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A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD∗

MARY F. WHEELER† AND IVAN YOTOV‡

Abstract. We develop a mixed finite element method for single phase flow in porous media
that reduces to cell-centered finite differences on quadrilateral and simplicial grids and performs well
for discontinuous full tensor coefficients. Motivated by the multipoint flux approximation method
where subedge fluxes are introduced, we consider the lowest order Brezzi–Douglas–Marini (BDM)
mixed finite element method. A special quadrature rule is employed that allows for local velocity
elimination and leads to a symmetric and positive definite cell-centered system for the pressures.
Theoretical and numerical results indicate second-order convergence for pressures at the cell centers
and first-order convergence for subedge fluxes. Second-order convergence for edge fluxes is also
observed computationally if the grids are sufficiently regular.
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1. Introduction. Mixed finite element (MFE) methods have been widely used
for modeling flow in porous media due to their local mass conservation, accurate ap-
proximation of the velocity, and proper treatment of discontinuous coefficients. A
computational drawback of these methods is the need to solve an algebraic system of
saddle point type. One possible approach to address this issue is to use the hybrid
form of the MFE method [9, 15]. In this case the method can be reduced to a sym-
metric positive definite system for the pressure Lagrange multipliers on the element
faces. Alternatively, it was established in [29] that, in the case of diagonal tensor
coefficients and rectangular grids, MFE methods can be reduced to cell-centered fi-
nite differences (CCFD) for the pressure through the use of a quadrature rule for the
velocity mass matrix. This relationship was explored in [33] to obtain convergence of
CCFD on rectangular grids. This result was extended to full tensor coefficients and
logically rectangular grids in [7, 6], where the expanded mixed finite element (EMFE)
method was introduced. The EMFE method is very accurate for smooth grids and
coefficients, but loses accuracy near discontinuities. This is due to the arithmetic
averaging of discontinuous coefficients. Higher order accuracy can be recovered if
pressure Lagrange multipliers are introduced along discontinuous interfaces [6], but
then the cell-centered structure is lost.

Several other methods have been introduced that handle well rough grids and
coefficients. The control volume mixed finite element (CVMFE) method [16] is based
on discretizing Darcy’s law on specially constructed control volumes. Mimetic finite
difference (MFD) methods [23] are designed to mimic on the discrete level critical
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properties of the differential operators. The approximating spaces in both methods
are closely related to RT0, the lowest order Raviart–Thomas MFE spaces [27]. These
relationships have been explored in [17, 30] and [10, 12] to establish convergence of
the CVMFE methods and the MFD methods, respectively. However, as in the case
of MFE methods, both methods lead to an algebraic saddle point problem. The
multipoint flux approximation (MPFA) method [1, 2, 19, 20] has been developed as a
finite volume method and combines the advantages of the above mentioned methods;
i.e., it is accurate for rough grids and coefficients and reduces to a cell-centered stencil
for the pressures. However, due to the nonvariational formulation of the MPFA,
there exist only limited theoretical results in the literature for the well posedness and
convergence of this method [24].

In this paper we design a MFE method that reduces to accurate CCFD for full
tensors and irregular grids and performs well for discontinuous coefficients. Motivated
by the MPFA [2, 20], where subedge fluxes are introduced, we consider the lowest
order Brezzi–Douglas–Marini (BDM) MFE method [14, 15]. In two dimensions, for
example, there are two velocity degrees of freedom per edge. A special quadrature rule
is employed that allows for local velocity elimination and leads to a cell-centered stencil
for the pressures. The resulting algebraic system is symmetric and positive definite.
We call our method a multipoint flux mixed finite element (MFMFE) method, due to
its close relationship with the MPFA method.

We emphasize that the formulation of the MFMFE method involves K−1; see
(2.41)–(2.42). For diagonal discontinuous K, the resulting coefficient is a harmonic
average. This explains the superior performance of the MFMFE method for problems
with rough grids and coefficients, compared to the EMFE method.

The MFMFE method results in a smaller algebraic system than the hybrid MFE
method does, since finite element partitions have fewer elements than edges or faces.
Moreover, many existing petroleum simulators are based on cell-centered discretiza-
tions and their data structures are more compatible with the MFMFE method than
with the hybrid MFE method.

The variational framework allows for MFE analysis tools to be combined with
quadrature error analysis to establish well posedness and accuracy of the MFMFE
method. We formulate and analyze the method on simplicial grids in two and three
dimensions as well as on quadrilateral grids. We obtain first order convergence for the
pressure in the L2-norm and for the velocity in the H(div)-norm. A duality argument
is employed to establish second order convergence for the pressure in a discrete L2-
norm involving the centers of mass of the elements.

The analysis in the quadrilateral case is more involved, since it requires mapping
to a reference element. As a result a restriction needs to be imposed on the geometry
of each quadrilateral, namely, that it is an O(h2)-perturbation of a parallelogram;
see (3.1). We have verified numerically that this restriction is not just an artifact
of the analysis, but is needed in practice as well. We also note that second order
convergence is observed numerically for the velocities at the midpoints of the edges
on h2-parallelogram grids.

The techniques used in this paper can be employed to formulate and analyze
extensions of the MFMFE method to nonmatching multiblock grids via mortar finite
elements in the spirit of [5], multiscale MFMFE methods in the spirit of [4], and
adaptive mortar MFMFE methods in the spirit of [34].

The rest of the paper is organized as follows. The method is developed in section
2. Sections 3 and 4 are devoted to the error analysis of the velocity and the pressure,
respectively. Numerical experiments are presented in section 5. We end with some
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conclusions in section 6.

2. Definition of the method.

2.1. Preliminaries. We consider the second order elliptic problem written as a
system of two first order equations,

u = −K∇p in Ω,(2.1)

∇ · u = f in Ω,(2.2)

p = g on ΓD,(2.3)

u · n = 0 on ΓN ,(2.4)

where the domain Ω ⊂ Rd, d = 2 or 3, has a boundary ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅,
measure(ΓD) > 0, n is the outward unit normal on ∂Ω, and K is a symmetric,
uniformly positive definite tensor satisfying, for some 0 < k0 ≤ k1 < ∞,

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ ∀x ∈ Ω ∀ξ ∈ Rd.(2.5)

In flow in porous media modeling, p is the pressure, u is the Darcy velocity, and K
represents the permeability divided by the viscosity. The choice of boundary condi-
tions is made for the sake of simplicity. More general boundary conditions, including
nonhomogeneous full Neumann problems, can also be treated.

Throughout this paper, C denotes a generic positive constant that is independent
of the discretization parameter h. We will also use the following standard notation.
For a domain G ⊂ Rd, the L2(G) inner product and norm for scalar and vector valued
functions are denoted (·, ·)G and ‖ · ‖G, respectively. The norms and seminorms of
the Sobolev spaces W k,p(G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G,
respectively. The norms and seminorms of the Hilbert spaces Hk(G) are denoted by
‖ · ‖k,G and | · |k,G, respectively. We omit G in the subscript if G = Ω. For a section
of the domain or element boundary S ⊂ Rd−1 we write 〈·, ·〉S and ‖ · ‖S for the
L2(S) inner product (or duality pairing) and norm, respectively. For a tensor-valued
function M , let ‖M‖α = maxi,j ‖Mij‖α for any norm ‖ · ‖α. We will also use the
space

H(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)}

equipped with the norm

‖v‖div = (‖v‖2 + ‖∇ · v‖2)1/2.

The weak formulation of (2.1)–(2.4) is the following: find u ∈ V and p ∈ W such
that

(K−1u,v) = (p,∇ · v) − 〈g,v · n〉ΓD
, v ∈ V,(2.6)

(∇ · u, w) = (f, w), w ∈ W,(2.7)

where

V = {v ∈ H(div; Ω) : v · n = 0 on ΓN}, W = L2(Ω).

It is well known [15, 28] that (2.6)–(2.7) has a unique solution.
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Fig. 2.1. Mapping in the case of a quadrilateral.

