ × (x̂ × q̂) is injective on Bk(Ê),
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and therefore it is an isomorphism from Bk(Ê) to B̃k
(Ê). This implies that the

monomials in (2.20)–(2.21) and (2.22)–(2.24) form a basis of B̃k
(Ê). Note that

every element of B̃k

i (Ê) in (2.20)–(2.24) contains at least one entry with a variable

of degree k + 1, therefore V̂k−1
RT (Ê) ∩ B̃k

(Ê) = {0}, i.e. the sum (2.25) is a direct

sum. This implies that dim V̂k(Ê) = dimQk(Ê,Rd).

2.4.2. Degrees of freedoms and unisolvency

Using the definition (2.25) of V̂k(Ê) and the definitions of V̂k−1
RT (Ê) and B̃k

(Ê),

we have that for q̂ ∈ V̂k(Ê),

in 2d: q1 ∈ Pk+1(x̂)⊗ Pk(ŷ), q2 ∈ Pk+1(ŷ)⊗ Pk(x̂),

in 3d: q1 ∈ Pk+1(x̂)⊗Qk(ŷ, ẑ), q2 ∈ Pk+1(ŷ)⊗Qk(x̂, ẑ),

q3 ∈ Pk+1(ẑ)⊗Qk(x̂, ŷ).

For the degrees of freedom of V̂k, we consider the following moments:

for k ≥ 1, q̂ �→
∫
ê

q̂ · n̂ê p̂, ∀ p̂ ∈ Qk(ê), ∀ ê ∈ ∂Ê, (2.27)

for k ≥ 2, q̂ �→
∫
Ê

q̂ · p̂, ∀ p̂ ∈




(
Pk−2(x̂)⊗ Pk(ŷ)

Pk−2(ŷ)⊗ Pk(x̂)

)
in 2d,



Pk−2(x̂)⊗Qk(ŷ, ẑ)

Pk−2(ŷ)⊗Qk(x̂, ẑ)

Pk−2(ẑ)⊗Qk(x̂, ŷ)


 in 3d.

(2.28)

The number of degrees of freedom given by (2.27) and (2.28) is 2d(k+1)d−1 and

d(k − 1)(k + 1)d−1, respectively. Therefore the total number of DOFs is d(k + 1)d,

which is same as the dimQk(Ê,Rd). We notice that similarly to classical mixed finite

elements such as the Raviart–Thomas or Brezzi–Douglas–Marini families of ele-

ments, the first set of moments (2.27) stands for facet DOFs, which will be required

to be continuous across the facet. The second set of moments (2.28) represents inte-

rior DOFs, and no continuity requirements will be imposed on these. These new

elements can be viewed as the Raviart–Thomas family with added bubbles, which

are curls of specially chosen polynomials.

Theorem 2.2. Let V̂k(Ê) be defined as in (2.25). For v̂ ∈ V̂k(Ê) suppose that

the evaluations of DOFs (2.27) and (2.28) are all zeros. Then v̂ = 0.

Proof. Without loss of generality, we present the proof for Ê = [−1, 1]d. We prove

the theorem in 3d, while the 2d result can be obtained in the same manner. From the



May 24, 2019 15:36 WSPC/103-M3AS 1950016

Higher order multipoint flux mixed finite element methods 1047

definition of shape functions of V̂k(Ê), v̂ · n̂ê ∈ Qk(ê) for a face ê of Ê. Therefore,

vanishing DOFs (2.27) imply that

v̂ =



v1

v2

v3


 =



(1− x̂2)ṽ1(x̂, ŷ, ẑ)

(1− ŷ2)ṽ2(x̂, ŷ, ẑ)

(1− ẑ2)ṽ3(x̂, ŷ, ẑ)


, (2.29)

with

ṽ1 ∈ Pk−1(x̂)⊗Qk(ŷ, ẑ), ṽ2 ∈ Pk−1(ŷ)⊗Qk(x̂, ẑ), ṽ3 ∈ Pk−1(ẑ)⊗Qk(x̂, ŷ).

In addition, the vanishing DOFs (2.28) further reduce ṽi, i = 1, 2, 3, to

ṽ1 = Lk−1
w (x̂)w1(ŷ, ẑ), ṽ2 = Lk−1

w (ŷ)w2(x̂, ẑ), ṽ3 = Lk−1
w (ẑ)w3(x̂, ŷ), (2.30)

where w1 ∈ Qk(ŷ, ẑ), etc., and Lk−1
w (t) is the monic polynomial of degree k − 1 on

[−1, 1] orthogonal to Pk−2(t) with weight (1 − t2). Since all monomials in V̂k(Ê)

are of degree ≤ 3k, ŷkẑk is not contained in w1(ŷ, ẑ). Similar statements hold with

ẑkx̂k, x̂k ŷk and w2(x̂, ẑ), w3(x̂, ŷ), respectively. Therefore, we can write

w1(ŷ, ẑ) = ŷkp1(ẑ) + ẑkq1(ŷ) + w̃1(ŷ, ẑ),

where p1 ∈ Pk−1(ẑ), q1 ∈ Pk−1(ŷ), w̃1(ŷ, ẑ) ∈ Qk−1(ŷ, ẑ); similar expressions are

available for w2 and w3. If p1 �= 0, v1 has monomials with factor x̂k+1ŷk. From the

forms of B̃k

i (Ê), i = 1, 2, 3, this can be obtained only from a linear combination of

elements in B̃k

3(Ê) with c1 = c2 = k. However, a linear combination of elements in

B̃k

3(Ê) which gives x̂k+1ŷkp1(ẑ) in the first component also has the third component

−(2k+ 2)x̂kŷkP1(ẑ) where P1(ẑ) is the anti-derivative of p1(ẑ) with P1(0) = 0. All

terms in v3 having x̂kŷk as a factor are obtained only from B̃k

3(Ê). Furthermore, v3
does not contain any terms with factor x̂k ŷk due to the form of w3 we discussed,

therefore P1 = 0 and p1 = 0 as well. Applying a similar argument we can conclude

that q1 = 0, so w1 ∈ Qk−1(ŷ, ẑ). In addition, we can show that w2 ∈ Qk−1(x̂, ẑ)

and w3 ∈ Qk−1(x̂, ŷ) by similar arguments.

We now claim that ∇· v̂ = 0. First, ∇· v̂ ∈ Qk−1(Ê) holds from the definition of

the shape functions. Then the Green’s identity and the vanishing DOFs assumption

give ∫
Ê

∇ · v̂q dx̂ =

∫
∂Ê

v̂ · n q dŝ−
∫
Ê

v̂ · ∇q dx̂ = 0 (2.31)

for any q ∈ Qk−1(Ê). In particular q = ∇ · v̂ gives ∇ · v̂ = 0. From the expression

of v̂ in (2.30),

0 = ∇ · v̂ = L̃k(x̂)w1(ŷ, ẑ) + L̃k(ŷ)w2(x̂, ẑ) + L̃k(ẑ)w3(x̂, ŷ),

where L̃k(t) = d
dt((1 − t2)Lk−1

w (t)). For 0 ≤ i ≤ k − 1, note that∫ 1

−1

L̃k(t)ti dt = −i

∫ 1

−1

(1− t2)Lk−1
w (t)ti−1 dt = 0
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by integration by parts and the definition of Lk−1
w . From this observation, we can

obtain

0 =

∫
Ê

(∇ · v̂)L̃k(x̂)w1(ŷ, ẑ)dx̂ =

∫
Ê

(L̃k(x̂)w1(ŷ, ẑ))
2 dx̂,

which implies w1 = 0. We can conclude w2 = w3 = 0 with similar arguments,

therefore v̂ = 0.

2.4.3. Mixed finite element spaces

For k ≥ 1, consider the pair of mixed finite element spaces V̂k(Ê) × Ŵ k−1(Ê),

recalling that

V̂k(Ê) = V̂k−1
RT (Ê)⊕ B̃k

(Ê), Ŵ k−1(Ê) = Qk−1(Ê).

Note that the construction of V̂k(Ê) and (2.11) imply that

∇̂ · V̂k(Ê) = Ŵ k−1(Ê) and ∀ v̂ ∈ V̂k(Ê), ∀ ê ⊂ ∂Ê, v̂ · n̂ê ∈ Qk(ê).

(2.32)

Recall also that dimV̂k(Ê) = dimQk(Ê,Rd) = d(k + 1)d and that its degrees of

freedom are the moments (2.27) and (2.28). We consider an alternative definition of

degrees of freedom involving the values of vector components at the Gauss–Lobatto

quadrature points; see Fig. 1, where filled arrows indicate the facet degrees of free-

dom for which continuity across facets is required, and unfilled arrows represent the

“interior” degrees of freedom, local to each element. We have omitted some of the

degrees of freedom from the backplane of the cube for clarity of visualization. This

choice gives certain orthogonalities for the Gauss–Lobatto quadrature rule which

we will discuss in details in the forthcoming subsections.

(a) V̂3(Ê) in 2d (b) V̂2(Ê) in 3d

Fig. 1. Degrees of freedom of the enhanced Raviart–Thomas elements.
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The unisolvency of the enhanced Raviart–Thomas spaces shown in the previous

section implies the existence of a unique projection operator Π̂k
∗ : H1(Ê,Rd) →

V̂k(Ê) such that

for k ≥ 1, 〈(Π̂k
∗ q̂− q̂) · nê, p̂〉ê = 0, ∀ ê ⊂ ∂Ê, ∀ p̂k ∈ Qk(ê), (2.33)

for k ≥ 2,
(
Π̂k

∗q̂− q̂, p̂
)
Ê
= 0, ∀ p̂ ∈




(
Pk−2(x̂)⊗ Pk(ŷ)

Pk−2(ŷ)⊗ Pk(x̂)

)
in 2d,



Pk−2(x̂)⊗Qk(ŷ, ẑ)

Pk−2(ŷ)⊗Qk(x̂, ẑ)

Pk−2(ẑ)⊗Qk(x̂, ŷ)


 in 3d.

(2.34)

The Green’s identity (2.31) together with (2.33) and (2.34) implies that(
∇̂ · (Π̂k

∗ q̂− q̂), ŵ
)
Ê
= 0, ∀ ŵ ∈ Ŵ k−1(Ê). (2.35)

Using (2.15), the above implies that(
∇ · (Πk

∗q− q), w
)
E
= 0, ∀w ∈ W k−1(E). (2.36)

Let Vk
h ×W k−1

h be the pair of enhanced Raviart–Thomas spaces on Th defined

as in (2.17) and the projection operator Πk
∗ from V∩H1(Ω,Rd) onto Vk

h be defined

via the Piola transformation as in (2.18).

