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Abstract

The authors formulated in [29] a multipoint flux mixed finite element method that
reduces to a cell-centered pressure system on general quadrilaterals and hexahedra for
elliptic equations arising in subsurface flow problems. In addition they showed that a
special quadrature rule yields O(h) convergence for face fluxes on distorted hexahedra.
Here a first order local velocity postprocessing procedure using these face fluxes is
developed and analyzed. The algorithm involves solving a 3×3 system on each element
and utilizes an enhanced mixed finite element space introduced by Falk, Gatto, and
Monk [18]. Computational results verifying the theory are demonstrated.

Keywords: mixed finite element, multipoint flux approximation, cell-centered finite
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1 Introduction

A major motivation for defining accurate locally conservative numerical methods for elliptic
equations with tensor coefficients is the increasing interest in the modeling of subsurface
flow and transport in porous media. Subsurface systems or geosystems may be natural, such
as aquifers and fossil fuel reservoirs, or artificial, such as landfills and nuclear waste sites
and are seen today as resources that must be managed. Geosystems are complex, however,
for they involve multiple physical and chemical processes operating across multiple spans
of time (from nanoseconds to centuries) and space (from nanometers to kilometers) and
involve highly varying heterogeneities.

Effective management of a geosystem must be based on conceptual and numerical mod-
els of the geosystem. An important example of geosystem applications is CO2 sequestration,
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which is the long-term isolation of carbon dioxide from the atmosphere in geological reser-
voirs. Geologic sequestration by injection of CO2 into deep brine aquifers and reservoirs
represents one of the most promising approaches for reducing the increases in atmospheric
CO2, which have been blamed for recent trends in global warming and alarming changes in
weather patterns. The basis for this potential is the huge global storage capacity existing
in geologic formations and the availability and close proximity of potential injection sites
to power generation plants. Another example is the disposal of nuclear wastes. The safe
disposal of nuclear waste in geologic media is a complex problem that requires extensive
modeling and simulation to assess the long-term performance of the disposal system. The
calculations have to address the response of the site over thousands of years and incorporate
multiscale and multiphysics coupling to various extents depending on the geologic medium.
Predictive computational simulation is essential for providing the information needed to
make decisions on site selection, design, and operation of repositories long before the repos-
itory response can be measured. In addition, uncertainty quantification will play a major
part in the modeling and simulation of the repository response. Other examples include
methane gas migration, bioremediation, management of groundwater systems, geothermal
systems, increasing oil and gas production, and CO2 injection for enhanced oil and gas
recovery.

Although each geosystem mentioned above has its unique physics that require site-
specific models, all geosystem models will have at their base certain general capabilities
to which site-specific capabilities can be added. These general capabilities include multi-
scale and multiphysics models and numerical algorithms for approximating the pertinent
physical, chemical, geological, and biological processes characteristic of these systems. Ef-
fective modeling of geosystems necessitates the formulation of accurate and efficient locally
conservative algorithms for computing velocities and pressures on general grids [16, 13].
Using hexahedra involves fewer degrees of freedom than tetrahedral grids and can accu-
rately represent geological layers as shown in Figure 1, the Frio CO2 demonstration site. In
addition, as discussed above, geosystem models involve modeling different processes such
as diffusion/dispersion and reactive transport and thus requiring accurate velocities within
elements and on faces. Examples include parabolic equations, streamline methods, and
using higher order discontinuous Galerkin approximations for transport.

Here we consider multipoint flux mixed finite element (MFMFE) discretizations for
Darcy flow on general hexahedral grids. The method is motivated and closely related to
the multipoint flux approximation (MPFA) method [1, 2, 15, 14]. In the MPFA finite
volume formulation, sub-edge (sub-face) fluxes are introduced, which allows for local flux
elimination and reduction to a cell-centered scheme. Similar elimination is achieved in the
MFMFE variational framework, by employing appropriate finite element spaces and special
quadrature rules. Our approach is based on the BDM1 [8] in 2D or the BDDF1 [7] and CD1

[11] spaces in 3D with a trapezoidal quadrature rule applied on the reference element. This
approach allows for rigorous analysis of the numerical error [34, 20, 29, 30, 33] for simplicial,
quadrilateral, hexahedral, and triangular prismatic grids. A related formulation based on a
broken Raviart-Thomas space is developed in [21, 22] on quadrilaterals.

A major difficulty in MFE approximations on hexahedra is due to the fact that standard
velocity spaces such as the lowest order Raviart-Thomas space do not contain the constant
vector on physical elements [25, 27, 26]. Optimal approximation and superconvergence
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Figure 1: Hexahedral meshes in Frio CO2 demonstration site

properties in some MFE methods can be obtained under a grid restrictions to h2-perturbed
parallelograms or parallelepipeds [17, 34, 20]. Highly distorted quadrilaterals and hexahedra
are treated using enriched Raviart-Thomas spaces in [6, 18] or composite-element techniques
in [23, 27]. All of these methods require solving saddle point problems in their standard
forms.

In [29], we developed an accurate MFMFE method on highly distorted hexahedra using a
non-symmetric quadrature rule and an enhanced BDDF1 space. The space does not contain
constant velocity vectors and therefore does not have optimal approximation properties.
However, we found that on element faces the space does have approximation properties
and we employed techniques from the analysis of mimetic finite difference (MFD) methods
[10, 24] to establish first order convergence for the pressure at the cell centers and the normal
velocity on the element faces. The analysis applies to hexahedra with non-planar faces. In
this paper, we develop an efficient local post-processing technique for the MFMFE method
on hexahedra based on the enriched space introduced in [18]. This results in first order
accurate velocities in the interior of the elements. Such velocities are suitable for transport
of chemical species in subsurface simulations and saturation equation in multiphase flow
simulations [28, 31]. In fact, the postprocessing works for any method that gives accurate
face velocities on hexahedra, more precisely with velocity satisfying condition (2.26) in
Theorem 2.2. For example, the MPFA O-method in physical space [1] is shown to be closely
related and in some cases equivalent to the MFMFE method [22, 3], so the postprocessing
also applies to the MPFA O-method.

This paper is divided into five additional sections. In Section 2, we discuss the multi-
point flux method for the non-symmetric formulation, reduction to a cell centered pressure
system, and a brief summary of convergence results. In Section 3, an enhancement of the
FGM mixed finite element for general hexahedra formulated by Falk, Gatto, and Monk [18]
is introduced. Convergence results are established for these enhanced spaces. These new
spaces combined with an appropriate quadrature rule allow one to obtain a cell-centered
pressure scheme with accurate face fluxes that can then be postprocessed to accurate veloc-
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ities in the interior of the elements. The local postprocessing of velocities is formulated and
analyzed in Section 4. Section 5 provides computational examples that verify the theoretical
accuracy of the postprocessing. In Section 6 we summarize the results of the paper. Three
appendices that provide bases for the velocities and the matrix representation of the local
postprocessing have been added for completeness.

