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New Optimization Approach to
Multiphase Flow1

A. J. KEARSLEY,2 L. C. COWSAR,3 R. GLOWINSKI,4

M. F. WHEELER,5 AND I. YOTOV
6

Abstract. A new optimization formulation for simulating multiphase
flow in porous media is introduced. A locally mass-conservative, mixed
finite-element method is employed for the spatial discretization. An
unconditionally stable, fully-implicit time discretization is used and
leads to a coupled system of nonlinear equations that must be solved at
each time step. We reformulate this system as a least squares problem
with simple bounds involving only one of the phase saturations. Both a
Gauss–Newton method and a quasi-Newton secant method are con-
sidered as potential solvers for the optimization problem. Each evalu-
ation of the least squares objective function and gradient requires
solving two single-phase self-adjoint, linear, uniformly-elliptic partial
differential equations for which very efficient solution techniques have
been developed.

Key Words. Multiphase flow, mixed methods, cell-centered finite
differences.

1. Introduction

The flow of two immiscible fluids is modeled by a system of nonlinear
transient partial differential equations coupled with nonlinear algebraic
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constitutive relationships. Spatial discretization combined with stable fully-
implicit time stepping leads to a nonlinear system of algebraic equations
that must be solved at every time step. Even though the differential oper-
ators involved are self-adjoint, the use of Newton-type solution methods
requires the solution of a system of nonsymmetric linear equations to calcu-
late each Newton step. The objective of this work is to develop an algorithm
that exploits the fact that the operators are self-adjoint and requires only
the solution of linear systems that are symmetric and positive definite. Our
work is predicated on the observation that, all other things being equal, it is
easier to solve symmetric positive-definite linear systems than more general
nonsymmetric systems.

In this work, we consider an immiscible two-phase flow in a porous
medium. Let Ω⊂ Rd, dG2, 3, be the domain of the problem. The equations
governing the fluid motion through a porous medium are the mass conser-
vation of the phases (Refs. 1–2),

∂(φsiρi)�∂tC∇ ·ρiuiGqi , (x, t) ∈Ω B(0, T ), (1)

where iGw (wetting) or iGn (nonwetting) denotes the phase, si is the phase
saturation, ρi is the phase density, φ is the porosity, qi is the source term,
and

uiG−[ki (si)K�µi ](∇ piAρig∇ D), (x, t) ∈Ω B(0, T ), (2)

is the Darcy velocity. Here, pi is the phase pressure, K is the absolute per-
meability tensor, ki (si) is the phase relative permeability, µi is the phase
viscosity, g is the gravitational constant, and D is the depth. The two equa-
tions are coupled with the volume balance equation,

swCsnG1, (3)

and the capillary pressure relation,

pc (sw)GpnApw . (4)

The no-flow boundary conditions

ui ·νG0, (x, t) ∈∂Ω B(0, T ), (5)

where ν is the outward pointing unit normal vector on ∂Ω, and the initial
condition

sw (x, 0)Gs0(x), x ∈Ω , (6)

complete the model. We note that the no-flow boundary conditions are
assumed only for the simplicity of the presentation. More general boundary
conditions can be treated with the same techniques. Gravity effects will also
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be neglected for the sake of simplicity. We assume also that the fluids and
the media are incompressible, i.e., ρi and φ are constants.

The main idea in our approach is to decouple the two conservation
equations. We notice that the only coupling is through the relative per-
meabilities ki (si). If the saturation of one of the phases is known, the equa-
tions are decoupled. Moreover, considered as equations for phase pressures,
they are linear elliptic equations that can be solved easily. This observation
motivates the optimization formulation below.

Remark 1.1. Throughout the paper, we refer to the pressure equations
as elliptic equations. In fact, they are degenerate elliptic, since the relative
permeability

ki (si)G0, for siG0, iGw, n.

In order to obtain a symmetric positive-definite matrix after the discretiz-
ation, we modify the equations as explained in Section 3.

Remark 1.2. Even when the elliptic coefficients are strictly positive,
the resulting pressure matrices are positive semidefinite because of the no-
flow boundary conditions. We assume that there is at least one well with
specified bottom hole pressure, which leads to nonsingular matrices and
determines uniquely the pressures.

Let sGsw and define the nonlinear operator F by

F (s)Gpc (s)A( pn (s)Apw (s)).