Lemma 2.1. There exists a positive constant β, independent of h, such that

inf
w∈Wk−1

h

sup
q∈Vk

h

(
∇ · q, w

)
‖w‖‖q‖div

≥ β. (2.37)

Proof. We consider the auxiliary problem

∇ ·ψ = w in Ω, ψ = g on ∂Ω, (2.38)

where g ∈ H1/2(∂Ω,Rd) is constructed such that it satisfies
∫
∂Ω

g · n =
∫
Ω
w

and g · n = 0 on ΓN . More specifically, we choose g = (
∫
∂Ω

w)φn, where φ ∈
C0(∂Ω) is such that

∫
∂Ω φ = 1 and φ = 0 on ΓN . Clearly, such construction implies

‖g‖1/2,∂Ω ≤ C‖w‖. It is known25 that the problem (2.38) has a solution satisfying

‖ψ‖1 ≤ C(‖w‖ + ‖g‖1/2,∂Ω) ≤ C‖w‖. (2.39)

As the solution ψ is regular enough, Πk
∗ψ is well defined. Using (2.36), the choice

q = Πk
∗ψ ∈ Vk

h yields(
∇ · q, w

)
=
(
∇ · Πk

∗ψ, w
)
=
(
∇ ·ψ, w

)
= ‖w‖2.

We complete the proof by exploiting the continuity bound ‖Πk
∗ψ‖div ≤ C‖ψ‖1,

which is stated in (3.22) below.
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We also note that since Vk−1
RT,h ⊂ Vk

h, it follows from the definition of Πk
RT that

∇ · v = ∇ ·Πk−1
RT v, ∀v ∈ Vk

h, (2.40)

‖Πk−1
RT v‖ ≤ C‖v‖, ∀v ∈ Vk

h. (2.41)

2.5. Quadrature rule

We next present the quadrature rule for the velocity bilinear form, which is designed

to allow for local velocity elimination around finite element nodes. We perform the

integration on any element by mapping to the reference element Ê. The quadrature

rule is defined on Ê. We have for q, v ∈ Vk
h,∫

E

K−1q · v dx =

∫
Ê

K̂−1 1

JE
DFEq̂ · 1

JE
DFE v̂ JEdx̂

=

∫
Ê

1

JE
DFT

E K̂−1DFEq̂ · v̂ dx̂ ≡
∫
Ê

K−1q̂ · v̂ dx̂,

where

K = JEDF−1
E K̂(DF−1

E )T . (2.42)

It is straightforward to show that (2.3) and (2.9) imply that

‖K‖0,∞,Ê ∼ hd−2‖K‖0,∞,E, ‖K−1‖0,∞,Ê ∼ h2−d‖K−1‖0,∞,E. (2.43)

Let Ξk := {ξk(i)}ki=0 and Λk := {λk(i)}ki=0 be the points and weights of the Gauss–

Lobatto quadrature rule on [−1, 1]. If k is clear in context, we use (p, q)Q to denote

the evaluation of Gauss–Lobatto quadrature with k + 1 points for (p, q). We also

define

p̂i := (ξk(i1), . . . , ξk(id)), wk(i) := λk(i1) · · ·λk(id)

for i ∈ Ik ≡ {(i1, . . . , id), ij ∈ {0, . . . , k}}.
(2.44)

For the method of order k, the quadrature rule is defined on an element E as follows(
K−1q,v

)
Q,E

≡
(
K−1q̂, v̂

)
Q̂,Ê

≡
∑
i∈Ik

wk(i)K−1(p̂i)q̂(p̂i) · v̂(p̂i). (2.45)

The global quadrature rule can then be defined as(
K−1q,v

)
Q
≡
∑
E∈Th

(
K−1q,v

)
Q,E

.

Note that the method in the lowest order case k = 1 is very similar in nature to the

one developed in Refs. 27 and 47, although we use different finite element spaces.

We next show that the evaluation at the tensor-product quadrature points is a

set of DOFs of V̂k(Ê), so the bilinear form with the quadrature is not degenerate.

Lemma 2.2. For p ∈ Qk(Ê), if the evaluations of p vanish at all the quadrature

nodes of the tensor product Gauss–Lobatto rules on Ê, then p = 0.
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The above statement is obvious, because the evaluations at the tensor product

quadrature nodes become a set of DOFs of Qk(Ê).

Lemma 2.3. For q̂ ∈ V̂k(Ê), if q̂(p̂i) = 0 for all p̂i in (2.44), then q̂ = 0.

Proof. Without loss of generality, we present the proof for Ê = [−1, 1]d. It suf-

fices to show that the vanishing quadrature evaluation assumption implies that the

moments in (2.27) and (2.28) vanish. Since q̂ · ne ∈ Qk(e) ∀ e ⊂ ∂Ê, the vanish-

ing quadrature assumption for nodes on e implies that q̂ · ne = 0. Therefore, the

moments in (2.27) vanish and q̂ is reduced to the form in (2.29), i.e.

q̂ =



q1

q2

q3


 =



(1− x̂2)q̃1(x̂, ŷ, ẑ)

(1 − ŷ2)q̃2(x̂, ŷ, ẑ)

(1− ẑ2)q̃3(x̂, ŷ, ẑ)


,

with

q̃1 ∈ Pk−1(x̂)⊗Qk(ŷ, ẑ), q̃2 ∈ Pk−1(ŷ)⊗Qk(x̂, ẑ), q̃3 ∈ Pk−1(ẑ)⊗Qk(x̂, ŷ).

We want to show that all moments (2.28) of q̂ are zeros. To do it, we first express

q̃1 as

q̃1 =

k−1∑
j=0

Lj
w(x̂)rj(ŷ, ẑ), rj(ŷ, ẑ) ∈ Qk(ŷ, ẑ), (2.46)

where Lj
w is the Legendre polynomial of degree j with weight (1− x̂2) as before. For

fixed ŷ and ẑ, let us consider the Gauss–Lobatto quadrature of q1v along x̂ with

v ∈ Pk−2(x̂). For fixed values of ŷ and ẑ, q1 is a polynomial of degree ≤ k + 1, so

this quadrature evaluation of q1v equals the integration of q1v in x̂ with the fixed

ŷ and ẑ. In particular, if v = Lm
w (x̂), 0 ≤ m ≤ k − 2, ŷ = ξk(i), ẑ = ξk(j), then the

vanishing quadrature assumption and the expression of q̃1 in (2.46) give

0 =

k∑
l=0

λk(l)q1(ξk(l), ξk(i), ξk(j))v(ξk(l)) =

∫ 1

−1

q1(x̂, ξk(i), ξk(j))v(x̂))dx̂

=

∫ 1

−1

(1− x̂2)(Lm
w (x̂))2rm(ξk(i), ξk(j)).

This implies that rm(ŷ, ẑ) = 0 for any ŷ = ξk(i), ẑ = ξk(j), 0 ≤ i, j ≤ k if

0 ≤ m ≤ k − 2, and therefore rm = 0 for 0 ≤ m ≤ k − 2 by Lemma 2.2. As a con-

sequence, q1 = (1 − x̂2)Lk−1
w (x̂)rk−1(ŷ, ẑ) with rk−1 ∈ Qk(ŷ, ẑ) and its evaluations

at the DOFs given by the first component in (2.28) vanish. We can derive similar

results for q2 and q3, i.e. q̂ gives only vanishing moments for the DOFs (2.28).

We can conclude that q̂ = 0 by the same argument as in the previous proof of

unisolvency.

The above result allows us to define a set of DOFs of V̂k(Ê) as the evaluations

of the vectors at the tensor-product quadrature points p̂i, i ∈ Ik. Examples were
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given in Fig. 1. Recall that for points on ∂Ê, some of the vector components are

facet degrees of freedom for which continuity across facets is required, while some

are “interior” degrees of freedom, local to each element. For convenience of notation,

denote the set of points p̂i by p̂i, i = 1, . . . , nk, nk = (k + 1)d. Any vector q̂(p̂i)

at the node p̂i is uniquely determined by its d components evaluated at this node.

Since we chose the Gauss–Lobatto (or trapezoid, when k = 1) quadrature points

for the construction of the velocity degrees of freedom, we are guaranteed to have

d orthogonal DOFs associated with each node (quadrature point) p̂i, and they

uniquely determine the nodal vector q̂(p̂i). More precisely,

q̂(p̂i) =

d∑
j=1

(q̂ · n̂ij)(p̂i)n̂ij , (2.47)

where n̂ij , j = 1, . . . , d, are the outward unit normal vectors to the d hyperplanes

of dimension (d− 1) that intersect at p̂i, each one parallel to one of the three mutu-

ally orthogonal facets of the reference element. Denote the velocity basis functions

associated with p̂i by v̂ij , j = 1, . . . , d, i.e.

(v̂ij · n̂ij)(p̂i) = 1, (v̂ij · n̂im)(p̂i) = 0, m �= j, and

(v̂ij · n̂lm)(p̂l) = 0, l �= i, m = 1, . . . , d.
(2.48)

The quadrature rule (2.45) couples only d basis functions associated with a node.

For example, in 3d, for any node i = 1, . . . , nk,(
K−1v̂i1, v̂i1

)
Q̂,Ê

= K−1
11 (p̂i)wk(i),

(
K−1v̂i1, v̂i2

)
Q̂,Ê

= K−1
21 (p̂i)wk(i),(

K−1v̂i1, v̂i3

)
Q̂,Ê

= K−1
31 (p̂i)wk(i),

(
K−1v̂i1, v̂mj

)
Q̂,Ê

= 0 ∀mj �= i1, i2, i3.

(2.49)

By mapping back (2.45) to the physical element E, we obtain

(
K−1q,v

)
Q,E

=

nk∑
i=1

JE(p̂i)wk(i)K
−1(pi)q(pi) · v(pi). (2.50)

Denote the element quadrature error by

σE

(
K−1q,v

)
≡
(
K−1q,v

)
E
−
(
K−1q,v

)
Q,E

, (2.51)

and define the global quadrature error by σ
(
K−1q,v

)∣∣
E
= σE

(
K−1q,v

)
. Similarly,

denote the quadrature error on the reference element by

σ̂E

(
K−1q̂, v̂

)
≡
(
K−1q̂, v̂

)
Ê
−
(
K−1q̂, v̂

)
Q̂,Ê

. (2.52)

The following lemma will be used to bound the quadrature error.

Lemma 2.4. For any q̂ ∈ V̂k(Ê) and for any k ≥ 1,(
q̂− Π̂k−1

RT q̂, v̂
)
Q̂,Ê

= 0, for all vectors v̂ ∈ Qk−1(Ê,Rd). (2.53)
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Proof. Without loss of generality, we present the proof for Ê = [−1, 1]d. We show

a detailed proof only for the 3d case because the 2d case is similar. Let vi, i =

1, 2, 3 be the ith component of q̂− Π̂k−1
RT q̂. Considering the expression v1 with the

basis of Legendre polynomials, the definition of shape functions in V̂k(Ê) and the

constraints from (2.13) yield that v1 has the form

v1 = Lk−1(x̂)p1(ŷ, ẑ) + Lk(x̂)q1(ŷ, ẑ) + Lk+1(x̂)r1(ŷ, ẑ)

+Lk(ŷ)u1(x̂, ẑ) + Lk(ẑ)w1(x̂, ŷ), (2.54)

where Li is the standard ith Legendre polynomial as before, p1, q1, r1 ∈ Qk−1(ŷ, ẑ),

u1 ∈ Pk+1(x̂)⊗ Pk−1(ẑ) +Qk(x̂, ẑ), w1 ∈ Pk+1(x̂)⊗ Pk−1(ŷ) +Qk(x̂, ŷ).

