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Abstract. A multiblock mortar approach to modeling multiphase ow in porous media decom-

poses the simulation domain into a series of blocks with possibly di�erent physical and numerical

models employed in each block. Matching conditions along the interfaces are imposed through the

use of mortar �nite elements. A parallel domain decomposition algorithm reduces the algebraic non-

linear system to an interface problem which is solved via a nonlinear multigrid with Newton-GMRES

smoothing.
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1. Introduction. A multiblock mortar methodology has been recently devel-

oped for modeling subsurface ow. The simulation domain is decomposed based upon

the physics of the model into a series of blocks. The blocks are independently meshed

and possibly di�erent physical and numerical models are employed in each block. In-

terface matching conditions are imposed in a stable and accurate way through the use

of mortar �nite elements. Mortar �nite elements have been successfully applied for

standard �nite element and spectral �nite element discretizations on non-matching

grids (see, e.g. [6, 5]). We consider locally conservative mixed �nite element (�nite

volume) methods for subdomain discretizations. Theoretical and numerical results for

single phase ow indicate mortar mixed �nite element methods are highly accurate

(superconvergent) for both pressure and velocity [21, 1, 4, 23]. An extension of the

method to a degenerate parabolic equation arising in two phase ow is presented in

[22], where optimal convergence is shown. Multiphysics applications can be found in

[16].

Critical for the success of this approach is the ability to e�ciently solve the

resulting discrete nonlinear system. A parallel non-overlapping domain decomposition

implementation, based on a method originally proposed by Glowinski and Wheeler

[13, 10, 9], provides an e�cient scalable solution technique [21, 19]. Some e�cient

preconditioners have also been developed [15, 20].

In this paper we present an e�cient parallel algorithm that reduces the global

system to a nonlinear interface problem. One advantage of this approach compared

to solving the global system directly is that the subdomains are loosely coupled and

it is relatively easy to couple di�erent physical and numerical models. The interface

problem is solved via a nonlinear multigrid V-cycle with Newton-GMRES smoothing.

A physics based Neumann-Neumann preconditioner is constructed for accelerating

the GMRES convergence.

The rest of the paper is organized as follows. In the next section we present a

multiblock formulation and discretization for a two-phase ow model. The domain

�
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decomposition solvers and preconditioners are described in Section 3. Computational

results are given in Section 4.

2. Multiblock formulation and discretization. To illustrate the numerical

technique we consider a two-phase ow model. In a multiblock formulation, the

domain 
 � R

3

, is decomposed into a series of subdomains 


k

, k = 1; :::; n

b

. Let

�

kl

= @


k

\ @


l

be the interface between 


k

and 


l

.

The governing mass conservation equations [8] are imposed on each subdomain
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where � = w (wetting), n (non-wetting) denotes the phase, S

�

is the phase saturation,

�
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(P

�

) is the phase density, � is the porosity, q

�

is the source term, and
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is the Darcy velocity. Here P

�

is the phase pressure, k

�

(S

�

) is the phase relative

permeability, �

�

is the phase viscosity, K is the rock permeability tensor, g is the

gravitational constant, and D is the depth. On each interface �

kl

the following phys-

ically meaningful continuity conditions are imposed:
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where �

k

denotes the outward unit normal vector on @


k

. The above equations are

coupled via the volume balance equation and the capillary pressure relation
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;(2.5)

which are imposed on each 


k

and �

kl

. We assume for simplicity that no owU

�

�� =

0 is imposed on @
, although more general types of boundary conditions can also be

treated.

2.1. Discretization spaces. The subdomains are discretized using a variant of

the mixed �nite element method, the expanded mixed method. It has been developed

for accurate and e�cient treatment of irregular domains (see [3, 2] for single block

and [21, 23] for multiblock domains). The original problem is transformed into a

problem on a union of regular computational (reference) grids. The permeability

after the mapping is usually a full tensor (except in some trivial cases). The mixed

method could then be accurately approximated by cell-centered �nite di�erences for

the pressure [3].