2 Multipoint flux mixed finite element method

Single phase incompressible flow in porous media is governed by coupled Darcy’s law and
continuity equation:

u = −K∇p, (2.1)

∇ · u = f, (2.2)

where p is the pressure, u is the Darcy velocity, K represents the rock permeability divided
by fluid kinematic viscosity, and f is the source term. We consider the system (2.1)–
(2.2) in a domain Ω ⊂ R3 with Lipschitz continuous boundary. For simplicity we assume
homogeneous Dirichlet boundary conditions

p = 0 on ∂Ω,

although more general boundary conditions can also be treated. We assume that K is a
symmetric and uniformly positive definite tensor with L∞(Ω) components satisfying, for
some 0 < k0 ≤ k1 < ∞,

k0ξ
T ξ ≤ ξT K(x)ξ ≤ k1ξ

T ξ, ∀x ∈ Ω, and ∀ξ ∈ R
3. (2.3)

Let Th be a conforming, shape-regular, quasi-uniform partition of Ω [12], consisting

of hexahedra with possibly non-planar faces. Let W k,∞
Th

consist of functions φ such that

φ|E ∈ W k,∞(E) for all E ∈ Th. Here k is a multi-index with integer components and
W k,∞(E) denotes the Sobolev space of functions whose derivatives of order k belong to
L∞(E). Let ‖ · ‖k be the norm in the Hilbert space Hk(Ω) with functions whose derivatives
of order k belong to L2(Ω). The norm in L2(Ω) is denoted by ‖ · ‖. Let X . (&) Y denote
that there exists a constant C, independent of the mesh size h, such that X ≤ (≥) CY .
The notation X h Y means that both X . Y and X & Y hold.

We assume that for any E ∈ Th there exists a trilinear bijection mapping FE : Ê →
E, where Ê is the reference cube. Denote the Jacobian matrix by DFE and let JE =
|det(DFE)|. Denote the inverse mapping by F−1

E , its Jacobian matrix by DF−1

E , and let
JF−1

E

= |det(DF−1

E )|. We have that

DF−1

E (x) = (DFE)−1(x̂), JF−1

E

(x) =
1

JE(x̂)
.

Using the above mapping definitions and the classical formula, for scalar φ(x) = φ̂(x̂),
∇φ = (DF−1

E )T ∇̂φ̂, it is easy to see that, for any face ei ⊂ E, the unit normal vector and
Jacboian matrix are

ni =
1

Jei

JE(DF−1

E )T n̂i, Jei
= |JE(DF−1

E )T n̂i|R3 , (2.4)

4



where n̂i is the unit normal vector with respect to the reference face êi, and | · |R3 is the
Euclidean norm in R3. Also, the shape regularity and quasi-uniformity of the grids imply
that, for all E ∈ Th,

‖DFE‖0,∞,Ê . h, ‖DF−1

E ‖0,∞,E . h−1,

‖JE‖0,∞,Ê h h3, ‖JF−1

E

‖0,∞,E h h−3, ‖Je‖0,∞,e h h2.
(2.5)

The velocity and pressure finite element spaces on any physical element E are defined,
respectively, via the Piola transformation

v ↔ v̂ : v =
1

JE
DFE v̂ ◦ F−1

E , (2.6)

and the scalar transformation

w ↔ ŵ : w = ŵ ◦ F−1

E .

The Piola transformation preserves the normal components of the vectors:

v · ne =
1

Je
v̂ · n̂ê ◦ F−1

E . (2.7)

The finite element spaces Vh and Wh on Th are given by

Vh =
{
v ∈ H(div; Ω) : v|E ↔ v̂, v̂ ∈ V̂(Ê), ∀E ∈ Th

}
,

Wh =
{

w ∈ L2(Ω) : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê), ∀E ∈ Th

}
,

(2.8)

where V̂(Ê) and Ŵ (Ê) are finite element spaces on the reference element Ê.
The velocity space V̂(Ê) on the reference cube is defined by enhancing the BDDF1

spaces [20]:

V̂(Ê) = BDDF1(Ê) +
R1

2
curl(x̂ŷ2, 0, 0)T +

R2

2
curl(0, ŷẑ2, 0)T +

R3

2
curl(0, 0, x̂2ẑ)T

+ S1curl(x̂ŷ2ẑ, 0, 0)T + S2(0, x̂ŷẑ2, 0)T + S3(0, 0, x̂
2 ŷẑ)T ,

(2.9)

where the BDDF1(Ê) space [7] is defined as

BDDF1(Ê) =(P1(Ê))3 + E1curl(x̂ŷẑ, 0, 0)T + E2curl(0, x̂ŷẑ, 0)T + E3curl(0, 0, x̂ŷẑ)T

− G1curl(x̂ŷẑ, x̂2ẑ, 0)T − G2curl(0, x̂ŷẑ, x̂ŷ2)T − G3curl(ŷẑ2, 0, x̂ŷẑ)T .

(2.10)

The pressure space on the reference cube is defined as

Ŵ (Ê) = P0(Ê).

In above equations, Ri, Si, Ei, Gi (i = 1, . . . , 3) are real constants, Pk denotes the space of
polynomials of degree at most k, and (x̂, ŷ, ẑ)T denotes a point in the reference element.
The enhancement of the BDDF1 space is needed to obtain a space with four degrees of
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freedom (DOF) per face, rather than three in the original formulation. This allows to
associate a degree of freedom with each vertex of the face, which is needed in the reduction
to a cell-centered pressure stencil as described later in this section.

The multipoint flux mixed finite element (MFMFE) method [29, 32] is defined as follows:
find uh ∈ Vh and ph ∈ Wh such that

(K−1uh,v)Q − (ph,∇ · v) = 0, ∀v ∈ Vh, (2.11)

(∇ · uh, w) = (f,w), ∀w ∈ Wh. (2.12)

A key ingredient in the MFMFE method is the numerical quadrature rule for (K−1·, ·)Q.
The integration for the velocity mass matrix on any element E is performed by mapping
to the reference element Ê and applying a quadrature rule defined on Ê. Using (2.8) and
(2.6), for all q, v ∈ Vh, we have

(K−1q,v)E =

(
1

JE
DF T

E K−1(FE(x̂))DFE q̂, v̂

)

Ê

≡ (MEq̂, v̂)Ê ,

where

ME(x̂) =
1

JE(x̂)
DF T

E (x̂)K−1(FE(x̂))DFE(x̂). (2.13)

Define a constant matrix KE such that K
ij
E is the mean value of Kij on E, where K

ij
E and

Kij denote the elements on the i-th row and j-th column of matrix KE and K respectively.
Let r̂c,Ê denote the center of mass of Ê. Replacing DF T

E and K by the constant matrices

DF T
E (r̂c,Ê) and KE respectively, we define

M̃E(x̂) =
1

JE(x̂)
DF T

E (r̂c,Ê)K
−1

E DFE(x̂). (2.14)

In addition, we use (·, ·)Q̂,Ê to denote the trapezoidal rule on Ê:

(q̂, v̂)Q̂,Ê ≡
|Ê|

8

8∑

i=1

q̂(r̂i) · v̂(r̂i), (2.15)

where r̂i are the vertices of element Ê.
The quadrature rule on an element E is defined as

(K−1q,v)Q,E ≡ (M̃Eq̂, v̂)Q̂,Ê =
|Ê|

8

8∑

i=1

M̃E(r̂i)q̂(r̂i) · v̂(r̂i). (2.16)

Mapping back to the physical element E, we have the quadrature rule on E:

(K−1q,v)Q,E =
1

8

8∑

i=1

JE(r̂i)(DF−1

E )T (ri)DF T
E (r̂c,Ê)K

−1

E q(ri) · v(ri). (2.17)

Note that the trapezoidal rule for the modified integrand induces a non-symmetric quadra-
ture rule unless the Jacobian matrix DFE is constant. This is related to a non-symmetric
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inner product used in mimetic finite difference methods [19, 24]. A similar quadrature rule
on quadrilateral elements was introduced in [22], where the mean value of K−1 was used.
Our analysis in [29] applies also in that case with an extra term involving the difference

between K
−1

E and K−1

E , which is of order O(h).
The global quadrature rule on Ω is defined as

(K−1q,v)Q ≡
∑

E∈Th

(K−1q,v)Q,E .