Here, pn(s) and pw(s) are the solutions to the linear elliptic equations (1)–(2)
with (3) and (5) for the given s. We have suppressed the time dependence
of F inherited from the time dependence of s and the dependence of pn(s)
and pw(s) on ∂s�∂t. From F, we derive a time-dependent nonlinear functional
f by setting

f (s)G(1�2) ��F (s) ��2L2(Ω)

≡ (1�2) �
Ω

�F (s(x)) �2 dx, (7)

and consider the unconstrained minimization problem

min
s ∈ L2(Ω)

f (s).

By construction, the minimum of f(s) is identically zero for almost every
time and occurs at the solution to (1)–(5).
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The rest of the paper is organized as follows. The mixed finite-element
discretization is described in Section 2. In Section 3, we present the optimiz-
ation formulation of the discretized problem. The optimization methods
employed are described in Section 4. We close with some numerical experi-
ments and conclusions in Section 5.

2. Discretization

In this section, we present the expanded mixed finite-element method
used for the spatial discretization of the multiphase flow system combined
with a backward Euler temporal discretization. The expanded mixed
method (Refs. 3–7) is desirable because it conserves mass locally on every
element, provides accurate velocities, and allows for efficient implemen-
tation even when the permeability is a possibly degenerate full tensor. Quad-
rature rules are used for the numerical integration leading to cell-centered
finite-difference equations for the pressures and saturations. The relation-
ship between cell-centered finite-difference and mixed methods were first
noticed by Russell and Wheeler (Ref. 8) and extends to the expanded mixed
method (Ref. 6).

The backward Euler method is used to discretize the time derivative
resulting in a fully-implicit time stepping scheme. The fully-implicit discret-
ization is used because all explicit or partially-implicit schemes suffer from
severe time step stability limitations when advection processes are dominat-
ing. One-point upstream weighting is used to further stabilize the method.

2.1. An Expanded Mixed Finite-Element Method. Let us define

H(div; Ω )G{û ∈ (L2(Ω ))d: ∇ ·û ∈ L2(Ω )},

with the norm

��û��H(div; Ω)G��
Ω

(�û�2C�∇ ·û�2) dx�
1�2

,

and set

VG{û ∈ H(div; Ω ): û ·νG0, on ∂Ω}.

Following Ref. 6, we introduce the pressure gradients

ũiG−∇ pi , iGw, n.
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Then,

uiGλ i (s)Kũi ,

where λ iGki�µi is the phase mobility.
For each time t ∈ (0, T ], in the expanded mixed variational form,

we seek ui ( · , t) ∈ V, ũi ( · , t) ∈ (L2(Ω ))d, pi ( · , t) ∈ L2(Ω ), iGw, n, and s( · , t) ∈
L2(Ω ) such that

(ui , û̃)G(λ i (s)Kũi , û̃ ), û̃ ∈ (L2(Ω ))d, (8)

(ũi , û)A( pi , ∇ ·û)G0, û ∈ V, (9)

φ(∂s�∂t, w)C(∇ ·uw , w)G(q̃w (s), w), w ∈ L2(Ω ), (10)

−φ(∂s�∂t, w)C(∇ ·un , w)G(q̃n (s), w), w ∈ L2(Ω ), (11)

( pnApw , w)G( pc (s), w), w ∈ L2(Ω ), (12)

(s( · , 0), w)G(s0 , w), w ∈ L2(Ω ), (13)

where q̃iGqi�ρi and ( · , · ) denotes the L2(Ω) inner product.
Let T h be a finite-element partition of Ω, where h is associated with

the size of the elements. Let VhBWh ⊂ VBL2(Ω ) be any of the known mixed
finite-element spaces on T h; see Ref. 9 for a detailed description of these
spaces. Let Ṽh be a finite element subspace of (L2(Ω ))d such that Vh ⊆ Ṽh .
Let {tn}

N
nG0 be a partition of [0, T ] with t0G0 and tNGT; let ∆tnG

tnAtnA1 , and let f nGf (tn).
We have the following backward Euler-expanded mixed finite-element

method for the multiphase flow system. Find, for any 0⁄n⁄N, (un
i,h ,

ũ n
i,h , p

n
i,h) ∈ VhBṼhBWh and sn

h ∈ Wh such that

(un
i,h , û̃ )G(λ i (s

n
h )Kũn

i,h , û̃ ), û̃ ∈ Ṽh , (14)