To simplify the presentation we will only describe here the rectangular reference

case. For a de�nition of the spaces on logically rectangular and triangular grids, we

refer to [2] (also see [18, 7]). Let us denote the rectangular partition of 


k

by T

h

k

,

where h

k

is associated with the size of the elements. The lowest order Raviart-Thomas

spaces RT

0

[17] are de�ned on T

h

k
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and each v
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is continuous in the lth coordinate direction
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To impose the interface matching condition (2.3){(2.4) we introduce a Lagrange mul-

tiplier or mortar �nite element space M

h

kl

de�ned on a rectangular grid T

h

kl

on �

kl

,

where h

kl

is associated with the size of the elements in T

h

kl

. In this space we approx-

imate the interface pressures and saturations, and impose weakly normal continuity

of uxes.

If the subdomain grids adjacent to �

kl

match, we take T

h

kl

to be the trace of the

subdomain grids and de�ne the matching mortar space by

M

m

h

kl

= f� : �j

e

= � : � 2 R; for all e 2 T

h

kl

g:

If the grids adjacent to �

kl

are non-matching, the interface grid need not match

either of them. A mild condition on T

h

kl

to guarantee solvability and accuracy of the

numerical scheme will be imposed later. We de�ne our non-matching mortar space

on an element e 2 T

h

kl

by

M
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where �

l

are the coordinate variables on e. Then, for each �

kl

, we give two possibilities

for the non-matching mortar space, a discontinuous and a continuous version, as

M
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h
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M
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:

We denote by M

h

kl

any choice of M

n;d

h

kl

, M

n;c

h

kl

, or M

m

h

kl

(on matching interfaces).

Remark 2.1. The usual piece-wise constant Lagrange multiplier space for RT

0

is not a good choice in the case of non-matching grids, since it only provides O(1)

approximation on the interfaces and a suboptimal global convergence. With the above

choice for mortar space, optimal convergence and, in some cases, superconvergence is

recovered for both pressure and velocity (see [21, 1] for single phase ow and [22] for

two phase ow).

2.2. The expanded mortar mixed �nite element method. Before formu-

lating the method, we note that two of the unknowns in (2.1){(2.2) can be eliminated

using relations (2.5). A common practice is to choose as primary variables one phase

pressure and one phase saturation which we denote by P and S.

Following [3], let, for � = w, n,
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n
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).

In the backward Euler multiblock expanded mixed �nite element approximation

of (2.1)-(2.5) we seek, for 1 � k < l � n

b
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Here k

n

h;�

and �

n

h;�

2 W

h

k

are given functions of the subdomain primary variables

P

n

h

and S

n

h

. Note that we have chosen P

M;n

h;�

as primary mortar variables. Other

choices are possible due to (2.5), but this one leads to the simplest interface operator

(described in the next section).

Remark 2.2. Introducing the pressure gradients

~

U

�

in the expanded mixed

method allows for proper handling of the degenerate (for S

�

= 0) relative perme-

ability k

�

(S

�

) in (2.7){(2.8). It also allows, even for a full permeability tensor K, to

accurately approximate the mixed method on each subdomain by cell-centered �nite

di�erences for P

h

and S

h

. This is achieved by approximating the vector integrals in

(2.7) and (2.8) by a trapezoidal quadrature rule and eliminating

~

U

h;�

and U

h;�

from

the system [3, 2].

Remark 2.3. A necessary condition for solvability of the scheme is that, for any

� 2M

h
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,

Q

h;k

� = Q

h;l

� = 0) � = 0;(2.10)

where Q

h;k

is the L

2

-projection onto V

h

k

� �

k

. This is not a very restrictive condition

and requires that the mortar grid is not too �ne compared to the subdomain grids.

One choice that satis�es this condition for both continuous and discontinuous mortars

is to take the trace of either subdomain grid and coarsen it by two in each direction

(see [21, 1] for details).

3. Domain decomposition. To solve the discrete system (2.6){(2.9) on each

time step, we reduce it to an interface problem in the mortar space. This approach is

based on a domain decomposition algorithm for single phase ow developed originally

for conforming grids [13], and later generalized to non-matching grids coupled with

mortars [21].