Remark 2.1. The symmetric version of the method based on ME from (2.13) has been
shown to work well for simplicial grids and smooth or h2-perturbed quadrilateral and hexahe-
dral grids [34, 20, 33]. Furthermore, it is always coercive, while the non-symmetric method
has a coercivity condition (2.19) that may not be satisfied in some extreme cases. However,
the performance of the symmetric method deteriorates on rough grids and we do not con-
sider it in this paper. Instead, we focus on the non-symmetric method, which provides first
order accurate fluxes on element faces on general hexahedra. This is due to the fact that
the non-symmetric quadrature rule based on (2.14) satisfies some critical properties on the
physical elements that are key ingredients in the error analysis. The reader is referred to
[29] for details.

2.1 Reduction to a cell-centered pressure system.

The choice of trapezoidal quadrature rule implies that on each element, the velocity DOF
associated with a vertex become decoupled from the rest of the DOF. As a result, the
assembled velocity mass matrix in (2.11) has a block-diagonal structure with one block per
grid vertex. The dimension of each block equals the number of velocity DOF associated
with the vertex. In particular,

(K−1q,v)Q =
∑

E∈Th

(K−1q,v)Q,E ≡
∑

c∈Ch

vT
c Mcqc, (2.18)

where Ch denotes the set of corner or vertex points in Th, vc := {(v · ne)(xc)}
nc

e=1
with a

similar definition for qc, xc is the coordinate vector of point c, nc is the number of faces
that share the vertex point c, and Mc is an nc × nc matrix, see [29] for further details. For
example, nc = 12 for logically rectangular hexahedral grids, see Figure 2. Inverting each
local block in the mass matrix in (2.11) allows for expressing the velocity DOF associated
with a vertex in terms of the pressures at the centers of the elements that share the vertex
(there are eight such elements in Figure 2). Substituting these expressions into the mass
conservation equation (2.12) leads to a cell-centered system for the pressures. The stencil
is 27 points on logically rectangular hexahedral grids. The local linear systems and the
resulting global pressure system are positive definite and therefore invertible under a mild
restriction on the shape regularity of the grids and/or the anisotropy of the permeability,
see (2.19) below.

2.2 Convergence of the MFMFE method

For the analysis of the non-symmetric MFMFE method, we require some properties of the
bilinear form (K−1·, ·)Q defined on the space Vh.
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Figure 2: Interactions of the velocity degrees of freedom in the MFMFE method

Lemma 2.1 ([29]). Assume that Mc is uniformly positive definite for all c ∈ Ch:

h3ξT ξ . ξTMcξ, ∀ξ ∈ R
nc . (2.19)

Then the bilinear form (K−1·, ·)Q is coercive in Vh and induces a norm in Vh equivalent
to the L2-norm:

(K−1v,v)Q h ‖v‖2, ∀v ∈ Vh. (2.20)

If in addition
ξTMT

c Mcξ . h6ξT ξ, ∀ ξ ∈ R
nc , (2.21)

then the following Cauchy-Schwarz type inequality holds:

(K−1q,v)Q . ‖q‖‖v‖ ∀q,v ∈ Vh, (2.22)

Conditions (2.19) and (2.21) impose mild restrictions on the element geometry and the
anisotropy of the permeability tensor K, see [22, 24].

Recall the canonical interpolation operator in the space Vh. The reference interpolant
Π̂ : (H1(Ê))3 → V̂(Ê) is defined by

∀ê ⊂ ∂Ê, 〈(Π̂q̂− q̂) · n̂ê, q̂1〉ê = 0, ∀ q̂1 ∈ Q1(ê), (2.23)

where Q1 is the space of bilinear functions. The global operator Π : V ∩ (H1(Ω))3 → Vh

on each element E is defined by the Piola transformation:

Πq ↔ Π̂q, Π̂q = Π̂q̂. (2.24)

Note that (2.7) and (2.23) imply that Πq · n is continuous across element interfaces, which
gives Πq ∈ Vh.

Theorem 2.1 ([29]). Let K ∈ W 1,∞
Th

(Ω) and K−1 ∈ W 0,∞(Ω) . If (2.19) and (2.21) hold,
then the pressure ph and the velocity uh of the non-symmetric MFMFE method (2.11)—
(2.12) satisfy

‖p − ph‖ + ‖Πu − uh‖ . h(|u|1 + ‖p‖2). (2.25)

Theorem 2.2 ([29]). Let K ∈ W 1,∞
Th

(Ω) and K−1 ∈ W 0,∞
Th

(Ω). If (2.19) and (2.21) hold,
then the velocity uh of the non-symmetric MFMFE method (2.11)—(2.12) satisfies


 ∑

E∈Th

‖(u − uh) · ne‖
2

∂E




1/2

. h1/2(‖u‖1 + ‖p‖2). (2.26)
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We remark that the shape regularity assumption on the mesh implies that |E|/|∂E| h h;
hence the above theorem gives O(h) convergence for the face fluxes.

3 The enhanced FGM mixed finite element method

The FGM mixed finite element space on general hexahedra [18] was constructed to be
H(div)-conforming and contain the space of constants on any physical element E. This
results in an O(h) convergent mixed finite element method. This is the mixed velocity space
with the fewest known DOF with such property. Here we introduce an enhanced FGM,
which will be used in our postprocessing procedure.

3.1 The enhanced FGM space

The FGM space Ŝ0 [18] consists of all vectors û = (û1, û2, û3)
T on Ê of the form:

û1 = A1 + B1x̂ + C1ŷ + D1ẑ − (E2 + G2)x̂ŷ + (E3 − G3)x̂ẑ + G1x̂
2 + H3x̂

2ŷ − H2x̂
2ẑ,

û2 = A2 + B2x̂ + C2ŷ + D2ẑ + (E1 − G1)ŷx̂ − (E3 + G3)ŷẑ + G2ŷ
2 − H3x̂ŷ2 + H1ŷ

2ẑ,

û3 = A3 + B3x̂ + C3ŷ + D3ẑ − (E1 + G1)ẑx̂ + (E2 − G2)ẑŷ + G3ẑ
2 + H2x̂ẑ2 − H1ŷẑ2,

(3.1)

where Ai, Bi, Ci, Di, Ei, Gi, Hi are constants. For û ∈ Ŝ0, the 21 DOF are given by

• 〈û · n̂, q̂〉ê, ∀q̂ ∈ P1(ê), ∀ê ⊂ ∂Ê,

• (û, r̂)Ê , ∀r̂ ∈ R̂, where R̂ denotes the span of the vectors

r̂1 := (0, 1/2− ẑ, ŷ− 1/2)T , r̂2 := (1/2− ẑ, 0, x̂− 1/2)T , r̂3 := (1/2− ŷ, x̂− 1/2, 0)T .