2.2. Finite element mappings. Consider a polygonal domain Ω ∈ Rd and let
Th be a finite element partition of Ω consisting of triangles and/or convex quadrilater-
als in two dimensions and tetrahedra in three dimensions, where h = maxE∈Th

diam(E).
We assume that Th is shape regular and quasi-uniform [18]. For any element E ∈ Th
there exists a bijection mapping FE : Ê → E where Ê is the reference element. Denote
the Jacobian matrix by DFE and let JE = |det(DFE)|. Denote the inverse mapping
by F−1

E , its Jacobian matrix by DF−1
E , and let JF−1

E
= |det(DF−1

E )|. We have that

DF−1
E (x) = (DFE)−1(x̂), JF−1

E
(x) =

1

JE(x̂)
.

In the case of convex quadrilaterals, Ê is the unit square with vertices r̂1 = (0, 0)T ,
r̂2 = (1, 0)T , r̂3 = (1, 1)T , and r̂4 = (0, 1)T . Denote by ri = (xi, yi)

T , i = 1, . . . , 4,
the four corresponding vertices of element E as shown in Figure 2.1. The outward
unit normal vectors to the edges of E and Ê are denoted by ni and n̂i, i = 1, . . . , 4,
respectively. In this case FE is the bilinear mapping given by

FE(r̂) = r1 (1 − x̂)(1 − ŷ) + r2 x̂(1 − ŷ) + r3 x̂ŷ + r4 (1 − x̂)ŷ

= r1 + r21x̂ + r41ŷ + (r34 − r21)x̂ŷ,
(2.8)

where rij = ri− rj . It is easy to see that DFE and JE are linear functions of x̂ and ŷ:

DFE = [(1 − ŷ) r21 + ŷ r34, (1 − x̂) r41 + x̂ r32]

= [r21, r41] + [(r34 − r21)ŷ, (r34 − r21)x̂],
(2.9)

JE = 2|T1| + 2(|T2| − |T1|)x̂ + 2(|T4| − |T1|)ŷ,(2.10)

where |Ti| is the area of the triangle formed by the two edges sharing ri. Since E is
convex, the Jacobian determinant JE is uniformly positive, i.e., JE(x̂, ŷ) > 0.

In the case of triangles, Ê is the reference right triangle with vertices r̂1 = (0, 0)T ,
r̂2 = (1, 0)T , and r̂3 = (0, 1)T . Let r1, r2, and r3 be the corresponding vertices of
E, oriented in a counterclockwise direction. The linear mapping for triangles has the
form

FE(r̂) = r1(1 − x̂− ŷ) + r2x̂ + r3ŷ,(2.11)

with respective Jacobian matrix and Jacobian determinant

DFE = [r21, r31]
T

and JE = 2|E|.(2.12)
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The mapping in the case of tetrahedra is described similarly to the triangular case.
Note that in the case of simplicial elements the mapping is affine and the Jacobian
matrix and its determinant are constants.

Using the mapping definitions (2.8)–(2.12), it is easy to check that for any edge
(face) ei ⊂ ∂E

ni =
1

|ei|
JE(DF−1

E )T n̂i.(2.13)

It is also easy to see that, for all element types, the mapping definitions and the
shape-regularity and quasiuniformity of the grids imply that

‖DFE‖0,∞,Ê ∼ h, ‖JE‖0,∞,Ê ∼ hd, and ‖JF−1
E

‖0,∞,Ê ∼ h−d ∀E ∈ Th,(2.14)

where the notation a ∼ b means that there exist positive constants c0 and c1 inde-
pendent of h such that c0b ≤ a ≤ c1b.

2.3. Mixed finite element spaces. Let Vh ×Wh be the lowest order BDM1

MFE spaces [14, 15]. On the reference unit square these spaces are defined as

V̂(Ê) = P1(Ê)2 + r curl(x̂2ŷ) + s curl(x̂ŷ2)

=

(
α1x̂ + β1ŷ + γ1 + rx̂2 + 2sx̂ŷ
α2x̂ + β2ŷ + γ2 − 2rx̂ŷ − sŷ2

)
, Ŵ (Ê) = P0(Ê),

(2.15)

where α1, α2, β1, β2, γ1, γ2, s, r are real constants and Pk denotes the space of polyno-
mials of degree ≤ k. In the case where the reference element Ê is the unit triangle or
tetrahedron, the BDM1 spaces are defined as

V̂(Ê) = P1(Ê)d, Ŵ (Ê) = P0(Ê).(2.16)

Note that in all three cases ∇̂ · V̂(Ê) = Ŵ (Ê) and that for all v̂ ∈ V̂(Ê) and for any
edge (or face) ê of Ê,

v̂ · n̂ê ∈ P1(ê).

It is well known [14, 15] that the degrees of freedom for V̂(Ê) can be chosen to
be the values of v̂ · n̂ê at any two points on each edge ê if Ê is the unit triangle or
the unit square, or any three points on each face ê if Ê is the unit tetrahedron. We
choose these points to be the vertices of ê; see Figure 2.2 for the quadrilateral case.
This choice is motivated by the requirement of accuracy and certain orthogonalities
for the quadrature rule introduced in the next section.

The BDM1 spaces on any element E ∈ Th are defined via the transformations

v ↔ v̂ : v =
1

JE
DFEv̂ ◦ F−1

E , w ↔ ŵ : w = ŵ ◦ F−1
E .

The vector transformation is known as the Piola transformation. It is designed to
preserve the normal components of the velocity vectors on the edges (faces) and
satisfies the important properties [15]

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê and 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê.(2.17)
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Fig. 2.2. Degrees of freedom and basis functions for the BDM1 spaces on quadrilaterals.

Moreover, (2.13) implies

v · ne =
1

JE
DFEv̂ · 1

|e|JE(DF−1
E )T n̂ê =

1

|e| v̂ · n̂ê.(2.18)

Also note that the first equation in (2.17) and (∇ · v, w)E = (̂∇ · v, ŵJE)Ê imply

∇ · v =

(
1

JE
∇̂ · v̂

)
◦ F−1

E (x).(2.19)

Therefore on quadrilaterals ∇ · v|E �= constant.
The BDM1 spaces on Th are given by

Vh = {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂(Ê) ∀E ∈ Th},
Wh = {w ∈ W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê) ∀E ∈ Th}.

(2.20)

It is known [14, 15, 32] that there exists a projection operator Π from V ∩ (H1(Ω))d

onto Vh satisfying

(∇ · (Πq − q), w) = 0 ∀w ∈ Wh.(2.21)

The operator Π is defined locally on each element E by

Πq ↔ Π̂q, Π̂q = Π̂q̂,(2.22)

where Π̂ : (H1(Ê))d → V̂(Ê) is the reference element projection operator satisfying

∀ ê ⊂ ∂Ê, 〈(Π̂q̂ − q̂) · n̂, p̂1〉ê = 0 ∀ p̂1 ∈ P1(ê).(2.23)

To see that Πq ·n = 0 on ΓN if q ·n = 0 on ΓN , note that for any e ∈ ΓN and for all
p1 ↔ p̂1 ∈ P1(ê),

〈Πq · n, p1〉e = 〈Π̂q · n̂, p̂1〉ê = 〈Π̂q̂ · n̂, p̂1〉ê = 〈q̂ · n̂, p̂1〉ê = 0,

implying Πq · n = 0, where we have used (2.17), (2.22), and (2.23).
In addition to the mixed projection operator Π onto Vh, we will use a similar

projection operator onto the lowest order Raviart–Thomas spaces [27, 15]. The RT0

spaces are defined on the unit square as

V̂0(Ê) =

(
α1 + β1x̂
α2 + β2ŷ

)
, Ŵ 0(Ê) = P0(Ê),(2.24)
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and on the unit triangle as

V̂0(Ê) =

(
α1 + βx̂
α2 + βŷ

)
, Ŵ 0(Ê) = P0(Ê).(2.25)

