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a b s t r a c t

We establish interior velocity superconvergence estimates for mixed finite element approximations of
second order elliptic problems on non-matching rectangular and quadrilateral grids. Both mortar and
non-mortar methods for imposing the interface conditions are considered. In both cases it is shown that
a discrete L2-error in the velocity in a compactly contained subdomain away from the interfaces con-
verges of order Oðh1=2Þ higher than the error in the whole domain. For the non-mortar method we also
establish pressure superconvergence, which is needed in the velocity analysis. Numerical results are pre-
sented in confirmation of the theory.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The use of non-matching multiblock grids in discretizations of
partial differential equations provides great flexibility in meshing
highly irregular domains and accurately handling internal features,
e.g., faults and geological layers in porous media. At the same time,
special care has to be taken to impose properly interface continuity
conditions. The computational error due to the non-matching grids
affects the overall accuracy of the solution. In this paper we study
how this interface error propagates into the interior of the
subdomains.

We consider the second order elliptic equation written as a first
order system

u ¼ �Krp in X; ð1:1Þ
r � u ¼ f in X; ð1:2Þ
p ¼ g on oX; ð1:3Þ

where X � Rd, d = 2 or 3, and K is a symmetric, uniformly positive
definite tensor with L1ðXÞ components. The above system models
single-phase flow in porous media among many other applications.
Here p is the pressure, u is the Darcy velocity, and K represents the
rock permeability divided by the fluid viscosity. We assume that
KðxÞ satisfies

8x 2 X; k0n
Tn 6 nT KðxÞn 6 k1n

Tn 8n 2 Rd: ð1:4Þ

The Dirichlet boundary conditions are considered merely for sim-
plicity of the presentation. Neumann boundary conditions
u � m ¼ gN and Robin boundary conditions �apþ u � m ¼ gR, where m

is the outward unit normal vector on oX, can also be considered.
We assume that the problem (1.1)–(1.3) is H2-regular, i.e., there ex-
ists a positive constant C depending only on K and X such that

kpk2 6 Cðkfk þ kgk3=2;oXÞ; ð1:5Þ

where H2 is the standard Hilbert space of functions having second
order weak derivatives in L2. Sufficient conditions for (1.5) are, for
example, K 2 C0;1ðXÞ and X is convex or oX is smooth enough
[20,22].

We study the approximation of (1.1)–(1.3) by mixed finite ele-
ment methods on non-matching grids. Mixed methods are of inter-
est due to their local mass conservation and high accuracy for both
pressure and velocity, especially on structured grids. Multiblock
discretizations allow for modeling highly irregular domains, while
keeping the subdomain grids relatively simple. As a result, the use
of mixed finite element subdomain discretizations can lead to
accurate and efficient methods.

Continuity of flux and pressure must be imposed on interfaces.
We consider two approaches, a mortar and a non-mortar method.
In the mortar mixed finite element method [1,21,34] a mortar fi-
nite element pressure Lagrange multiplier is introduced on the
interfaces to impose weakly continuity of flux. If the mortar space
contains polynomials of degree one order higher than the traces of
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subdomain velocities, the method is optimally convergent and
even superconvergent in certain cases [1,34]. We refer the reader
to [6,7,16,23,33] for some examples of applications of mortar
spaces to other types of discretizations.

In the non-mortar mixed finite element method [3], interface
conditions are imposed without the use of a mortar space. On each
subdomain, a partially hybridized mixed method is employed. La-
grange multiplier pressures are introduced on the element faces
(or edges) on the subdomain interfaces C as in [4,11,19]. Since
the grids are non-matching across C, the Lagrange multipliers are
double-valued. Robin type conditions are imposed on C to couple
the subdomain problems. The method has an advantage if adaptive
local refinement techniques are to be used, since there is no mortar
grid to refine. Such refinement could be difficult to implement in
the mortar mixed method, since accuracy depends subtly on the
relations between the mortar grid and the traces of the grids of
the subdomain blocks [1], see the mortar condition (2.28).

In this paper we combine cutoff function and superconvergence
techniques to establish interior error estimates for the velocity in
mortar and non-mortar discretizations. We refer to [2,15,17,
18,24] for relevant superconvergence results for mixed finite ele-
ment methods on rectangular and quadrilateral elements. There
are also examples of the use of cutoff functions in the context of
mixed finite element methods. In [14], interior and superconver-
gence estimates are established in negative norms for linear and
semi-linear elliptic problems. Interior estimates are established
in [2] for a cell-centered finite difference version of the mixed
method, as well as in [31] for an enhanced velocity mixed finite
element method. Here we establish interior superconvergence for
the velocity in mortar and non-mortar mixed finite element meth-
ods. For both methods, if the grids are rectangular or mildly dis-
torted quadrilateral, we show that the velocity converges of
order Oðh1=2Þ higher in a compactly contained subdomain than in
the whole domain. In the mortar case the superconvergence is
the same as in single block discretizations with no boundary error.
As a tool in the analysis we prove pressure superconvergence for
the non-mortar method using a duality argument. Our analysis
shows that the numerical error depends on the smoothness of
the solution on every subdomain up to the interface. Numerical
experiments confirm both the interior superconvergence for
smooth solutions, as well as deterioration of interior convergence
for singular solutions.

The remainder of the paper is organized as follows. In the next
section, we recall the mortar and non-mortar mixed finite element
methods and their convergence properties. Section 3 is devoted to
the interior error analysis for the mortar method. The non-mortar
method is analyzed in Section 4. Numerical experiments confirm-
ing the theory are presented in Section 5.

2. Formulation of the methods and preliminaries

We will use the following standard notation. For D � Rd, let ð�; �Þ
and k � kD be the L2ðDÞ inner product and norm, respectively. De-
note the norm in the Hilbert space HsðDÞ by k � ks;D. We may omit
the subscript D if D ¼ X. Similar notation is used for S � oX, with
the exception that the L2ðSÞ inner product or duality pairing is de-
noted by h�; �iS. We denote by c and C generic positive constants,
independent of the discretization parameter h.

The velocity and pressure functional spaces for the mixed weak
formulation of (1.1)–(1.3) are defined as usual [11] to be

V ¼ Hðdiv;XÞ ¼ fv 2 ðL2ðXÞÞd : r � v 2 L2ðXÞg; W ¼ L2ðXÞ;

with norms

kvkV ¼ ðkvk
2 þ kr � vk2Þ1=2

; kwkW ¼ kwk:

A weak solution of (1.1)–(1.3) is a pair u 2 V; p 2W such that

ðK�1u; vÞ ¼ ðp;r � vÞ � hg;v � mioX; v 2 Hðdiv;XÞ; ð2:1Þ

ðr � u;wÞ ¼ ðf ;wÞ; w 2 L2ðXÞ: ð2:2Þ

It is well known (see, e.g., [11,28]) that (2.1)–(2.2) has a unique
solution.