3.1. Interface formulation. Let

M

h

=

M
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b
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h
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1�k<l�n

b

�

kl

and let M
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where (S

n
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( );U
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h;�

( )) are solutions to the series of subdomain problems (2.6){(2.8)

with boundary data P

M;n

h;�

.

De�ne a non-linear interface operator B
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h
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where h�; �i is the L

2

-inner product inM

h

. It is now easy to see that ( ; S

n

h

( );U

n

h;�

( ))

is the solution to (2.6){(2.9), where  2M

h

solves

B

n

( ) = 0:(3.1)

3.2. Iterative solution of the interface problem. We solve the system of

nonlinear equations on the interface (3.1) by an inexact Newton method. Each Newton

step s is computed by a forward di�erence GMRES iteration for solving B

0

( )s =

�B( ) (we omit superscript n for simplicity). On each GMRES iteration the action

of the Jacobian B

0

( ) on a vector � is approximated by the forward di�erence

D

�

B( : �) =

8

>

>

<

>

>

:

0; � = 0;
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B( +�jj jj�=jj�jj)�B( )

�jj jj

; � 6= 0;  6= 0;

jj�jj

B(��=jj�jj)�B( )

�

; � 6= 0;  = 0:

The choice of � will be discussed in Section 3.3.2 The inexact Newton-GMRES

algorithm is described in [14]. We present here for completeness the forward di�erence

GMRES iteration for approximating B

0

( )s = �B( ).

Algorithm 1. fdgmres(s;  ;B; �; �; kmax; �)

1. s = 0, r = �B( ), v

1

= r=krk

2

, � = krk

2

, � = �, k = 0

2. While � > � and k < kmax do

(a) k = k + 1

(b) v
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�

B( : v

k

)

(c) for j = 1; : : : k

h
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j
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)
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j
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k
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2

(f) e

1

= (1; 0; : : : ; 0)

T
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k

2 R

k
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R

k k�e

1
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y

k
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1
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y

k

k
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3. s = V

k

y

k

.

Note that each GMRES iteration in Algorithm 1 requires one evaluation of the

nonlinear operator B in 2b. Here is the algorithm for evaluating B(P

M

w

; P

M

n

).

Algorithm 2. feval(P

M

w

; P

M

n

)

1. Project (orthogonally) mortar data onto the subdomain grids

P

M

�

Q

k

�!

�

P

�;k

; � = w; n

2. Solve in parallel subdomain problems (2.6){(2.8) with boundary conditions

�

P

n;k

,

�

P

w;k

to compute U

n;k

, U

w;k

on each 


k

.

3. Project boundary uxes back to the mortar space

U

�;k

� �

k

Q

T

k

�! U

M

�;k

4. Compute ux jump in the mortar space. On each �

kl

[U

M

�

]

kl

= U

M

�;k

+U

M

�;l

The evaluation of B involves solving subdomain problems (2.6){(2.8) in parallel

and two inexpensive projection steps - from the mortar grid onto the local subdomain

grids and from the local grids onto the mortar grid. The subdomain problems are

also nonlinear and are solved by a preconditioned Newton-Krylov solver [11].
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3.3. Interface GMRES preconditioner. A well known drawback of GMRES

is that it may converge very slowly if not preconditioned. A typical behavior of the

unpreconditioned GMRES is shown in Fig. 4.2(a). The relative residual is plotted

versus the number of iterations for the �rst four nonlinear Newton steps. Clearly the

rate of GMRES convergence deteriorates as the Newton iteration progresses. This

results in either a very expensive or a very inexact Newton step. To remedy this we

consider a left preconditioned GMRES which is based on solving

M

�1

B

0

( )s = �M

�1

B( );

whereM should be an easily invertible approximation to B

0

( ). The only two changes

in Algorithm 1 are in Step 1,

r = �M

�1

B( );

and in Step 2b,

v

k+1

=M

�1

D

�

B( : v

k

):

Remark 3.1. The preconditioned GMRES is consistent with the underlying

physical interpretation of the interface operator B while the unpreconditioned GM-