On the unit tetrahedron V̂0(Ê) has an additional component α3 + βẑ. In all cases

∇̂ · V̂0(Ê) = Ŵ 0(Ê) and v̂ · n̂ê ∈ P0(ê). The degrees of freedom of V̂0(Ê) are
the values of v̂ · n̂ê at the midpoints of all edges (faces) ê. The projection operator

Π̂0 : (H1(Ê))d → V̂0(Ê) satisfies

∀ ê ⊂ ∂Ê, 〈(Π̂0q̂ − q̂) · n̂, p̂0〉ê = 0 ∀ p̂0 ∈ P0(ê).(2.26)

The spaces V0
h and W 0

h on Th and the projection operator Π0 : (H1(Ω))d → V0
h are

defined similarly to the case of BDM1 spaces. Note that V0
h ⊂ Vh and W 0

h = Wh. It
follows immediately from the definition of Π0 that

∇ · v = ∇ · Π0v ∀v ∈ Vh(2.27)

and

‖Π0v‖ ≤ C‖v‖ ∀v ∈ Vh.(2.28)

2.4. The BDM1 method. The BDM1 mixed finite element method is based on
approximating the variational formulation (2.6)–(2.7) in the discrete spaces Vh×Wh:
find ubdm

h ∈ Vh and pbdmh ∈ Wh such that

(K−1ubdm
h ,v) = (pbdmh ,∇ · v) − 〈g,v · n〉ΓD

, v ∈ Vh,(2.29)

(∇ · ubdm
h , w) = (f, w), w ∈ Wh.(2.30)

The method has a unique solution and is second order accurate for the velocity and
first order accurate for the pressure in L2-norms on affine grids [14, 32]. It handles
well discontinuous coefficients due to the presence of K−1 in the mass matrix. A
drawback is that the resulting algebraic system is a large coupled velocity-pressure
system of a saddle point problem type. In the next section we develop a quadrature
rule that allows for local elimination of the velocities and results in a positive definite
cell-centered pressure matrix.

2.5. A quadrature rule. For q, v ∈ Vh, define the global quadrature rule

(K−1q,v)Q ≡
∑
E∈Th

(K−1q,v)Q,E .

The integration on any element E is performed by mapping to the reference element
Ê. The quadrature rule is defined on Ê. Using the definition (2.20) of the finite
element spaces and omitting the subscript E, we have∫

E

K−1q · v dx =

∫
Ê

K̂−1 1

J
DF q̂ · 1

J
DF v̂ J dx̂

=

∫
Ê

1

J
DFT K̂−1DF q̂ · v̂ dx̂ ≡

∫
Ê

K−1q̂ · v̂ dx̂,

where

K = JDF−1K̂(DF−1)T .(2.31)
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Clearly, due to (2.14),

‖K‖0,∞,Ê ∼ hd−2‖K‖0,∞,E and ‖K−1‖0,∞,Ê ∼ h2−d‖K−1‖0,∞,E .(2.32)

The quadrature rule on an element E is defined as

(K−1q,v)Q,E ≡ (K−1q̂, v̂)Q̂,Ê ≡ |Ê|
s

s∑
i=1

K−1(r̂i)q̂(r̂i) · v̂(r̂i),(2.33)

where s = 3 for the unit triangle and s = 4 for the unit square or the unit tetrahedron.
Note that on the unit square this is the trapezoidal quadrature rule.

The corner vector q̂(r̂i) is uniquely determined by its normal components to the
two edges (or three faces) that share that vertex. Recall that we chose the velocity
degrees of freedom on any edge (face) ê to be the normal components at the vertices
of ê. Therefore, there are two (three) degrees of freedom associated with each corner
r̂i and they uniquely determine the corner vector q̂(r̂i). More precisely,

q̂(r̂i) =

d∑
j=1

q̂ · n̂ij(r̂i)n̂ij ,

where n̂ij , j = 1, . . . , d, are the outward unit normal vectors to the two edges (three
faces) intersecting at r̂i, and q̂ · n̂ij(r̂i) are the velocity degrees of freedom associated
with this corner. Let us denote the basis functions associated with r̂i by v̂ij , j =
1, . . . , d; see Figure 2.2, i.e.,

v̂ij · n̂ij(r̂i) = 1, v̂ij · n̂ik(r̂i) = 0, k �= j, and v̂ij · n̂lk(r̂l) = 0, l �= i, k = 1, . . . , d.

Clearly the quadrature rule (2.33) couples only the two (or three) basis functions
associated with a corner. On the unit square, for example,

(K−1v̂11, v̂11)Q̂,Ê =
K−1

11 (r̂1)

4
, (K−1v̂11, v̂12)Q̂,Ê =

K−1
12 (r̂1)

4
,(2.34)

and

(K−1v̂11, v̂ij)Q̂,Ê = 0 ∀ ij �= 11, 12.(2.35)

Remark 2.1. The quadrature rule can be defined directly on an element E. It is
easy to see from (2.10) and (2.12) that on simplicial elements

(K−1q,v)Q,E =
|E|
s

s∑
i=1

K−1(ri)q(ri) · v(ri),(2.36)

and on quadrilaterals

(K−1q,v)Q,E =
1

2

4∑
i=1

|Ti|K−1(ri)q(ri) · v(ri).(2.37)

The above quadrature rules are closely related to some inner products used in the
mimetic finite difference methods [23]. We note that in the case of quadrilaterals, it
is simpler to evaluate the quadrature rule on the reference element Ê.
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Denote the element quadrature error by

σE(K−1q,v) ≡ (K−1q,v)E − (K−1q,v)Q,E(2.38)

and define the global quadrature error by σ(K−1q,v)|E = σE(K−1q,v). Similarly,
denote the quadrature error on the reference element by

σ̂Ê(K−1q̂, v̂) ≡ (K−1q̂, v̂)Ê − (K−1q̂, v̂)Q̂,Ê .(2.39)

The next two lemmas will be used in the analysis.
Lemma 2.1. On simplicial elements, if q ∈ Vh(E), then

σE(q,v0) = 0 for all constant vectors v0.

Proof. It is enough to consider v0 = (1, 0)T or v0 = (1, 0, 0)T ; the arguments for
the other cases are similar. We have

(q,v0)Q,E =
|E|
s

s∑
i=1

q1(ri) =

∫
E

q · v0 dx,

using that the quadrature rule (ϕ)E = |E|
s

∑s
i=1 ϕ(ri) is exact for linear func-

tions.
Lemma 2.2. On the reference square, for any q̂ ∈ V̂(Ê),

(q̂ − Π̂0q̂, v̂0)Q̂,Ê = 0 for all constant vectors v̂0.(2.40)

Proof. On any edge ê, if the degrees of freedom of q̂ are q̂ê,1 and q̂ê,2, then

(2.26) and an application of the trapezoidal quadrature rule imply that Π̂0q̂|ê =
(q̂ê,1 + q̂ê,2)/2. The assertion of the lemma follows from a simple calculation, using
(2.33).

2.6. The multipoint flux mixed finite element method. We are now ready
to define our method. We seek uh ∈ Vh and ph ∈ Wh such that

(K−1uh,v)Q = (ph,∇ · v) − 〈g,v · n〉ΓD
, v ∈ Vh,(2.41)

(∇ · uh, w) = (f, w), w ∈ Wh.(2.42)

Remark 2.2. We call the method (2.41)–(2.42) a MFMFE method, since it is
related to the MPFA method.

To prove that (2.41)–(2.42) is well posed, we first show that the quadrature rule
(2.33) produces a coercive bilinear form. We will need the following auxiliary result.

Lemma 2.3. If E ∈ Th and q ∈ (L2(E))d, then

‖q‖E ∼ h
2−d
2 ‖q̂‖Ê .(2.43)

Proof. The assertion of the lemma follows from the relations∫
E

q · qdx =

∫
Ê

1

J
DF q̂ · 1

J
DF q̂ J dx̂,∫

Ê

q̂ · q̂dx̂ =

∫
E

1

JF−1

DF−1q · 1

JF−1

DF−1qJF−1 dx,

and bounds (2.14).