(2.55)

From (2.12), the restrictions of v1 on x̂ = −1 and on x̂ = 1 are orthogonal to

Qk−1(ŷ, ẑ), and it gives two equations

p1 + q1 + r1 = 0, p1 − q1 + r1 = 0, (2.56)

therefore q1 = 0 and r1 = −p1. A similar argument can be applied to v2 and v3. In

summary, we have

v1 = (Lk−1(x̂)− Lk+1(x̂))p1(ŷ, ẑ) + Lk(ŷ)u1(x̂, ẑ) + Lk(ẑ)w1(x̂, ŷ), (2.57)

v2 = (Lk−1(ŷ)− Lk+1(ŷ))p2(ẑ, x̂) + Lk(ẑ)u2(x̂, ŷ) + Lk(x̂)w2(ŷ, ẑ), (2.58)

v3 = (Lk−1(ẑ)− Lk+1(ẑ))p3(x̂, ŷ) + Lk(x̂)u3(ŷ, ẑ) + Lk(ŷ)w3(ŷ, ẑ), (2.59)

where u2, u3, w2, w3 belong to polynomial spaces similar to the spaces in (2.55)

with variable permutation. To prove (v1, q)Q̂,Ê = 0 for q ∈ Qk−1(Ê), we will show

((Lk−1(x̂)− Lk+1(x̂))p1(ŷ, ẑ), q)Q̂,Ê = 0,

(Lk(ŷ)u1(x̂, ẑ), q)Q̂,Ê = 0,

(Lk(ẑ)w1(x̂, ŷ), q)Q̂,Ê = 0.

(2.60)

For the first equality, recall that the quadrature points of the Gauss–Lobatto rules

are the two endpoints and the zeros of d
dtL

k(t) in [−1, 1]. It is clear that Lk−1−Lk+1

vanishes at the two endpoints. In addition, Lk−1 − Lk+1 vanishes at the zeros of
d
dtL

k(t) in [−1, 1] from the identities

(k + 1)(Lk+1 − Lk−1)(t) = (2k + 1)(tLk(t)− Lk−1(t)) = (2k + 1)
t2 − 1

k

d

dt
Lk(t).

Therefore, the first equality in (2.60) holds. To prove the second equality in (2.60),

let us consider a restriction of the tensor product Gauss–Lobatto rule for fixed

quadrature points of x̂ and ẑ. For fixed x̂ and ẑ, the product Lk(ŷ)u1(x̂, ẑ)q(x̂, ŷ, ẑ)

is a polynomial in ŷ of degree at most 2k−1, so evaluation of Lk(ŷ)u1(x̂, ẑ)q(x̂, ŷ, ẑ)

with the restricted Gauss–Lobatto rule is the same as the integration of the func-

tion in ŷ. However, this integration in ŷ is zero because Lk(ŷ) and q ∈ Qk−1(x̂, ŷ, ẑ)
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are orthogonal. Since (·, ·)Q̂,Ê is a sum of these restricted Gauss–Lobatto rules,

(Lk(ŷ)u1(x̂, ẑ), q)Q̂,Ê = 0. The third equality in (2.60) follows from the same argu-

ment as the second equality. Finally, the same argument can be used for v2 and v3,

so the assertion is proved.

2.6. The kth order MFMFE method

We first define an appropriate projection to be used in the method for the Dirich-

let boundary data g. This is necessary for optimal approximation of the boundary

condition term. Moreover, the numerical tests suggest that this is not a purely the-

oretical artifact, as without the projection we indeed see a deterioration in the rates

of convergence. For a facet ê ∈ ∂Ê, let R̂k−1
ê be the L2(ê)-orthogonal projection

onto Qk−1(ê), satisfying for any φ̂ ∈ L2(ê),

〈φ̂− R̂k−1
ê φ̂, ŵ〉ê = 0 ∀ ŵ ∈ Qk−1(ê).

Let Rk−1
h : L2(∂Ω) → W k−1

h |∂Ω be such that for any φ ∈ L2(∂Ω), Rk−1
h φ = R̂k−1

ê φ̂◦
F−1
E on all e ∈ ∂Ω. Recall that, c.f. (2.11), if v̂ ∈ V̂k−1

RT (Ê), then v̂ · n̂ê ∈ Qk−1(ê)

for all ê ⊂ ∂Ê. Then, using (2.12) and (2.15), we have that

∀φ ∈ L2(∂Ω), 〈φ−Rk−1
h φ, v · n〉∂Ω = 0 ∀v ∈ V̂k−1

RT (Ê) (2.61)

and

∀v ∈ H1(Ω,Rd), 〈(v −Πk−1
RT v) · n, Rk−1

h φ〉∂Ω = 0 φ ∈ L2(∂Ω). (2.62)

The method is defined as follows: find (uh, ph) ∈ Vk
h ×W k−1

h , where k ≥ 1, such

that (
K−1uh,v

)
Q
−
(
ph,∇ · v

)
= −〈Rk−1

h g, v · n〉ΓD , v ∈ Vk
h, (2.63)(

∇ · uh, w
)
=
(
f, w

)
, w ∈ W k−1

h . (2.64)

Following the terminology from Refs. 27 and 47 we call the method (2.63)–(2.64) a

kth order MFMFE method, due to its relation to the MPFA scheme.

In order to prove that the method stated above has a unique solution, we first

present several useful results.

Lemma 2.5. If E ∈ Th and q ∈ L2(E,Rd), then

‖q‖E ∼ h
2−d
2 ‖q̂‖Ê . (2.65)

Proof. The statement of the lemma follows from (2.14):∫
E

q · q dx =

∫
Ê

1

JE
DFE q̂ · 1

JE
DFE q̂JEdx̂,

∫
Ê

q̂ · q̂ dx̂ =

∫
E

1

JF−1
E

DF−1
E q · 1

JF−1
E

DF−1
E qJF−1

E
dx,

and bounds (2.9).
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Lemma 2.6. The bilinear form
(
K−1q,v

)
Q

is an inner product on Vk
h and(

K−1q,q
)1/2
Q

is a norm in Vk
h equivalent to ‖ · ‖.

Proof. Let q ∈ Vk
h be given on an element E as q =

∑nk

i=1

∑d
j=1 qijvij . Using

(2.3), (2.9), (2.50), and the basis property (2.48), we obtain

(
K−1q,q

)
Q,E

=

nk∑
i=1

JE(p̂i)wk(i)K
−1(pi)q(pi) · q(pi) ≥ Chd

nk∑
i=1

d∑
j=1

q2ij .

On the other hand,

‖q‖2E =


 nk∑

i=1

d∑
j=1

qijvij ,

nk∑
k=1

d∑
l=1

qklvkl


 ≤ Chd

nk∑
i=1

d∑
j=1

q2ij .

Hence, (
K−1q,q

)
Q
≥ C‖q‖2, (2.66)

and due to the linearity and symmetry, we conclude that
(
K−1q,v

)
Q

is an inner

product and
(
K−1q,q

)1/2
Q

is a norm in Vk
h. Using (2.3), (2.43) (2.45), (2.65), and

the equivalence of norms on Ê, we obtain(
K−1q,q

)
Q,E

=
∑
i∈Ik

wk(i)K−1(p̂i)q̂(p̂i) · q̂(p̂i) ≤ Ch2−d‖q̂‖2
Ê
≤ C‖q‖2E .

(2.67)

Combining (2.66) and (2.67) results in the equivalence of norms

c0‖q‖ ≤
(
K−1q,q

)1/2
Q

≤ c1‖q‖. (2.68)

We now proceed with the solvability of the method (2.63)–(2.64).

Theorem 2.3. The kth order MFMFE method (2.63)–(2.64) has a unique solution

for any k ≥ 1.

Proof. Since (2.63)–(2.64) is a square system, it is enough to prove uniqueness

of the solution. Letting f = 0, g = 0 and choosing v = uh and w = ph, one

immediately obtains
(
K−1uh,uh

)
Q
= 0, which yields uh = 0 due to (2.68). Next,

we use the inf-sup condition (2.37) to obtain

‖ph‖ ≤ C sup
q∈Vk

h

(
∇ · q, ph

)
‖q‖div

= sup
q∈Vk

h

(
K−1uh,q

)
Q

‖q‖div
= 0

and thus ph = 0, which concludes the proof of the theorem.
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2.7. Reduction to a pressure system and its stencil

In this section, we describe how the MFMFE method reduces to a system for the

pressures by local velocity elimination. Recall that the DOFs of V̂k(Ê) are cho-

sen as the d vector components at the tensor-product Gauss–Lobatto quadrature

points, see Fig. 1. As a result, in the velocity mass matrix obtained from the bilinear

form (K−1uh,v), the d DOFs associated with a quadrature point in an element

E are completely decoupled from other DOFs in E, see (2.49). Due to the con-

tinuity of normal components across facets, there are couplings with DOFs from

neighboring elements. We distinguish three types of velocity couplings. The first

involves localization of degrees of freedom around each vertex in the grid. Only

this type occurs in the lowest order case k = 1, similar to the previously developed

lowest order MFMFE method.27,47 The number of DOFs that are coupled around

a vertex equals the number of facets nv that share the vertex. For example, on

logically rectangular grids, nv = 12 (faces) in 3d and nv = 4 (edges) in 2d. The

second type of coupling is around nodes located on facets, but not at vertices. In

2d, these are edge DOFs. The number of coupled DOFs is three — one normal to

the edge, which is continuous across the edge, and two tangential to the edge, one

from each of the two neighboring elements. In 3d, there are two cases to consider

for this type of coupling. One case is for nodes located on faces, but not on edges.

In this case the number of coupled DOFs is five — one normal to the face, which

is continuous across the face, and four tangential to the face, two from each of the

two neighboring elements. The second case in 3d is for nodes located on edges, but

not at vertices. Let ne be the number of elements that share the edge, which also

equals the number of faces that share the edge. In this case the number of coupled

DOFs is 2ne. These include ne DOFs normal to the ne faces, which are continuous

across the faces, and ne DOFs tangential to the edge, one per each of the ne neigh-

boring elements. For example, on logically rectangular grids, ne = 4, resulting in

eight coupled DOFs. Finally, the third type of coupling involves nodes interior to

the elements, in which case only the d DOFs associated with the node are coupled.

Due to the localization of DOF interactions described above, the velocity mass

matrix obtained from the bilinear form (K−1uh,v), is block-diagonal with blocks

associated with the Gauss–Lobatto quadrature points. In particular, in 2d, there

are nv ×nv blocks at vertices (nv is the number of neighboring edges), 3× 3 blocks

at edge points, and 2× 2 blocks at interior points. In 3d, there are nv × nv blocks

at vertices (nv is the number of neighboring faces), 2ne× 2ne blocks at edge points

(ne is the number of neighboring elements), 5 × 5 blocks at face points, and 3 × 3

blocks at interior points.