(ũ n
i,h , û)A( pn

i,h , ∇ ·û)G0, û ∈ Vh , (15)

φ((sn
hAsnA1

h )�∆tn, w)C(∇ ·un
w,h , w)G(q̃w (sn

h ), w), w ∈ Wh , (16)

Aφ((sn
hAsnA1

h )�∆tn, w)C(∇ ·un
n,h , w)G(q̃n (s

n
h ), w), w ∈ Wh , (17)

( pn
n,hApn

w,h , w)G( pc (s
n
h ), w), w ∈ Wh , (18)

(s0
h , w)G(s0 , w), w ∈ Wh . (19)

2.2. Cell-Centered Finite-Difference Scheme. To obtain a finite-
difference method, we consider the lowest-order Raviart–Thomas spaces
(Ref. 10) and take ṼhGVh on the interior of Ω. We restrict our discussion
to rectangular elements, noting that these techniques can be extended to
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logically rectangular and triangular grids; see Ref. 11. Let

ṼhG{û ∈ H(div; Ω ): û�E

G(α 1x1Cβ1 , α 2x2Cβ2 , α 3x3Cβ3)
T, α i , β i ∈ R}

be the velocity space, and let

WhG{w ∈ L2(Ω ): w�EGα , α ∈ R}

be the pressure space. Let

VhG{û ∈ Ṽh : û ·νG0, on ∂Ω}.

We employ quadrature rules to approximate the vector integrals in (14)–
(15). The two equations are replaced by

(un
i,h , û̃)TG(λ i (s

n
h )Kũn

i,h , û̃ )T , û̃ ∈ Ṽh , (20)

(ũ n
i,h , û)TA( pn

i,h , ∇ ·û)G0, û ∈ Vh , (21)

where ( · , · )T denotes an application of the trapezoidal rule to the L2(Ω)
inner product with respect to T h .

To avoid notation that is too complicated, we omit the phase index i
and the time index n in (20)–(21) for the rest of this section. The application
of the trapezoidal rule leads to diagonal coefficient matrices for uh and ũh

in (20)–(21). Therefore, uh and ũh can be eliminated and a single equation
for ph can be obtained.

To describe the scheme, we need some relatively standard cell-centered
finite-difference notation. We present the method for dG2; a straightfor-
ward generalization exists for dG3. Let

(xiC1�2, yjC1�2), iG0, . . . , Nx and jG0, . . ., Ny ,

be the grid points, and define, for iG1, . . . , Nx and jG1, . . . , Ny ,

xiG(1�2)(xiC1�2CxiA1�2), yjG(1�2)(yjC1�2CyjA1�2),

hx
i GxiC1�2AxiA1�2, hy

j GyjC1�2AyjA1�2.

Let us write ûG(ûx, ûy ) for û ∈ R2; for any function g(x, y), let gij denote
g(xi , yj ), let giC1�2, j denote g(xiC1�2, yj ), etc.

For simplicity, let us assume that K is diagonal; see Ref. 6 for the full
tensor case. Let

K (s)Gλ (s)K.
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Choosing û̃ in (20) to be the basis function at node (iC1�2, j ) or at node
(i, jC1�2), we get

ux
h,iC1�2, jG(K 11)iC1�2, j ũ

x
h,iC1�2, j , (22a)

uy
h,i, jC1�2G(K 22)i, jC1�2ũ

y
h,i, jC1�2 , (22b)

which is a finite-difference approximation of uGK ũ. The same choice of û
in (21) gives

ũ x
h,iC1�2, jG−( ph,iC1, jAph,i, j)�(1�2)(hx

i Chx
iC1), (23a)

ũ y
h,i, jC1�2G−( ph,i, jC1Aph,i, j)�(1�2)(hy

jChy
jC1), (23b)

which is a finite-difference approximation of ũG−∇ p. Finally, choosing w
in (16)–(17) to be the basis function at element (i, j ), we get

{φ((sn
h,i, jAsnA1

h,i, j )�(∆tn))C(ux,n
w,h,iC1�2, jAux,n

w,h,iA1�2, j)�hx
i

C(uy,n
w,h,i, jC1�2Auy,n

w,h,i, jA1�2)�hy
j }h

x
i hy

j�
Eij

q̃w (sn
h ) dx dy, (24)

with a similar expression for (17).
The combination of (22)–(24) produces the cell-centered finite-differ-

ence approximation of

φ(∂si�∂t)A∇ ·K i (si)∇ piGq̃i , iGw, n.