A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD 2091

Lemma 2.4. There exists a positive constant C independent of h such that

(K−1q,q)Q ≥ C‖q‖2 ∀q ∈ Vh.(2.44)

Proof. Let q =
∑s

i=1

∑d
j=1 qijvij on an element E. Using (2.36)–(2.37) and (2.5)

we obtain

(K−1q,q)Q,E ≥ C
|E|
k1

s∑
i=1

q(ri) · q(ri) ≥ C
|E|
k1

s∑
i=1

d∑
j=1

q2
ij .

On the other hand,

‖q‖2
E =

(
s∑

i=1

d∑
j=1

qijvij ,

s∑
k=1

d∑
l=1

qklvkl

)
≤ C|E|

s∑
i=1

d∑
j=1

q2
ij .

A combination of the above two estimates implies the assertion of the lemma.
Corollary 2.5. The bilinear form (K−1q,v)Q is an inner product in Vh and

(K−1q,q)
1/2
Q is a norm in Vh equivalent to ‖ · ‖.

Proof. Since (K−1q,v)Q is linear and symmetric, Lemma 2.4 implies that it is

an inner product and that (K−1q,q)
1/2
Q is a norm in Vh. Let us denote this norm

by ‖ · ‖Q,K−1 . It remains to show that it is bounded above by ‖ · ‖. Using (2.32),

(2.5), the equivalence of norms on reference element Ê, and (2.43), we have that for
all q ∈ Vh

(K−1q,q)Q,E = (K−1q̂, q̂)Q̂,Ê ≤ C
h2−d

k0
‖q̂‖2

Ê
≤ C‖q‖2

E ,

which, combined with (2.44), implies that

c0‖q‖ ≤ ‖q‖Q,K−1 ≤ c1‖q‖(2.45)

for some positive constants c0 and c1.
Remark 2.3. The results of Lemma 2.4 and Corollary 2.5 hold if K−1 is replaced

by any symmetric and positive definite matrix M .
We are now ready to establish the solvability of (2.41)–(2.42).
Lemma 2.6. The MFMFE method (2.41)–(2.42) has a unique solution.
Proof. Since (2.41)–(2.42) is a square system, it is enough to show uniqueness.

Let f = 0, g = 0, and take v = uh and w = ph. This implies that (K−1uh,uh)Q = 0,
and therefore uh = 0, due to (2.44). We now consider the auxiliary problem

−∇ ·K∇φ = −ph in Ω,

φ = 0 on ΓD,

−K∇φ · n = 0 on ΓN .

The choice v = ΠK∇φ ∈ Vh in (2.41) gives

0 = (ph,∇ · ΠK∇φ) = (ph,∇ ·K∇φ) = ‖ph‖2,

therefore ph = 0.
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Fig. 2.3. Interactions of the degrees of freedom in MFMFE.

2.7. Reduction to a cell-centered stencil. We next describe how the MFMFE
method reduces to a system for the pressures at the cell centers. Let us consider any
interior vertex r and suppose that it is shared by k elements E1, . . . , Ek; see Fig-
ure 2.3(A) for a specific example with 5 elements. We denote the edges (faces) that
share the vertex by e1, . . . , ek, the velocity basis functions on these edges (faces) that
are associated with the vertex by v1, . . . ,vk, and the corresponding values of the nor-
mal components of uh by u1, . . . , uk. Note that for clarity the normal velocities on
Figure 2.3(A) are drawn at a distance from the vertex.

Since the quadrature rule (K−1·, ·)Q localizes the basis functions interaction (see
(2.34)–(2.35)), taking v = v1 in (2.41), for example, will only lead to coupling u1 with
u5 and u2. Similarly, u2 will only be coupled with u1 and u3, etc. Therefore, the k
equations obtained from taking v = v1, . . . ,vk form a linear system for u1, . . . , uk.

Proposition 2.7. The k × k local linear system described above is symmetric
and positive definite.

Proof. The system is obtained by taking v = v1, . . . ,vk in (2.41). On the left-
hand side we have

(K−1uh,vi)Q =

k∑
j=1

uj(K
−1vj ,vi)Q ≡

k∑
j=1

aijuj , i = 1, . . . , k.

Using Corollary 2.5 we conclude that the matrix Ā = {aij} is symmetric and positive
definite.

Solving the small k×k linear system allows us to express the velocities ui in terms
of the cell-centered pressures pi, i = 1, . . . , k. Substituting these expressions into the
mass conservation equation (2.42) leads to a cell-centered stencil. The pressure in
each element E is coupled with the pressures in the elements that share a vertex with
E; see Figure 2.3(B).

For any vertex on the boundary ∂Ω, the size of the local linear system equals the
number of non-Neumann (interior or Dirichlet) edges/faces that share that vertex.
Inverting the local system allows one to express the velocities in terms of the element
pressures and the boundary data.

We use the example in Figure 2.3(A) to describe the CCFD equations obtained
from the above procedure. Taking v = v1 in (2.41), on the left-hand side we have

(K−1uh,v1)Q = (K−1uh,v1)Q,E1 + (K−1uh,v1)Q,E2 .(2.46)
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The first term on the right in (2.46) gives

(K−1uh,v1)Q,E1 = (K−1ûh, v̂1)Q̂,Ê

=
1

4
(K−1

11,E1
û1v̂1,1 + K−1

12,E1
û5v̂1,1)

=
1

4
(K−1

11,E1
|e1|u1 + K−1

12,E1
|e5|u5)|e1|,

(2.47)

where we have used (2.18) for the last equality. Here K−1
ij,E1

denotes a component of

K−1 in E1 and all functions are evaluated at the vertex of Ê corresponding to vertex
r in the mapping FE1 . Similarly,

(K−1uh,v1)Q,E2 =
1

6
(K−1

11,E2
|e1|u1 + K−1

12,E2
|e2|u2)|e1|.(2.48)

For the right-hand side of (2.41) we write

(ph,∇ · v1) = (ph,∇ · v1)E1 + (ph,∇ · v1)E2

= 〈ph,v1 · nE1
〉e1 + 〈ph,v1 · nE2

〉e1
= 〈p̂h, v̂1 · n̂E1〉ê1 + 〈p̂h, v̂1 · n̂E2〉ê1

=
1

2
(p1 − p2)|e1|,

(2.49)

where we have used the trapezoidal rule for the integrals on ê1, which is exact since
p̂h is constant and v̂1 · n̂ is linear. A combination of (2.46)–(2.49) gives the equation(

1

2
K−1

11,E1
+

1

3
K−1

11,E2

)
|e1|u1 +

1

2
K−1

12,E1
|e5|u5 +

1

3
K−1

12,E2
|e2|u2 = p1 − p2.

The other four equations of the local system for u1, . . . , u5 are obtained similarly.
We end the section with a statement about an important property of the CCFD

algebraic system.
Proposition 2.8. The CCFD system for the pressure obtained from (2.41)–

(2.42) using the procedure described above is symmetric and positive definite.
Proof. Let {vi} and {wj} be the bases of Vh and Wh, respectively. The algebraic

system that arises from (2.41)–(2.42) is of the form(
A BT

B 0

)(
U
P

)
=

(
G
F

)
,(2.50)

where Aij = (K−1vi,vj)Q and Bij = −(∇ · vi, wj). The matrix A is block-diagonal
with symmetric and positive definite blocks, as noted in Proposition 2.7. The elimi-
nation of U leads to a system for P with a matrix

BA−1BT ,

which is symmetric and positive semidefinite. In the proof of Lemma 2.6 we showed
that BTP = 0 implies P = 0. Therefore BA−1BT is positive definite.