Proposition 2.1. The local matrices described above are symmetric and positive

definite.

Proof. For any quadrature point, the local matrix is obtained by taking v =

v1, . . . ,vm in (2.63), where vi are the velocity basis functions associated with that
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point. We have

(
K−1uh,vi

)
Q
=

m∑
j=1

uj

(
K−1vj ,vi

)
≡

m∑
j=1

aijuj , i = 1, . . . ,m.

Using Lemma 2.6 we conclude that the matrix M = {aij} is symmetric and positive

definite.

The block-diagonal structure of the velocity mass matrix allows for local velocity

elimination. In particular, solving the local linear systems resulting from (2.63)

allows us to express the associated velocities in terms of the pressures from the

neighboring elements and boundary data. This implies that the method reduces the

saddle-point problem to an element-based pressure system.

Lemma 2.7. The pressure system resulting from (2.63)–(2.64) using the procedure

described above is symmetric and positive definite.

Proof. The proof follows from the argument presented in Proposition 2.8 in Ref. 47.

We present it here for the sake of completeness. Denoting the bases of Vk
h and

W k−1
h by {vi} and {wi}, respectively, we obtain the saddle-point type algebraic

system arising from (2.63)–(2.64),(
A BT

B 0

)(
U

P

)
=

(
G

F

)
, (2.69)

where Aij =
(
K−1vi,vj

)
Q
and BT

ij = −
(
∇·vi, wj

)
. The matrix A obtained by the

above procedure is symmetric and positive definite, as it is block diagonal with SPD

blocks associated with quadrature nodes shown in Proposition 2.1. The elimination

of U leads to a system for P with a symmetric and positive semidefinite matrix

BA−1BT . It follows immediately from the proof of Theorem 2.3 that BTP = 0 if

and only if P = 0. Therefore, BA−1BT is positive definite.

Remark 2.1. We note that while Vk
h has more DOFs than Vk−1

RT,h with comparable

accuracy, cf. Sec. 3, the above reduction technique allows for local elimination of

all velocity DOFs, resulting in a symmetric and positive definite system only for

the pressure DOFs in W k−1
h . This is computationally more efficient than solving a

saddle point problem for the classical Raviart–Thomas MFE method in Vk−1
RT,h ×

W k−1
h .

Remark 2.2. It was pointed out by an anonymous reviewer that it can be shown

that the matrix B has a tensor product structure if it is formed using the tensor

product Gauss quadrature rule. This property can be exploited for faster and low

storage matrix-free assembly and application of the matrix BA−1BT , resulting in

further gain in efficiency. We thank the reviewer for noting this important property.
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3. Velocity Error Analysis

Although the proposed schemes can be defined and are well posed on general quadri-

lateral or hexahedra, for the convergence analysis we need to impose a restriction on

the element geometry. This is due to the reduced approximation properties of the

MFE spaces on arbitrary shaped quadrilaterals or hexahedra that our new family

of elements inherits as well. The necessity of said restriction is confirmed by the

numerical computations. We recall that, since the mapping FE is trilinear in 3d, the

faces of an element E may be non-planar. We will refer to the faces as generalized

quadrilaterals. We recall the notation of ri, i = 1, . . . , 2d, and edges rij = ri − rj
from Sec. 2.2.

Definition 3.1. A (generalized) quadrilateral with vertices ri, i = 1, . . . , 4, is called

an h2-parallelogram if

|r34 − r21|Rd ≤ Ch2.

The name follows the terminology from Refs. 24 and 27. Note that elements of

this type in 2d can be obtained by uniform refinements of a general quadrilateral

grid. It follows from (2.6) that ∂2FE

∂x̂∂ŷ is O(h2) for h2-parallelograms.

Definition 3.2. A hexahedral element is called an h2-parallelepiped if all of its

faces are h2-parallelograms.

Definition 3.3. An h2-parallelepiped with vertices ri, i = 1, . . . , 8, is called

regular if

|(r21 − r34)− (r65 − r78)|R3 ≤ Ch3.

It is clear from (2.7) that for h2-parallelepipeds, ∂2FE

∂x̂∂ŷ ,
∂2FE

∂ŷ∂ẑ and ∂2FE

∂x̂∂ẑ areO(h2).

Moreover, in case of regular h2-parallelepipeds, ∂3FE

∂x̂∂ŷ∂ẑ is O(h3).

We next present some bounds on the derivatives of the mapping FE .

Lemma 3.1. Let j ≥ 0. Then the bounds

|JE |j,∞,Ê ≤ Chj+d, j ≤ α, where α = 1 in 2d,

α = 4 in 3d, |JE |j,∞,Ê = 0, j > α,
(3.1)

and

|DFE |j,∞,Ê ≤
{
Chj+1, j < d,

0, j ≥ d,

∣∣∣∣ 1JEDFE

∣∣∣∣
j,∞,Ê

≤ Chj−d+1,

|JEDF−1
E |j,∞,Ê ≤

{
Chj+d−1, j ≤ d

0, j > d
,

(3.2)

hold if E is an h2-parallelogram or a regular h2-parallelepiped. Moreover, the esti-

mates (3.2) hold for j = 0 if E is a general quadrilateral or hexahedron and for

j = 0, 1 if E is an h2-parallelepiped.
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Proof. We begin with the proof of (3.1). In 2d, (2.6) gives

DFE = [r21, r41] + [(r34 − r21)ŷ, (r34 − r21)x̂],

from which it can be shown easily that JE is a linear function satisfying (3.1). In

3d, (2.7) gives

DFE = [r21 + (r34 − r21)ŷ + (r65 − r21)ẑ + ((r21 − r34)− (r65 − r78))ŷẑ;

r41 + (r34 − r21)x̂ + (r85 − r41)ẑ + ((r21 − r34)− (r65 − r78))x̂ẑ;

r51 + (r65 − r21)x̂ + (r85 − r41)ŷ + ((r21 − r34)− (r65 − r78))x̂ŷ].

(3.3)

It can be verified that JE is a polynomial of three variables of total power at most

4 with

(JE)x̂x̂x̂ = (JE)ŷŷŷ = (JE)ẑẑẑ = 0, (3.4)

and it can be written as JE =
∑

0≤r1+r2+r3≤4 αr1r2r3 x̂
r1ŷr2ẑr3, where

|αr1r2r3 | ≤ Chr1+r2+r3+3, (3.5)

from which (3.1) follows immediately.

We proceed with the proof of (3.2). If E is a general quadrilateral or hexahedron,

the bounds with j = 0 are stated in (2.9). The estimates in 2d and for j = 1, 2 in

3d were shown in Refs. 24, 27 and 47. We now focus on the case when E is a regular

h2-parallelepiped and j > 2. Since FE is bilinear, |DFE |k,∞,Ê = 0, ∀ k > 2, and

(3.3) gives

|DFE |k,∞,Ê ≤ Chk+1, k = 0, 1, 2. (3.6)

Therefore, it follows from the product rule that for any j > 2,∣∣∣∣ 1JE DFE

∣∣∣∣
j,∞,Ê

≤ C

(∣∣∣∣ 1JE
∣∣∣∣
j,∞,Ê

|DFE |0,∞,Ê +

∣∣∣∣ 1JE
∣∣∣∣
j−1,∞,Ê

|DFE |1,∞,Ê

+

∣∣∣∣ 1JE
∣∣∣∣
j−2,∞,Ê

|DFE |2,∞,Ê

)
. (3.7)

We further compute the derivatives of
1

JE
:

(
1

JE

)
x̂

= − 1

J2
E

(JE)x̂,

(
1

JE

)
x̂x̂x̂

= − 6

J4
E

(JE)
3
x̂ +

6

J3
E

(JE)x̂(JE)x̂x̂,

(
1

JE

)
x̂x̂

=
2

J3
E

(JE)
2
x̂ − 1

J2
E

(JE)x̂x̂,

(
1

JE

)
x̂ŷ

=
2

J3
E

(JE)x̂(JE)ŷ −
1

J2
E

(JE)x̂ŷ,

(
1

JE

)
x̂x̂ŷ

= − 6

J4
E

(JE)
2
x̂(JE)ŷ +

4

J3
E

(JE)x̂(JE)x̂ŷ +
2

J3
E

(JE)ŷ(JE)x̂x̂ − 1

J2
E

(JE)x̂x̂ŷ
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(
1

JE

)
x̂ŷẑ

= − 6

J4
E

(JE)x̂(JE)ŷ(JE)ẑ +
2

J3
E

(JE)x̂ẑ(JE)ŷ

+
2

J3
E

(JE)x̂(JE)ŷẑ +
2

J3
E

(JE)ẑ(JE)x̂ŷ −
1

J2
E

(JE)x̂ŷẑ,

(
1

JE

)
x̂x̂ŷẑ

=
24

J5
E

(JE)
2
x̂(JE)ŷ(JE)ẑ −

12

J4
E

(JE)x̂(JE)ŷ(JE)x̂ẑ −
6

J4
E

(JE)
2
x̂(JE)ŷẑ

− 12

J4
E

(JE)x̂(JE)ẑ(JE)x̂ŷ +
4

J3
E

(JE)x̂ẑ(JE)x̂ŷ +
4

J3
E

(JE)x̂(JE)x̂ŷẑ

− 6

J4
E

(JE)ẑ(JE)ŷ(JE)x̂x̂ +
2

J3
E

(JE)x̂x̂(JE)ŷẑ +
2

J3
E

(JE)ŷ(JE)x̂x̂ẑ

+
2

J3
E

(JE)ẑ(JE)x̂x̂ŷ −
1

J2
E

(JE)x̂x̂ŷẑ .

We note that due to (3.4) the higher order partial derivatives will consist of the

same partials that appear above, while the power of JE in the denominator will

continue to grow. Therefore, it follows from (3.5) that | 1
JE

|k,∞,Ê ≤ Chk−3, which,

combined with (3.6) and (3.7), implies that∣∣∣∣ 1JEDFE

∣∣∣∣
j,∞,Ê

≤ C
(
hj−3h+ hj−4h2 + hj−5h3

)
≤ Chj−2.

To show the last inequality in (3.2), we note that using the cofactor formula for

inverse of a matrix, one can verify that JEDF−1
E is of total degree 3, which implies

that for every k > 3, |JEDF−1
E |k,∞,Ê = 0. We also compute

((JEDF−1
E )11)x̂x̂ŷ

= 2[(y1 − y2) + (y3 − y4)][(z5 − z6) + (z7 − z8) + (z2 − z1) + (z4 − z3)]

+ 2[(z1 − z2) + (z3 − z4)][(y6 − y5) + (y8 − y7) + (y1 − y2) + (y3 − y4)],

with similar expressions for the rest of partial derivatives. Therefore |JED
F−1
E |3,∞,Ê ≤ Ch5.

The above bounds allow us to control the norms of the velocity and permeability

on the reference element.