RES is not. Recall that B : (P

M

w

; P

M

n

)

T

! (U

w

��;U

n

��)

T

is a Dirichlet to Neumann

operator. Therefore in Step 2b of Algorithm 1 the two consecutive Krylov vectors v

k

and v

k+1

have di�erent physical meanings. This inconsistency is corrected by the

preconditioned step, since

M

�1

: (U

w

� �;U

n

� �)

T

! (P

M

w

; P

M

n

)

T

and

M

�1

D

�

B( : v

k

) : (P

M

w

; P

M

n

)

T

! (P

M

w

; P

M

n

)

T

:

Therefore the preconditioned GMRES builds a Krylov basis for the space (P

M

w

; P

M

n

)

T

.

3.3.1. A Neumann-Neumann preconditioner for D

�

B. We can write the

interface operator B and the approximation to its derivative D

�

B as sums of local

subdomain Dirichlet to Neumann operators

B =

n

b

X

k

B

k

; D

�

B =

n

b

X

k

D

�

B

k

:

The Neumann-Neumann preconditionerM

�1

is de�ned as a sum of (possibly inexact)

local Neumann solves (see [12]):

M

�1

=

n

b

X

k

d

D

�

B

k

�1

;

where

d

D

�

B

k

�1

is an approximation to (D

�

B

k

)

�1

.

As a �rst step the Jacobian matrix B

0

k

(P

M

w

; P

M

n

) is approximated by its block-

diagonal

B

0

k

(P

M

w

; P

M

n

) =

0

@

@U

w;k

@P

M

w

@U

w;k

@P

M

n

@U

n;k

@P

M

w

@U

n;k

@P

M

n

1

A

�

0

@

@U

w;k

@P

M

w

0

0

@U

n;k

@P

M

n

1

A

:
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To compute the diagonal blocks, instead of solving full Dirichlet subdomain problems,

we approximate the Darcy's Law (2.2) by a �nite di�erence on a single-cell layer along

the interface:

^

U

�;k

� �

k

(P

M

�

) � �

�;k

P

�;k

� P

M

�

h

k

=2

;

where �

�

=

k

�

(S

�

)K

�

�

�

�

is the mobility of phase �, P

�;k

is the pressure in the cell next

to the interface, and the gravity term has been omitted for simplicity. This leads to

an approximation to D

�

B

k

(P

M

�

: s)

d

D

�

B

k

(P

M

�

: s) =

^

B

k

(P

M

�

+ �s)�

^

B

k

(P

M

�

)

�

= �2

�

�;k

h

k

s

The preconditioner M

�1

is now de�ned for a given mortar ux v

M

�

M

�1

v

M

�

= �

n

b

X

k

h

k

2�

�;k

v

M

�

:

3.3.2. Choosing the forward di�erence step �. It is customary to expect

that preconditioning a linear system should not change the solution. In our case,

however, D

�

B is a nonlinear approximation to B

0

and the preconditioned solution

di�ers from the unpreconditioned one

s

precond

= s

unprecond

+O(�):

It is therefore desirable to take � as small as possible. On the other hand, due to

inexact evaluation of the operator B, � should not be too small. It is easy to check

that an optimal value is � �

p

�

B

, where �

B

is the subdomain nonlinear tolerance.

Therefore taking �

B

as small as possible should lead to better performance of the

preconditioned GMRES. This conclusion is con�rmed by the numerical experiments

presented in Section 4.

Remark 3.2. It may seem that asking for a very small subdomain tolerance

will increase the computational time. Recall however that subdomain problems are

repeatedly solved during the GMRES iteration with boundary data very slightly per-

turbed in the order of O(�). If the latest subdomain solution is used as an initial

guess, the subdomain solves typically converge in a single nonlinear iteration.

