
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278
www.elsevier.com/locate/cma

A multiscale flux basis for mortar mixed discretizations of
Stokes–Darcy flows

Benjamin Ganisa, Danail Vassilevb, ChangQing Wangc,∗, Ivan Yotovc

a Center for Subsurface Modeling, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, TX, 78712, USA
b Cobham plc, UK

c Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

Received 4 August 2016; accepted 28 September 2016
Available online 4 October 2016

Highlights

• A multiscale flux basis algorithm for the coupled Stokes–Darcy problem is developed.
• The algorithm is more efficient than the original MMMFEM implementation.
• Only fixed number of local fine grid solves are required.
• Gain in efficiency increases with problem complexity.
• The algorithm can improve the efficiency of the balancing preconditioner in Darcy.

Abstract

A multiscale flux basis algorithm is developed for the Stokes–Darcy flow problem. The method is based on a non-overlapping
domain decomposition algorithm, where the global problem is reduced to a coarse scale mortar interface problem that is solved
by an iterative solver. Subdomain solves are required at each interface iteration, so the cost for the method without a multiscale
basis can be high when the number of subdomains or the condition number of the interface problem is large. The proposed
algorithm involves precomputing a multiscale flux basis, which consists of the flux (or velocity trace) response from each mortar
degree of freedom. It is computed by each subdomain independently before the interface iteration begins. The subdomain solves
required at each iteration are substituted by a linear combination of the multiscale basis. This may lead to a significant reduction
in computational cost since the number of subdomain solves is fixed, depending only on the number of mortar degrees of freedom
associated with a subdomain. Several numerical examples are carried out to demonstrate the efficiency of the multiscale flux basis
implementation for large-scale Stokes–Darcy problems.

c⃝ 2016 Elsevier B.V. All rights reserved.

Keywords: Multiscale flux basis; Mortar finite element; Mixed finite element; Stokes–Darcy flow; Non-overlapping domain decomposition; FETI
method, balancing preconditioner

∗ Corresponding author.
E-mail addresses: bganis@ices.utexas.edu (B. Ganis), chw92@pitt.edu (C. Wang), yotov@math.pitt.edu (I. Yotov).

http://dx.doi.org/10.1016/j.cma.2016.09.037
0045-7825/ c⃝ 2016 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2016.09.037&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2016.09.037
http://www.elsevier.com/locate/cma
mailto:bganis@ices.utexas.edu
mailto:chw92@pitt.edu
mailto:yotov@math.pitt.edu
http://dx.doi.org/10.1016/j.cma.2016.09.037

260 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

1. Introduction

In this paper, a mortar mixed finite element method using multiscale flux basis is developed for the coupled
Stokes–Darcy flow problem. The Stokes–Darcy problem has been studied intensively due to its various applica-
tions, such as coupled ground water and surface flows, flows in fractured porous media, arterial flows, fuel cells,
and others. The Stokes and Darcy equations model the flow motion and infiltration process, respectively. The
Beavers–Joseph–Saffman slip with friction condition [1,2] is applied on the Stokes–Darcy interface. The numeri-
cal approximation of the coupled problem has been studied extensively, see, e.g., [3–6]. In our approach, we utilize
the multiscale mortar mixed finite element method (MMMFEM) with non-overlapping domain decomposition [7–9].
In this method, the computational domain is decomposed into several subdomains of either Stokes or Darcy type.
Each subdomain is discretized on a local fine mesh, allowing for non-matching grids across the subdomain interfaces.
This capability is helpful in practice, since it allows for describing complex geometries as a union of simpler locally
discretized subdomains, as well as resolving internal features such as geological layers and faults. A mortar finite
element space is introduced on the interfaces, which serves as a Lagrange multiplier to impose weakly appropriate
continuity conditions: normal velocity and normal stress on Stokes–Darcy interfaces, normal velocity and pressure
on Darcy–Darcy interfaces, and velocity vector and normal stress vector on Stokes–Stokes interfaces. The numerical
analysis of the method is carried out in [7] on fairly general grid configurations, allowing for multiscale approxima-
tions with coarse scale H mortar spaces and fine scale h subdomain discretizations. The work in [7] extends earlier
works that consider a single Stokes–Darcy interface and employ a mortar space defined as the normal trace of the
Darcy velocity space [3,5,6,10]. A non-overlapping domain decomposition for the Stokes–Darcy problem with many
subdomains is developed and analyzed in [9]. Earlier works in two-subdomain case include [11–15]. In [9], by elim-
inating the subdomain unknowns, the fine scale global problem is reduced to an interface problem that can be solved
by an iterative method. The action of the interface operator requires solving Neumann problems in Stokes subdomains
and Dirichlet problems in Darcy subdomains. The finite element tearing and interconnecting (FETI) method [16,17] is
employed to deal with the possibly singular Stokes subdomain problems. This is done by projecting the iterates into a
space orthogonal to the kernel of the subdomain operators via solving a coarse space problem. The main computational
cost of the algorithm comes from the subdomain solves required in every interface iteration. Increasing the number of
subdomains and refining the grids both lead to an increase in the number of iterations and the number of subdomain
solves.