Lemma 3.2. For all q ∈ Hj(E), there exists a constant C independent of h such

that the bound

|q̂|j,Ê ≤ Chj+ d−2
2 ‖q‖j,E (3.8)

holds for every j ≥ 0 if E is an h2-parallelogram or regular h2-parallelepiped, for

j = 0, 1 if E is an h2-parallelepiped and for j = 0 if E is a general quadrilateral or

hexahedron.



May 24, 2019 15:36 WSPC/103-M3AS 1950016

Higher order multipoint flux mixed finite element methods 1061

Proof. The result in 2d was shown in Refs. 24, 47, while the cases j = 0, 1, 2

in 3d were proven in Ref. 27. It then suffices to prove the case j ≥ 3 for regular

h2-parallelepipeds. Let

q̃ = q ◦ FE(x̂), q̂ = JEDF−1
E q̃.

As it was shown in the previous lemma |JEDF−1
E |4,∞,Ê = 0, hence (3.2) implies

that for r ≥ 3,

|q̂|r,Ê ≤ C
(
h2|q̃|r,Ê + h3|q̃|r−1,Ê + h4|q̃|r−2,Ê + h5|q̃|r−3,Ê

)
. (3.9)

By change of variables and the chain rule, we have that |q̃|j,Ê ≤ Chj−3/2‖q‖j,E ,
which, combined with (3.9), completes the proof.

Lemma 3.3. There exists a constant C independent of h such that the bound

|K−1|j,∞,Ê ≤ Chj−d+2‖K−1‖j,∞,E . (3.10)

holds with j ≥ 0 on h2-parallelograms and regular h2-parallelepipeds, with j = 0, 1

on h2-parallelepipeds and with j = 0 on general quadrilaterals and hexahedra.

Proof. The above result with j = 0 was already stated in (2.43). Moreover, for

j = 1, 2 (3.10) was shown in Refs. 27 and 47, so we focus on the case j ≥ 3 for h2-

parallelograms and regular h2-parallelepipeds. By the use of a change of variables,

the chain rule, and (3.2), it is easy to see that

|K̂−1|j,∞,Ê ≤ Chj |K−1|j,∞,E . (3.11)

Using (3.2) and the definition of K−1 given in (2.42), we have

|K−1|j,∞,Ê ≤ C
∑

0≤α,β,γ≤j
α+β+γ=j

∣∣∣∣ 1JEDFE

∣∣∣∣
α,∞,Ê

|K̂−1|β,∞,Ê |DFE |γ,∞,Ê

≤ C
∑

0≤α,β,γ≤j
α+β+γ=j

hα−d+1hβhγ+1‖K−1‖j,∞,E ≤ Chj−d+2‖K−1‖j,∞,E,

where we also used (3.11) for the second inequality.

Lemma 3.4. There exists a constant C independent of h such that on

h2-parallelograms and regular h2-parallelepipeds

‖q−Πk
∗q‖+ ‖q−Πk−1

RT q‖ ≤ Chj‖q‖j, (3.12)

‖q− Πk
∗q‖ ≤ Chj+1‖q‖j+1, (3.13)

‖∇ ·
(
q−Πk

∗q
)
‖+ ‖∇ · (q−Πk−1

RT q)‖ ≤ Chj‖∇ · q‖j , (3.14)

for 1 ≤ j ≤ k. Moreover, (3.12) and (3.14) also hold on h2-parallelepipeds with

j = 1.



May 24, 2019 15:36 WSPC/103-M3AS 1950016

1062 I. Ambartsumyan et al.

Proof. We present the proof for Πk
∗ only, as the argument for Πk−1

RT is similar.

Using (2.65) and (3.8), we have

‖q−Πk
∗q‖E ≤ Ch

d−2
2 ‖q̂− Π̂k

∗q̂‖Ê ≤ Ch
d−2
2 |q̂|j+1,Ê ≤ Chj+1‖q‖j,E ,

where 1 ≤ j ≤ k. For the second inequality in the above, we used the fact that Π̂k
∗

preserves all polynomials of degree up to k, i.e. Pk(Ê) ⊂ V̂k(Ê), and applied the

Bramble–Hilbert lemma.19 Summing over the elements completes the proof of the

first two statements of the lemma.

For the last inequality, it follows from (2.14) that∫
E

(
∇ · (q −Πk

∗q)
)2
dx =

∫
Ê

1

J2
E

(
∇̂ · (q̂− Π̂k

∗ q̂)
)2
JE dx̂ ≤ Ch−d|∇̂ · q̂|2

j,Ê
,

(3.15)

where we have used (2.9), (2.35), and the Bramble–Hilbert lemma in the inequality.

We also have

|∇̂ · q̂|j,Ê = |JE∇̂ · q|j,Ê ≤ C

j∑
i=0

|JE |i,∞,Ê |∇̂ · q|j−i,Ê

≤ C

j∑
i=0

hi+dhj−i− d
2 |∇ · q|j−i,E ≤ Chj+ d

2 ‖∇ · q‖j,E , (3.16)

where we used (3.1) and change of variables back to E in the second inequality. A

combination of (3.15) and (3.16), and a summation over all elements completes the

proof of (3.14).

Let Q̂k−1 be the L2(Ê)-orthogonal projection onto Ŵ k−1(Ê), satisfying for any

φ̂ ∈ L2(Ê), (
φ̂− Q̂k−1φ̂, ŵ

)
Ê
= 0 ∀ ŵ ∈ Ŵ k−1(Ê).

LetQk−1
h : L2(Ω) → W k−1

h be the projection operator, satisfying for any φ ∈ L2(Ω),

Qk−1
h φ = Q̂k−1φ̂ ◦ F−1

E on all E.

It follows from (2.32) that(
φ−Qk−1

h φ,∇ · v
)
= 0 ∀v ∈ Vk

h. (3.17)

Using a scaling argument similar to (3.15)–(3.16), one can show that on h2-

parallelograms and regular h2-parallelepipeds,

‖φ−Qk−1
h φ‖ ≤ Chj‖φ‖j , 1 ≤ j ≤ k. (3.18)

Moreover, the above bound holds with j = 1 on general quadrilaterals and hexahe-

dra and with j = 2 on h2-parallelepipeds.
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Lemma 3.5. For general quadrilaterals and hexahedra there exists a constant C

independent of h such that for any finite element function ϕ

‖ϕ‖j,E ≤ Ch−1‖ϕ‖j−1,E , j = 1, . . . , k. (3.19)

Proof. Let ϕ̃ = ϕ ◦ FE(x̂). Using (2.9), we have

|ϕ|1,E ≤ ‖DF−1
E ‖0,∞,E‖JE‖1/20,∞,Ê

|ϕ̃|1,Ê ≤ C‖DF−1
E ‖0,∞,E‖JE‖1/20,∞,Ê

‖ϕ̃‖Ê

≤ C‖DF−1
E ‖0,∞,E‖JE‖1/20,∞,Ê

‖JF−1
E

‖1/20,∞,E‖ϕ‖E ≤ Ch−1hd/2h−d/2‖ϕ‖E

≤ Ch−1‖ϕ‖E.

The general case follows by applying the above bound to any derivative of ϕ.

We will make use of the following continuity bounds for the mixed projection

operators Πk
∗ and Πk

RT .

Lemma 3.6. There exists a constant C independent of h such that on h2-

parallelograms and regular h2-parallelepipeds

‖Πk
∗q‖j,E ≤ C‖q‖j,E, j = 1, . . . , k + 1, (3.20)

‖Πk−1
RT q‖j,E ≤ C‖q‖j,E, j = 1, . . . , k. (3.21)

The above bounds also hold with j = 1 on h2-parallelepipeds. Furthermore, on gen-

eral quadrilaterals or hexahedra

‖Πk
∗q‖div,E + ‖Πk−1

RT q‖div,E ≤ C‖q‖1,E . (3.22)

Proof. It follows from (3.12) and the triangle inequality that

‖Πk
∗q‖0,E ≤ ‖q‖1,E.

Let Pj
E be the L2(E)-projection onto Pj(E,Rd). It is well known19 that ‖q −

Pj
Eq‖E ≤ Chj+1‖q‖j+1,E . Using (3.19), we have for any j = 1, . . . , k + 1,

|Πk
∗q|j,E = |Πk

∗q− Pj−1
E q|j,E ≤ Ch−j‖Πk

∗q− Pj−1
E q‖0,E

≤ Ch−j(‖Πk
∗q− q‖0,E + ‖q− Pj−1

E q‖0,E) ≤ C‖q‖j ,

where we also used (3.12), (3.13) and (3.18). This completes the proof of (3.20).

The proof of (3.21) is similar. The proof of (3.22) uses a scaling argument similar to

(3.15)–(3.16) for the divergence and a scaling argument using (3.8) for the L2-norm.

Details can be found in Lemma 3.6 in Ref. 27.

Remark 3.1. For the rest of the paper, all results are stated for h2-parallelograms

and regular h2-parallelepipeds. We note that the results also hold in 3d on

h2-parallelepipeds with k = 1, except for the pressure superconvergence.
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In the next two lemmas we bound two terms arising in the error analy-

sis due to the use of the quadrature rule. We use the notation ϕ ∈ W k,∞
Th

if

ϕ ∈ W k,∞(E) ∀E ∈ Th and ‖ϕ‖k,∞,E is uniformly bounded independently of h.

Lemma 3.7. On h2-parallelograms and regular h2-parallelepipeds, if K−1 ∈ W k,∞
Th

,

then there exists a constant C independent of h such that for all v ∈ Vk
h,

|
(
K−1Πk

∗u,v −Πk−1
RT v

)
Q
| ≤ Chk‖u‖k‖v‖. (3.23)

Proof. Let P̂k be the L2(Ê)-orthogonal projection onto Pk(Ê,Rd). For any ele-

ment E ∈ Th, we have(
K−1Πk

∗u,v −Πk−1
RT v

)
Q,E

=
(
K−1Π̂k

∗û, v̂ − Π̂k−1
RT v̂

)
Q,Ê

=
(
P̂k−1(K−1Π̂k

∗û), v̂ − Π̂k−1
RT v̂

)
Q,Ê

+
(
K−1Π̂k

∗û− P̂k−1(K−1Π̂k
∗û), v̂ − Π̂k−1

RT v̂
)
Q,Ê

.

The first term on right is equal to zero due to (2.53). For the second term we use

Bramble–Hilbert lemma:∣∣(K−1Π̂k
∗û− P̂k−1(K−1Π̂k

∗û), v̂ − Π̂k−1
RT v̂

)
Q,Ê

∣∣ ≤ C|K−1Π̂k
∗û|k,Ê‖v̂− Π̂k−1

RT v̂‖0,Ê.

Using (3.10) and (3.8), we obtain

|K−1Π̂k
∗û|k,Ê ≤ C

k∑
i=0

|K−1|k−i,∞,Ê |Π̂
k
∗û|i,Ê

≤ C

k∑
i=0

hk−i−d+2‖K−1‖k−i,∞,Eh
i+(d−2)/2‖Πk

∗u‖i,E

≤ Chk−d/2+1‖K−1‖k,∞,E‖Πk
∗u‖k,E .