The space Ŝ0 can also be written as

Ŝ0 = BDDF1(Ê) + H1(0, ŷ
2ẑ,−ŷẑ2)T + H2(−x̂2ẑ, 0, x̂ẑ2)T + H3(x̂

2ŷ,−x̂ŷ2, 0)T

= BDDF1(Ê) +
H1

2
curl(ŷ2ẑ2, 0, 0)T +

H2

2
curl(0, x̂2ẑ2, 0)T +

H3

2
curl(0, 0, x̂2 ŷ2)T ,

(3.2)

We are now ready to define the enhanced FGM space as

V̂∗(Ê) := Ŝ0 ∪ V̂(Ê), (3.3)

where V̂(Ê) is the enhanced BDDF1 space defined in (2.9). For û ∈ V̂∗(Ê), there are 27
DOF given by

• 〈û · n̂, q̂〉ê, ∀q̂ ∈ Q1(ê), ∀ê ⊂ ∂Ê,

• (û, r̂)Ê , ∀r̂ ∈ R̂.

The following lemma establishes the unisolvence of the V̂∗(Ê). The proof is similar to
the unisolvence of Ŝ0 in [18] and is given here for completeness.
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Lemma 3.1. Any v̂ ∈ V̂∗(Ê) is uniquely determined by the DOF in V̂∗(Ê).

Proof. It is enough to show v̂ = 0 if the DOF are all zero. By definition, we can write
v̂ := (v̂1, v̂2, v̂3) ∈ V̂∗(Ê) as

v̂1 = û1 − R2ŷẑ + S3x̂
2ẑ − 2S2x̂ŷẑ,

v̂2 = û2 − R3x̂ẑ + S1x̂ŷ2 − 2S3x̂ŷẑ,

v̂3 = û3 − R1x̂ŷ + S2ŷẑ2 − 2S1x̂ŷẑ,

(3.4)

where û := (û1, û2, û3)
T ∈ Ŝ0 given in (3.1). Note that the face DOF imply that v̂ · n̂ = 0

on ∂Ê. If v̂ · n̂ = 0 on the face x̂ = 0, then A1 = C1 = D1 = R2 = 0. Similarly, using the
DOF on faces ŷ = 0 and ẑ = 0, gives A2 = B2 = D2 = R3 = 0 and A3 = B3 = C3 = R1 = 0.
The conditions v̂ · n̂ = 0 on faces x̂ = 1, ŷ = 1, and ẑ = 1, give the following:

B1 + G1 = 0, −E2 − G2 + H3 = 0, E3 − G3 − H2 + S3 = 0, S2 = 0

C2 + G2 = 0, E1 − G1 − H3 + S1 = 0, −E3 − G3 + H1 = 0, S3 = 0,

D3 + G3 = 0, −E1 − G1 + H2 = 0, E2 − G2 − H1 + S2 = 0, S1 = 0.

Solving the above equations in terms of H1, H2, and H3 gives

B1 = (H3 − H2)/2, E1 = (H2 + H3)/2, G1 = (H2 − H3)/2,

C2 = (H1 − H3)/2, E2 = (H1 + H3)/2, G2 = (H3 − H1)/2,

D3 = (H2 − H1)/2, E3 = (H1 + H2)/2, G3 = (H1 − H2)/2.

Hence, if the 24 DOF of v̂ on the faces are zero, v̂ has the form

v̂1 = x̂(1 − x̂) [H2(ẑ − 1/2) − H3(ŷ − 1/2)] ,

v̂2 = ŷ(1 − ŷ) [H3(x̂ − 1/2) − H1(ẑ − 1/2)] ,

v̂3 = ẑ(1 − ẑ) [H1(ŷ − 1/2) − H2(x̂ − 1/2)] .

(3.5)

If the remaining three DOF are zero, it is easy to verify that H1 = H2 = H3 = 0.

The global spaces V∗
h and W ∗

h are defined similarly to (2.8). The operator Π̂∗ :

(H1(Ê))3 → V̂∗(Ê) is defined by

〈(Π̂∗v̂ − v̂) · n̂ê, q̂1〉ê = 0, ∀ê ⊂ ∂Ê, q̂1 ∈ Q1(ê)

(Π̂∗v̂ − v̂, r̂)Ê = 0, ∀r̂ ∈ R̂.
(3.6)

The global operator Π∗ : V∗ ∩ (H1(Ω))3 → V∗
h on each element E is defined by the Piola

transformation:
Π∗v ↔ Π̂∗v, Π̂∗v = Π̂∗v̂. (3.7)

Lemma 3.2. For q ∈ (H1(Ω))3,

‖q − Π∗q‖E . h|q|1,E , ∀E ∈ Th. (3.8)

Proof. The proof is similar to the one in [18], using the fact that Π∗ preserves the constant
vectors.
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Lemma 3.3. For q ∈ (H1(E))3,

‖Π∗q‖E . ‖q‖E + h|q|1,E . (3.9)

‖∇ · Π∗q‖E . ‖∇ · q‖E . (3.10)

Proof. The proof is based on a scaling argument for the Piola transformation. We refer to
[29] for details.

3.2 Convergence of the enhanced FGM mixed finite element method

The enhanced FGM mixed finite element is defined as follows: find u∗
h ∈ V∗

h and p∗h ∈ Wh

such that

(K−1u∗
h,v) − (p∗h,∇ · v) = 0, ∀v ∈ V∗

h, (3.11)

(∇ · u∗
h, w) = (f,w), ∀w ∈ Wh. (3.12)

Following the classical mixed finite element theory [9], we have the following result.

Theorem 3.1. There exists a unique solution {u∗
h, p∗h} of the enhanced FGM method

(3.11)–(3.12) that satisfies

‖u − u∗
h‖ . h|u|1, (3.13)

‖p − p∗h‖ . h(|u|1 + ‖p‖1). (3.14)

Remark 3.1. Since Π∗ has no interpolation estimate under the divergence norm, u∗
h has

no divergence error estimate as well.

The rest of this section is devoted to establishing the convergence of the velocity on the
element faces. We start with several auxiliary lemmas needed in the analysis.

Lemma 3.4 ([29]). For any element E ∈ Th,

‖q̂‖Ê h h1/2‖q‖E , ∀q ∈ (L2(E))3, (3.15)

|q̂|
1,Ê . (h1/2‖q‖E + h3/2|q|1,E), ∀q ∈ (H1(E))3. (3.16)

Lemma 3.5. The following trace inequality holds

‖v · ne‖e . h−1/2‖v‖E , ∀v ∈ V∗
h, ∀e ∈ ∂E. (3.17)

Proof. Using the trace inequality [4, 5] on the reference element Ê, we have

‖v̂ · n̂ê‖ê . ‖v̂‖Ê + |v̂|
1,Ê . ‖v̂‖Ê ,

where we also used the norm equivalence on reference element in the second inequality. The
result follows from (3.15), (2.7), and (2.5).

Lemma 3.6. For any constant vector q0 on E,

∀ e ⊂ ∂E, Π∗q0 · ne = q0 · ne. (3.18)
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Proof. In [29], Lemma 3.6 and Remark 3.2 show that the Piola image of a constant vector on
a physical element has a linear normal component in the reference element. Thus Π̂∗q̂0 ·n̂e =
q̂0 · n̂e since the enhanced FGM space has a bilinear normal component in the reference
element.