In this paper, we develop an alternative implementation of the MMMFEM for Stokes–Darcy flows that is based on
precomputing a multiscale flux basis, which can reduce the computational cost significantly. Our approach extends the
multiscale flux basis implementation of the MMMFEM for Darcy flow developed in [18]. The MMMFEM was first
developed in [19] for Darcy problems. It is an alternative to other existing multiscale methods such as the variational
multiscale method [20,21] and the multiscale finite element method [22,23]. Methods involving enriched multiscale
basis for high-contrast problems using local spectral information have been developed in [24–26]. All three methods
require solving relatively small fine scale subdomain problems that are only coupled on the coarse scale through a
reduced number of degrees of freedom. The mortar multiscale approach provides the extra flexibility to adaptively
refine the mortar grids based on a posteriori error estimation in order to improve the global accuracy [19]. The
variational multiscale method and multiscale finite elements both compute a multiscale basis by solving a fixed number
of local fine scale problems with boundary conditions or a source term corresponding to the coarse scale degrees of
freedom. This basis is then used to solve the coarse scale problem. The multiscale flux basis implementation of the
MMMFEM for Stokes–Darcy flows developed in this paper provides a similar computational structure. The method
yields the same solution as the original MMMFEM implementation but can be much more computationally efficient.
A multiscale flux basis consists of the flux (or velocity trace) response from each mortar degree of freedom, which is
computed by each subdomain independently before the interface iteration begins. Then the subdomain solves during
the interface iteration can be replaced by linear combinations of the multiscale flux basis. This implementation has
a number of fine scale subdomain solves that is independent of the number of interface iterations. It reduces the
computational cost if there are more iteration steps than number of mortar degree of freedoms per subdomain. In
addition, when performing studies where the same input data is used repeatedly in different situations, the multiscale
flux basis can be computed once and stored to disk in an offline step, so it can be reused across different simulations.
A typical example is the stochastic Stokes–Darcy flow problem [27], where the permeability in the Darcy region is
given as a stochastic parameter presented by a sum of the local Karhunen–Loève (KL) expansion [28].

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 261

The development of the multiscale flux basis implementation of the MMMFEM for Stokes–Darcy flows involves a
number of major technical difficulties compared to the Darcy problem. One issue is the need to solve different types of
local problems to compute the basis, Dirichlet in Darcy and Neumann in Stokes. Another difficulty is handling singular
full Neumann Stokes subdomains. In particular, since the Neumann boundary condition provided by the mortar basis
leads to a right hand side that is not orthogonal to the kernel of the subdomain matrix, computing the multiscale flux
basis in Stokes involves solving incompatible Neumann problems. However, due to the application of the FETI coarse
solve, the multiscale basis is used only to compute the action of the interface operator on compatible data, which is a
well-posed Neumann solve. Another new development in this paper is combining the use of the multiscale flux basis
with the balancing preconditioner in the Darcy region [29–31]. The use of the preconditioner is motivated by the fact
that the number of interface iterations is not insignificant for the CPU time, with the cost for computing orthogonal
projections and linear combinations, and the inter-processor communication time all playing a role. The balancing
preconditioner involves solving Neumann subdomain problems and a coarse problem to exchange global information.
It is very efficient and exhibits condition number that grows very mildly with respect to mesh and subdomain size.
As a result, the number of interface iterations is reduced significantly, but at the cost of one additional Dirichlet and
one Neumann solve per Darcy subdomain per iteration. While the multiscale flux basis can be utilized for the efficient
computation of the extra Dirichlet solves, one needs to compute a new multiscale basis for the Neumann solves. This
results in a preconditioned algorithm with the number of local solves independent of the number of interface iterations.

In the numerical examples we compare the computational cost of the implementations with and without multiscale
flux basis. Our tests for a wide range of problems show that the multiscale flux basis can improve the efficiency for
both unpreconditioned and preconditioned problems.

The rest of the paper is organized as follows. The Stokes–Darcy coupled problem, its domain decomposition
formulation, the MMMFEM discretization, and the reduction to a mortar interface problem are presented in Section 2.
The multiscale flux basis algorithm is developed in Section 3. Numerical examples illustrating the efficiency of the
method are presented in Section 4. We give some conclusions in Section 5.

2. Model problem and MMMFEM

2.1. Stokes–Darcy coupled problem

Assuming d = 2, 3, let ΩS ⊂ Rd be the fluid region governed by the Stokes equations, with outside boundary
ΓS and outward unit normal nS . Let ΩD ⊂ Rd be the porous media region governed by Darcy’s law, with outside
boundary ΓD and outward unit normal nD . Each region is a union of possibly disjoint subregions. Let Ω = ΩS ∪ ΩD
be the entire simulation domain and let ΓSD = ∂ΩS ∩ ∂ΩD be the Stokes–Darcy interface. The velocity and pressure
in ΩS and ΩD are denoted by uS , pS and uD , pD , respectively. Let µS and µD be the viscosity coefficients in the
Stokes and Darcy regions, and let K be the permeability tensor, assumed to be symmetric and uniformly positive
definite. The deformation rate tensor D and the stress tensor T of the Stokes flow are denoted by

D(uS) :=
1
2
(∇uS + (∇uS)

T), T(uS, pS) := −pSI + 2µSD(uS).