Therefore, using (3.8), (3.20) and (2.41), we get∣∣(K−1Π̂k
∗û− P̂k−1(K−1Π̂k

∗û), v̂ − Π̂k−1
RT v̂

)
Q,Ê

∣∣
≤ Chk−d/2+1‖K−1‖k,∞,E‖u‖k,Eh(d−2)/2‖v‖0,E

≤ Chk‖K−1‖k,∞,E‖u‖k,E‖v‖0,E .

The proof is completed by summing over all elements.

Lemma 3.8. On h2-parallelograms and regular h2-parallelepipeds, if K−1 ∈ W k,∞
Th

,

then there exists a constant C independent of mesh size such that for all q ∈ Vk
h

and v ∈ Vk−1
RT,h

|σ
(
K−1q,v

)
| ≤ C

∑
E∈Th

hk‖K−1‖k,∞,E‖q‖k,E‖v‖E . (3.24)
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Proof. For each E ∈ Th we have

σE

(
K−1q,v

)
= σÊ

(
P̂k−1(K−1q̂), v̂

)
+ σÊ

(
K−1q̂− P̂k−1(K−1q̂), v̂

)
.

The first term on the right is equal to zero, since the tensor-product Gauss–Lobatto

quadrature rule is exact for polynomials of degree up to 2k−1. Using the Bramble–

Hilbert lemma, (3.10) and (3.8), we bound the second term as follows:∣∣σÊ

(
K−1q̂− P̂k−1(K−1q̂), v̂

)∣∣ ≤ C|K−1q̂|k,Ê‖v̂‖Ê

≤ C

k∑
i=0

|K−1|k−i,∞,Ê |q̂|i,Ê‖v̂‖Ê

≤ Chk−d/2+1‖K−1‖k,∞,E‖q‖k,Eh(d−2)/2‖v‖E

≤ Chk‖K−1‖k,∞,E‖q‖k,E‖v‖E.

Summing over all E ∈ Th, we obtain (3.24).

3.1. Optimal convergence for the velocity

We subtract the numerical method (2.63)–(2.64) from the variational formulation

(2.4)–(2.5) to obtain the error equations:(
K−1u,v

)
−
(
K−1uh,v

)
Q
−
(
p− ph,∇ · v

)
= −〈g −Rk−1

h g, v · n〉ΓD , v ∈ Vk
h, (3.25)(

∇ · (u− uh), w
)
= 0, w ∈ W k−1

h . (3.26)

Note that due to (2.35), it follows from (3.26) that

∇ · (Πk
∗u− uh) = 0. (3.27)

If we take v = Πk
∗u− uh in (3.25), then(

K−1u,Πk
∗u− uh

)
−
(
K−1uh,Π

k
∗u− uh

)
Q

+ 〈g −Rk−1
h g, (Πk

∗u− uh) · n〉ΓD = 0. (3.28)

Let w ≡ Πk
∗u− uh then an algebraic manipulation of the above gives(

K−1w,w
)
Q
= −

(
K−1u,w

)
+
(
K−1Πk

∗u,w
)
Q
− 〈g −Rk−1

h g, w · n〉ΓD .

Moreover, rewriting the right-hand side gives(
K−1w,w

)
Q
= −

(
K−1u,w−Πk−1

RT w
)
− 〈g −Rk−1

h g, w · n〉ΓD

−
(
K−1

(
u−Πk

∗u
)
,Πk−1

RT w
)
−
(
K−1Πk

∗u,Π
k−1
RT w

)
+
(
K−1Πk

∗u,Π
k−1
RT w

)
Q
+
(
K−1Πk

∗u,w−Πk−1
RT w

)
Q
. (3.29)
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Testing (2.4) with w − Πk−1
RT w and using that ∇ ·w = ∇ · Πk−1

RT w = 0, see (3.27)

and (2.40), we can rewrite the first two terms in (3.29) as

−
(
K−1u,w −Πk−1

RT w
)
− 〈g −Rk−1

h g, w · n〉ΓD

= 〈g, (w −Πk−1
RT w) · n〉ΓD − 〈g −Rk−1

h g, w · n〉ΓD = 0,

using that, due to (2.61)–(2.62), 〈Rk−1
h g, (w − Πk−1

RT w) · n〉ΓD = 0 and 〈g −
Rk−1

h g, Πk−1
RT w · n〉ΓD = 0. For the third term on the right in (3.29) we use (3.12)

and (2.41) to get

|
(
K−1

(
u−Πk

∗u
)
,Πk−1

RT w
)
| ≤ Chk‖K−1‖0,∞‖u‖k‖w‖.

To bound the fourth and fifth terms on the right in (3.29), we use (3.24), (3.20)

and (2.41):

|−
(
K−1Πk

∗u,Π
k−1
RT w

)
+
(
K−1Πk

∗u,Π
k−1
RT w

)
Q
| = |σ(K−1Πk

∗u,Π
k−1
RT w)|

≤ Chk‖K−1‖k,∞‖u‖k‖w‖.

For the last term on the right in (3.29) we use (3.23):

|
(
K−1Πk

∗u,w −Πk−1
RT w

)
Q
| ≤ Chk‖K−1‖k,∞‖u‖k‖w‖.

Combining the above bounds, we obtain from (3.29) that(
K−1(Πk

∗u− uh),Π
k
∗u− uh

)
Q
≤ Chk‖K−1‖k,∞‖u‖k‖Πk

∗u− uh‖, (3.30)

implying that

‖Πk
∗u− uh‖ ≤ Chk‖K−1‖k,∞‖u‖k. (3.31)

Bounds (3.31) and (3.27), together with (3.12) and (3.14), result in the following

theorem.

Theorem 3.1. Assume that the partition Th consists of h2-parallelograms in 2d or

regular h2-parallelepipeds in 3d. If K−1 ∈ W k,∞
Th

, for the velocity uh of the MFMFE

method (2.63)–(2.64), there exists a constant C independent of h such that

‖u− uh‖ ≤ Chk‖u‖k, (3.32)

‖∇ · (u− uh)‖ ≤ Chk‖∇ · u‖k. (3.33)

4. Error Estimates for the Pressure

In this section, we use a standard inf-sup argument to prove optimal convergence

for the pressure. We also employ a duality argument to establish superconvergence

for the pressure.
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4.1. Optimal convergence for the pressure

Theorem 4.1. Assume that the partition Th consists of h2-parallelograms in 2d or

regular h2-parallelepipeds in 3d. If K−1 ∈ W k,∞
Th

, then for the pressure ph of the

MFMFE method (2.63)–(2.64), there exists a constant C independent of h such that

‖p− ph‖ ≤ Chk(‖u‖k + ‖p‖k). (4.1)

Proof. We first note that the RTk−1 spaces Vk−1
RT,h ×W k−1

h on general quadrilat-

erals and hexahedra satisfy an inf-sup condition similar to (2.37). The proof is the

same as the argument in Lemma 2.1. Hence, using (3.25) and (2.61), we obtain

‖Qk−1
h p− ph‖ ≤ 1

β
sup

0�=v∈V k−1
RT,h

(
Qk−1

h p− ph,∇ · v
)

‖v‖div

=
1

β
sup

0�=v∈V k−1
RT,h

(
K−1(Πk

∗u− uh),v
)
Q
−
(
K−1(Πk

∗u− u),v
)

+ σ(K−1Πk
∗u,v)

‖v‖div

≤ C

β
hk‖K−1‖k,∞‖u‖k,

where we used (3.31), (3.12), (3.24), and (3.20) in the last inequality. The result

then follows from (3.18) and the triangle inequality.

4.2. Superconvergence of the pressure

In this subsection, we prove superconvergence of the pressure, i.e. we show that

‖Qk−1
h p− ph‖ is O(hk+1) for the MFMFE method of order k. We also apply local

postprocessing to obtain an improved approximation p∗h ∈ W k
h such that ‖p− p∗h‖

is O(hk+1).

The following bound on the quadrature error will be used in the superconver-

gence analysis.

Lemma 4.1. On h2-parallelograms and regular h2-parallelepipeds, if K−1 ∈
W k+1,∞

Th
, then for all q ∈ Vk

h and v ∈ V0
RT,h, there exists a positive constant C

independent of h such that

|σ
(
K−1q,v

)
| ≤ C

∑
E∈Th

hk+1‖K−1‖k+1,∞,E‖q‖k+1,E‖v‖1,E . (4.2)

Proof. For any element E we have σE

(
K−1q,v

)
= σ̂Ê

(
K−1q̂, v̂

)
. Since the

quadrature rule is exact for polynomials of degree up to 2k − 1 and k ≥ 1, then it

is exact for polynomials of degree up to k. An application of the Bramble–Hilbert
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lemma implies

|σ̂Ê

(
K−1q̂, v̂

)
|

≤ C

([
k∑

i=0

|K−1|i,∞,Ê |q̂|k−i,Ê

]
|v̂|1,Ê +

[
k+1∑
i=0

|K−1|i,∞,Ê |q̂|k+1−i,Ê

]
‖v̂‖Ê

)
,

where we used that v̂ is linear. Using (3.8) and (3.10), we obtain

σE

(
K−1q,v

)
≤ Chk+1‖K−1‖k+1,∞,E‖q‖k+1,E‖v‖1,E .

Summation of over all elements completes the proof.

The following result establishes superconvergence of the pressure if the

H2-elliptic regularity which is defined below holds. Let φ be the solution of

−∇ ·K∇φ = −(Qk−1
h p− ph) in Ω, φ = 0 on ∂Ω. (4.3)

We say that this problem satisfies H2-elliptic regularity if

‖K∇φ‖1 + ‖φ‖2 ≤ C‖Qk−1
h p− ph‖ (4.4)

with constant C which may depend on K and Ω but is independent of φ. Some

sufficient conditions for (4.4) can be found in Refs. 26 and 32. In the proof of the

theorem below, we follow the argument in Ref. 20 with appropriate modification to

deal with the quadrature terms.

Theorem 4.2. Assume that the partition Th consists of h2-parallelograms in 2d

or regular h2-parallelepipeds in 3d. Assume also that K−1 ∈ W k+1,∞
Th

, and that the

H2-elliptic regularity (4.4) holds. Then, for the pressure ph of the MFMFE method

(2.63)–(2.64), there exists a constant C independent of h such that

‖Qk−1
h p− ph‖ ≤ Chk+1(‖u‖k + ‖∇ · u‖k). (4.5)

Proof. The proof makes use of a duality argument. Let φ be the solution of (4.3).