Let X be decomposed into non-overlapping subdomains
(blocks) Xi so that X ¼ [n

i¼1Xi and Xi \Xj ¼ ; for i 6¼ j. Let Ci;j ¼
oXi \ oXj for i 6¼ j; Ci;i ¼ ;; C ¼ [16i<j6nCi;j, and Ci ¼ oXi \ C ¼
oXi n oX denote interior block interfaces. We assume that the inter-
faces are flat. The blocks need not share complete faces, i.e., they
need not form a conforming partition. Denote by

Vi ¼ Hðdiv;XiÞ; Wi ¼ L2ðXiÞ

the subdomain functional spaces. To cast the problem (1.1)–(1.3) in
a multiblock form, we write on each block Xi

u ¼ �Krp in Xi; ð2:3Þ
r � u ¼ f in Xi; ð2:4Þ
p ¼ g on oXi \ oX; ð2:5Þ

and on each interface Ci;j

pi ¼ pj; ui � mi þ uj � mj ¼ 0;

i.e., both the pressure and the flux are continuous across Ci;j. Here, mi

is the outer unit normal to oXi and for any f defined on X, we denote
both f jXk

and its trace f jCk
by fk.

Let Th;i be a conforming, shape-regular, quasi-uniform finite
element partition of Xi;1 6 i 6 n, of maximal element diameter
hi [13]. To simplify the presentation, we let h ¼ max16i6nhi and ana-
lyze the methods in terms of this single value h. We allow for the
possibility that the subdomain partitions Th;i and Th;j do not align
on Ci;j. Define Th ¼ [n

i¼1Th;i and let

Vh;i �Wh;i � Vi �Wi

be any of the usual mixed finite element spaces defined on Th;i (see
[11, Section III.3]), the Raviart–Thomas (RT) spaces [27,25], the Bre-
zzi–Douglas–Marini (BDM) spaces [10], the Brezzi–Douglas–Fortin–
Marini (BDFM) spaces [9], the Brezzi–Douglas–Duràn–Fortin
(BDDF) spaces [8], or the Chen–Douglas (CD) spaces [12]. We con-
sider the above spaces on affine elements in R2 and R3 as well as
RT and BDFM spaces on convex quadrilateral elements in R2. The
order of the spaces is assumed to be the same on every subdomain.
In the affine case, let Vh;i contain the polynomials of degree k and
Wh;i contain the polynomials of degree l. For these spaces we have
either l ¼ k or l ¼ k� 1, with the former true for RT and BDFM
spaces. The mixed finite element spaces on quadrilaterals are de-
fined via a transformation to the reference square bE. For each ele-
ment E, there exists a bijection mapping FE : bE ! E. Let DFE be the
Jacobian matrix and let JE ¼ jdetðDFEÞj. If bVðbEÞ and cW ðbEÞ are the
mixed finite element spaces on bE, then the spaces on E are defined
via the transformations [29,11]

v ¼ 1
JE

DFEv̂ � F�1
E ; w ¼ ŵ � F�1

E :

The vector transformation is called the Piola transformation and
preserves the normal components of the velocity vectors on the
edges. It satisfies [11]

ðr � v;wÞE ¼ ðr̂ � v̂; ŵÞÊ: ð2:6Þ

The pressure superconvergence result for the non-mortar meth-
od will be shown for all of the above spaces on affine elements in
R2 and R3, as well as for the RT and BDFM spaces in R2 on h2-par-
allelograms, see (2.7). Interior superconvergence of the velocity in
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both methods will be shown for the RT and BDFM spaces on h2-
uniform quadrilateral grids, see (2.7)–(2.8), and, if K is a diagonal
tensor, on rectangular grids in R3.

Following the terminology from [18], a quadrilateral is called a
h2-parallelogram if it is a h2-perturbation of a parallelogram:

kðr2 � r1Þ � ðr3 � r4Þk 6 Ch2
; ð2:7Þ

where ri; i ¼ 1; . . . ;4, are the vertices of the quadrilateral, see Fig. 1.
A quadrilateral partition is called h2-uniform, if each element is a
h2-parallelogram and any two adjacent elements form a h2-parallel-
ogram, i.e.,

kðr2 � r1Þ � ðr02 � r01Þk 6 Ch2
; ð2:8Þ

where r0i; i ¼ 1; . . . ;4, are the vertices of the adjacent element, see
Fig. 1. We note that h2-uniform grids can be constructed by uniform
refinements of an initial quadrilateral grid or by smooth mapping of
uniformly refined rectangular grids.

The velocity and pressure mixed finite element spaces on X are
defined as follows:

Vh ¼ �
n

i¼1
Vh;i; Wh ¼ �

n

i¼1
Wh;i:

Note that the normal components of vectors in Vh are continu-
ous between elements within each block Xi, but not across C.

We introduce some projection operators needed in the analysis.
For any of the standard mixed spaces there exists a projection
operator Pi : ðHeðXiÞÞd \ Vi ! Vh;i (for any e > 0), satisfying that
for any q 2 ðHeðXiÞÞd \ Vi,

ðr � ðPiq� qÞ;wÞ ¼ 0; 8 w 2Wh; ð2:9Þ
hðPiq� qÞ � mi;v � miiCi

¼ 0; 8v 2 Vh;i: ð2:10Þ

Define P : �n
i¼1ððH

�ð�iÞÞd \ ViÞ ! Vh such that PjXi
¼ Pi. On af-

fine elements,

r � Vh;i ¼Wh;i: ð2:11Þ

On quadrilateral elements, (2.6) implies that on any element E

r � Vh;iðEÞ ¼
1
JE

Wh;iðEÞ: ð2:12Þ

Since JE 6¼ constant, (2.11) does not hold for quadrilaterals.
Let bQ be the L2ðbEÞ-orthogonal projection onto cW ðbEÞ, satisfying

for any û 2 L2ðbEÞ,
ðû� bQ û; ŵÞ ¼ 0; ŵ 2 cW ðbEÞ:

Let Q h : L2ðXÞ !Wh be the projection operator satisfying for
any u 2 L2ðXÞ,

Q hu ¼ bQ û � F�1
E on all E:

It is easy to see that, due to (2.6),

ðu� Q hu;r � vÞ ¼ 0; 8 v 2 Vh: ð2:13Þ

For any / 2 L2ðCÞ, let /i 2 Vh;i � mijCi
be its L2ðCiÞ-orthogonal pro-

jection satisfying

h/� /i;v � miiCi
¼ 0; 8v 2 Vh;i: ð2:14Þ

The projection operators have the following approximation
properties:

ku� Q huk 6 Ckukth
t
; 0 6 t 6 lþ 1; ð2:15Þ

kr � ðq�PiqÞkXi
6 Ckr � qkt;Xi

ht
; 0 6 t 6 lþ 1; ð2:16Þ

kq�PiqkXi
6 Ckqkr;Xi

hr
; 1 6 r 6 kþ 1; ð2:17Þ

k/� /ikCi;j
6 Ck/kr;Ci;j

hr
; 0 6 r 6 kþ 1; ð2:18Þ

kðq�PiqÞ � mikCi;j
6 Ckqkr;Ci;j

hr
; 0 6 r 6 kþ 1: ð2:19Þ

Bounds (2.18) and (2.19) are standard L2-projection approxima-
tion results [13]; bounds (2.15)–(2.17) can be found in [11,28] for
affine elements and in [30,5] for h2-parallelograms.

In the analysis, we will also use the trace theorem

kqkr;Ci;j
6 Ckqkrþ1=2;Xi

; r > 0; ð2:20Þ

(see [20, Theorem 1.5.2.1]).

2.1. Mortar mixed finite element method

If the solution ðu; pÞ of (2.1)–(2.2) belongs to Hðdiv; XÞ � H1ðXÞ,
it is easy to see that it satisfies, for 1 6 i 6 n,

ðK�1u; vÞXi
¼ ðp;r � vÞXi

� hp;v � miiCi
� hg;v � miioXinCi

; v 2 Vi;

ð2:21Þ

ðr � u;wÞXi
¼ ðf ;wÞXi

; w 2Wi: ð2:22Þ

Let Th;i;j be a shape-regular, quasi-uniform affine finite element
partition of Ci;j and let TC;h ¼ [16i<j6nTh;i;j. Recall that k is associ-
ated with the degree of the polynomials in Vh � m. Denote by
Mh;i;j � L2ðCi;jÞ the mortar finite element space on Ci;j containing
at least either the continuous or discontinuous piecewise polyno-
mials of degree kþ 1 on Th;i;j. Let

Mh ¼ �
16i<j6n

Mh;i;j

be the mortar finite element space on C. In the mortar mixed finite
element approximation of (2.1)–(2.2) we seek uh 2 Vh;ph 2Wh, and
kh 2 Mh such that, for 1 6 i 6 n,

ðK�1uh;vÞXi
¼ ðph;r � vÞXi

� hkh;v � miiCi
� hg;v � miioXinCi

; v 2 Vh;i;

ð2:23Þ

ðr � uh;wÞXi
¼ ðf ;wÞXi

; w 2Wh;i; ð2:24ÞXn

i¼1

huh � mi;liCi
¼ 0; l 2 Mh: ð2:25Þ

Note that we have a standard mixed finite element method
within each block Xi and (2.24) enforces local conservation over
each element. It is clear from (2.21) and (2.23) that kh 2 Mh is an
approximation to the pressure p on C. Eq. (2.25) enforces weak flux
continuity across C with respect to the mortar space Mh.

For the purpose of the analysis, it is convenient to eliminate kh

from the mortar mixed method (2.23)–(2.25) by restricting Vh to
the space of weakly continuous velocities

V0
h ¼ v 2 Vh :

Xn

i¼1

hvi � mi;liCi
¼ 0; 8l 2 Mh

( )
:

Problem (2.23)–(2.25) is equivalent to finding uh 2 V0
h and

ph 2Wh such that
Fig. 1. h2-Uniform quadrilateral grid.
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ðK�1uh;vÞ ¼
Xn

i¼1

ðph;r � vÞXi
� hg;v � mioX; v 2 V0

h; ð2:26Þ

Xn

i¼1

ðr � uh;wÞXi
¼ ðf ;wÞ; w 2Wh: ð2:27Þ

Existence and uniqueness of a solution to (2.23)–(2.25) are
shown in [34,1] along with optimal convergence and superconver-
gence for both pressure and velocity under the following condition.

Assumption 2.1. Assume that there exists a constant C indepen-
dent of h such that

klkCi;j
6 CðklikCi;j

þ kljkCi;j
Þ; l 2 Mh; 1 6 i < j 6 n: ð2:28Þ

Remark 2.1. The condition (2.28) imposes a limit on the number
of mortar degrees of freedom and is easily satisfied in practice
(see, e.g., [34,26]).

Assuming (2.28), the following superconvergence error esti-
mates were shown in [1]:

kPu� uhk 6 C
Xn

i¼1

ðkpkkþ5=2;Xi
þ kukkþ3=2;Xi

Þhkþ3=2
; ð2:29Þ

kQ hp� phk 6 C
Xn

i¼1

ðkpkrþ2;Xi
þ kukrþ1;Xi

þ kr � ukrþ1;Xi
Þhrþ2

;

r ¼minðk; lÞ: ð2:30Þ

Bound (2.29) was shown only for RT elements on rectangular
grids. In the analysis, we will also use the optimal velocity error
estimate [1]

kPu� uhk 6 C
Xn

i¼1

ðkpkkþ2;Xi
þ kukkþ1;Xi

Þhkþ1
: ð2:31Þ

The analysis in [1] is carried out for affine elements. It is easy to
check that the estimates (2.30) and (2.31) also hold for h2-parallel-
ograms. The velocity superconvergence estimate (2.29) relies on
the projection error orthogonality

ðK�1ðPiu� uÞ; vÞXi
6 Chkþ2kukkþ2;Xi

kvkXi
; v 2 Vh;i; ð2:32Þ

which was shown in [15, Theorem 3.1], for RT and BDFM spaces on
rectangular elements in R2 and R3 and a diagonal tensor K. The re-
sults in [18] extend (2.32) to h2-uniform quadrilaterals and full ten-
sor coefficients. In particular, it is shown in [18, Theorem 5.1], that

ðK�1ðPiu� uÞ; vÞXi
6 Chkþ2ðkukkþ2;Xi

kvkXi
þ kukkþ1;Xi

kr � vkXi
Þ;

8v 2 Vh;i; v � mi ¼ 0 on oXi; ð2:33Þ

and

ðK�1ðPiu� uÞ; vÞXi
6 Chkþ3=2ðkukkþ3=2;Xi

kvkXi
þ kukkþ1;Xi

kr � vkXi
Þ;

8 v 2 Vh;i: ð2:34Þ

Using (2.34), it can be easily shown that (2.29) also holds for
h2-uniform quadrilateral grids and full tensor coefficients. In this
paper we employ (2.33) to establish interior velocity superconver-
gence of order Oðhkþ2��Þ.