Lemma 3.7. For u ∈ (H1(E))3,

‖(u − Π∗u) · ne‖e . h1/2|u|1,E , ∀e ∈ ∂E. (3.19)

Proof. Let q be any constant vector on E. Lemma 3.6 implies that

‖(u − Π∗u) · ne‖e = ‖(u − q0) · ne − (Π∗u − Π∗q0) · ne‖e

≤ ‖(u − q0) · ne‖e + ‖Π∗(u− q0) · ne‖e.
(3.20)

Using the trace inequality for Lipschitz domains [4, 5],

∀ e ⊂ ∂E, ‖φ‖e . h−1/2‖φ‖E + h1/2|φ|1,E , ∀φ ∈ H1(E), (3.21)

we have
‖(u − q0) · ne‖e . h−1/2‖u − q0‖E + h1/2|u− q0|1,E. (3.22)

The trace inequality (3.17) gives that

‖Π∗(u − q0) · ne‖e . h−1/2‖Π∗(u − q0)‖E . h−1/2‖u − q0‖E + h1/2|u− q0|1,E , (3.23)

where we have also used (3.9) in the last inequality. Taking q0 to be the L2-projection of
u into the space of constant vectors on E in (3.20)–(3.23) yields (3.19)

Theorem 3.2. The solution {u∗
h, p∗h} of the enhanced FGM method (3.11)–(3.12) satisfies


 ∑

E∈Th

‖(u − u∗
h) · ne‖

2

∂E




1/2

. h1/2|u|1. (3.24)

Proof. The triangle inequality gives

‖(u − u∗
h) · ne‖e ≤ ‖(u − Π∗u) · ne‖e + ‖(Π∗u− u∗

h) · ne‖e

. h1/2|u|1,E + h−1/2‖Π∗u− u∗
h‖E .

where we have used (3.19) and (3.17) in the second inequality. The assertion of the theorem
follows by combining the above inequality with (3.8) and (3.13).
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4 Local velocity postprocessing

4.1 Definition of the method

The MFMFE method gives accurate face velocities, see Theorem 2.2. We use these face
velocities as Neumann boundary conditions for the local auxiliary problem (2.1)–(2.2) in
each element E:

ũ = −K∇p̃, in E, (4.25)

∇ · ũ = f, in E, (4.26)

ũ · ne = uh · ne, on ∂E. (4.27)

This problem satisfies the solvability condition
∫

E
fdx =

∫

∂E
ũ · ne ds, (4.28)

due to the local mass conservation property of the MFMFE method.
We use the enhanced FGM finite element method to solve this problem. Denote

V∗
h,0(E) := {v ∈ V∗

h(E) | v · nE = 0 on ∂E} . (4.29)

We seek P(uh) := ũh ∈ V∗
h with ũh · ne = uh · ne on ∂E and p̃h ∈ Wh(E) such that

(K−1ũh,v)E − (p̃h,∇ · v)E = 0, ∀v ∈ V∗
h,0(E), (4.30)

(∇ · ũh, w)E = (f,w)E , ∀w ∈ Wh(E). (4.31)

The theory of the enhanced FGM method, see Theorem 3.1, implies that the above problem
has a unique solution. Furthermore, by (4.27), (4.28), and (4.29), the above equations are
equivalent to

(K−1ũh,v)E = 0, ∀v ∈ V∗
h,0(E). (4.32)

4.2 Convergence of the postprocessed velocity

Lemma 4.1. For any v ∈ V∗
h(E), there exists v0 ∈ V∗

h,0(E) and v1 ∈ Vh(E) such that

v = v0 + v1. (4.33)

Proof. It is enough to show the existence on the reference element Ê. Let v̂1 ∈ V̂(Ê) be
the solution of

〈v̂1 · n̂ê, q̂〉ê = 〈v̂ · n̂ê, q̂〉ê, ∀q̂ ∈ Q1(ê), ∀ê ∈ ∂Ê.

The unisolvence of enhanced BDDF1 implies the existence and uniqueness of v̂1. Next, let
v̂0 ∈ V̂∗(Ê) be the solution of

〈v̂0 · n̂ê, q̂〉ê = 0, ∀q̂ ∈ Q1(ê), ∀ê ∈ ∂Ê,

(v̂0, r̂)Ê = (v̂ − v̂1, r̂)Ê , ∀r̂ ∈ R̂.

Lemma 3.1 implies that such v̂0 exists and is unique. By definition, it is easy to see that

v̂ = v̂0 + v̂1, and v̂0 · n̂ê = 0 on ∂Ê.
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Lemma 4.2. The following trace inequality holds:

‖v · ne‖∂E h h−1/2‖v‖E ∀v ∈ Vh. (4.34)

Proof. Since the DOF on Vh are all defined on the element faces, ‖v̂ · n̂ê‖∂Ê is a norm in

V̂(Ê). Norms equivalence on the reference element Ê gives

‖v̂ · n̂ê‖∂Ê h ‖v̂‖Ê , ∀v̂ ∈ V̂(Ê).

Now, (4.34) follows from (2.7), (2.5), and the scaling estimate (3.15).

Theorem 4.1. The velocity u∗
h of the enhanced FGM mixed finite element method (3.11)–

(3.12) and the postprocessed velocity P(uh) of (4.30)-(4.31) satisfies

‖u∗
h −P(uh)‖ . h(|u|1 + ‖p‖2). (4.35)

Proof. By Lemma 4.1, there exists u∗
h,0, ũh,0 ∈ V∗

h,0(E) and u∗
h,1, ũh,1 ∈ Vh(E) such that

u∗
h = u∗

h,0 + u∗
h,1 and ũh = ũh,0 + ũh,1. (4.36)

Taking v|E ∈ V∗
h,0(E), v = 0 on Ω \ E in (3.11) gives

(K−1u∗
h,v)E = 0, ∀v ∈ V∗

h,0(E). (4.37)

Subtracting (4.32) from this equation yields

(K−1(u∗
h − ũh),v)E = 0, ∀v ∈ V∗

h,0(E) (4.38)

Taking v = u∗
h,0 − ũh,0 ∈ V∗

h,0(E) in (4.38), we have that

‖u∗
h,0 − ũh,0‖

2

E . (K−1(u∗
h,0 − ũh,0),u

∗
h,0 − ũh,0)E

= −(K−1(u∗
h,1 − ũh,1),u

∗
h,0 − ũh,0)E . ‖u∗

h,1 − ũh,1‖E‖u
∗
h,0 − ũh,0‖E .

(4.39)

This implies

‖u∗
h − ũh‖E ≤ ‖u∗

h,0 − ũh,0‖E + ‖u∗
h,1 − ũh,1‖E . ‖u∗

h,1 − ũh,1‖E , (4.40)

thus it is enough to estimate ‖u∗
h,1 − ũh,1‖E . Since u∗

h,1 − ũh,1 ∈ Vh(E), Lemma 4.2 gives,
for all e ∈ ∂E,

‖u∗
h,1 − ũh,1‖E . h1/2‖(u∗

h,1 − ũh,1) · ne‖e = h1/2‖(u∗
h − uh) · ne‖e

≤ h1/2‖(u − u∗
h) · ne‖e + h1/2‖(u − uh) · ne‖e,

(4.41)

where we used the fact that on any face e, u∗
h,1 ·ne = u∗

h ·ne and ũh,1 ·ne = ũh ·ne = uh ·ne

in the equality. A combination of (4.40), (4.41), Theorem 3.2, and Theorem 2.2 completes
the proof.