Denoting −K∇φ by u∗, (u∗, φ) satisfy(
K−1u∗,v

)
−
(
φ,∇ · v

)
= 0, v ∈ H(div; Ω), (4.6)(

∇ · u∗, q
)
= −

(
Qk−1

h p− ph, q
)
, q ∈ L2(Ω). (4.7)

Taking v = u− uh, q = −(Qk−1
h p− ph) and adding the two equations gives(

K−1u∗,u− uh

)
−
(
φ,∇ · (u− uh)

)
−
(
∇ · u∗,Qk−1

h p− ph
)
= ‖Qk−1

h p− ph‖2.
(4.8)

Consider the discretization of (4.6)–(4.7) as in (2.63)–(2.64) and let (u∗
h, φ

∗
h) be the

solution of the discrete problem. We now use the Galerkin orthogonality (3.25)–

(3.26) with v = Πk−1
RT u∗

h and w = Qk−1
h φ to get(

K−1u,Πk−1
RT u∗

h

)
−
(
K−1uh,Π

k−1
RT u∗

h

)
Q
−
(
Qk−1

h p− ph,∇ ·Πk−1
RT u∗

h

)
−
(
∇ · (u− uh),Qk−1

h φ
)
= 0, (4.9)
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where we used that (p − Qk−1
h p,∇ · Πk−1

RT u∗
h) = 0 due to (3.17) and 〈g −

Rk−1
h g, Πk−1

RT u∗
h · n〉ΓD = 0 due to (2.61). Subtracting (4.9) from (4.8) and using

the symmetry of (K−1·, ·) and (K−1·, ·)Q gives(
K−1

(
u∗ −Πk−1

RT u∗
h

)
,u
)
−
(
K−1u∗,uh

)
+
(
K−1Πk−1

RT u∗
h,uh

)
Q

−
(
φ−Qk−1

h φ,∇ · (u− uh)
)
−
(
∇ ·
(
u∗ −Πk−1

RT u∗
h

)
,Qk−1

h p− ph
)

= ‖Qk−1
h p− ph‖2.

Since ∇ ·Πk−1
RT u∗

h = ∇ · u∗
h, and

(
∇ · (u∗ − u∗

h), q
)
= 0 holds for all q ∈ W k−1

h from

the definition of u∗
h, the last term in the left-hand side vanishes. Therefore, we have(

K−1
(
u∗ −Πk−1

RT u∗
h

)
,u− uh

)
− σ

(
K−1Πk−1

RT u∗
h,uh

)
−
(
φ−Qk−1

h φ,∇ · (u− uh)
)

= ‖Qk−1
h p− ph‖2. (4.10)

with σ
(
K−1Πk−1

RT u∗
h,uh

)
=
(
K−1Πk−1

RT u∗
h,uh

)
−
(
K−1Πk−1

RT u∗
h,uh

)
Q
. Observe that

the difference of (4.6) and its discrete counterpart gives(
K−1u∗,Πk−1

RT u− uh

)
−
(
K−1u∗

h,Π
k−1
RT u− uh

)
Q
= 0,

because ∇ · (Πk−1
RT u− uh) = 0. From this we obtain

σ
(
K−1Πk−1

RT u∗
h,uh

)
= σ

(
K−1Πk−1

RT u∗
h,Π

k−1
RT u

)
− σ

(
K−1Πk−1

RT u∗
h,Π

k−1
RT u− uh

)
= σ

(
K−1Πk−1

RT u∗
h,Π

k−1
RT u

)
−
(
K−1Πk−1

RT u∗
h,Π

k−1
RT u− uh

)
+
(
K−1Πk−1

RT u∗
h,Π

k−1
RT u− uh

)
Q

= σ
(
K−1Πk−1

RT u∗
h,Π

k−1
RT u

)
+
(
K−1

(
u∗ −Πk−1

RT u∗
h

)
,Πk−1

RT u− uh

)
−
(
K−1

(
u∗
h −Πk−1

RT u∗
h

)
,Πk−1

RT u− uh

)
Q
,

and we can rewrite (4.10) further as(
K−1

(
u∗ −Πk−1

RT u∗
h

)
,u−Πk−1

RT u
)
+
(
K−1

(
u∗
h −Πk−1

RT u∗
h

)
,Πk−1

RT u− uh

)
Q

− σ
(
K−1Πk−1

RT u∗
h,Π

k−1
RT u

)
−
(
φ−Qk−1

h φ,∇ · (u− uh)
)
= ‖Qk−1

h p− ph‖2.
(4.11)

We will show that the terms on left above can be bounded as follows:

|
(
K−1

(
u∗ −Πk−1

RT u∗
h

)
,u−Πk−1

RT u
)
| ≤ Chk+1‖Qk−1

h p− ph‖‖u‖k, (4.12)

|
(
K−1

(
u∗
h −Πk−1

RT u∗
h

)
,Πk−1

RT u− uh

)
Q
| ≤ Chk+1‖Qk−1

h p− ph‖‖u‖k, (4.13)

|σ
(
K−1Πk−1

RT u∗
h,Π

k−1
RT u

)
| ≤ Chk+1‖Qk−1

h p− ph‖‖u‖k, (4.14)

|
(
φ−Qk−1

h φ,∇ · (u− uh)
)
| ≤ Chk+1‖Qk−1

h p− ph‖‖∇ · u‖k, (4.15)
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which, combined with (4.11), imply the statement of the theorem. For (4.12), we

note that

‖u∗ −Πk−1
RT u∗

h‖ ≤ ‖u∗ −Πk−1
RT u∗‖+ ‖Πk−1

RT (Πk−1
RT u∗ − u∗

h)‖

≤ ‖u∗ −Πk−1
RT u∗‖+ C‖Πk−1

RT u∗ − u∗
h‖

≤ ‖u∗ −Πk−1
RT u∗‖+ C(‖Πk−1

RT u∗ − u∗‖+ ‖u∗ − u∗
h‖) ≤ Ch‖u∗‖1, (4.16)

where we used (2.41), (3.12), and a bound for the discretization error

‖u∗ − u∗
h‖ ≤ Ch‖u∗‖1, (4.17)

which is obtained in a manner similar to the velocity error estimate (3.32). Bound

(4.12) follows from the use of the Cauchy–Schwarz inequality, (4.16), (3.12), and

(4.4). Bound (4.13) is obtained in a similar way, by adding and subtracting u∗ in

the first component and u in the second component, and using (4.17), (4.16), (3.12),

(3.32), and (4.4). Bound (4.14) follows from

|σ
(
K−1Πk−1

RT u∗
h,Π

k−1
RT u

)
| ≤ |σ

(
K−1(Πk−1

RT u∗
h −Π0

RTu
∗),Πk−1

RT u
)
|

+ |σ
(
K−1Π0

RTu
∗,Πk−1

RT u
)
|

≤ C(hk‖u‖k‖Πk−1
RT u∗

h −Π0
RTu

∗‖+ hk+1‖u‖k‖u∗‖1)

≤ Chk+1‖Qk−1
h p− ph‖‖u‖k,

where we used (3.24), (4.2), (3.21), (4.16), (3.12), and (4.4). Finally, (4.15) follows

from (3.18), (3.33), and (4.4).

Using the above result we can easily show superconvergence of the pressure

at the Gauss points. For an element E, let |||·|||E denote the discrete L2(E)-norm

computed by mapping to the reference element Ê and applying the tensor-product

Gauss quadrature rule with k points in each variable. It is easy to see that |||w|||E =

‖w‖E for w ∈ W k−1
h (E). Assuming continuous pressure p|E , let pI |E ∈ W k−1

h (E)

be the Lagrange interpolant of p|E at the kd Gauss points. It is shown in Lemma 4.3

of Ref. 23 that

‖Qk−1
h p− pI‖ ≤ Chk+1‖p‖k+1. (4.18)

We now have

|||p− ph||| =
∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣ = ‖pI − ph‖ ≤ ‖pI −Qk−1
h p‖+ ‖Qk−1

h p− ph‖

≤ Chk+1(‖u‖k + ‖∇ · u‖k + ‖p‖k+1),

using (4.18) and (4.5).

We next show that the above superconvergence result for ‖Qk−1
h p− ph‖ can be

used to compute a higher order approximation to the pressure p in the L2(Ω)-norm,

using a variant of the local postprocessing proposed in Ref. 39. The postprocessing
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idea is also utilized for a posteriori error estimation (see e.g. work of Ref. 34). Let

W̃ k
h be the L2-orthogonal complement of W 0

h in W k
h . We now define p∗h ∈ W k

h by

Q0
hp

∗
h = Q0

hph, (4.19)

(∇p∗h,∇q)E = −(K−1uh,∇q)E , q ∈ W̃ k
h (E), ∀E ∈ Th. (4.20)

Theorem 4.3. Under the assumption of Theorem 4.2, there exists a constant C

independent of h such that

‖p− p∗h‖ ≤ Chk+1(‖u‖k + ‖∇ · u‖k + ‖p‖k+1). (4.21)

Proof. Let Q̃k
h be the L2 orthogonal projection onto W̃ k

h . By the triangle inequal-

ity it is enough to estimate ‖Qk
hp − p∗h‖. Let p̃h := p∗h − Q0

hph. Considering the

decomposition Qk
hp− p∗h = (Q0

hp−Q0
hph) + (Q̃k

hp− p̃h), it is sufficient to estimate

‖Q̃k
hp− p̃h‖ by Theorem 4.2. Recalling that ∇p = −K−1u, we have

(∇h(p− p∗h),∇hq) = −(K−1(u− uh),∇hq), ∀ q ∈ W̃ k
h ,

where ∇h is the element-wise gradient. From p− p∗h = (p−Qk
hp)+ (Q0

hp−Q0
hph)+

(Q̃k
hp− p̃h) and by taking q = Q̃k

hp− p̃h in the above equation, we get

‖∇h(Q̃k
hp− p̃h)‖ ≤ ‖∇h(p−Qk

hp)‖+ ‖K−1(u− uh)‖ ≤ Chk(‖p‖k + ‖u‖k),

where we used the Bramble–Hilbert lemma, an inverse estimate, and (3.32). Since

W 0
h is the space of element-wise constants on Th, Q̃k

hp− p̃h is orthogonal to element-

wise constants. Then the element-wise Friedrichs’ inequality yields ‖Q̃k
hp− p̃h‖E ≤

ChE‖∇h(Q̃k
hp − p̃h)‖E for all E ∈ Th. The conclusion follows by combining this

and the above inequality.

Remark 4.1. Instead of the postprocessing (4.19)–(4.20), one may use the post-

processing defined in Ref. 39 and obtain a numerical pressure that is convergent of

order O(hk+1). The error analysis is almost the same as the above.

5. Numerical Results

In this section, we present numerical experiments on quadrilateral and hexahedral

grids that validate the theoretical results in the previous sections. The method has

been implemented in the finite element library deal.II.8 The code is available in

the deal.II code gallery.5 In the first example, we test the method on a sequence

of meshes obtained by a uniform isotropic refinement of an initial quadrilateral

partition of the unit square. The boundary conditions are chosen to be of Dirichlet

type for simplicity. The test case is constructed with the full permeability tensor

coefficient

K =

(
(x+ 1)2 + y2 sin (xy)

sin (xy) (x+ 1)2

)
,
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Fig. 2. Computed solution for Example 1 on the third level of refinement.

and the analytical solution

p = x3y4 + x2 + sin(xy) cos(xy).