The Stokes flow model with no-slip boundary condition and body force fS is:

−∇ · T(uS, pS) ≡ −2µS∇ · D(uS)+ ∇ pS = fS in ΩS, (1)

∇ · uS = 0 in ΩS, (2)

uS = 0 on ΓS . (3)

The Darcy flow model with no-flow boundary condition, gravity force fD and external source qD is:

µDK−1uD + ∇ pD = fD in ΩD, (4)

∇ · uD = qD in ΩD, (5)

uD · nD = 0 on ΓD. (6)

We assume that the source qD satisfies the solvability condition

ΩD

qD = 0. The interface conditions on ΓSD are:

uS · nS + uD · nD = 0 on ΓSD, (7)

262 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

−(T(uS, pS)nS) · nS ≡ pS − 2µS(D(uS)nS) · nS = pD on ΓSD, (8)

−(T(uS, pS)nS) · τ l
SD ≡ −2µS(D(uS)nS) · τ l

SD =
µSα
√

Kl
uS · τ l

SD,

1 ≤ l ≤ d − 1 on ΓSD. (9)

Conditions (7) and (8) incorporate continuity of flux and normal stress, respectively. Condition (9) represents the
Beaver–Joseph–Saffman slip with friction condition [1,2], where Kl = (Kτ l

SD) · τ l
SD , {τ l

SD}
d−1
l=1 is an orthogonal

system of unit tangent vectors on ΓSD , and the constant α ≥ 0 is determined experimentally.
The L2-inner product and norm of scalar and vector valued functions in domain G ⊂ Rd are denoted by (·, ·)G

and ∥ · ∥G , respectively. We omit the subscript G if G = Ω . For a section of the interface or the domain boundary
S ⊂ Rd−1, the L2-inner product (or duality pairing) and norm are denoted by ⟨·, ·⟩S and ∥ · ∥S , respectively.

2.2. Domain decomposition and variational formulation

The domain Ω is decomposed into N non-overlapping subdomains Ωi , i = 1, . . . , N , where

ΩS = ∪
NS
i=1 Ωi , ΩD = ∪

N
i=NS+1 Ωi , N = NS + ND.

For 1 ≤ i < j ≤ N , we define Γi j = ∂Ωi ∩ ∂Ω j as the interface between any two subdomains, which can be of zero
measure if they are not adjacent. Define Γi = ∪ j Γi j as the union of interfaces of subdomain Ωi and Γ = ∪i, j Γi, j
as the union of all interfaces. Let ΓSS be the set of Stokes–Stokes interfaces and let ΓDD be the set of Darcy–Darcy
interfaces. The following interface conditions are imposed:

[uD · n] = 0, [pD] = 0 on ΓDD, [uS] = 0, [T(uS, pS)n] = 0 on ΓSS, (10)

where [·] denotes the jump on the interface. In particular, on Γi j , [p] = (pi − p j)|Γi j , [u · n] = ui · ni + u j · n j ,
with the notation ui := u|Ωi , pi := p|Ωi , ni being the outward unit normal vector to ∂Ωi . Also, denote fi = fS|Ωi for
1 ≤ i ≤ NS and fi = fD|Ωi for NS + 1 ≤ i ≤ N .

Following the variational formulation derived in [7], we define the velocity and pressure spaces

V S
= {vS ∈ (L2(ΩS))

d
: vS|Ωi ∈ (H1(Ωi))

d , 1 ≤ i ≤ NS, vS = 0 on ΓS}, W S
= L2(ΩS)

in the Stokes region ΩS , and

V D
= {vD ∈ (L2(ΩD))

d
: vD|Ωi ∈ H(div;Ωi), Ns + 1 ≤ i ≤ N , vD · nD = 0 on ΓD},

W D
= L2(ΩD)

in the Darcy region ΩD , where

H(div;Ωi) = {v ∈ (L2(Ωi))
d

: ∇ · v ∈ L2(Ωi)}.

The velocity and pressure spaces on the whole domain are given by V = V S
× V D and

W =

w = (wS, wD) ∈ W S

× W D
:

Ω
w = 0

.

To impose the continuity conditions on the interfaces we define the Lagrange multiplier space

Λ = ΛSD
× ΛDD

× ΛSS, ΛDD
= (V D

· n|ΓDD)
′, ΛSD

= (V D
· n|ΓSD)

′, ΛSS
= (V S

|ΓSS)
′.

The variational formulation of the coupled problems (1) – (9) is: find (u, p, λ) ∈ V × W × Λ such that

a(u, v)+ b(v, p)+ bI (v, λ) = (f, v), ∀ v ∈ V, (11)

b(u, w) = −(qD, w)ΩD , ∀w ∈ W, (12)

bI (u, µ) = 0, ∀µ ∈ Λ, (13)

where

ai (u, v) = 2µS(D(ui),D(vi))Ωi +

d−1
l=1

µSα
√

Kl
(ui · τ l)(vi · τ l)

∂Ωi ∩ΓSD

,

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 263

1 ≤ i ≤ NS, ∀ (u, v) ∈ V S
× V S,

ai (u, v) = µD(K−1ui , vi)Ωi , NS + 1 ≤ i ≤ N , ∀ (u, v) ∈ V D
× V D,

bi (v, w) = −(∇ · vi , wi)Ωi , 1 ≤ i ≤ N , ∀ v ∈ V, ∀w ∈ W,

a(u, v) =

N
i=1

ai (u, v), b(v, w) =

N
i=1

bi (v, w),

bI (v, µ) = ⟨[v], µ⟩ΓSS + ⟨[v · n], µ⟩ΓDD + ⟨[v · n], µ⟩ΓSD , ∀ (v, µ) ∈ V × Λ.