Theorem 4.2. The postprocessed velocity P(uh) of (4.30)-(4.31) satisfies

‖u − P(uh)‖ . h(|u|1 + ‖p‖2). (4.42)

Proof. The assertion of the theorem follows from (3.13), Theorem 4.1, and

‖u − P(uh)‖ ≤ ‖u− u∗
h‖ + ‖u∗

h − P(uh)‖.
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5 Numerical experiments

We solve the problem (2.1)–(2.2) with a given analytical solution

p(x, y, z) = sin(πx) sin(πy) sin(πz)

and a full permeability tensor

K =




3 2.5 2.1
2.5 5 3.2
2.1 3.2 4


 .

We consider three hexahedral meshes as shown in Figure 3. The first mesh is an h-
perturbed grid given in [27]. The second mesh is generated by randomly perturbing positions
of vertices in a uniform cubic mesh. More precisely, the new grid points are determined by

xnew = xold + η1h, ynew = yold + η2h, znew = zold + η3h,

where xold, yold, zold are the uniform mesh points, h is the mesh size of the uniform mesh,
and ηi (i=1,2,3) are random numbers between −0.25 and 0.25. The third mesh is an h-
perturbed fishbone-like mesh from [18]. The first mesh gives planar faces and the others
give non-planar faces.

In Table 1, we test the convergence of the enhanced BDDF1 and enhanced FGM in-
terpolations. Both ‖u − Πu‖ and ‖u − Π∗u‖ are approximated by the 27-point Gaussian
quadrature rule on the reference cube. On the first mesh, ‖u − Πu‖ has first order con-
vergence, but the convergence on the second and third meshes deteriorates. As Lemma 3.2
predicts, ‖u − Π∗u‖ has first order convergence on all three meshes.

Table 2 shows the convergence of both the original MFMFE and the postprocessed
solution. The error in the face velocities is measured in the norm

‖v‖2

Fh
:=

∑

E∈Th

∑

e∈∂E

|E|

|e|
‖v · ne‖

2

e.

The L2 norm on the face e is calculated with the 9 point Gaussian quadrature rule on
the reference square. Other L2 norms such as ‖p − ph‖, ‖u − uh‖, and ‖u − P(uh)‖
are approximated by the 27-point Gaussian quadrature rule on the reference cube. As
predicted by Theorem 2.2, it is first order convergent on all meshes. Due to the first order
convergence of the interpolant on the first mesh, we do get first order convergence for the
original and postprocessed velocity. On the second and third meshes, the convergence of
‖u − uh‖ deteriorates, while the postprocessed velocity P(uh) has first order convergence,
as Theorem 4.2 predicts.

6 Conclusions

A velocity postprocessing of face fluxes computed using the multipoint flux mixed finite el-
ement has been introduced. The algorithm involves first using the MFMFE for computing
fluxes on faces followed by solving a 3×3 system on each element. The latter involves utiliz-
ing an enhancement of the mixed finite element space introduced by Falk, Gatto, and Monk
[18]. The resulting postprocessed velocities are shown to be first order. Computational
results verifying the theory are presented.
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Figure 3: Mesh 1: an h-perturbed mesh [27] (left); Mesh 2: a randomly h-perturbed
hexahedral mesh (middle); and Mesh 3: an h-perturbed mesh [18] (right).

Table 1: Convergence of interpolation

‖u − Πu‖

1/h Mesh 1 Mesh 2 Mesh 3

4 3.21E+00 1.93E+00 2.20E+00
8 1.62E+00 0.99 6.16E-01 1.65 7.77E-01 1.50
16 8.33E-01 0.96 2.77E-01 1.15 3.77E-01 1.04
32 4.25E-01 0.97 1.95E-01 0.51 2.63E-01 0.52
64 2.15E-01 0.98 1.74E-01 0.16 2.32E-01 0.18
128 1.08E-01 0.99 1.69E-01 0.04 2.23E-01 0.06

‖u − Π∗u‖

1/h Mesh 1 Mesh 2 Mesh 3

4 2.99E+00 1.89E+00 2.12E+00
8 1.42E+00 1.07 5.75E-01 1.72 7.09E-01 1.58
16 7.04E-01 1.01 2.12E-01 1.44 2.85E-01 1.31
32 3.54E-01 0.99 9.56E-02 1.15 1.32E-01 1.11
64 1.78E-01 0.99 4.60E-02 1.05 6.48E-02 1.02
128 8.90E-02 1.00 2.28E-02 1.01 3.22E-02 1.01
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Table 2: Convergence of solution

Mesh 1

1/h ‖p − ph‖ ‖u − uh‖Fh
‖u − uh‖ ‖u −P(uh)‖

4 2.74E-01 3.89E+00 3.39E+00 3.39E+00
8 1.51E-01 0.86 1.81E+00 1.10 1.73E+00 0.97 1.73E+00 0.97
16 7.93E-02 0.93 8.82E-01 1.04 8.79E-01 0.98 8.79E-01 0.98
32 4.05E-02 0.97 4.39E-01 1.01 4.44E-01 0.99 4.44E-01 0.99
64 2.05E-02 0.98 2.19E-01 1.00 2.24E-01 0.99 2.24E-01 0.99
128 1.03E-02 0.99 1.10E-01 0.99 1.12E-01 1.00 1.12E-01 1.00

Mesh 2

1/h ‖p − ph‖ ‖u − uh‖Fh
‖u − uh‖ ‖u −P(uh)‖

4 2.56E-01 3.56E+00 2.49E+00 2.47E+00
8 1.27E-01 1.01 1.35E+00 1.40 1.07E+00 1.22 1.05E+00 1.23
16 6.41E-02 0.98 6.04E-01 1.16 5.23E-01 1.03 4.96E-01 1.08
32 3.22E-02 0.99 3.53E-01 0.77 2.97E-01 0.82 2.46E-01 1.01
64 1.61E-02 1.00 1.68E-01 1.07 2.07E-01 0.52 1.23E-01 1.00
128 8.07E-03 1.00 8.77E-02 0.94 1.79E-01 0.21 6.21E-02 0.99

Mesh 3

1/h ‖p − ph‖ ‖u − uh‖Fh
‖u − uh‖ ‖u −P(uh)‖

4 2.73E-01 4.26E+00 2.76E+00 2.73E+00
8 1.35E-01 1.02 1.74E+00 1.29 1.20E+00 1.20 1.18E+00 1.21
16 6.72E-02 1.00 7.92E-01 1.14 5.92E-01 1.02 5.46E-01 1.11
32 3.36E-02 1.00 3.83E-01 1.05 3.47E-01 0.77 2.66E-01 1.04
64 1.68E-02 1.00 1.89E-01 1.02 2.57E-01 0.43 1.32E-01 1.01
128 8.39E-03 1.00 9.43E-02 1.00 2.30E-01 0.16 6.57E-02 1.01
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Appendix Basis functions for the new finite elements

A.1 Basis functions for the enhanced BDDF1 space

Recall that in the MFMFE method, equivalent DOF are chosen leading to a cell-centered
stencil for the pressure. Let v̂ := (v̂1, v̂2, v̂3)

T ∈ V̂(Ê) and denote the DOF as

On the face x̂ = 0 : N1(v̂) := v̂1(0, 0, 0), N2(v̂) := v̂1(0, 1, 0),

N3(v̂) := v̂1(0, 1, 1), N4(v̂) := v̂1(0, 0, 1),

On the face x̂ = 0 : N5(v̂) := v̂1(1, 0, 0), N6(v̂) := v̂1(1, 1, 0),

N7(v̂) := v̂1(1, 1, 1), N8(v̂) := v̂1(1, 0, 1),

On the face ŷ = 0 : N9(v̂) := v̂2(0, 0, 0), N10(v̂) := v̂2(1, 0, 0),

N11(v̂) := v̂2(1, 0, 1), N12(v̂) := v̂2(0, 0, 1),

On the face ŷ = 1 : N13(v̂) := v̂2(0, 1, 0), N14(v̂) := v̂2(1, 1, 0),

N15(v̂) := v̂2(1, 1, 1), N16(v̂) := v̂2(0, 1, 1),

On the face ẑ = 0 : N17(v̂) := v̂3(0, 0, 0), N18(v̂) := v̂3(1, 0, 0),

N19(v̂) := v̂3(1, 1, 0), N20(v̂) := v̂3(0, 1, 0),

On the face ẑ = 1 : N21(v̂) := v̂3(0, 0, 1), N22(v̂) := v̂3(1, 0, 1),

N23(v̂) := v̂3(1, 1, 1), N24(v̂) := v̂3(0, 1, 1).