2.2. Non-mortar mixed finite element method

The non-mortar approach of [3] is based on using Robin type
conditions for imposing continuity of pressures and fluxes across
interfaces. To put the problem (2.1)–(2.2) in a multiblock form,
choose a parameter a > 0 and write on each interface Ci;j

api � ui � mi ¼ apj þ uj � mj; apj � uj � mj ¼ api þ ui � mi: ð2:35Þ

The Robin type interface conditions (2.35) imply

pi ¼ pj; ui � mi þ uj � mj ¼ 0;

i.e., both the pressure and the flux are continuous across Ci;j.
The non-mortar mixed finite element method is based on dis-

cretizing the subdomain variational equations (2.21)–(2.22) com-
bined with a discrete weak imposition of the interface conditions
(2.35). Let Kh;i to be the hybrid mixed finite element Lagrange mul-
tiplier space on Ci [4,19], i.e.,

Kh;i ¼ Vh;i � mi:

In the non-mortar mixed finite element approximation of (2.1)–
(2.2), we seek ð~uh; ~phÞ 2 Vh �Wh and ~kh;i 2 Kh;i such that for
1 6 i 6 n,

ðK�1 ~uh;vÞXi
¼ ð~ph;r � vÞXi

� h~kh;i; v � miiCi
� hg;v � miioXinC; v 2 Vh;i;

ð2:36Þ

ðr � ~uh;wÞXi
¼ ðf ;wÞXi

; w 2Wh;i; ð2:37Þ

ha~kh;i � ~uh;i � mi;liiCi
¼
Xn

j¼1

ha~kh;j þ ~uh;j � mj;liiCi;j
; li 2 Kh;i: ð2:38Þ

We can replace (2.38) with the condition that for 1 6 i 6 nXn

j¼1

hað~kh;i � ~kh;jÞ;liiCi;j
¼
Xn

j¼1

h~uh;i � mi þ ~uh;j � mj;liiCi;j
; li 2 Kh;i:

ð2:39Þ

Existence and uniqueness of a solution to (2.36)–(2.38) are
shown in [3] along with optimal convergence for both pressure
and velocity:

kp� ~phk þ ku� ~uhk þ a
X

i;j

k~kh;i � ~kh;jk2
Ci;j

 !1=2

þ 1
a
X

i;j

k~uh;i � mi þ ~uh;j � mjk2
Ci;j

 !1=2

6 C
Xn

i¼1

ðkpkrþ3=2;Xi
þ kukrþ3=2;Xi

Þhrþ1
; r ¼minðk; lÞ; ð2:40Þ

Xn

i¼1

kr � ðu� ~uh;iÞk2
Xi

( )1=2

6 C
Xn

i¼1

kr � uklþ1;Xi
hlþ1

: ð2:41Þ

3. Interior estimates for the mortar mixed finite element
method

In this section, we establish interior superconvergence for the
velocity in the mortar mixed finite element method. The results
in the section are valid in the following cases.

(A1) The mixed finite element spaces are either RT or BDFM. The
grids are either h2-uniform quadrilateral in R2 or rectangular in R3.
In the latter case, K is assumed to be a diagonal tensor.

The interior error analysis is based on multiplying the test func-
tions by appropriate smooth cutoff functions. We will make use of
the following lemma.

Lemma 3.1. If / 2 H1ðXÞ and v 2 Vh, then there exists a constant C
independent of h such that

kðI �PÞð/vÞk 6 Ckvkk/k1 h:

Proof. For any v 2 Vh, consider the functional

lvð/Þ ¼ /v�Pð/vÞ:
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Since lvð/Þ ¼ 0 for all constant functions /, the statement of the
lemma follows from an application of the Bramble–Hilbert lemma
[13]. h

Let X0i be compactly contained in Xi; i ¼ 1; . . . ;n and let
X0 ¼ [n

i¼1X
0
i.

We prove the following interior velocity error estimates for the
mortar mixed finite element method.

Theorem 3.1. Assume (A1) and that (1.5) holds. Then, for any e > 0,
there exists a constant Ce dependent on the distance between X0 and C,
but independent of h such that

kPu� uhkX0 6 Ce

Xn

i¼1

ðkpkkþ2;Xi
þ kukkþ2;Xi

þ kr � ukkþ1;Xi
Þhkþ2�e

:

Proof. Key ingredients in the proof of the theorem are the optimal
velocity convergence (2.31), the projection error orthogonality
(2.33), and the superconvergence for pressure (2.30).

The error equations for the mortar mixed finite element method
are obtained by subtracting (2.23)–(2.24) from (2.21)–(2.22):

ðK�1ðu� uhÞ;vÞ ¼
Xn

i¼1

ððp� ph;r � vÞXi
� hp;v � miiCi

Þ; v 2 V0
h;

ð3:1Þ

Xn

i¼1

ðr � ðu� uhÞ;wÞXi
¼ 0; w 2Wh: ð3:2Þ

Note that (3.2), (2.9), and either (2.11) or (2.12) imply that

r � ðPu� uhÞ ¼ 0: ð3:3Þ

For i ¼ 1; . . . ;n, consider subdomain sequences Xj
i; j ¼ 1;2; . . .

such that

X0i �� Xjþ1
i �� Xj

i �� Xi:

Let Xj ¼ [n
i¼1X

j
i. Let /jþ1 2 C10 ðX

jÞ be a cutoff function,
/jþ1 P 0;/jþ1 � 1 on Xjþ1, and /jþ1 6 1 on Xj. The constants that
appear below may depend on k/jþ1k1;1;Xj . Note that, since /j � 1
on Xj,

kvkXj ¼ k/1=2
j vkXj 6 k/1=2

j vkXj�1 ;

which will be used repeatedly in our argument.
We have, using (3.1) with v ¼ P/jþ1ðPu� uhÞ,

ck/1=2
jþ1ðPu� uhÞk2

Xj 6 ðK�1ðPu� uhÞ;/jþ1ðPu� uhÞÞXj

¼ ðK�1ðPu� uhÞ; ðI �PÞð/jþ1ðPu� uhÞÞÞXj

þ ðK�1ðPu� uhÞ;P/jþ1ðPu� uhÞÞXj

¼ ðK�1ðPu� uhÞ; ðI �PÞð/jþ1ðPu� uhÞÞÞXj

þ ðK�1ðPu� uÞ;P/jþ1ðPu� uhÞÞXj

þ
Xn

i¼1

ðp� ph;r � ðP/jþ1ðPu� uhÞÞÞXj
i

6 CkPu� uhkXjkðI �PÞð/jþ1ðPu� uhÞÞkXj

þ Chkþ2kukkþ2;XjkP/jþ1ðPu� uhÞkXj

þ Chkþ2kukkþ1;Xjkr �P/jþ1ðPu� uhÞkXj

þ ðp� ph;r �P/jþ1ðPu� uhÞÞXj ; ð3:4Þ

where we have used either (2.32) (for rectangular grids in R3) or
(2.33) (for h2-uniform quadrilateral grids) in the last inequality.
Using (2.31) and Lemma 3.1, the first term on the right can be esti-
mated as