3. Velocity error analysis. Although our method can be defined and is well
posed on general quadrilaterals (see section 2), for the convergence analysis we need
to impose a restriction on the element geometry. This is due to the reduced approx-
imation properties of the MFE spaces on general quadrilaterals [8]. The restriction
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is not needed for theoretical purpose only; deterioration of convergence is observed
computationally as well [3].

For the remainder of the paper we will assume that the quadrilateral elements
are O(h2)-perturbations of parallelograms:

‖r34 − r21‖ ≤ Ch2.(3.1)

We call such elements h2-parallelograms, following the terminology from [21]. Ele-
ments of this type are obtained by uniform refinements of a general quadrilateral grid.
It is not difficult to check that in this case ||T2|− |T1|| ≤ Ch3, ||T4|− |T1|| ≤ Ch3, and

|DFE |1,∞,Ê ≤ Ch2 and

∣∣∣∣ 1

JE
DFE

∣∣∣∣
j,∞,Ê

≤ Chj−1, j = 1, 2.(3.2)

In this section we establish first-order convergence for the velocity. We start with
several auxiliary results that will be used in the analysis.

In addition to the mixed projection operators defined earlier, we will also make
use of the L2-orthogonal projection onto Wh: for any φ ∈ L2(Ω), let Qhφ ∈ Wh satisfy

(φ−Qhφ,w) = 0 ∀w ∈ Wh.

We state several well-known approximation properties of the projection operators.
On simplices and h2-parallelograms,

‖φ−Qhφ‖ ≤ C‖φ‖rhr, 0 ≤ r ≤ 1,(3.3)

‖q − Πq‖ ≤ C‖q‖rhr, 1 ≤ r ≤ 2,(3.4)

‖q − Π0q‖ ≤ C‖q‖1h,(3.5)

‖∇ · (q − Πq)‖ + ‖∇ · (q − Π0q)‖ ≤ C‖∇ · q‖rhr, 0 ≤ r ≤ 1.(3.6)

Bound (3.3) is a standard L2-projection approximation results [18]; bounds (3.4),
(3.5), and (3.6) can be found in [15, 28] for affine elements and [32, 8] for h2-
parallelograms. We note that on general quadrilaterals bounds (3.3) and (3.5) are
also true, while bounds (3.4) and (3.6) are only valid for r = 1 and r = 0, respectively
[8].

It was shown in [21, Lemma 5.5] that on h2-parallelograms, for u ∈ Hj(E),

|û|j,Ê ≤ Chj‖u‖j,E , j ≥ 0.(3.7)

We will make use of the following continuity bounds for Π and Π0.
Lemma 3.1. For all elements E there exists a constant C independent of h such

that

‖Πq‖j,E ≤ C‖q‖j,E ∀q ∈ (Hj(E))d, j = 1, 2,(3.8)

‖Π0q‖1,E ≤ C‖q‖1,E ∀q ∈ (H1(E))d.(3.9)

Proof. The proof uses the inverse inequality

‖v‖j,E ≤ Ch−1‖v‖j−1,E , j = 1, 2 ∀E ∈ Th, v ∈ Vh(E),(3.10)
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which is well known for affine elements [18] and can be shown for quadrilaterals via
mapping to the reference element Ê and using the standard inverse inequality on Ê;
see [11] for details.

Let q̄ be the L2(E)-projection of q onto the space of constant vectors on E. Using
(3.10), we have

|Πq|1,E = |Πq − q̄|1,E ≤ Ch−1‖Πq − q̄‖E
≤ Ch−1(‖Πq − q‖E + ‖q − q̄‖E) ≤ C‖q‖1,E ,

where we have used the approximation properties (3.3) and (3.4) for the last inequality.
Similarly, taking q1 to be the L2(E)-projection of q onto the space of linear

vectors on E, we obtain

|Πq|2,E = |Πq − q1|2,E ≤ Ch−2‖Πq − q1‖E
≤ Ch−2(‖Πq − q‖E + ‖q − q1‖E) ≤ C‖q‖2,E .

The bound ‖Πq‖E ≤ C‖q‖1,E follows from the approximation property (3.4). This
completes the proof of (3.8). The proof of (3.9) is similar.

The following two lemmas will also be used in the analysis.
Lemma 3.2. If E is an h2-parallelogram, then there exists a constant C indepen-

dent of h such that

|K−1|j,∞,Ê ≤ Chj‖K−1‖j,∞,E , j = 1, 2.(3.11)

Proof. Using (3.2), we have

|K−1|1,∞,Ê ≤ C(|K̂−1|1,∞,Ê + h‖K̂−1‖0,∞,Ê) ≤ Ch‖K−1‖1,∞,E ,

where the last inequality follows from the use of the chain rule and (2.14). Similarly,

|K−1|2,∞,Ê ≤ C(|K̂−1|2,∞,Ê + h|K̂−1|1,∞,Ê + h2‖K̂−1‖0,∞,Ê) ≤ Ch2‖K−1‖2,∞,E ,

where we have also used |DFE |2,∞,Ê = 0.

Let Wα
Th

consist of functions ϕ such that ϕ|E ∈ Wα(E) for all E ∈ Th and ‖ϕ‖α,E
is uniformly bounded, independently of h. Let |||ϕ|||α = maxE∈Th

‖ϕ‖α,E .

Lemma 3.3. On h2-parallelograms, if K−1 ∈ W 1,∞
Th

, then there exists a constant
C independent of h such that for all v ∈ Vh

|(K−1Πu,v − Π0v)Q| ≤ Ch‖u‖1‖v‖.(3.12)

Proof. On any element E we have

(K−1Πu,v − Π0v)Q,E = (K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê

= ((K−1 −K−1)Π̂û, v̂ − Π̂0v̂)Q̂,Ê + (K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê ,
(3.13)

where K−1 is the mean value of K−1 on Ê. Using Taylor expansion and (2.45), we
have for the first term on the right above

|((K−1 −K−1)Π̂û, v̂ − Π̂0v̂)Q̂,Ê | ≤ C|K−1|1,∞,Ê‖Π̂û‖Ê‖v̂‖Ê
≤ Ch‖K−1‖1,∞,E‖u‖1,E‖v‖E ,

(3.14)
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where we have used (3.11), (2.43), and (3.8) for the last inequality. Using (2.40) and

letting Π̂û be the L2-projection of Π̂û onto the space of constant vectors on Ê, we
bound the last term in (3.13) as follows:

|(K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê | = |(K−1(Π̂û − Π̂û), v̂ − Π̂0v̂)Q̂,Ê |

≤ C‖K−1‖0,∞,Ê |Π̂û|1,Ê‖v̂‖Ê ≤ Ch‖K−1‖0,∞,E‖u‖1,E‖v‖E ,

(3.15)

where we have also used (2.32), (3.7), and (3.8). The proof is completed by combining
(3.13)–(3.15).

3.1. First-order convergence for the velocity. Subtracting the numerical
method (2.41)–(2.42) from the variational formulation (2.6)–(2.7), we obtain the error
equations

(K−1(Πu − uh),v)Q = (Qhp− ph,∇ · v)

− (K−1u,v) + (K−1Πu,v)Q, v ∈ Vh,(3.16)

(∇ · (Πu − uh), w) = 0, w ∈ Wh.(3.17)

The last two terms in (3.16) can be manipulated as follows:

− (K−1u,v) + (K−1Πu,v)Q = −(K−1u,v − Π0v) − (K−1(u − Πu),Π0v)

− (K−1Πu,Π0v) + (K−1Πu,Π0v)Q + (K−1Πu,v − Π0v)Q.
(3.18)

For the first term on the right above we have

(K−1u,v − Π0v) = 0,(3.19)

which follows by taking v−Π0v as a test function in the variational formulation (2.6)
and using (2.27). Using (3.4) and (2.28), the second term on the right in (3.18) can
be bounded as

|(K−1(u − Πu),Π0v)| ≤ Ch‖K−1‖0,∞‖u‖1‖v‖.(3.20)

The third and fourth term on the right in (3.18) represent the quadrature error, which
can be bounded by Lemma 3.5 as

|σ(K−1Πu,Π0v)| ≤ Ch|||K−1|||1,∞‖u‖1‖v‖,(3.21)

using also (3.8) and (2.28). The last term on the right in (3.18) is bounded in
Lemma 3.3.