The Lagrange multiplier λ has the physical meaning of normal stress vector on ΓSS and pressure on ΓDD ∪ ΓSD .
Eq. (13) is needed to weakly enforce the continuity conditions (7) and (10) on the different types of interfaces.
The reader is referred to [7,3] for proof of the existence and uniqueness of a solution to the variational formulation
(11)–(13).

2.3. Discretization

For simplicity, we denote Vi = V |Ωi for 1 ≤ i ≤ N . In the MMMFEM [7,9], each subdomain Ωi is discretized with
a d-dimensional shape regular finite element partition Thi , where hi is the maximal element diameter. For any adjacent
subdomains Ωi and Ω j , the partitions Thi and Th j need not match on Γi j . In addition, a coarse (d − 1)-dimensional
quasi-uniform affine mesh T Hi j is defined on the interface Γi j with maximal element size Hi j . Let h = maxN

i=1 hi and
H = maxi, j Hi j . In any Stokes subdomain Ωi , 1 ≤ i ≤ NS , let Vh,i × Wh,i ⊂ Vi × Wi be a pair of finite element
spaces satisfying the following discrete inf–sup condition for some constant βS > 0:

inf
0≠wh,i ∈Wh,i

sup
0≠vh,i ∈Vh,i

(wh,i ,∇ · vh,i)Ωi

∥vh,i∥H1(Ωi)
∥wh,i∥L2(Ωi)

≥ βS > 0, 1 ≤ i ≤ NS . (14)

Some well-known examples of pairs satisfying (14) are the Taylor–Hood element [32], the MINI element [33], and
the Bernardi–Raugel element [34]. In any Darcy subdomain Ωi , NS + 1 ≤ i ≤ N , let Vh,i × Wh,i ⊂ Vi × Wi be a
pair of mixed finite element spaces satisfying ∇ · Vh,i ⊂ Wh,i and the discrete inf–sup condition for some constant
βD > 0:

inf
0≠wh,i ∈Wh,i

sup
0≠vh,i ∈Vh,i

(wh,i ,∇ · vh,i)Ωi

∥vh,i∥H(div;Ωi) ∥wh,i∥L2(Ωi)

≥ βD > 0, NS + 1 ≤ i ≤ N . (15)

Well-known pairs that satisfy these conditions include the Raviart–Thomas spaces [35], the Brezzi–Douglas–Marini
(BDM) spaces [36], and the Brezzi–Douglas–Duran–Fortin (BDDF) spaces [37]. On each interface Γi j , a mortar space
ΛH,i j ⊂ L2(Γi j) if Γi j ⊂ ΓSD ∪ΓDD or ΛH,i j ⊂ (L2(Γi j))

d if Γi j ⊂ ΓSS is defined to weakly impose the continuity
conditions for the discrete velocity across the non-matching grids. These mortar spaces consist of continuous or
discontinuous piecewise polynomials of degree that may vary on the different types of interfaces. Globally, the finite
element spaces are defined as

Vh =

N
i=1

Vh,i , Wh =

N
i=1

Wh,i , ΛH =

i, j

ΛH,i j .

In the multiscale mortar mixed finite element discretization of (11)–(13) we seek (uh, ph, λH) ∈ Vh × Wh ×ΛH , such
that

a(uh, vh)+ b(vh, ph)+ bI (vh, λH) = (f, vh), ∀ vh ∈ Vh, (16)

b(uh, wh) = −(qD, wh)ΩD , ∀wh ∈ Wh, (17)

bI (uh, µH) = 0, ∀µH ∈ ΛH . (18)

The following convergence result for (16)–(18) has been shown in [7]:

Theorem 2.1. Assume that the solution to (11)–(13) is sufficiently smooth, and let rS and rD be the polynomial degrees
of the velocity spaces in Stokes and Darcy respectively, and let mS , m D , and mSD be the polynomial degrees of the

264 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

Fig. 1. Local problems for (u∗, p∗) (left) and (u, p) (right).

mortar spaces on ΓSS,ΓDD , and ΓSD , respectively. Then there exists a positive constant C independent of h and H
such that

∥u − uh∥V + ∥p − ph∥W ≤ C(hrS + hrD+1
+ HmS+1/2

+ Hm D+1/2
+ HmSD+1/2).