The stencil for the pressures is 5 points for dG2 and 7 points for dG3 if K
is a diagonal tensor. If K is a full tensor, the stencil is 9 points for dG2 and
19 points for dG3.

Remark 2.1. Since

(K 11)iC1�2, jGλ (sh)iC1�2, j (K11)iC1�2, j ,

Equation (22) requires λ (sh) and K to be evaluated on the edges. Because sh

is constant on any element, λ (sh)iC1�2, j cannot be computed directly. One-
point upstream weighting is used to determine this value, i.e.,

λ (sh)iC1�2, jGλ (sh)i, j or λ (sh)iC1�2, jGλ (sh)iC1, j ,

depending on the direction of the flow. If K is discontinuous and is given
as a piecewise constant function, the harmonic average is used for its value
on the edges, i.e.,

(K11)iC1�2, jG2(K11)i, j (K11)iC1, j�[(K11)i, jC(K11)iC1, j ].
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Remark 2.2. The cell-centered finite-difference scheme described
above has been used commonly by the environmental and petroleum engin-
eers (Ref. 12). It conserves the mass of all phases locally. Recognizing the
relationship to the mixed finite-element formulation provides more flexi-
bility for handling irregular geometries and general boundary conditions. It
is also useful in the convergence analysis.

3. New Optimization Formulation

The cell-centered finite-difference scheme presented in the previous sec-
tion leads to a coupled system of nonlinear algebraic equations for one of
the phase pressures and one of the saturations at every time step. In this
section, we propose a new optimization formulation of the discretized prob-
lem involving only the saturation.

Define a nonlinear operator F: Wh→Wh by

F (sn
h )Gpc (s

n
h )A( pn (s

n
h )Apw (sn

h )), (25)

where pn (s
n
h ) and pw (sn

h ) are the solution to the discrete system (20)–(21),
(16)– (17) for a given sn

h . Since we consider F in the context of implicit time
stepping, we have suppressed the dependence of F on snA1

h and will drop
the superscript n in what follows. Let W(sh ): Wh→Wh be a symmetric linear
operator depending on a function sh ∈ Wh . We assume that W(sh) is uni-
formly positive definite with respect to all sh ∈ Wh and define a nonlinear
nonnegative functional f: Wh→R by

f (sh )G(1�2)�
Ω

(W(sh )F (sh ))F (sh ) dx. (26)

It is easy to see that solving the discrete system (16)–(18), (20)–(21) for sn
h

is equivalent to finding sh such that f (sh )G0 or to solving the minimization
problem

min
sh ∈ Wh

f (sh ). (27)

Remark 3.1. If the identity operator is used for the weighting operator
W(s), then (26) is the discrete analog of (7). We allow the possibility of a
more general weighting function to improve the conditioning of the optimiz-
ation problem. Several choices are given in Section 5.

3.1. Modification of the Degenerate Pressure Equations. If only one
phase is present in part of the domain, the pressure equation may be singu-
lar since the relative permeability for the phase vanishes at zero saturation.
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To overcome this obstacle, we introduce a modified system of equations.
For a phase iGn, w, we write the discrete system (20)–(21), (16)–(17) in the
form

Ai (S )Pi (S )Gqi (S ), (28)

where S is the vector of the saturation unknowns, Pi is the vector of pressure
unknowns for phase i, Ai (S) is the finite-difference stiffness matrix, and
qi (S) is the right-hand side vector including the contribution from the time
derivative of s.

Let Pc (S )Gpc (S ) denote the vector of capillary pressures calculated
from the vector of saturations. Adding (28) for iGn, w and using the fact
that

Pc (S )GPn (S )APw (S )

at the solution due to (18), we see that

(An (S )CAw (S ))Pn (S )Gqn (S )Cqw (S )CAw (S )Pc (S ).