kPu� uhkXjkðI �PÞð/jþ1ðPu� uhÞÞkXj

6 C
Xn

i¼1

ðkpkkþ2;Xi
þ kukkþ1;Xi

Þhkþ1kPu� uhkXjk/jþ1k1;Xj h

6 C
Xn

i¼1

ðkpkkþ2;Xi
þ kukkþ1;Xi

Þhkþ2k/1=2
j ðPu� uhÞkXj�1 : ð3:5Þ

For the second term on the right in (3.4) we have

kP/jþ1ðPu� uhÞkXj 6 kðI �PÞ/jþ1ðPu� uhÞkXj

þ k/jþ1ðPu� uhÞkXj

6 ChkPu� uhkXjk/jþ1k1;Xj

þ k/jþ1k1;XjkPu� uhkXj

6 Ck/1=2
j ðPu� uhÞkXj�1 ; ð3:6Þ

using Lemma 3.1 for the second inequality. For the third term on the
right in (3.4), using (2.16) and (3.3), we have

kr �P/jþ1ðPu� uhÞkXj 6 Ckr � /jþ1ðPu� uhÞkXj

¼ Ckr/jþ1 � ðPu� uhÞkXj

6 Ck/jþ1k1;1;XjkPu� uhkXj

6 Ck/1=2
j ðPu� uhÞkXj�1 : ð3:7Þ

Similarly, using (2.13), (2.9) and (3.3), the last term on the right
in (3.4) can be bounded as

ðp�ph;r�Pð/jþ1ðPu�uhÞÞÞXj¼ðQhp�ph;r�Pð/jþ1ðPu�uhÞÞÞXj

¼ðQhp�ph;r/jþ1 �ðPu�uhÞÞXj

6CkQ hp�phkXjk/1=2
j ðPu�uhÞkXj�1

6C
Xn

i¼1

ðkpkkþ2;Xi
þkukkþ1;Xi

þkr�ukkþ1;Xi
Þhkþ2k/1=2

j ðPu�uhÞkXj�1 ;

ð3:8Þ

using (2.30) in the last inequality.
Combining (3.4)–(3.8), we get

k/1=2
jþ1ðPu� uhÞkXj 6 Ch

kþ2
2 k/1=2

j ðPu� uhÞk1=2
Xj�1

�
Xn

i¼1

ðkpkkþ2;Xi
þ kukkþ2;Xi

þ kr � ukkþ1;Xi
Þ

 !1=2

� Ch
kþ2

2 k/1=2
j ðPu� uhÞk1=2

Xj�1 A1=2: ð3:9Þ

Replacing jþ 1 with j in (3.9), we obtain

k/1=2
j ðPu� uhÞk1=2

Xj�1 6 Ch
kþ2

4 k/1=2
j�1ðPu� uhÞk1=4

Xj�2 A1=4
: ð3:10Þ

Multiplying (3.9) and (3.10) recurrently leads to

k/1=2
jþ1ðPu� uhÞkXj 6 Chðkþ2Þ 1

2þ
1
4þ���ð ÞA

1
2þ

1
4þ��� 6 Chkþ2�eA;

where we take enough terms so that 1
2þ 1

4þ � � �P 1� e
kþ2. h

4. Interior estimates for the non-mortar mixed finite element
method

Similarly to the case of mortar mixed finite element method,
subtracting Eqs. (2.36)–(2.37) from (2.21)–(2.22) and using proper-
ties of the projections, we get the error equations for the non-mor-
tar mixed finite element method

ðK�1ðu� ~uhÞ;vÞXi
¼ ðQhp� ~ph;r � vÞXi

� hpi � ~kh;i;v � miiCi
;

v 2 Vh;i; ð4:1Þ
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ðr � ðu� ~uhÞ;wÞXi
¼ 0; w 2Wh;i: ð4:2Þ

Here for clarity of notation we have denoted the trace of p on Ci

by pi, although, by the assumption p 2 H1ðXÞ, p has a single-valued
trace on C.

One of the key ingredients in the proof of Theorem 3.1, namely
superconvergence for pressure, is missing in the analysis of [3].
Using a duality argument, we prove the following pressure super-
convergence theorem.

Theorem 4.1. Assume (1.5) and that any of the usual mixed spaces on
affine elements or RT or BDFM on h2-parallelograms are used. For the
pressure ~ph of the non-mortar mixed method (2.36)–(2.38), there
exists a positive constant C, independent of h, such that

kQ hp� ~phk 6 C
Xn

i¼1

ðkpkrþ3=2;Xi
þ kukrþ3=2;Xi

þ kr � ukrþ1;Xi
Þhrþ3=2

;

r ¼minðk; lÞ:

Proof. Let n 2 H2ðXÞ be the solution of the auxiliary problem

�r � Krn ¼ Q hp� ~ph in X;

n ¼ 0 on oX;

and note that by (1.5)

knk2 6 CkQhp� ~phk: ð4:3Þ

Let f ¼ �Krn. Taking v ¼ Pif 2 Vh;i in (4.1) and using (2.9), we
have

kQ hp� ~phk2
Xi
¼ ðQ hp� ~ph;r �PifÞXi

¼ ðK�1ðu� ~uhÞ;Pif� fÞXi
� ðu� ~uh;rnÞXi

þ hpi � ~kh;i;Pif � miiCi
:

Sum over i and use (2.14) to get

kQ hp� ~phk2 ¼
Xn

i¼1

ðK�1ðu� ~uhÞ;Pif� fÞXi
�
Xn

i¼1

ðu� ~uh;rnÞXi

þ
Xn

i¼1

hpi � ~kh;i;Pif � miiCi

¼
Xn

i¼1

ðK�1ðu� ~uhÞ;Pif� fÞXi

þ
Xn

i¼1

ðr � ðu� ~uhÞ; n� QhnÞXi
�
Xn

i¼1

hðu� ~uh;iÞ � mi; niCi

þ
Xn

i¼1

hpi � ~kh;i; fi � miiCi
; ð4:4Þ

where we integrated by parts the second term and used (4.2) and
(2.10). The first two terms on the right in (4.4) are easy to handle.
Using (4.3) and the approximation properties (2.17), (2.15), we getXn

i¼1

ðK�1ðu� ~uhÞ;Pif� fÞXi
þ
Xn

i¼1

ðr � ðu� ~uhÞ; n� QhnÞXi

6 C ku� ~uhk þ
Xn

i¼1

kr � ðu� ~uhÞkXi

 !
hkQ hp� ~phk: ð4:5Þ

Using the continuity of n and u, we rearrange the third term in (4.4)
to obtain

�
Xn

i¼1

hðu� ~uh;iÞ � mi; niCi
¼ �1

2

X
i;j

hðu� ~uh;iÞ � mi þ ðu� ~uh;jÞ � mj; niCi;j

¼ 1
2

X
i;j

h~uh;i � mi þ ~uh;j � mj; niiCi;j

þ 1
2

X
i;j

h~uh;i � mi þ ~uh;j � mj; n� niiCi;j
: ð4:6Þ

Bounding the second term on the right in (4.6) is straightforward:
bounds (2.18), (2.20) and (4.3) give

X
i;j

h~uh;i � mi þ ~uh;j � mj; n� niiCi;j
6

X
i;j

k~uh;i � mi þ ~uh;j � mjk2
Ci;j

 !1=2

�
X

i;j

kn� nik2
Ci;j

 !1=2

6 C
X

i;j

k~uh;i � mi þ ~uh;j � mjk2
Ci;j

 !1=2

� h
X

i

knk2
3=2;Xi

 !1=2

6 C
X

i;j

k~uh;i � mi þ ~uh;j � mjk2
Ci;j

 !1=2

� hkQhp� ~phk: ð4:7Þ

To handle the first term on the right in (4.6), we take li ¼ 1
2 ni in

(2.39), sum over i and rearrange to get

1
2

X
i;j

h~uh;i � mi þ ~uh;j � mj;niiCi;j
¼ 1

2

X
i;j

hað~kh;i � ~kh;jÞ;niiCi;j

¼ 1
2

X
i<j

hað~kh;i � ~kh;jÞ;ni � njiCi;j

¼ 1
2

X
i<j

hað~kh;i � ~kh;jÞ; ðni � nÞþ ðn� njÞiCi;j

6
1
2

X
i<j

ak~kh;i � ~kh;jkCi;j

� ðkni � nikCi;j
þknj � njkCi;j

Þ

6 C
X
i<j

ak~kh;i � ~kh;jkCi;j

� hðknk3=2;Xi
þknk3=2;Xj

Þ

6 C
X
i<j

ak~kh;i � ~kh;jkCi;j
hkQ hp� ~phk;

ð4:8Þ

where we used (2.18), (2.20) and (4.3) in the last inequality. It re-
mains to bound the last term in (4.4). Using the continuity of f � m
and p, and rearranging terms, we obtain

Xn

i¼1

hpi � ~kh;i; fi � miiCi
¼ 1

2

X
i;j

hpi � ~kh;i � pj þ ~kh;j; fi � miiCi;j

¼ 1
2

X
i;j

hpi � pj � ~kh;i þ ~kh;j; ðfi �PifiÞ � miiCi;j

� 1
2

X
i;j

h~kh;i � ~kh;j;Pifi � miiCi;j

þ 1
2

X
i;j

hpi � pj;Pifi � miiCi;j
: ð4:9Þ

The first term in (4.9) can be bounded using (2.18)–(2.20) and (4.3),

hpi � pj � ~kh;i þ ~kh;j; ðfi �PifiÞ � miiCi;j

6 ðkpi � pikCi;j
þ kpj � pjkCi;j

þ k~kh;i � ~kh;jkCi;j
Þkðfi �PifiÞ � mikCi;j

6 C hkþ1kpikkþ3=2;Xi
þ hkþ1kpjkkþ3=2;Xj

þ k~kh;i � ~kh;jkCi;j

� �
h1=2kfk1;Xi

6 C hkþ1kpikkþ3=2;Xi
þ hkþ1kpjkkþ3=2;Xj

þ k~kh;i � ~kh;jkCi;j

� �
� h1=2kQ hp� ~phk: ð4:10Þ
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To handle the second term in (4.9), take li ¼ 1
2a Pifi � mi in (2.39),

sum over i, combine the two terms on Ci;j and use the continuity
of f � m to obtain

� 1
2

X
i;j

h~kh;i � ~kh;j;Pifi � miiCi;j

¼ � 1
2a
X

i;j

h~uh;i � mi þ ~uh;j � mj;Pifi � miiCi;j

¼ � 1
2a
X
i<j

h~uh;i � mi þ ~uh;j � mj;Pifi � mi þPjfj � mjiCi;j

¼ 1
2a
X
i<j

hð~uh;i � mi þ ~uh;j � mjÞ; ðfi �PifiÞ � mi þ ðfj �PjfjÞ � mjiCi;j

6
1

2a
X
i<j

k~uh;i � mi þ ~uh;j � mjkCi;j
ðkðfi �PifiÞ � mikCi;j

þ kðfj �PjfjÞ � mjkCi;j
Þ

6 C
X
i<j

1
2a
k~uh;i � mi þ ~uh;j � mjkCi;j

h1=2kQhp� ~phk; ð4:11Þ

where we used (2.19), (2.20) and (4.3) in the last inequality. Finally,
for the last term in (4.9), applying (2.14) and using the continuity of
p and f � m, we get

1
2

X
i;j

hpi � pj;Pifi � miiCi;j

¼ 1
2

X
i;j

hpi � pj;Pifi � miiCi;j

¼ 1
2

X
i;j

hpj � pj;Pifi � mi þPjfj � mjiCi;j

¼ 1
2

X
i;j

hpj � pj; ðPifi � fiÞ � mi þ ðPjfj � fjÞ � mjiCi;j

6
1
2

X
i;j

kpj � pjkCi;j
ðkðfi �PifiÞ � mikCi;j

þ kðfj �PjfjÞ � mjkCi;j
Þ

6 C
X

i;j

hkþ1kpkkþ3=2;Xj
h1=2kQ hp� ~phk; ð4:12Þ

using (2.18)–(2.20) and (4.3) in the last inequality. A combination of
(4.4)–(4.12) and the use of (2.40) and (2.41) completes the
proof. h

We are now ready to establish an interior velocity error esti-
mate for the non-mortar mixed finite element method.

Theorem 4.2. Assume (A1) and that (1.5) holds. Then, for any e > 0,
there exist a constant Ce dependent on the distance between X0 and C,
but independent of h such that

kPu� ~uhkX0 6 Ce

Xn

i¼1

ðkpkkþ3=2;Xi
þ kukkþ3=2;Xi

þ kr

� ukkþ1;Xi
Þhkþ3=2�e

:

The proof is similar to the proof of Theorem 3.1 and it is
omitted.