2.4. Reduction to an interface problem

Following the algorithm in [9], we reduce the discretized problem (16)–(18) to an interface problem, which can
be solved using a Krylov iterative solver. The original problem is split into two families of local problems on each
Ωi , one with zero source, zero outside boundary conditions, and specified interface value; the other with zero inter-
face value, specified source, and specified outside boundary conditions. Correspondingly, the solution to (16)–(18)
is decomposed into uh = u∗

h + uh , ph = p∗

h + ph , see Fig. 1. On each Stokes subdomain, let λ = (λn, λτ),
where λn and λτ = (λ1

τ , . . . , λ
d−1
τ) represent the normal stress and tangential stress on ΓSS , respectively, Con-

sider the set of Stokes subdomain problems with specified normal and tangential stress on the interfaces: find
(u∗

h,i (λ), p∗

h,i (λ)) ∈ Vh,i/ker ai × Wh,i , 1 ≤ i ≤ NS , such that

ai (u∗

h,i (λ), vh,i)+ bi (vh,i , p∗

h,i (λ)) = −⟨λn, vh,i · ni ⟩∂Ωi \∂Ω −

d−1
l=1

⟨λl
τ , vh,i · τ l

i ⟩∂Ωi ∩ΓSS ,

∀vi ∈ Vh,i/ker ai , (19)

bi (u∗

h,i (λ), wh,i) = 0, ∀wh,i ∈ Wh,i , (20)

where {τ l
i }

d−1
l=1 is an orthogonal set of unit vectors tangential to ∂Ωi and the kernel space ker ai := {v ∈ Vi : ai (v, v) =

0} consists of a subset of all rigid body motions depending on the types of boundary conditions on Ωi . Some discus-
sion on handling singular Stokes subdomain problems is given in the next subsection. The complementary set of local
problems is to find (uh,i , ph,i) ∈ Vh,i × Wh,i such that

ai (uh,i , vh,i)+ bi (vh,i , ph,i) = (fi , vh,i)Ωi , ∀vh,i ∈ Vh,i/ker ai , (21)

bi (uh,i , wh,i) = 0, ∀wh,i ∈ Wh,i . (22)

Similarly, on each Darcy domain Ωi , NS + 1 ≤ i ≤ N , the first set of local problems is to find (u∗

h,i (λ), p∗

h,i (λ)) ∈

Vh,i × Wh,i with specified interface pressure λ such that

ai (u∗

h,i (λ), vh,i)+ bi (vh,i , p∗

h,i (λ)) = −⟨λ, vh,i · ni ⟩∂Ωi \∂Ω , ∀vh,i ∈ Vh,i , (23)

bi (u∗

h,i (λ), wh,i) = 0, ∀wh,i ∈ Wh,i . (24)

The corresponding complementary problem is to find (uh,i , ph,i) ∈ Vh,i × Wh,i such that

ai (uh,i , vh,i)+ bi (vh,i , ph,i) = (fi , vh,i)Ωi , ∀vh,i ∈ Vh,i , (25)

bi (uh,i , wh,i) = −(qD, wh,i)Ωi , ∀wh,i ∈ Wh,i . (26)

Note that for the local Stokes problems (19)–(20), the boundary conditions on the interfaces ΓSS are of Neumann type:

−(Tni) · ni = λn, −(Tni) · τ l
i = λl

τ , 1 ≤ l ≤ d − 1, 1 ≤ i ≤ NS,

and on the interfaces ΓSD are of Robin type:

−(Tni) · ni = λn, −(Tni) · τ l
i −

µSα
√

Kl
ui · τ l

i = 0, 1 ≤ l ≤ d − 1, 1 ≤ i ≤ NS .

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 265

For the local Darcy problems (23)–(24), the boundary conditions on the interfaces ΓDD ∪ ΓSD are of Dirichlet type:

pi = λ, NS + 1 ≤ i ≤ N .

It is easy to verify that problem (16)–(18) is equivalent to the interface problem for λH ∈ ΛH :

sH (λH , µH) := −bI (u∗

h(λH), µH) = bI (uh, µH), ∀µH ∈ ΛH , (27)

where the above equation follows from the interface condition (18) and the global solution can be recovered by

uh = u∗

h(λH)+ uh, ph = p∗

h(λH)+ ph .

Later it will be convenient to write

bI (v, µ) =

N
i=1

bi
I (vi , µ),

where

bi
I (vi , µ) =

⟨µn, vi · ni ⟩∂Ωi \∂Ω +

d−1
l=1

⟨µl
τ , vi · τ l

i ⟩∂Ωi ∩ΓSS , 1 ≤ i ≤ NS,

⟨µn, vi · ni ⟩∂Ωi \∂Ω , Ns + 1 ≤ i ≤ N .

(28)

Analysis of the condition number of the reduced problem (27) is performed theoretically and numerically in [9].

Theorem 2.2. Assuming H = O(h), there exist positive constants C1,C2 independent of h and H, such that for all
λ ∈ ΛH ,

C1
K 2

min

Kmax
(h∥λ∥2

ΓSS
+ ∥λ∥2

ΓDD∪ΓSD
) ≤ sH (λ, λ) ≤ C2

∥λ∥2

ΓSS
+

Kmax

h
∥λ∥2

ΓDD∪ΓSD

, (29)

where Kmin and Kmax are the minimal and maximal eigenvalues of the permeability K, respectively.

2.5. Algebraic interpretation and FETI method

Another way to interpret the derivation of the interface problem (27) is from the algebraic form of the discretized
problem (16)–(18),A BT CT

B 0 0
C 0 0

u
p
λ

 =

 f
q
0

 ⇔

M LT

L 0

ξ

λ

=

r
0

, (30)

where ξ = (u, p)T is the vector of subdomain unknowns, r = (f, q)T is the vector of discrete right hand side
functions in the coupled system,

M =

A BT

B 0

, and L =

C 0

.

