
Mortar Mixed Finite Element Methods on IrregularMultiblock DomainsIvan YotovAbstractWe consider an expanded version of the lowest order Raviart-Thomas mixed �niteelement method for elliptic equations on irregular multiblock domains. The logicallyrectangular subdomain grids may not match on the interfaces. Continuous or discontin-uous piece-wise multilinearmortar �nite element spaces are introduced on the interfacesto approximate the scalar variable (pressure) and impose ux-matching conditions. Themethod is further reduced via quadrature rules to cell-centered �nite di�erences for thesubdomain pressures, coupled through the mortars. Under certain subdomain smooth-ness assumptions, superconvergence for both the pressure and its ux is shown at thecell-centers. A parallel domain decomposition algorithm is used to solve the discretesystem by reducing it to a positive de�nite problem in the mortar spaces.KEYWORDS: mixed �nite element, mortar �nite element, error estimates, superconver-gence, multiblock, non-matching grids1 IntroductionIn this paper we consider mixed �nite element methods for second order elliptic problemson multiblock domains. We de�ne a multiblock domain to be a simply connected domain
 2 Rd, d = 2 or 3, that is a union of non-overlapping subdomains or blocks 
i, i = 1; :::; n.Using ow in porous media terms, we solve for the pressure p and the velocity u satisfyingu = �Krp; r � u = f in 
; (1)p = 0 on @
; (2)where K is a symmetric, uniformly positive de�nite tensor with L1(
) components relatedto the permeability. The choice of boundary conditions is merely for simplicity.Multiblock �nite element methods on non-matching grids have become increasingly pop-ular in recent years. They allow for accurate modeling of faults and layers in porous mediaproblems, using sliding grids in structural mechanics applications, and coupling di�erentphysics in di�erent parts of the domain. Moreover, they combine the exibility of modelingfairly irregular geometries with the convenience of constructing the grids locally.Critical to these methods is to properly impose matching interface conditions. Overcon-straining could lead to ill-posed schemes, while underconstraining causes loss of accuracy.Third IMACS International Symposium on Iterative Methods in Scienti�c ComputationB. Chen, T. Mathew, and J. Wang, eds, pp. 1{5.Copyright c1997 by IMACSAll rights of reproduction in any form reserved. 1



2 Ivan YotovUsing an interface (mortar) �nite element space as a test space for forcing the matchingconditions has been a common tool in standard and spectral �nite element methods (see[5] and references therein). Recently mortar techniques have been successfully applied formixed �nite element methods [1, 10, 11]. An alternative non-mortar mixed method hasbeen studied in [4].In this paper we consider multiblock domains with each block covered by a logicallyrectangular grid and discretized by the lowest order Raviart-Thomas (RT0) mixed spaces[9]. Single block RT discretizations are known to be superconvergent for both pressure andvelocity at the nodal points on rectangular [3, 6, 8] and smooth logically rectangular grids [2].With a proper choice of mortar interface spaces we show convergence and superconvergenceresults similar to the single block case.2 The expanded mortar mixed �nite element methodWe assume that each subdomain 
i, 1 � i � n, is the image via a smooth mapping Fi ofa rectangular reference domain 
̂i. The subdomain 
i is covered by a logically rectangularcurved grid Th;i (h is the maximum grid spacing), which is the image via Fi of a rectangulargrid T̂h;i on 
̂i. Let Let DF = (@Fi=@x̂j) be the Jacobian matrix of F , and J = jdet(DF )jbe its Jacobian.Let V̂h;i � Ŵh;i � H(div; 
i) � L2(
i) be the RT0 mixed �nite element spaces on 
̂i[9]. On each d � 1 dimensional non-matching interface �ij = @
i \ @
j we introduce alogically rectangular grid Th;ij , which is the image via Fi and Fj of rectangular grids T̂ ih;ijand T̂ jh;ij , respectively. We later impose a condition on Th;ij necessary for the stability andthe convergence of the method. Let M̂ ih;ij be the space of either continuous or discontinuouspiece-wise (bi)linear functions de�ned on T̂ ih;ij .If the subdomain grids match on �ij , we may use the above choice, or we may take Th;ijto be the trace of the local grids and de�ne M̂ ih;ij to be the standard piece-wise constantLagrange multiplier space. We note that the latter choice on non-matching interfaces leadsto only O(h1=2) velocity approximation (O(1) on the interfaces).To complete the de�nition of the reference �nite element spaces, letV̂h = nMi=1 V̂h;i; Ŵh = nMi=1 Ŵh;i; M̂h = M1�i<j�n M̂h;ij :We now de�ne the �nite element spaces Vh, Wh, and Mh on the physical domain 