Since the saturation of the wetting phase and the saturation of the nonwet-
ting phase cannot both be zero in the same cell, it is easy to check that
An (S )CAw (S ) is positive definite, while An(S) and Aw(S) are only positive
semidefinite in general. Adding Eq. (28) for iGn, we arrive at a nonsingular
system that defines Pn(S), namely,

(2An (S )CAw (S ))Pn (S )G2qn (S )Cqw (S )CAw (S )Pc (S ). (29)

A similar relationship holds for Pw; namely,

(An (S )C2Aw (S ))Pw (S )Gqn (S )C2qw (S )AAn (S )Pc (S ). (30)

By an abuse of notation, in what follows we will use Ai and qi to denote the
modified operators and right-hand sides. Since

pc (s)GpnApw

at the solution, the modified system of equations has the same solution as
the unmodified system in regions of nonzero saturation. In fact, the modi-
fied system simply guarantees that the pressure used for the absent phase is
consistent with the capillary pressure-saturation constitutive relation.

3.2. Evaluation of the Objective Function and Its Analytic Gradient.
The quasi-Newton methods employed for the solution of (27) are described
in the next section. They require the evaluation of the objective function
and its gradient at each iteration. Given S, the evaluation of the objective
function requires computing Pn and Pw by solving (29)–(30). Since the only
nonlinearity and coupling of the two conservation equations is in ki (si),



JOTA: VOL. 111, NO. 3, DECEMBER 2001482

the equations are decoupled, linear, symmetric and, with the modification
described above, positive definite.

To facilitate the exposition of the analytic gradient calculation, we write
explicitly the dependence of the objective function f on Pn and Pw ,

f (S )Gf (S, Pn (S ), Pw (S )). (31)

By the chain rule, we have

df�dSG∂f�∂SC(∂f�∂Pn )(dPn�dS )C(∂f�∂Pw )(dPw�dS ). (32)

Differentiating (28), we find that dPi�dS satisfies

Ai (dPi�dS )Gdqi�dSA(dAi�dS )Pi , (33)

an equation involving the same operator as the evaluation of the objective
function. Combining (32)–(33) we get

df�dSG∂f�∂SC(∂f�∂Pn )A
−1
n [dqn�dSA(dAn�dS )Pn ]

C(∂f�∂Pw )A−1
w [dqw�dSA(dAw�dS )Pw ]. (34)

Therefore,

∇ fG(∂f�∂S )TC[dqn�dSA(dAn�dS )Pn ]
TA−T

n (∂f�∂Pn )
T

C[dqw�dSA(dAw�dS )Pw ]TA−T
w (∂f�∂Pw )T. (35)

Since the stiffness matrices Ai are symmetric,

A−T
i GA−1

i .

The partial derivative in (35) can be computed easily by the formulas

∂f�∂SG(1�2)FT(dW�dS )FC(W F )T(dPc�dS ),

∂f�∂PnG−(W F )T,

∂f�∂PwG(W F )T.

The computation of the analytic gradient is dominated by the cost of solving
two single-phase, symmetric, linear, uniformly-elliptic equations. Hence, the
cost for evaluating ∇ f is comparable to the one for evaluating f.

4. Solution Methods for the Minimization Problem

The development of effective algorithms for the solution of uncon-
strained optimization problems has been an active area of research for many
years; see e.g. Ref. 14. The optimization problem that arises in our formu-
lation at every time step can be posed either as a general minimization
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problem (27) or, recognizing some of its special structure, as a nonlinear
least squares problem with zero residual (25). Since the saturation variables
are physically constrained to lie in the closed interval [0, 1], we need to
handle the above formulations in the presence of simple bounds.

A myriad of algorithms for these problems have appeared in the litera-
ture. For the least squares problem, we apply the implementation found in
the Port Library (Ref. 15) due to Dennis and Gay (see Refs. 16–18). This
implementation is well tested, robust, and employs many modern heuristics
to enhance and improve the numerical performance. The calculation of
search directions (Ref. 18) includes an adaptive scaling that keeps the rela-
tive magnitudes of the derivative information in a manageable range.

This implementation uses a trust-region globalization based on
approximating the Levenberg–Marquardt parameter. The trust region
handles also the simple bounds causing us to make no ad hoc extensions of
the constitutive relationships such as the capillary pressure relationship to
saturations that are negative or greater than one. Even in the neighborhood
of the simple bounds, the globalization in the test problems discussed in the
next section became always inactive when iterates drew close to the solution.
This serendipitous behavior is due to the fact that the full gradient, not just
the projected gradient, is zero at the solution, since the residual is zero at
the solution.