Then by forming the Schur complement of (30), we obtain the matrix form of the interface problem (27),

L M−1LT λ = L M−1r. (31)

Theorem 2.2 implies that the matrix on the left in (31) is symmetric and positive definite, and therefore the problem
can be solved using a Krylov iterative method such as the conjugate gradient (CG) method. At each iteration we need
to evaluate the action of M−1. Since M−1 is block-diagonal,

M−1
=

M−1
1
. . .

M−1
N

 ,

266 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

this action requires solving N local subdomain problems, which is done in parallel. One issue that arises in these
solves is the occurrence of floating subdomains, that is, if a Stokes subdomain Ωi is surrounded entirely by other
Stokes domains, local full Neumann problems occur and the local matrix Mi is singular. In other words, the kernel
space ker ai in (19) and (21) becomes non-trivial. To handle this issue, we follow the algorithm introduced in [9]
which is based on the one-level FETI method proposed by Farhat and Roux [16]. Let r i be orthogonal projection of r
onto ker ai . The algebraic system (30) can be written as

Mξ + LT λ = r,

subject to the constraint

Lξ = 0.

Let R be a matrix whose columns form or contain a basis for ker(M) and define an operator

G = L R.

We can split λ = λ0 + λ1, where

λ0 = G(GT G)−1 RT r S, and λ1 ∈ ker(GT).

Computing (GT G)−1 requires solving a coarse problem, which can be reduced to solving a local problem of size
ki × ki in each subdomain Ωi , with ki = dim(ker(Mi)). Let the operator P be the orthogonal projector onto ker(GT):

P = I − G(GT G)−1GT .

Applying PT on both sides of Eq. (31) and letting λ1 = Pν, we derive the projected interface problem

PT L M−1LT Pν = PT L(M−1(r − LT λ0)+ M−1(r − r)). (32)

Note that in (32) there are three actions of M−1, i.e., three local subdomain solves. The two solves on the right hand
side both satisfy r − LT λ0 ⊥ ker(M) and r − r ⊥ ker(M), so in the Stokes region they are compatible Neumann
solves. On the other hand, for any Pν ∈ ker(GT), one can verify that LT Pν ⊥ ker(M), so the local solve on the
left hand side is also compatible. Moreover, the matrix PT L M−1LT P is symmetric and positive definite in the space
ker(GT) and therefore (32) can be solved with the CG method.

Since Mi may be singular, one must use a pseudoinverse M+

i . The traditional FETI method uses the Moore–Penrose
pseudoinverse, which could be computationally expensive. Since our method involves solving only compatible
problems, we can avoid this and in practice we use M+

i := (Mi +
√
εDi)

−1 to replace the evaluation of M−1
i ,

where ε is the machine precision and Di is the velocity mass matrix.

2.6. Iterative solution of the interface problem

For simplicity, we introduce a Steklov–Poincaré type operator SH : ΛH → ΛH such that

⟨SHλH , µH ⟩Γ = sH (λH , µH), ∀ λH , µH ∈ ΛH .

We note that SHλH =
N

i=1 SH,iλH,i , where SH,i : ΛH,i → ΛH,i is defined by

⟨SH,iλH,i , µH,i ⟩Γi = −bi
I (u

∗

h,i (λH,i), µH,i), ∀ λH,i , µH,i ∈ ΛH,i .

Let Lh,i : ΛH,i → Vh,i |Γi on Γi ∩ ΓSS or Lh,i : ΛH,i → Vh,i · ni |Γi on Γi ∩ (ΓSD ∪ ΓDD) be the L2-orthogonal
projection operator from the mortar space onto the (normal) trace of the velocity space in Ωi . Correspondingly, let
LT

h,i : Vh,i |Γi → ΛH,i or LT
h,i : Vh,i · ni |Γi → ΛH,i be the L2-orthogonal projection operator from the (normal) trace

of the velocity space onto the mortar space. Using the definition (28) of bi
I (·, ·), we have that

SH,iλH,i = −LT
h,i

u∗

h,i (λH,i) · ni

u∗

h,i (λH,i) · τ l
i

on Γi ∩ ΓSS,

SH,iλH,i = −LT
h,i u

∗

h,i (λH,i) · ni on Γi ∩ (ΓSD ∪ ΓDD).

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 267

Problem (27) can be rewritten as

SHλH = gH , (33)

where gH ∈ ΛH is defined by ⟨gH , µH ⟩Γ = bI (uh, µH), ∀µH ∈ ΛH . In the general case where floating Stokes
subdomains are allowed, we need to solve the corresponding projected interface problem:

PT SH PλH = g̃H , (34)

where g̃H denotes the right hand side of Eq. (32).
The CG method is applied to solve (34), where on each iteration an operator action PT SH P on data λH ∈ ΛH is

computed as follows:

Algorithm 1. original CG implementation.

1. Project λH,i onto ker(GT): λH,i → PλH,i .
2. Project PλH,i onto the local subdomain boundary space: γh,i = Lh,i PλH,i .
3. In the Stokes region, solve subdomain problems (19)–(20) with Neumann boundary data γh,i . In the Darcy

region, solve subdomain problems (23)–(24) with Dirichlet boundary data γh,i . Denote the solutions by
(u∗

h,i (γh,i), p∗

h,i (γh,i)).
4. Project the resulting velocity in Stokes or resulting flux in Darcy back to the mortar space, i.e.,

SH,i PλH,i = −LT
h,i

u∗

h,i (γh,i) · ni

u∗

h,i (γh,i) · τ l
i

on Γi ∩ ΓSS,

or

SH,i PλH,i = −LT
h,i u

∗

h,i (γh,i) · ni on Γi ∩ (ΓSD ∪ ΓDD),

and compute the jump across all subdomain interfaces:

SH PλH =

N
i=1

SH,i PλH,i .