 asfollows (see also [2, 9]). For each v̂ 2 V̂h, ŵ 2 Ŵh, and �̂ 2 M̂h, we de�ne v 2 Vh, w 2 Wh,and � 2Mh for x 2 
 byv(x) = 1J(x̂)DF (x̂) v̂(x̂); w(x) = ŵ(x̂); �(x) = �̂(x̂); (3)where x = F (x̂), x̂ 2 
̂. The Piola transformation for the vector space preserves the normalcomponent of the velocity across the element boundaries.Following [2], we introduce the adjusted pressure gradient ~u = �G�1rp; where thesymmetric and positive de�nite matrix G = J(DF�1)TDF�1 is chosen to greatly simplifythe computational problem on 
̂. Indeed we haveG~u = �rp F�1�! ~̂u = r̂p̂;



Mortar Mixed Finite Element Methods 3GTu = GTKG~u F�1�! û = K~̂u; K = JDF�1K(DF�1)T :In the expanded mortar mixed method for approximating (1){(2) we solve for uh 2Vh,~uh 2 Vh, ph 2 Wh, and �h 2Mh satisfying after a transformation through (3) for 1 � i � nZ
̂i ~̂uh � v̂ dx̂ = Z
̂i p̂hr̂ � v̂ dx̂� Z�̂i �̂h v̂ � �̂i d�̂; v̂ 2 V̂h;i; (4)Z
̂i ûh � v̂ dx̂ = Z
̂i K~̂uh � v̂ dx̂; v̂ 2 V̂h;i; (5)Z
̂i r̂ � ûh ŵ dx̂ = Z
̂i Jf̂ ŵ dx̂; ŵ 2 Ŵh;i; (6)nXi=1 Z�̂i ûh � �̂i �̂ d�̂ = 0; �̂ 2 M̂h; (7)where �i = @
in@
. Continuity of normal ux is weakly imposed across each interface �ijby (7).Existence and uniqueness of a solution is shown in [1, 11], provided that there exists aconstant C independent of h such that(H1) k�k�ij � C(kQh;i�k�ij + kQh;j�k�ij); 8� 2Mh;ij ;where Qh;i is the L2-projection onto Vh;i � �j@
i and k � kS is the L2-norm on S. In fact,solvability holds even if C depends on h; however, C must be independent of h for the errorestimates in Theorem 2.1.The hypothesis (H1) is not very restrictive. It requires only that the mortar space benot too �ne compared to the traces of the velocity spaces. One choice for the mortar gridthat satis�es (H1) for both continuous and discontinuous mortars is to take the trace ofeither subdomain grid and coarsen it by two.To further simplify the scheme, we employ the trapezoidal quadrature rule for approx-imating the three integrals involving a vector-vector product. This allows for a directelimination of ~̂uh and ûh on a sub-domain, leading to a �nite di�erence scheme for p̂h atthe cell centers and averages of �̂h at the centers of the faces on the sub-domain boundary.The stencil in a sub-domain is 9 points if d = 2 and 19 points if d = 3 (see [3] for details).The following optimal convergence and superconvergence error estimates have beenshown in [1, 11], wherein jjj � jjj is the discrete L2-norm induced by the midpoint quadraturerule, and CF;l is a constant independent of h, but dependent on kFikl;1 and kF�1i kl;1.Theorem 2.1 If (H1) holds, thenku� uhk+ k~u� ~uhk+ kp� phk � CF;2 nXi=1(kpk2;
i + kuk1;
i)h;kr � (u� uh)k � CF;2 nXi=1 kr � uk1;
ih:If each subdomain grid is an image of a uniform grid via a C2 map, p 2 C3;1(�
i)TC0(�
),u 2 (C1(�
i)TW 2;1(
i))dTH(div; 
), and K 2 (C1(�
i)TW 2;1(
i))d�d, then there existsa constant CF;3 dependent on the solution and K as indicated , such thatjjju� uhjjj+ jjj~u� ~uhjjj � CF;3h3=2; jjjp� phjjj+ jjjr � (u� uh)jjj � CF;3h2:



4 Ivan Yotov
A. Computed solution B. Magni�ed discretization errorFigure 1: Computed pressure (shade) and velocity (arrows) and discretization error.3 Domain decomposition and a numerical exampleThe discrete linear system is solved in parallel using a modi�cation of a non-overlappingdomain decomposition algorithm by Glowinski and Wheeler [7]. The original system isreduced to a positive de�nite problem in the mortar spaces, which is then solved usingmultigrid on the interface with conjugate gradient smoothing. Each conjugate gradientiteration requires subdomain solves and projections between the mortars and the localpiece-wise constant spaces.To illustrate computationally the convergence rates we give an example with knownsolution, coe�cient, and mappingp(x; y) = 8<: x2y3 + cos(xy); 0 � x � 1=2;�2x+920 �2 y3 + cos �2x+920 y� ; 1=2 � x � 1;K = ( I; 0 � x < 1=2;10 � I; 1=2 < x � 1; ;  xy ! = F  x̂̂y ! =  x̂ŷ + 110sin(6x̂) ! :The discrete L2-errors on four levels of re�nement and the convergence rates for the twomortar types are given in Table 1. The computed solution and error for the continuousmortars are shown in Figure 1.Acknowledgments. This work was partially supported by the Department of Energy.The author thanks Prof. Mary F. Wheeler and Prof. Todd Arbogast for useful discussions.References[1] T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov, Mixed �nite ele-ment methods on non-matching multiblock grids, Tech. Rep. TICAM 96-50, Texas Inst.Comp. Appl. Math., University of Texas at Austin, 1996. Submitted for publication.[2] T. Arbogast, C. N. Dawson, P. T. Keenan, M. F. Wheeler, and I. Yotov,Enhanced cell-centered �nite di�erences for elliptic equations on general geometry,SIAM J. Sci. Comp., 18 (1997). To appear.