For the minimization formulation, we use the BFGS (Refs. 19–22)
secant method also in the Port Library with the same trust-region globaliz-
ation to handle the simple bounds. In both methods, no attempt was made
to fine tune the input parameters.

5. Numerical Experiments and Conclusions

We consider a quarter five spot oil–water system. The capillary press-
ure curve is shown on Fig. 1, and the relative permeabilities are ki (si )Gs2

i .
The initial water saturation is swG0.0 and swG0.4 in the two tests. For the
other parameter values, see Table 1. Both wells have a specified bottom hole
pressure. A standard well model (see, e.g., Ref. 12, p. 79) with the Peaceman
correction (Ref. 13) is used. The oil pressure and velocity at the end of one
time step are depicted on Fig. 2 for the swG0 problem.

Results are reported using both the identity operator and
An (S )CAw (S ) as the weighting operator W. The number of quasi-Newton
steps and total number of trust-region evaluations needed to take one time
step are reported in Table 2. In Table 2, LM denotes the Levenberg–Mar-
quardt method, and BFGS denotes the secant method with BFGS update
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Fig. 1. Capillary pressure curve.

Table 1. Parameters for test problem.

dt 0.1 days
LX 40 ft
LY 40 ft
dx 4 ft
dy 4 ft
Initial Pn 250 psia
Production well pressure 150 psia
Injection well pressure 500 psia
Production well radius 0.4 ft
Injection well radius 0.4 ft
Porosity 0.28
Permeability 1 md
Oil viscosity 1.6 cp
Oil density 48 lb�ft3

Water viscosity 0.23 cp
Water density 62.34 lb�ft3
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Fig. 2. Oil pressure and velocity.

Table 2. Results for test problem.

10A6 Reduction 10A12 Reduction

Quasi-Newton Total Quasi-Newton Total
Method steps steps steps steps

LM, SG0, WGI 4 7 9 12
LM, SG0.4, WGI 6 7 8 9
LM, SG0, WGAwCAn 4 7 7 10
LM, SG0.4, WGAwCAn 3 6 4 7
BFGS, SG0, WGI DNC DNC DNC DNC
BFGS, SG0.4, WGI 253 554 DNC DNC
BFGS, SG0, WGAwCAn 173 265 DNC DNC
BFGS, SG0.4, WGAwCAn 44 61 439 627
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found in the Port Library (Ref. 15). In both methods, the trust-region strat-
egy due to Gay (Ref. 23) is used for globalization and to enforce the simple
bounds 0⁄S⁄1. The notation DNC is used if the method did not converge
in less than 1000 trust-region evaluations. Since the least squares objective
function has a zero residual at the solution, the results for two tolerances
are reported, a liberal tolerance often used in practice of a 10−6F reduction
in the relative residual and a more demanding 10−12 reduction to test robust-
ness. A relative residual reduction of 10−6 corresponds to a mass balance
error of approximately one percent, and a reduction of 10−12 corresponds
to a mass balance error of approximately 10−10.

As we can see from Table 2, the use of the weighting operator
WGAwCAn does improve convergence. However, even with the weighting
function, the BFGS secant method is unable to solve the resulting minimiz-
ation problem in a reasonable number of function evaluations. While the
Levenberg–Marquardt method converges in a reasonable number of iter-
ations, it uses the Jacobian matrix at each iteration to calculate a step. Since
calculation of the Jacobian matrix requires 100 gradient evaluations on our
10 by 10 mesh, this is not practical.

Since the residual is zero at the solution, the Levenberg–Marquardt
method is essentially the Gauss–Newton, which in turn is essentially the
Newton method applied to the following nonlinear system of equations:

An (S )PnGqn (S ), (36)

Aw (S )PwGqw (S ), (37)

Pc (S )GPnAPw . (38)

In particular, since the Newton method preserves linear relationships, and
since the conservation equations are linear with respect to Pw and Pn , the
Gauss–Newton method on the least squares problem is almost the Newton
method on (36)–(38). The marginal difference comes from the fact that the
Gauss–Newton method neglects the part of the Hessian of the form

∑
n

iG1

Ri · ∇ 2Ri ,

where Ri is the ith residual. Note that this part of the Hessian vanishes at
the solution, since Ri is zero at the solution. In light of this fact, it is hard
to imagine that a Newton or inexact Newton method for (36)–(38) would
not be computationally more competitive than the Gauss–Newton on the
least squares problem.
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