We take v = Πu − uh in the error equation (3.16) above. Note that

∇ · (Πu − uh) = 0,(3.22)

since, due to (2.19), we can choose w = JE∇ · (Πu − uh) ∈ Wh on any element E in
(3.17) and JE is uniformly positive. Combining (3.18)–(3.21) with (2.44) and (3.12),
we obtain

‖Πu − uh‖ ≤ Ch|||K−1|||1,∞‖u‖1.(3.23)

The theorem below now follows from (3.23), (3.22), (3.4), and (3.6).
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Theorem 3.4. If K−1 ∈ W 1,∞
Th

, then, for the velocity uh of the MFMFE method
(2.41)–(2.42), there exists a constant C independent of h such that

‖u − uh‖ ≤ Ch‖u‖1,(3.24)

‖∇ · (u − uh)‖ ≤ Ch‖∇ · u‖1.(3.25)

We now proceed with the analysis of the quadrature error.
Lemma 3.5. If K−1 ∈ W 1,∞

Th
, then there exists a constant C independent of h

such that for all q ∈ Vh and for all v ∈ V0
h,

|σ(K−1q,v)| ≤ C
∑
E∈Th

h‖K−1‖1,∞,E‖q‖1,E‖v‖E .(3.26)

Proof. We first consider the case of simplicial elements. We have on any element E

|σE(K−1q,v)| ≤ |σE((K−1 −K−1)q,v)| + |σE(K−1q,v)|,(3.27)

where K−1 is the mean value of K−1 on E. For the first term on the right we have

|σE((K−1 −K−1)q,v)| ≤ Ch|K−1|1,∞,E‖q‖E‖v‖E ,(3.28)

where we have used Taylor expansion and (2.45). Let q be the L2-projection of q
onto the space of constant vectors on E. For the second term on the right in (3.27),
using Lemma 2.1, we have that

|σE(K−1q,v)| = |σE(K−1(q − q),v)| ≤ Ch‖K−1‖0,∞,E‖q‖1,E‖v‖E ,(3.29)

using (3.3). Combining (3.27)–(3.29), we obtain

|σE(K−1q,v)| ≤ Ch‖K−1‖1,∞,E‖q‖1,E‖v‖E ,(3.30)

completing the proof of (3.26) for simplicial elements.
Next, consider the quadrature error on h2-parallelograms. We have

σE(K−1q,v) = σ̂Ê(K−1q̂, v̂) = σ̂Ê((K−1 −K−1)q̂, v̂) + σ̂Ê(K−1q̂, v̂),(3.31)

where K−1 is the mean value of K−1 on Ê. Using Taylor expansion, the first term on
the right above can be bounded as

|σ̂Ê((K−1 −K−1)q̂, v̂)| ≤ C|K−1|1,∞,Ê‖q̂‖Ê‖v̂‖Ê ≤ Ch‖K−1‖1,∞,E‖q‖E‖v‖E ,
(3.32)

where we used (3.11) and (2.43) for the last inequality. For the last term in (3.31)
we have that σ̂Ê(K−1q̂0, v̂) = 0 for any constant vector q̂0, since the trapezoidal
quadrature rule (·, ·)Q̂,Ê is exact for linear functions. Hence, the Bramble–Hilbert

lemma [13] implies

|σ̂Ê(K−1q̂, v̂)| ≤ C‖K−1‖0,∞,Ê |q̂|1,Ê‖v̂‖Ê .
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Using (3.7) and (2.32), we obtain

|σ̂Ê(K−1q̂, v̂)| ≤ Ch‖K−1‖0,∞,E‖q‖1,E‖v‖E .(3.33)

The above bound, together with (3.31)–(3.32), implies that

|σE(K−1q,v)| ≤ Ch‖K−1‖1,∞,E‖q‖1,E‖v‖E .

The proof is completed by summing over all elements E.

4. Error estimates for the pressure. In this section we use a standard inf-sup
argument to prove optimal convergence for the pressure. We also employ a duality
argument to establish superconvergence for the pressure at the element centers of
mass.

4.1. First-order convergence for the pressure. We start with an optimal
error bound for the pressure.

Theorem 4.1. If K−1 ∈ W 1,∞
Th

, then, for the pressure ph of the MFMFE method
(2.41)–(2.42), there exists a constant C independent of h such that

‖p− ph‖ ≤ Ch(‖u‖1 + ‖p‖1).

Proof. It is well known [27, 15, 32] that the RT0 spaces V0
h × W 0

h satisfy the
inf-sup condition

inf
0 �=w∈W 0

h

sup
0 �=v∈V0

h

(∇ · v, w)

‖v‖div‖w‖
≥ β,(4.1)

where β is a positive constant independent of h. Using (4.1) and (3.16), we obtain

‖Qhp− ph‖

≤ 1

β
sup

0 �=v∈V0
h

(∇ · v,Qhp− ph)

‖v‖div

=
1

β
sup

0 �=v∈V0
h

(K−1(Πu − uh),v)Q − (K−1(Πu − u),v) + σ(K−1Πu,v)

‖v‖div

≤ C

β
h|||K−1|||1,∞‖u‖1,

where we have used the Cauchy–Schwarz inequality, (3.23), and (3.26) in the last
inequality. The proof is completed by an application of the triangle inequality and
(3.3).

4.2. Second-order convergence for the pressure. We continue with the
superconvergence estimate. We first present a bound on the quadrature error that
will be used in the analysis.

Lemma 4.2. Let K−1 ∈ W 2,∞
Th

. On simplicial elements, for all v,q ∈ Vh, there
exists a positive constant C independent of h such that

|σ(K−1q,v)| ≤ C
∑
E∈Th

h2‖K−1‖2,∞,E‖q‖1,E‖v‖1,E .(4.2)
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On h2-parallelograms, for all q ∈ Vh, v ∈ V0
h, there exists a positive constant C

independent of h such that

|σ(K−1q,v)| ≤ C
∑
E∈Th

h2‖K−1‖2,∞,E‖q‖2,E‖v‖1,E .(4.3)

Proof. We present first the proof for simplicial elements. For any element E,
using Lemma 2.1, we have

σE(K−1q,v) = σE((K−1 −K−1)(q − q̄),v) + σE((K−1 −K−1)q̄,v − v̄)

+ σE(K−1q̄, v̄) + σE(K−1(q − q̄),v − v̄),
(4.4)

where q̄ and v̄ are the L2(E)-orthogonal projections of q and v, respectively, onto
the space of constant vectors, and K−1 is the mean value of K−1 on E. Using (2.45),
the first, second, and fourth term on the right above are bounded by

Ch2‖K−1‖1,∞,E‖q‖1,E‖v‖1,E .(4.5)

For the third term on the right in (4.4) it is easy to check that the quadrature rule is
exact for linear tensors. An application of the Bramble–Hilbert lemma [13] gives

|σE(K−1q̄, v̄)| ≤ Ch2|K−1q̄|2,E‖v̄‖E ≤ Ch2|K−1|2,∞,E‖q‖E‖v‖E .(4.6)

A combination of (4.4)–(4.6) completes the proof for simplicial elements.
We proceed with the bound on the quadrature error in the case of h2-parallelograms.