Let the corresponding 24 nodal basis functions of V̂ (Ê) be v̂i (i = 1, . . . 24), i.e.,

Nj(v̂i) = δij , j = 1, . . . , 24,

where δij is the delta function. Solving the above equation gives the 24 basis functions.
On the face x = 0:

v̂1 = [xy − y − z − x + xz + yz − xyz + 1, y/4 − y2/4, z/2 − yz/2 + yz2/2 − z2/2]T ,

v̂2 = [y − xy − yz + xyz, y2/4 − y/4, yz/2 − yz2/2]T ,

v̂3 = [yz − xyz, y2/4 − y/4, yz2/2 − yz/2]T ,

v̂4 = [z − xz − yz + xyz, y/4 − y2/4, yz/2 − z/2 − yz2/2 + z2/2]T .

On the face x = 1:

v̂5 = [x − xy − xz + xyz, y2/4 − y/4, yz/2 − z/2 − yz2/2 + z2/2]T ,

v̂6 = [xy − xyz, y/4 − y2/4, yz2/2 − yz/2]T ,

v̂7 = [xyz, y/4 − y2/4, yz/2 − yz2/2]T ,

v̂8 = [xz − xyz, y2/4 − y/4, z/2 − yz/2 + yz2/2 − z2/2]T .

On the face y = 0:

v̂9 = [x/2 − xz/2 + x2z/2 − x2/2, xy − y − z − x + xz + yz − xyz + 1, z/4 − z2/4]T ,

v̂10 = [xz/2 − x/2 − x2z/2 + x2/2, x − xy − xz + xyz, z/4 − z2/4]T ,

v̂11 = [x2z/2 − xz/2, xz − xyz, z2/4 − z/4]T ,

v̂12 = [xz/2 − x2z/2, z − xz − yz + xyz, z2/4 − z/4]T .
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On the face y = 1:

v̂13 = [xz/2 − x/2 − x2z/2 + x2/2, y − xy − yz + xyz, z2/4 − z/4]T ,

v̂14 = [x/2 − xz/2 + x2z/2 − x2/2, xy − xyz, z2/4 − z/4]T ,

v̂15 = [xz/2 − x2z/2, xyz, z/4 − z2/4]T ,

v̂16 = [x2z/2 − xz/2, yz − xyz, z/4 − z2/4]T .

On the face z = 0:

v̂17 = [x/4 − x2/4, y/2 − xy/2 + xy2/2 − y2/2, xy − y − z − x + xz + yz − xyz + 1]T ,

v̂18 = [x2/4 − x/4, xy/2 − xy2/2, x − xy − xz + xyz]T ,

v̂19 = [x2/4 − x/4, xy2/2 − xy/2, xy − xyz]T ,

v̂20 = [x/4 − x2/4, xy/2 − y/2 − xy2/2 + y2/2, y − xy − yz + xyz]T .

On the face z = 1:

v̂21 = [x2/4 − x/4, xy/2 − y/2 − xy2/2 + y2/2, z − xz − yz + xyz]T ,

v̂22 = [x/4 − x2/4, xy2/2 − xy/2, xz − xyz]T ,

v̂23 = [x/4 − x2/4, xy/2 − xy2/2, xyz]T ,

v̂24 = [x2/4 − x/4, y/2 − xy/2 + xy2/2 − y2/2, yz − xyz]T .

A.2 Basis functions for the enhanced FGM space

Define three additional DOF for the space V̂∗(Ê)

N25(v̂) := (v̂, r̂1)Ê , N26(v̂) := (v̂, r̂2)Ê , N27(v̂) := (v̂, r̂3)Ê .

The 27 nodal basis functions v∗
i (i = 1, . . . , 27) of V̂∗(Ê) are found by solving

Nj(v
∗
i ) = δij , j = 1, . . . , 27.

On the face x = 0:

v̂∗
1 =




7xy/4 − y − z − 7x/4 + 7xz/4 + yz − 3x2y/4 − 3x2z/4 + 3x2/4 − xyz + 1
3y/4 − 3xy/4 − yz/4 + 3xy2/4 + y2z/4 − 3y2/4
3z/4 − 3xz/4 − yz/4 + 3xz2/4 + yz2/4 − 3z2/4


 ,

v̂∗
2 =




y − 7xy/4 + 3xz/4 − yz + 3x2y/4 − 3x2z/4 + xyz
3xy/4 − 3y/4 + yz/4 − 3xy2/4 − y2z/4 + 3y2/4
z/2 − 3xz/4 + yz/4 + 3xz2/4 − yz2/4 − z2/2


 ,

v̂∗
3 =




3x/4 − 3xy/4 − 3xz/4 + yz + 3x2y/4 + 3x2z/4 − 3x2/4 − xyz
3xy/4 − y/2 − yz/4 − 3xy2/4 + y2z/4 + y2/2
3xz/4 − z/2 − yz/4 − 3xz2/4 + yz2/4 + z2/2


 ,

v̂∗
4 =




z + 3xy/4 − 7xz/4 − yz − 3x2y/4 + 3x2z/4 + xyz
y/2 − 3xy/4 + yz/4 + 3xy2/4 − y2z/4 − y2/2
3xz/4 − 3z/4 + yz/4 − 3xz2/4 − yz2/4 + 3z2/4


 .
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On the face x = 1:

v̂∗
5 =




x/4 − xy/4 − xz/4 − 3x2y/4 − 3x2z/4 + 3x2/4 + xyz
yz/4 − 3xy/4 + 3xy2/4 − y2z/4
yz/4 − 3xz/4 + 3xz2/4 − yz2/4


 ,

v̂∗
6 =




xy/4 + 3xz/4 + 3x2y/4 − 3x2z/4 − xyz
3xy/4 − yz/4 − 3xy2/4 + y2z/4
z/4 − 3xz/4 − yz/4 + 3xz2/4 + yz2/4 − z2/4


 ,

v̂∗
7 =




3x/4 − 3xy/4 − 3xz/4 + 3x2y/4 + 3x2z/4 − 3x2/4 + xyz
3xy/4 − y/4 + yz/4 − 3xy2/4 − y2z/4 + y2/4
3xz/4 − z/4 + yz/4 − 3xz2/4 − yz2/4 + z2/4


 ,

v̂∗
8 =




3xy/4 + xz/4 − 3x2y/4 + 3x2z/4 − xyz
y/4 − 3xy/4 − yz/4 + 3xy2/4 + y2z/4 − y2/4
3xz/4 − yz/4 − 3xz2/4 + yz2/4


 .