5. Numerical results

We present several numerical tests using the lowest order RT
spaces (k ¼ 0) on rectangles and quadrilaterals to confirm the the-
oretical results of Sections 3 and 4. The first four examples are on
the unit square and the fifth one is on the unit cube. The last two
examples test quadrilateral grids on irregular domains obtained
by a mapping of the unit square.

The domain is divided into four (eight for Example 5.5) subdo-
mains with interfaces along the x ¼ 1=2 and y ¼ 1=2 (and z ¼ 1=2
for Example 5.5) lines. Recall that optimal convergence for the
solution to (2.23)–(2.25) holds under the assumption that Mh con-
tains at least piecewise polynomials of degree kþ 1 [1], which in
this case means piecewise linear functions. We test three types
of methods on non-matching interfaces: 1 (continuous piecewise
linear mortars), 2 (discontinuous piecewise linear mortars), and 3
(Robin type interface conditions – non-mortar mixed finite ele-
ment method). In the fourth example we also test matching grids
(denoted by mortar 0). In the numerical experiments we report
the rates of convergence of the numerical solution (pressure and
velocity) to the true solution. We compute the velocity error in
the discrete L2-norm

jjjvjjj2 ¼
X

E2Th

X
e2oE

jEjðv � meÞ2ðmeÞ;

where me is the midpoint of edge (face) e. It is easy to see that

c1kvk 6 jjjvjjj 6 c2kvk 8 v 2 Vh

and

jjju�Pujjj 6 Ch2
:

Therefore,

jjju� uhjjj 6 jjju�Pujjj þ jjjPu� uhjjj 6 Cðh2 þ kPu� uhkÞ

and the superconvergence results from Theorems 3.1 and 4.2 hold
for jjju� uhjjj as well. We also report the velocity error in the dis-
crete L1-norm jjjvjjj1 ¼maxev � meðmeÞ. The flux error is computed
in the discrete L2ðCÞ-norm

jjjv � mjjj2C ¼
X
e2C
jejðv � meÞ2ðmeÞ:

The pressure error is computed in the discrete L2-norm

jjjwjjj2 ¼
X

E2Th

jEjw2ðmEÞ;

where mE is the center of mass of element E. Since
jjjp� Qhpjjj 6 Ch2

; jjjp� phjjj is also superconvergent.
The convergence rates are established by running each test case

on five (four for Examples 5.4 and 5.5) levels of grid refinement and
computing a least squares fit to the error. The initial mesh on each
block is uniform (shown on Fig. 2) and the initial mortar grids on
all interfaces are given in Table 1. The interior subdomains X0i are

Fig. 2. Initial grid.

Table 1
Initial number of elements in mortar grids

Mortar 1 2 3
Elements 3 3 1
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chosen on the initial mesh to have a one-element border and are
kept fixed during the mesh refinement. The boundary conditions
are Dirichlet on the left and right edge and Neumann on the rest
of the boundary. In all tests except the fourth one we solve prob-
lems with known analytical solutions.

Example 5.1. We choose permeability

K ¼
I; 0 6 x < 1=2
10 	 I; 1=2 < x 6 1

�

and the pressure

pðx; yÞ ¼
x2y3 þ cosðxyÞ; 0 6 x < 1=2

2xþ9
20

� �2y3 þ cosð2xþ9
20 yÞ; 1=2 < x 6 1

(

is chosen to be continuous and to have continuous normal flux at
x ¼ 1=2. Note that the solution is smooth in each subdomain. Plots
of the computed solution and the numerical error for Example 5.1
using mortar 1 are shown in Fig. 3. The plots for all examples are
on the third level of grid refinement, except for Example 5.5, where
the plots are on the second level of refinement. As shown in Table 2,
the interior velocity error is superconvergent of order Oðh2Þ and
most of the error occurs near the interfaces, as it can be seen from
the flux error. The pressure error is also Oðh2Þ-superconvergent. The
results for the mortar method are as predicted by the theory and the
results for the non-mortar method are approximately Oðh1=2Þ better
than the theoretical results.

Example 5.2. In this example, we test a problem with a discontin-
uous full tensor

K ¼
2 1
1 2

� �
; 0 6 x < 1=2

I; 1=2 < x 6 1

8<:
and pressure

pðx; yÞ ¼
xy; 0 6 x 6 1=2
xyþ ðx� 1=2Þðyþ 1=2Þ; 1=2 6 x 6 1:

�

Fig. 3. Solution and error (magnified) with mortar 1 for Example 5.1.

Table 2
Convergence rates for Example 5.1

Mortar jjjðu� uhÞ � mjjjC jjjp� phjjj jjju� uhjjj jjju� uhjjj1
X Int. X Int.

1 1.00 1.98 1.79 2.01 0.87 1.98
2 1.14 1.99 1.97 1.99 1.41 1.97
3 0.25 1.92 1.68 2.00 0.76 1.96

Table 3
Convergence rates for Example 5.2

Mortar jjjðu� uhÞ � mjjjC jjjp� phjjj jjju� uhjjj jjju� uhjjj1
X Int. X Int.

1 1.30 2.00 1.46 1.99 0.96 1.89
2 1.21 2.00 1.46 1.98 0.97 1.88
3 0.05 1.94 0.75 2.03 0.25 1.99

Fig. 4. Computed pressure and velocity for Example 5.2.
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The convergence rates for Example 5.2 are given in Table 3 and con-
firm the theory. The computed pressure and velocity using the mor-
tar and the non-mortar methods are shown in Fig. 4. Although the
two solutions look the same, the velocity error along the interfaces
is larger for the non-mortar method, as it can be seen in Fig. 5 where
magnified numerical error is shown.

Example 5.3. In the third example, we test non-uniform grids. We
solve a problem with a known analytical solution

pðx; yÞ ¼ x3y4 þ x2 þ sinðxyÞ cosðyÞ

and a diagonal tensor coefficient

K ¼ ðxþ 1Þ2 þ y2 0

0 ðxþ 1Þ2

 !
:

The initial grid is constructed from the grid on Fig. 2 via the
mapping

x ¼
nþ 0:05 sinð4pnÞ cosð1:5pnÞ; 0 6 g 6 1=2;
nþ 0:05 sinð4pnÞ cosð0:3pnÞ; 1=2 6 g 6 1;

�
y ¼

g� 0:03 sinð12pgÞ; 0 6 n 6 1=2;
g� 0:05 sinð6pgÞ cosð1:5pgÞ; 1=2 6 n 6 1;

�

where n;g 2 ½0;1
, and is refined uniformly for subsequent levels.
For mortar 2 we have started with a coarser mortar grid (two ele-
ments per mortar interface) in order to satisfy the stability condi-
tion (2.28). The convergence rates are given in Table 4. As in the
first two examples with uniform grids, the obtained convergence
rates are in the accordance with the theory. Plots of the computed
solution and the numerical error for Example 5.3 using mortar 2
are shown in Fig. 6.