We have

σE(K−1q,v) = σ̂Ê(K−1q̂, v̂) = σ̂Ê((K−1q̂)1, v̂1) + σ̂Ê((K−1q̂)2, v̂2).(4.7)

Let us consider the first term on the right. Since the quadrature rule is exact for
linear functions, the Peano kernel theorem [31, Theorem 5.2–3] implies

σ̂Ê((K−1q̂)1, v̂1) =

∫ 1

0

∫ 1

0

ϕ(x̂)
∂2

∂x̂2
((K−1q̂)1v̂1)(x̂, 0)dx̂ dŷ

+

∫ 1

0

∫ 1

0

ϕ(ŷ)
∂2

∂ŷ2
((K−1q̂)1v̂1)(0, ŷ) dx̂dŷ

+

∫ 1

0

∫ 1

0

ψ(x̂, ŷ)
∂2

∂x̂∂ŷ
((K−1q̂)1v̂1)(x̂, ŷ)dx̂ dŷ,

(4.8)

where ϕ(s) = s(s− 1)/2 and ψ(s, t) = (1− s)(1− t)− 1/4. Therefore, using that v̂ is
linear,

|σ̂Ê((K−1q̂)1, v̂1)| ≤ C((|K−1|1,∞,Ê‖q̂‖Ê + ‖K−1‖0,∞,Ê |q̂|1,Ê)|v̂|1,Ê
+ (|K−1|2,∞,Ê‖q̂‖Ê + |K−1|1,∞,Ê |q̂|1,Ê + ‖K−1‖0,∞,Ê |q̂|2,Ê)‖v̂‖Ê).

The term σ̂Ê((K−1q̂)2, v̂2) in (4.7) can be bounded similarly. Using (4.7), (2.32),
(3.11), and (3.7), we obtain

|σE(K−1q,v)| ≤ Ch2‖K−1‖2,∞,E‖q‖2,E‖v‖1,E .

Summing over all elements completes the proof.



2100 MARY F. WHEELER AND IVAN YOTOV

We are now ready to establish superconvergence of the pressure at the cell centers.
Theorem 4.3. Assume that K ∈ W 1,∞

Th
and K−1 ∈ W 2,∞

Th
and the elliptic

regularity (4.11) below holds. Then, for the pressure ph of the MFMFE method (2.41)–
(2.42), there exists a constant C independent of h such that

‖Qhp− ph‖ ≤ Ch2(‖u‖1 + ‖∇ · u‖1) on simplices(4.9)

and

‖Qhp− ph‖ ≤ Ch2‖u‖2 on h2-parallelograms.(4.10)

Proof. The proof is based on a duality argument. Let φ be the solution of

−∇ ·K∇φ = −(Qhp− ph) in Ω,

φ = 0 on ΓD,

−K∇φ · n = 0 on ΓN .

We assume that this problem has H2-elliptic regularity:

‖φ‖2 ≤ C‖Qhp− ph‖0.(4.11)

Sufficient conditions for (4.11) can be found in [22, 26]. For example, (4.11) holds if
the components of K ∈ C0,1(Ω), ∂Ω is smooth enough, and either ΓD or ΓN is empty.

Let us consider first the case of simplicial elements. Here it is more convenient to
rewrite the error equation (3.16) as

(K−1(u − uh),v) = (Qhp− ph,∇ · v) − σ(K−1uh,v).(4.12)

Take v = ΠK∇φ ∈ Vh in (4.12) to get

‖Qhp− ph‖2
0 = (Qhp− ph,∇ · ΠK∇φ)

= (K−1(u − uh),ΠK∇φ) + σ(K−1uh,ΠK∇φ).(4.13)

For the first term on the right above we have

(K−1(u − uh),ΠK∇φ)

= (K−1(u − uh),ΠK∇φ−K∇φ) + (u − uh,∇φ)

= (K−1(u − uh),ΠK∇φ−K∇φ) − (∇ · (u − uh), φ−Qhφ)

≤ C(h‖u − uh‖|||K|||1,∞‖φ‖2 + h‖∇ · (u − uh)‖‖φ‖1)

≤ Ch2|||K|||1,∞(‖u‖1 + ‖∇ · u‖1)‖φ‖2,

(4.14)

where we have used (3.4) and (3.3) for the first inequality, and (3.24) and (3.25) for
the second inequality.

Using (4.2), we bound the second term on the right in (4.13) as

|σ(K−1uh,ΠK∇φ)|

≤ C|||K−1|||2,∞
∑
E∈Th

h2‖uh‖1,E‖ΠK∇φ‖1,E

≤ C|||K−1|||2,∞
∑
E∈Th

h2(‖uh − Πu‖1,E + ‖Πu‖1,E)‖K∇φ‖1,E

≤ C|||K−1|||2,∞
∑
E∈Th

h2(h−1‖uh − Πu‖E + ‖u‖1,E)‖K‖1,∞,E‖φ‖2,E

≤ Ch2|||K−1|||2,∞|||K|||1,∞‖u‖1‖φ‖2,

(4.15)



A MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD 2101

where we have used (3.8), the inverse inequality (3.10), and (3.23). Now (4.9) follows
from (4.13)–(4.15) and (4.11).

For the analysis on h2-parallelograms we rewrite the error equation (3.16) in the
form

(K−1(Πu − uh),v)Q = (Qhp− ph,∇ · v) + (K−1(Πu − u),v) − σ(K−1Πu,v).

(4.16)

Take v = Π0K∇φ ∈ Vh in (4.16) to get

‖Qhp− ph‖2
0 = (Qhp− ph,∇ · Π0K∇φ)

= (K−1(Πu − uh),Π0K∇φ)Q − (K−1(Πu − u),Π0K∇φ)

+ σ(K−1Πu,Π0K∇φ).(4.17)

Using (3.4) and (3.9), the second term on the right above can be bounded as

|(K−1(Πu − u),Π0K∇φ)| ≤ Ch2‖K−1‖0,∞|||K|||1,∞‖u‖2‖φ‖2.(4.18)

For the last term on the right in (4.17), bounds (4.3), (3.8), and (3.9) imply that

σ(K−1Πu,Π0K∇φ) ≤ Ch2|||K−1|||2,∞|||K|||1,∞‖u‖2‖φ‖2.(4.19)

The first term on the right in (4.17) can be manipulated as follows:

(K−1(Πu − uh),Π0K∇φ)Q,E

= ((K−1 −K−1
0 )(Πu − uh),Π0K∇φ)Q,E + (K−1

0 (Πu − uh),Π0(K −K0)∇φ)Q,E

+ (K−1
0 (Πu − uh),Π0K0(∇φ−∇φ1))Q,E + (K−1

0 (Πu − uh),Π0K0∇φ1)Q,E ,

(4.20)

where K0 is the value of K at the center of E and φ1 is a linear approximation to φ
such that (see [13])

‖φ− φ1‖E ≤ Ch2‖φ‖2,E , ‖φ− φ1‖1,E ≤ Ch‖φ‖2,E .(4.21)

Using (3.9), the first term on the right in (4.20) can be bounded as

|((K−1 −K−1
0 )(Πu − uh),Π0K∇φ)Q,E | ≤ Ch‖K−1‖1,∞,E‖K‖1,∞,E‖Πu − uh‖E‖φ‖2,E .

(4.22)

For the second and third terms on the right in (4.20) we use that for any ψ ∈ (H1(E))2

‖Π0ψ‖E ≤ ‖Π0ψ − ψ‖E + ‖ψ‖E ≤ C(h‖ψ‖1,E + ‖ψ‖E)

to obtain

|(K−1
0 (Πu − uh),Π0(K −K0)∇φ)Q,E | ≤ Ch‖K−1‖0,∞,E‖K‖1,∞,E‖Πu − uh‖E‖φ‖2,E

(4.23)

and

|(K−1
0 (Πu − uh),Π0K0(∇φ−∇φ1))Q,E |
≤ Ch‖K−1‖0,∞,E‖K‖0,∞,E‖Πu − uh‖E‖φ‖2,E ,

(4.24)
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having also used (4.21) in the last inequality. For the last term in (4.20) we have

(K−1
0 (Πu − uh),Π0K0∇φ1)Q,E = (Πu − uh,∇φ1)Q,E = (Π̂û − ûh, ∇̂φ̂1)Q̂,Ê ,

(4.25)

using ∇φ1 = (DF−1)T ∇̂φ̂1 in the second equality. Note that φ̂(x̂, ŷ) is a bilinear

function. Let φ̃1 be the linear part of φ̂1. We have

(Π̂û − ûh, ∇̂φ̂1)Q̂,Ê = (Π̂û − ûh, ∇̂(φ̂1 − φ̃1))Q̂,Ê + (Π̂û − ûh, ∇̂φ̃1)Q̂,Ê .(4.26)

Since (see (2.8))

∇̂(φ̂1 − φ̃1) = [(r34 − r21) · ∇φ1]

(
ŷ
x̂

)
,

(3.1) implies

|(Π̂û − ûh, ∇̂(φ̂1 − φ̃1))Q̂,Ê | ≤ Ch2‖Π̂û − ûh‖Ê‖∇φ1‖Ê
≤ Ch‖Πu − uh‖E‖∇φ1‖E ≤ Ch‖Πu − uh‖E‖φ‖2,E .