The computed pressure solution on the third level of refinement is shown in Fig. 2

(left), where the colors represent the pressure values and the arrows represent the

velocity vectors. Similarly, Fig. 2 (right) shows the velocity solution, where colors

represent the velocity magnitude. The numerical relative errors and convergence

rates are obtained on a sequence of six mesh refinements and are reported in Table 1

for the MFMFE methods of order k = 2, 3, 4. We note that in all cases we see the

predicted convergence rate of order O(hk) for all variables in their natural norms,

as well as superconvergence of the pressures at the Gauss points, i.e. |||p− ph|||
is of order O(hk+1). We also observe O(hk+1) convergence for the postprocessed

pressure. We note that the deterioration of the convergence rate of the divergence

and the superconvergence rate of the pressure for the fourth-order method on the

finest grid is due to the fact that these errors are very small and roundoff errors

start having a noticeable effect.

In the second example, we focus on a 3d case. We let K be a full permeability

tensor with variable coefficients

K =



x2 + (y + 2)2 0 cos(xy)

0 z2 + 2 sin(xy)

cos(xy) sin(xy) (y + 3)2


,
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Table 1. Relative errors and convergence rates for Example 1.

k = 2

‖u− uh‖ ‖∇ · (u− uh)‖ ‖p− ph‖ |||p− ph||| ‖p − p∗h‖
h Error Rate Error Rate Error Rate Error Rate Error Rate

1/3 8.80E-02 — 1.46E-01 — 3.20E-02 — 5.80E-03 — 1.19E-02 —
1/6 2.36E-02 1.9 3.74E-02 2.0 7.90E-03 2.0 7.73E-04 2.9 1.42E-03 3.1

1/12 6.01E-03 2.0 9.41E-03 2.0 1.98E-03 2.0 1.18E-04 2.7 1.66E-04 3.1
1/24 1.50E-03 2.0 2.36E-03 2.0 4.96E-04 2.0 1.70E-05 2.8 1.94E-05 3.1
1/48 3.74E-04 2.0 5.89E-04 2.0 1.24E-04 2.0 2.30E-06 2.9 2.29E-06 3.1
1/96 9.31E-05 2.0 1.47E-04 2.0 3.10E-05 2.0 2.99E-07 2.9 2.78E-07 3.1

k = 3

‖u− uh‖ ‖∇ · (u− uh)‖ ‖p− ph‖ |||p− ph||| ‖p − p∗h‖
h Error Rate Error Rate Error Rate Error Rate Error Rate

1/3 1.35E-02 — 1.96E-02 — 3.16E-03 — 4.36E-04 — 1.03E-03 —
1/6 1.69E-03 3.0 2.44E-03 3.0 3.95E-04 3.0 3.33E-05 3.7 5.33E-05 4.3

1/12 2.09E-04 3.0 3.04E-04 3.0 4.95E-05 3.0 2.48E-06 3.8 2.79E-06 4.3

1/24 2.59E-05 3.0 3.80E-05 3.0 6.19E-06 3.0 1.74E-07 3.8 1.55E-07 4.2
1/48 3.22E-06 3.0 4.75E-06 3.0 7.73E-07 3.0 1.17E-08 3.9 9.04E-09 4.1
1/96 4.02E-07 3.0 5.93E-07 3.0 9.67E-08 3.0 7.57E-10 4.0 5.44E-10 4.1

k = 4

‖u− uh‖ ‖∇ · (u− uh)‖ ‖p− ph‖ |||p− ph||| ‖p − p∗h‖
h Error Rate Error Rate Error Rate Error Rate Error Rate

1/3 1.13E-03 — 1.52E-03 — 2.46E-04 — 2.83E-05 — 5.17E-05 —
1/6 6.84E-05 4.1 9.24E-05 4.0 1.52E-05 4.0 1.00E-06 4.8 1.26E-06 5.4

1/12 4.20E-06 4.0 5.74E-06 4.0 9.50E-07 4.0 3.55E-08 4.8 3.20E-08 5.3
1/24 2.59E-07 4.0 3.58E-07 4.0 5.94E-08 4.0 1.20E-09 4.9 8.74E-10 5.2
1/48 1.61E-08 4.0 2.25E-08 4.0 3.71E-09 4.0 3.98E-11 4.9 2.59E-11 5.1
1/96 1.00E-09 4.0 4.96E-09 2.2 2.32E-10 4.0 8.78E-12 2.2 8.72E-12 1.6

and solve the problem with Dirichlet boundary conditions and the analytical pres-

sure solution chosen as follows

p = x4y3 + x2 + yz2 + cos(xy) + sin(z).

The initial computational domain is obtained as a smooth map of the unit cube, i.e.

we start with a 4×4×4 unit cube mesh and then apply the following transformation

to its points

x = x̂+ 0.03 cos(3πx̂) cos(3πŷ) cos(3πẑ),

y = ŷ − 0.04 cos(3πx̂) cos(3πŷ) cos(3πẑ),

z = ẑ + 0.05 cos(3πx̂) cos(3πŷ) cos(3πẑ).

The sequence of meshes on which we perform the convergence study is then obtained

by a series of uniform refinements of the initial grid, described above. Figure 3 (left)

presents the pressure solution, computed on the third level of refinement, where the

colors represent the pressure values and the arrows depict the velocity vectors. The

velocity magnitude is also shown in Fig. 3 (right). The computed numerical errors

and convergence rates shown in Table 2 once again confirm the theoretical results
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Fig. 3. Computed solution for Example 2 on the third level of refinement.

Table 2. Relative errors and convergence rates for Example 2.

k = 2

‖u− uh‖ ‖∇ · (u − uh)‖ ‖p− ph‖ |||p− ph||| ‖p − p∗h‖
h Error Rate Error Rate Error Rate Error Rate Error Rate

1/4 7.47E-03 — 2.92E-02 — 4.97E-03 — 1.63E-04 — 3.34E-04 —
1/8 1.82E-03 2.0 7.24E-03 2.0 1.24E-03 2.0 2.23E-05 2.9 3.99E-05 3.1

1/16 4.51E-04 2.0 1.81E-03 2.0 3.11E-04 2.0 3.07E-06 2.9 4.86E-06 3.0
1/32 1.12E-04 2.0 4.51E-04 2.0 7.77E-05 2.0 4.12E-07 2.9 6.00E-07 3.0
1/64 2.80E-05 2.0 1.13E-04 2.0 1.94E-05 2.0 5.38E-08 2.9 7.47E-08 3.0

k = 3

‖u− uh‖ ‖∇ · (u − uh)‖ ‖p− ph‖ |||p− ph||| ‖p − p∗h‖
h Error Rate Error Rate Error Rate Error Rate Error Rate

1/4 5.06E-04 — 2.01E-03 — 2.03E-04 — 3.78E-06 — 1.23E-05 —
1/8 6.37E-05 3.0 2.46E-04 3.0 2.54E-05 3.0 2.56E-07 3.9 6.93E-07 4.2

1/16 7.93E-06 3.0 3.05E-05 3.0 3.17E-06 3.0 1.87E-08 3.8 4.06E-08 4.1
1/32 9.87E-07 3.0 3.81E-06 3.0 3.97E-07 3.0 1.35E-09 3.8 2.46E-09 4.0
1/64 1.21E-07 3.0 4.88E-07 3.0 4.96E-08 3.0 8.83E-11 3.9 1.50E-10 4.0

from the error analysis section. We see the optimal O(hk) order of convergence for

all variables, and also O(hk+1) superconvergence for the pressure.

In summary, the numerical experiments confirm the theoretical convergence

results for the higher order MFMFE method both on h2-parallelograms and regular

h2-parallelepipeds.
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14. F. Brezzi, J. Douglas, Jr., R. Duràn and M. Fortin, Mixed finite elements for second
order elliptic problems in three variables, Numer. Math. 51 (1987) 237–250.

15. F. Brezzi, J. Douglas, Jr. and L. D. Marini, Two families of mixed finite elements for
second order elliptic problems, Numer. Math. 47 (1985) 217–235.

16. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series
in Computational Mathematics, Vol. 15 (Springer-Verlag, 1991).

17. F. Brezzi, M. Fortin and L. D. Marini, Error analysis of piecewise constant pressure
approximations of Darcy’s law, Comput. Methods Appl. Mech. Eng. 195 (2006) 1547–
1559.

18. Z. Cai, J. Douglas, Jr. and M. Park, Development and analysis of higher order finite
volume methods over rectangles for elliptic equations, Adv. Comput. Math. 19 (2003)
3–33.



May 24, 2019 15:36 WSPC/103-M3AS 1950016

1076 I. Ambartsumyan et al.

19. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied
Mathematics, Vol. 40 (Society for Industrial and Applied Mathematics (SIAM), 2002),
reprint of the 1978 original (North-Holland, MR0520174 (58 #25001)).

20. J. Douglas, Jr. and J. E. Roberts, Global estimates for mixed methods for second
order elliptic equations, Math. Comp. 44 (1985) 39–52.

21. M. G. Edwards, Unstructured, control-volume distributed, full-tensor finite-volume
schemes with flow based grids, Comput. Geosci. 6 (2002) 433–452.

22. M. G. Edwards and C. F. Rogers, Finite volume discretization with imposed flux
continuity for the general tensor pressure equation, Comput. Geosci. 2 (1999)
259–290.

23. R. E. Ewing, R. D. Lazarov and J. Wang, Superconvergence of the velocity along
the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal. 28 (1991)
1015–1029.

24. R. E. Ewing, M. M. Liu and J. Wang, Superconvergence of mixed finite element
approximations over quadrilaterals, SIAM J. Numer. Anal. 36 (1999) 772–787.

25. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equa-
tions, 2nd edn., Springer Monographs in Mathematics (Springer, 2011).

26. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in
Mathematics, Vol. 24 (Pitman Advanced Publishing Program, 1985).

27. R. Ingram, M. F. Wheeler and I. Yotov, A multipoint flux mixed finite element method
on hexahedra, SIAM J. Numer. Anal. 48 (2010) 1281–1312.

28. R. A. Klausen and A. F. Stephansen, Convergence of multi-point flux approximations
on general grids and media, Int. J. Numer. Anal. Model. 9 (2012) 584–606.

29. R. A. Klausen and R. Winther, Convergence of multipoint flux approximations on
quadrilateral grids, Numer. Methods Partial Differential Equations 22 (2006) 1438–
1454.

30. R. A. Klausen and R. Winther, Robust convergence of multi point flux approximation
on rough grids, Numer. Math. 104 (2006) 317–337.

31. J. J. Lee and R. Winther, Local coderivatives and approximation of Hodge Laplace
problems, Math. Comp. 87 (2018) 2709–2735.

32. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Appli-
cations, Vol. I (Springer-Verlag, 1972), Translated from the French by P. Kenneth,
Die Grundlehren der mathematischen Wissenschaften, Band 181.

33. K. Lipnikov, M. Shashkov and I. Yotov, Local flux mimetic finite difference methods,
Numer. Math. 112 (2009) 115–152.

34. C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed
finite element methods, Math. Comp. 75 (2006) 1659–1674 (electronic).
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41. M. Vohraĺık, Equivalence between lowest-order mixed finite element and multi-point
finite volume methods on simplicial meshes, Math. Model. Numer. Anal. 40 (2006)
367–391.
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