It is evident from the first three examples that the error in the
case of non-matching grids and piecewise smooth solutions occurs
mainly along the interfaces and superconvergence is preserved in
the interior.

Example 5.4. In this example, we test a problem with a singularity
due to a cross-point discontinuity in the permeability. In this test,
analytical solution is not available. Instead, a fine grid solution is
used to calculate the errors on all coarser grids. We test both
matching and non-matching grids. The finest grid in the case of
matching grids is 128 � 128. The finest non-matching and mortar
grids are shown in Table 6. The permeability tensor is
K ¼ aðx; yÞI, where

Fig. 5. Computed pressure and velocity error (magnified) for Example 5.2.

Table 4
Convergence rates for Example 5.3

Mortar jjjðu� uhÞ � mjjjC jjjp� phjjj jjju� uhjjj jjju� uhjjj1
X Int. X Int.

1 1.41 1.99 1.79 2.00 1.13 1.90
2 1.15 1.99 1.69 2.01 1.14 2.02
3 0.69 1.82 1.22 1.98 0.25 1.81

Fig. 6. Solution and error (magnified) with mortar 2 for Example 5.3.
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aðx; yÞ ¼
100; if x < 1=2; y < 1=2 or x > 1=2; y > 1=2
1; otherwise:

�
L1-errors are not reported since the true velocity is not in L1ðXÞ. As
the results show (Fig. 7, Table 5), the error due to the strong singu-
larity at the cross-point (1/2,1/2) dominates the interface error and
pollutes the solution in a large part of the domain. As a result, there

is no superconvergence even in the interior. The rate of convergence
for the interior velocity error is of order Oðh3=4Þ. In this case local
grid refinement near this cross-point is needed to control the error
[32].

Example 5.5. Next, we test a three dimensional problem with a
full permeability tensor

Fig. 7. Solution and error (magnified) with mortar 1 for Example 5.4.

Table 5
Convergence rates for Example 5.4

Mortar jjjðu� uhÞ � mjjjC jjjp� ph jjj jjju� uhjjj

X Int.

0 0.18 0.67 0.60 0.74
1 0.18 0.68 0.61 0.74
2 0.14 0.68 0.60 0.74
3 0.16 0.68 0.62 0.75

Table 6
Finest grids for Example 5.4

A. Finest non-matching grids B. Mortar grids
64� 64 80� 80 Mortar 1 2 3
80� 80 64� 64 Elements 48 48 16

Fig. 8. Solution and error (magnified) with mortar 2 for Example 5.5.

Table 7
Convergence rates for Example 5.5

Mortar jjjðu� uhÞ � mjjjC jjjp� ph jjj jjju� uhjjj jjju� uh jjj1
X Int. X Int.

1 1.09 2.00 1.63 2.02 0.62 1.97
2 1.32 2.00 1.75 1.95 0.86 1.71
3 0.28 1.98 0.81 2.05 1.58 1.74

Table 8
Convergence rates for Example 5.6

Mortar jjjðu� uhÞ � mjjjC jjjp� ph jjj jjju� uhjjj jjju� uh jjj1
X Int. X Int.

1 1.38 1.99 1.53 1.98 1.02 1.96
2 1.30 1.99 1.53 1.98 1.02 1.96
3 0.05 1.94 0.69 1.98 0.15 1.95
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K ¼
x2 þ ðyþ 2Þ2 0 cosðxyÞ

0 z2 þ 2 sinðyzÞ
cosðxyÞ sinðyzÞ ðyþ 3Þ2

0B@
1CA

and pressure

pðx; y; zÞ ¼ x4y3 þ x2 þ yz2 þ cosðxyÞ sinðzÞ:

Plots of the computed solution and the numerical error for Example
5.5 using mortar 2 are shown in Fig. 8. The convergence rates are
given in Table 7, again confirming the theoretical results.

Example 5.6. In the last two examples, we test quadrilateral grids
on irregular domains. We choose permeability and pressure as in
Example 5.2. In this example, the computational grids are con-
structed from the grid on Fig. 2 and its uniform refinements via
the mapping

x ¼ nþ :06 cosðpnÞ 	 cosðpgÞ; y ¼ g� :1 cosðpnÞ 	 cosðpgÞ;

where n;g 2 ½0;1
. Note that the resulting quadrilateral grids are h2-
uniform. The convergence rates are given in Table 8. In calculating
the rates, only the two finest levels were used due to inexact com-
putation of the errors, which affects the results on coarse grids. Just
as for the case of affine elements, the interior velocity is supercon-
vergent of order Oðh2Þ and most of the error occurs near the inter-

faces. The computed solution and error in pressure and velocity for
Example 5.6 using mortar 2 are shown in Figs. 9A and 10A.

Example 5.7. In this example, the mapping used to generate the
domain and the grids is

x ¼ nþ :03 cosð3pnÞ 	 cosð3pgÞ;
y ¼ g� :04 cosð3pnÞ 	 cosð3pgÞ:

The results for Example 5.7 are in Table 9, Figs. 9B and 10B.
Comparing the numerical errors for Examples 5.6 and 5.7, we

observe that although rougher mapping introduces larger error due
to element distortion, interior velocity superconvergence is still
obtained.

Summarizing the test results in Section 5, we conclude that in
smooth cases the numerical error due to the non-matching grids
in both the mortar and the non-mortar methods is restricted to a
small region around the interfaces and superconvergence is pre-
served in the interior. For singular solutions superconvergence is
not observed, although the interior velocity error is better than
the velocity error calculated over the whole domain. The results
in this case indicate the need for a posteriori error estimates and
adaptive mesh refinement near the points of singularity to increase
the overall accuracy of the solution.

Fig. 9. Computed pressure and velocity with mortar 2.

Fig. 10. Computed pressure and velocity error (magnified) with mortar 2.
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Table 9
Convergence rates for Example 5.7

Mortar jjjðu� uhÞ � mjjjC jjjp� phjjj jjju� uhjjj jjju� uhjjj1
X Int. X Int.

1 1.59 2.01 1.70 1.97 0.84 1.95
2 1.58 2.01 1.70 1.97 0.84 1.95
3 0.10 1.99 1.36 1.94 0.78 1.95
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