Mortar Mixed Finite Element Methods 5Continuous mortars Discontinuous mortars1=h jjjp� phjjj jjju� uhjjj jjj�� �hjjj jjjp� phjjj jjju� uhjjj jjj�� �hjjj8 6.75E-4 3.05E-2 1.74E-3 7.13E-4 4.60E-2 2.43E-316 2.22E-4 1.14E-2 5.43E-4 2.28E-4 1.72E-2 7.01E-432 6.42E-5 3.86E-3 1.54E-4 6.50E-5 6.05E-3 1.90E-464 1.72E-5 1.29E-3 4.10E-5 1.74E-5 2.10E-3 4.91E-51-4 O(h1:77) O(h1:53) O(h1:80) O(h1:79) O(h1:49) O(h1:88)3-4 O(h1:90) O(h1:59) O(h1:91) O(h1:90) O(h1:53) O(h1:95)Table 1: Discrete norm errors and convergence rates[3] T. Arbogast, M. F. Wheeler, and I. Yotov, Mixed �nite elements for ellipticproblems with tensor coe�cients as cell-centered �nite di�erences, SIAM J. Numer.Anal., 34 (1997), pp. 828{852.[4] T. Arbogast and I. Yotov, A non-mortar mixed �nite element method for ellipticproblems on non-matching multiblock grids, Comput. Meth. Appl. Mech. Eng., (1997).[5] C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach todomain decomposition: the mortar element method, in Nonlinear partial di�erentialequations and their applications, H. Brezis and J. L. Lions, eds., Longman Scienti�c &Technical, UK, 1994.[6] R. E. Ewing, R. D. Lazarov, and J. Wang, Superconvergence of the velocity alongthe Gauss lines in mixed �nite element methods, SIAM J. Numer. Anal., 28 (1991),pp. 1015{1029.[7] R. Glowinski and M. F. Wheeler, Domain decomposition and mixed �nite elementmethods for elliptic problems, in First International Symposium on Domain Decompo-sition Methods for Partial Di�erential Equations, R. Glowinski, G. H. Golub, G. A.Meurant, and J. Periaux, eds., SIAM, Philadelphia, 1988, pp. 144{172.[8] M. Nakata, A. Weiser, and M. F. Wheeler, Some superconvergence results formixed �nite element methods for elliptic problems on rectangular domains, in TheMathematics of Finite Elements and Applications V, J. R. Whiteman, ed., AcademicPress, London, 1985, pp. 367{389.[9] R. A. Raviart and J. M. Thomas, A mixed �nite element method for 2nd orderelliptic problems, in Mathematical Aspects of the Finite Element Method, LectureNotes in Mathematics, vol. 606, Springer-Verlag, New York, 1977, pp. 292{315.[10] I. Yotov, A mixed �nite element discretization on non-matching multiblock grids fora degenerate parabolic equation arising in porous media ow. To appear in East-WestJ. Numer. Math.[11] , Mixed �nite element methods for ow in porous media, PhD thesis, Rice Univer-sity, Houston, Texas, 1996.Ivan YotovTexas Institute for Computational and Applied MathematicsTAY 2.400; C0200The University of Texas at AustinAustin, TX 78712yotov@ticam.utexas.edu