3.4. Multigrid on the interface. A nonlinear mortar multigrid solver solver

has been developed to further speed up the interface convergence. The preconditioned

GMRES described above is used as a smoother. The algorithm is based on the one

presented in [20] for linear elliptic problems. We de�ne a sequence of nested mortar

spaces

M

1

�M

2

� � � � �M

J

=M:

Each space M

j

, 1 � j � J , is associated with a mortar grid T

�

h

j

and an interface

operator B

j

:M

j

!M

j

satisfying for any  2M

j

hB

j

 ; �i =

X

1�k<l�n

b

Z

�

kl

([U

h

j

;w

( ) � �]

kl

�

w

+ [U

h

j

;n

( ) � �]

kl

�

n

)d�; 8� 2M

j

:
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The intergrid transfer operators are de�ned as follows.

Coarse to �ne I

j

:M

j�1

!M

j

;

I

j

�

j�1

= �

j�1

; �

j�1

2M

j�1

:

Note that I

j

is the identity operator on M

j�1

.

Fine to coarse Q

j�1

:M

j

!M

j�1

;

hQ

j�1

 

j

; �

j�1

i = h 

j

; I

j

�

j�1

i;  

j

2M

j

; �

j�1

2M

j�1

:

Note that Q

j�1

is the orthogonal projection onto M

j�1

and the transpose of I

j

.

The nonlinear multigrid V-cycle is de�ned as an iterative process for solving

B( ) = r:

 

(n+1)

=MG( 

(n)

; r);

where MG =MG

J

is the multigrid operator de�ned by induction.

Algorithm 2. MG

j

(g

j

; r

j

) (2 � j � J)

1. (initialization)  

(0)

j

= g

j

2. (pre-smoothing)  

(1)

j

=  

(0)

j

+ s

m

( 

(0)

j

); where s

m

( 

(0)

j

) is the m�th GMRES

iterate for solving B

0

j

( 

(0)

j

)s = r

j

�B

j

( 

(0)

j

):

3. (coarse grid correction)

(a) Initialize level j � 1:  

(0)

j�1

= Q

j�1

( 

(1)

j

)

(b) Project residual: r

j�1

= B

j�1

( 

(0)

j�1

)�Q

j�1

(r

j

�B

j

( 

(1)

j

))

(c) Correct:  

(2)

j

=  

(1)

j

+ I

j

[MG

j�1

( 

(0)

j�1

; r

j�1

)�  

(0)

j�1

]

4. (post-smoothing)  

(3)

j

=  

(2)

j

+ s

m

( 

(2)

j

)

MG

j

(g

j

; r

j

) =  

(3)

j

Note that the smoothing step is equivalent to taking an inexact Newton step for

solving B

j

(�) = r

j

.

4. Computational results. In this section we present numerical results illus-

trating the e�ciency of the solvers described in the previous section. In the �rst test

we study the e�ect of the preconditioner on the convergence of the interface solver. A

two phase oil-water displacement is simulated on a three dimensional domain which

consists of three blocks. There are three injection wells and one production well. The

subdomain grid dimensions are 12� 20� 20, 20� 20� 20, and 12� 20� 20 and the

mortar grids (continuous linears) are 10�10. The numerical grids and the oil pressure

contours at early time are shown in Figure 4.1 (note that the vertical direction is x).

The interface GMRES performance for a typical time step is illustrated in Figure 4.2.

It is clear that the preconditioner improves substantially the GMRES convergence as

the outer iteration progresses. As a result the Newton steps are more accurate and

the interface Newton converges much faster as can be seen in Figure 4.3.

The second test studies the e�ect of the forward di�erence step � and the subdo-

main nonlinear tolerance �

B

on the interface Newton performance which was discussed

in Section 3. The results given in Figure 4.4 con�rm the conclusion that smaller values

of � and �

B

lead to faster convergence.

The last experiment illustrates the convergence of the nonlinear interface multi-

grid solver. The domain consists of two blocks with grids 8� 16� 16 and 8� 20� 20

with a discontinuous linears mortar interface on a 4� 10 grid. Table 4.1 presents the
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Fig. 4.1. Numerical grids and oil pressure contours
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Fig. 4.2. E�ect of preconditioner on interface GMRES convergence

number of subdomain solves and V -cycles as well as the residual reduction (averaged

over all time steps) for various number of levels and smoothings.
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