5. Apply P (=PT) to project the jump onto ker(GT): SH PλH → PT SH PλH .

3. Multiscale flux basis implementation

Notice that the dominant computational costs in the above algorithm comes from the subdomain solves in step
3. Thus, for the original implementation of the MMMFEM, the total number of solves in each subdomain is
approximately equal to the number of CG iterations. Even though all subdomain solves are computed in parallel,
this can still be very costly when the condition number of the interface problem is large due to a highly refined mesh.

In this section we introduce the notion of a multiscale flux basis, following the idea from [18]. Our primary
motivation is to improve the efficiency of the solution of the interface problem (34). This approach aims to eliminate
the dependency between the total number of solves and the number of CG iterations. In order to achieve this, we
precompute and store the flux or velocity subdomain responses, called multiscale flux basis, associated with each
coarse scale mortar degree of freedom on every Darcy or Stokes subdomain. This requires solving a fixed number of
subdomain solves. Then, the solution of subdomain problems on each CG iteration is replaced by linear combinations
of the multiscale flux basis functions. As a result, the total number of solves per subdomain is independent of the
number of CG iterations and thus insensitive to refining the subdomain grids.

In subdomain Ωi , i = 1, 2, . . . , N , let Ni be the number of degrees of freedom in the mortar space ΛH,i on Γi , and

let

ξ

{k}

H,i

Ni

k=1
be a basis of ΛH,i . Any λH,i ∈ ΛH,i can be expressed as λH,i =

Ni
k=1 α

{k}

i ξ
{k}

H,i . Define the multiscale

basis

φ

{k}

H,i

Ni

k=1
⊂ ΛH,i as

φ
{k}

H,i = SH,iξ
{k}

H,i , k = 1, . . . ,Ni .

268 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

The action of the interface operator on any mortar function can then be computed as

SH,iλH,i = SH,i

 Ni
k=1

α
{k}

i ξ
{k}

H,i

=

Ni
k=1

α
{k}

i SH,iξ
{k}

H,i =

Ni
k=1

α
{k}

i φ
{k}

H,i ,

which is simply a linear combination of the multiscale basis.

The algorithm for computing the multiscale basis

φ

{k}

H,i

Ni

k=1
⊂ ΛH,i on a subdomain Ωi is as follows:

Algorithm 2. computation of multiscale flux basis.
For k = 1, . . . ,Ni

1. Project the mortar basis function onto the local subdomain boundary space:

η
{k}

h,i = Lh,iξ
{k}

H,i .

2. If Ωi is a Stokes subdomain, solve the subdomain problem (19)–(20) with Neumann boundary data η{k}

h,i . If it

is Darcy, solve the subdomain problem (23)–(24) with Dirichlet boundary data η{k}

h,i . Denote the solutions by

(u∗

h,i (η
{k}

h,i), p∗

h,i (η
{k}

h,i)).
3. Project the resulting velocity in Stokes or resulting flux in Darcy back to mortar space, which gives the multiscale

flux basis:

φ
{k}

H,i = −LT
h,i

u∗

h,i (η
{k}

h,i) · ni

u∗

h,i (η
{k}

h,i) · τ l
i

on Γi ∩ ΓSS,

or

φ
{k}

H,i = −LT
h,i u

∗

h,i (η
{k}

h,i) · ni on Γi ∩ (ΓSD ∪ ΓDD).

The multiscale flux basis can be used in the conjugate gradient method for solving (34). In every iteration, the
operator action PT SH P on any λH ∈ ΛH is computed with the following steps:

Algorithm 3. CG with multiscale basis.

1. Project λH,i onto ker(GT): λH,i → PλH,i .

2. Denote by

c{k}

i

Ni

k=1
the expansion coefficients of PλH,i in the mortar basis:

PλH,i =

Ni
k=1

c{k}

i ξ
{k}

H,i .

3. Use a linear combination of the multiscale flux basis to compute the resulting velocity (if Ωi is Stokes) or flux (if
Ωi is Darcy):

SH,i PλH,i = SH,i

 Ni
k=1

c{k}

i ξ
{k}

H,i

=

Ni
k=1

c{k}

i SH,iξ
{k}

H,i =

Ni
k=1

c{k}

i φ
{k}

H,i

and compute the jump across all subdomain interfaces:

SH PλH =

N
i=1

SH,i PλH,i .

4. Apply P (=PT) to project the jump onto ker(GT): SH PλH → PT SH PλH .

Note that in the computation of the multiscale flux basis in Step 1 of Algorithm 2, the right hand side for the
local Neumann solve in Stokes has not been projected to ker(GT). However, in Algorithm 3, the multiscale basis is
used only for computing the action of SH,i on PλH,i , which is a well-posed local Neumann solve. As a result, the
computation of SH,i PλH,i via the linear combination of the multiscale flux basis in Algorithm 3 gives an equivalent

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 269

Fig. 2. Computation of the multiscale flux basis in Darcy (left) and Stokes (right).

result to computing SH,i PλH,i directly by solving a well posed local Neumann problem with data PλH,i . In addition,
since P is linear, applying it on the computed jump in the last step is equivalent to projecting the multiscale flux basis
to ker(GT).