(4.27)

It remains to bound the last term in (4.26). Using (2.40) and the fact that the
trapezoidal rule is exact for linear functions, we have

(Π̂û − ûh, ∇̂φ̃1)Q̂,Ê = (Π̂0(Π̂û − ûh), ∇̂φ̃1)Q̂,Ê = (Π̂0(Π̂û − ûh), ∇̂φ̃1)Ê

= (Π̂0(Π̂û − ûh), ∇̂(φ̃1 − φ̂1))Ê + (Π̂0(Π̂û − ûh), ∇̂φ̂1)Ê .
(4.28)

The first term on the right in (4.28) is bounded similarly to (4.27):

|(Π̂0(Π̂û − ûh), ∇̂(φ̃1 − φ̂1))Ê | ≤ Ch‖Πu − uh‖E‖φ‖2,E .(4.29)

For the last term in (4.28) we have

(Π̂0(Π̂û − ûh), ∇̂φ̂1)Ê = (Π0(Πu − uh),∇φ1)E .(4.30)

Combining (4.20)–(4.30) and summing over all elements, we obtain

(K−1(Πu − uh),Π0K∇φ)Q = R +
∑
E∈Th

(Π0(Πu − uh),∇φ1)E ,(4.31)

where

|R| ≤ Ch2|||K−1|||1,∞|||K|||1,∞‖u‖1‖φ‖2,(4.32)

having also used (3.23). For the last term in (4.31), using the regularity of φ, (3.22),
(2.27), and that (Πu − uh) · n = 0 on ΓN and φ = 0 on ΓD, we obtain∣∣∣∣∣ ∑

E∈Th

(Π0(Πu − uh),∇φ1)E

∣∣∣∣∣ =

∣∣∣∣∣ ∑
E∈Th

(Π0(Πu − uh),∇(φ1 − φ))E

∣∣∣∣∣
≤ C

∑
E∈Th

‖Πu − uh‖E‖φ1 − φ‖1,E

≤ Ch2|||K−1|||1,∞‖u‖1‖φ‖2,

(4.33)
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Fig. 5.1. Computed solution on the second level of refinement in Example 1.

where we have used (3.23) and (4.21). The proof of (4.10) is completed by combining
(4.17)–(4.19) and (4.31)–(4.33), and using (4.11).

Remark 4.1. Since Qhp is O(h2)-close to p at the center of mass of each element,
the above theorem implies that

|||p− ph||| ≤ Ch2,

where ||| · ||| =
(∑

E |E|(p(mE) − ph)2
)1/2

and mE is the center of mass of E.

5. Numerical experiments. In this section we present several numerical re-
sults on quadrilateral grids that confirm the theoretical results from the previous
sections.

In the first example we test the method on a sequence of meshes obtained by a
uniform refinement of an initial rough quadrilateral mesh. The boundary conditions
are of Dirichlet type. The tensor coefficient and the true solution are

K =

(
5 1
1 2

)
, p(x, y) = (1 − x)4 + (1 − y)3(1 − x) + sin(1 − y) cos(1 − x).

The initial 8 × 8 mesh is generated from a square mesh by randomly perturbing the
location of each vertex within a disk centered at the vertex with a radius h

√
2/3. Due

to (2.31), the nonsmoothness of the grid translates into a discontinuous computational
permeability K. The computed solution on the second level of refinement is shown
in Figure 5.1. The colors represent the pressure values and the arrows represent the
velocity vectors. The numerical errors and asymptotic convergence rates are obtained
on a sequence of six mesh refinements and are reported in Table 5.1. Here, for scalar
functions |||w||| is the discrete L2-norm defined in Remark 4.1 and for vectors |||v|||
denotes a discrete vector L2-norm that involves only the normal vector components
at the midpoints of the edges. We note that the obtained convergence rates of O(h2)
for |||p−ph||| and O(h) for ‖u−uh‖ confirm the theoretical results. The O(h2) accuracy
for |||u− uh||| and |||∇ · (u− uh)||| indicates superconvergence for the normal velocities
at the midpoints of the edges and for the divergence at the cell-centers.

In the second example we consider an irregularly shaped domain consisting of
two subdomains; see Figure 5.2. The grid is nonsmooth across the interface leading
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Table 5.1

Discretization errors and convergence rates for Example 1.

1/h |||p− ph||| ‖u − uh‖ |||u − uh||| |||∇ · (u − uh)|||
8 0.123E-1 0.882E-1 0.281E-1 0.112E-1
16 0.372E-2 0.542E-1 0.129E-1 0.287E-2
32 0.103E-2 0.292E-1 0.411E-2 0.722E-3
64 0.270E-3 0.151E-1 0.114E-2 0.181E-3
128 0.692E-4 0.772E-2 0.307E-3 0.455E-4
256 0.175E-4 0.390E-2 0.817E-4 0.127E-4

Rate 1.98 0.99 1.91 1.84

Fig. 5.2. Computed solution on the second level of refinement in Example 2.

to a discontinuous computational permeability K. The permeability tensor and true
solution are

K =

(
4 + (x + 2)2 + y2 1 + sin(xy)

1 + sin(xy) 2

)
, p(x, y) = (sin(3πx))2(sin(3πy))2.

The boundary conditions are of Neumann type. The computed solution on the second
refinement level is shown in Figure 5.2. The numerical errors and asymptotic con-
vergence rates are presented in Table 5.2. As in the previous example, the numerical
convergence rates confirm the theory.

6. Conclusions. We have presented a BDM1-based MFE method with quadra-
ture that reduces to CCFD for the pressure on simplicial and quadrilateral grids. The
resulting algebraic system is symmetric and positive definite. The method is closely
related to the MPFA method and it performs well on irregular grids and rough coef-
ficients. The analysis is based on combining MFE techniques with quadrature error
estimates. First order convergence is obtained for the pressure and the velocity in
their natural norms. Second order convergence is obtained for the pressure and the
element centers of mass. Computational results also indicate superconvergence for the
velocity at the midpoints of the edges on h2-parallelogram grids. We have also devel-
oped and analyzed the method on hexahedral elements that are O(h2)-perturbations
of parallelepipeds. These results will be presented in a forthcoming paper.

Remark 6.1. We recently learned of the concurrent and related work of Klausen
and Winther [25]. They formulate the MPFA method from [1] as a MFE method
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Table 5.2

Discretization errors and convergence rates for Example 2.

1/h |||p− ph||| ‖u − uh‖ |||u − uh||| |||∇ · (u − uh)|||
8 0.177E+2 0.492E0 0.512E0 0.764E-2
16 0.151E0 0.179E0 0.138E0 0.647E-4
32 0.653E-1 0.919E-1 0.513E-1 0.279E-4
64 0.185E-1 0.453E-1 0.132E-1 0.790E-5
128 0.460E-2 0.226E-1 0.334E-2 0.196E-5
256 0.116E-4 0.113E-1 0.838E-3 0.494E-6

Rate 1.99 0.99 1.99 1.99

using an enhanced Raviart–Thomas space and obtain convergence results on h2-
parallelogram grids.
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