On the face y = 0:

v̂∗
9 =




3x/4 − 3xy/4 − xz/4 + 3x2y/4 + x2z/4 − 3x2/4
7xy/4 − 7y/4 − z − x + xz + 7yz/4 − 3xy2/4 − 3y2z/4 + 3y2/4 − xyz + 1
3z/4 − xz/4 − 3yz/4 + xz2/4 + 3yz2/4 − 3z2/4


 ,

v̂∗
10 =




3xy/4 − 3x/4 + xz/4 − 3x2y/4 − x2z/4 + 3x2/4
x − 7xy/4 − xz + 3yz/4 + 3xy2/4 − 3y2z/4 + xyz
z/2 + xz/4 − 3yz/4 − xz2/4 + 3yz2/4 − z2/2


 ,

v̂∗
11 =




3xy/4 − x/2 − xz/4 − 3x2y/4 + x2z/4 + x2/2
3y/4 − 3xy/4 + xz − 3yz/4 + 3xy2/4 + 3y2z/4 − 3y2/4 − xyz
3yz/4 − xz/4 − z/2 + xz2/4 − 3yz2/4 + z2/2


 ,

v̂∗
12 =




x/2 − 3xy/4 + xz/4 + 3x2y/4 − x2z/4 − x2/2
z + 3xy/4 − xz − 7yz/4 − 3xy2/4 + 3y2z/4 + xyz
xz/4 − 3z/4 + 3yz/4 − xz2/4 − 3yz2/4 + 3z2/4


 .

On the face y = 1:

v̂∗
13 =




xz/4 − 3xy/4 + 3x2y/4 − x2z/4
y/4 − xy/4 − yz/4 − 3xy2/4 − 3y2z/4 + 3y2/4 + xyz
xz/4 − 3yz/4 − xz2/4 + 3yz2/4


 ,

v̂∗
14 =




3xy/4 − xz/4 − 3x2y/4 + x2z/4
xy/4 + 3yz/4 + 3xy2/4 − 3y2z/4 − xyz
z/4 − xz/4 − 3yz/4 + xz2/4 + 3yz2/4 − z2/4


 ,

v̂∗
15 =




3xy/4 − x/4 + xz/4 − 3x2y/4 − x2z/4 + x2/4
3y/4 − 3xy/4 − 3yz/4 + 3xy2/4 + 3y2z/4 − 3y2/4 + xyz
xz/4 − z/4 + 3yz/4 − xz2/4 − 3yz2/4 + z2/4


 ,

v̂∗
16 =




x/4 − 3xy/4 − xz/4 + 3x2y/4 + x2z/4 − x2/4
3xy/4 + yz/4 − 3xy2/4 + 3y2z/4 − xyz
3yz/4 − xz/4 + xz2/4


 .
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On the face z = 0:

v̂∗
17 =




3x/4 − xy/4 − 3xz/4 + x2y/4 + 3x2z/4 − 3x2/4
3y/4 − xy/4 − 3yz/4 + xy2/4 + 3y2z/4 − 3y2/4
xy − y − 7z/4 − x + 7xz/4 + 7yz/4 − 3xz2/4 − 3yz2/4 + 3z2/4 − xyz + 1


 ,

v̂∗
18 =




xy/4 − 3x/4 + 3xz/4 − x2y/4 − 3x2z/4 + 3x2/4
y/2 + xy/4 − 3yz/4 − xy2/4 + 3y2z/4 − y2/2
x − xy − 7xz/4 + 3yz/4 + 3xz2/4 − 3yz2/4 + xyz


 ,

v̂∗
19 =




3xz/4 − xy/4 − x/2 + x2y/4 − 3x2z/4 + x2/2
3yz/4 − xy/4 − y/2 + xy2/4 − 3y2z/4 + y2/2
3z/4 + xy − 3xz/4 − 3yz/4 + 3xz2/4 + 3yz2/4 − 3z2/4 − xyz


 ,

v̂∗
20 =




x/2 + xy/4 − 3xz/4 − x2y/4 + 3x2z/4 − x2/2
xy/4 − 3y/4 + 3yz/4 − xy2/4 − 3y2z/4 + 3y2/4
y − xy + 3xz/4 − 7yz/4 − 3xz2/4 + 3yz2/4 + xyz


 .

On the face z = 1:

v̂∗
21 =




xy/4 − 3xz/4 − x2y/4 + 3x2z/4
xy/4 − 3yz/4 − xy2/4 + 3y2z/4
z/4 − xz/4 − yz/4 − 3xz2/4 − 3yz2/4 + 3z2/4 + xyz


 ,

v̂∗
22 =




3xz/4 − xy/4 + x2y/4 − 3x2z/4
y/4 − xy/4 − 3yz/4 + xy2/4 + 3y2z/4 − y2/4
xz/4 + 3yz/4 + 3xz2/4 − 3yz2/4 − xyz


 ,

v̂∗
23 =




xy/4 − x/4 + 3xz/4 − x2y/4 − 3x2z/4 + x2/4
xy/4 − y/4 + 3yz/4 − xy2/4 − 3y2z/4 + y2/4
3z/4 − 3xz/4 − 3yz/4 + 3xz2/4 + 3yz2/4 − 3z2/4 + xyz


 ,

v̂∗
24 =




x/4 − xy/4 − 3xz/4 + x2y/4 + 3x2z/4 − x2/4
−xy/4 + 3yz/4 + xy2/4 − 3y2z/4
3xz/4 + yz/4 − 3xz2/4 + 3yz2/4 − xyz


 .

Additional three DOF inside the element:

v̂∗
25 =




0
18y − 36yz + 36y2z − 18y2

36yz − 18z − 36yz2 + 18z2


 ,

v̂∗
26 =




18x − 36xz + 36x2z − 18x2

0
36xz − 18z − 36xz2 + 18z2


 ,

v̂∗
27 =




18x − 36xy + 36x2y − 18x2

36xy − 18y − 36xy2 + 18y2

0


 .
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A.3 Local postprocessing

Write the MFMFE solution on the reference element Ê as

ûh =

24∑

i=1

ûiv̂i.

Since the MFMFE and the enhanced FGM spaces have the same face DOF, the postpro-
cessed velocity on the reference element can be written as

P̂(uh) =

24∑

i=1

ûiv̂
∗
i + û25v̂

∗
25 + û26v̂

∗
26 + û27v̂

∗
27.

Let

K−1

E :=
1

J
DF T

E K−1DFE.

Then û25, û26, and û27 is the solution of the following 3 by 3 system:




(K−1

E v̂∗
25

, v̂∗
25

)Ê (K−1

E v̂∗
26

, v̂∗
25

)Ê (K−1

E v̂∗
27

, v̂∗
25

)Ê
(K−1

E v̂∗
25

, v̂∗
26

)Ê (K−1

E v̂∗
26

, v̂∗
26

)Ê (K−1

E v̂∗
27

, v̂∗
26

)Ê
(K−1

E v̂∗
25

, v̂∗
27

)Ê (K−1

E v̂∗
26

, v̂∗
27

)Ê (K−1

E v̂∗
27

, v̂∗
27

)Ê







û25

û26

û27




= −




∑
24

i=1
(K−1

E v̂∗
i , v̂

∗
25

)Ê ûi∑
24

i=1
(K−1

E v̂∗
i , v̂

∗
26

)Ê ûi∑
24

i=1
(K−1

E v̂∗
i , v̂

∗
27

)Ê ûi

.
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