Fig. 2(left) illustrates one pressure mortar basis function in a Darcy domain and the computed flux response, which
is the corresponding multiscale flux basis function. Similarly, Fig. 2(right) shows one normal stress mortar basis
function in a Stokes domain and the computed velocity response. Comparing the new algorithm with the original
MMMFEM, we notice that there are no subdomain solves in the CG iterations. The dominant cost now shifts to the
computation of a multiscale flux basis, which depends on the number of mortar degrees of freedom. Since the mortar
space is on the coarse scale, this cost is relatively small and independent of the fine grid. Furthermore, unlike other
multiscale methods such as the variational multiscale method or the multiscale finite element method, where the fine
scale solution on the entire coarse element needs to be stored, our method requires storing only coarse scale interface
data—the flux or velocity response. Therefore the extra storage cost is significantly smaller compared to existing
methods.

Even though the multiscale flux basis algorithm does not require subdomain solves in the CG iterations, the number
of interface iterations is not insignificant. Some of the cost is due to the time needed to compute the orthogonal
projections and linear combinations, but the more significant cost comes from inter-processor communication. It is
therefore possible to reduce the overall computational cost by applying a preconditioner for the solution of the interface
problem (34) in order to decrease its condition number, which results in decreasing the number of interface iterations.
For the performance comparison in the numerical examples in the next section, we employ in the Darcy region
the balancing preconditioner introduced in [29–31]. This preconditioner involves solving Neumann subdomain
problems and a coarse problem to exchange global information. It is very efficient and exhibits condition number
that grows very mildly with respect to h and H . We do not apply a preconditioner in the Stokes region, although due
the coarse solver, the condition number in the Stokes region is insensitive to the subdomain size [9].

Let MD be the Darcy component of M , which is the block-diagonal matrix with blocks Mi , i = NS + 1, . . . , N ,
and let ΛD

H be the restriction of ΛH to ΓDD ∪ ΓSD . In algebraic form, the balancing preconditioner can be expressed
as

B−1
bal =

N
i=NS+1

L M+

i LT ,

where M+

i is the Moore–Penrose pseudo-inverse of Mi . The detailed algorithm is shown below. Define a partition of
unity Di such that

N
i=NS+1

Diλ = λ, ∀λ ∈ ΛD
H ,

and define a coarse space

Z =

λ ∈ ΛD

H : λ =

N
i=NS+1

Diψi , ψi ∈ Zi

,

where Zi are spaces of constant vectors such that ker(Mi) ⊆ Zi , i = NS + 1, . . . , N . In every CG iteration, given
residual r ∈ ΛD

H , compute B−1
balr as follows:

270 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

Algorithm 4. balancing preconditioner.

1. Solve a coarse problem: find r̃ ∈ Z such that

ai (r̃ , µ) = ⟨r, µ⟩, ∀µ ∈ Z ,

and balance the residual:

rbal
= r − MD r̃ . (35)

2. Distribute rbal to subdomains:

ri = DT
i rbal .

3. Solve local Neumann problem for λi ∈ ΛH,i :

Miλi = ri (36)

4. Average the local solutions:

λ =

N
i=NS+1

Diλi .

5. Solve a coarse problem for λ̃ ∈ Z :

ai (λ̃, µ) = ⟨rbal , µ⟩ − ai (λ, µ), ∀µ ∈ Z ,

and update the local solutions:

B−1
balr = λ+ λ̃+ r̃ .

In the next section we study numerically the efficiency of the multiscale flux basis implementation by comparing
four different methods based on the above algorithms:

• Method 1: the original MMMFEM with no preconditioner, Algorithm 1,
• Method 2: the original MMMFEM with balancing preconditioner, Algorithms 1 and 4,
• Method 3: multiscale flux basis implementation of the MMMFEM with no preconditioner, Algorithms 2 and 3,
• Method 4: multiscale flux basis implementation of the MMMFEM with balancing preconditioner, Algorithms 2, 3,

and 4.

The maximal number of local solves per subdomain for each method is given in Table 1, where Niter is the total
number of CG iterations. The number of solves in Method 1 in each subdomain is Niter + 3, since there is one
solve per CG iteration and 3 extra solves for setting up the right hand side of (32) in Stokes and the recovery of the
solution (u, p). In Method 2, there are two extra subdomain solves in each CG iteration in Darcy for the balancing
preconditioner, one Dirichlet solve in (35) and one Neumann solve in (36), and at most 10 extra solves for the setup
of the balancing preconditioner [31]. In Method 3, the maximal number of solves is given by max{Ni }

N
i=1 + 3,

which includes one solve in the computation of each multiscale flux basis, plus 3 extra solves for setting up the right
hand side of (32) in Stokes and the recovery of the solution (u, p). In Method 4, the maximal number of solves in
Stokes subdomains is the same as in Method 3, which is max{Ni }

NS
i=1 + 3. In Darcy subdomains, two different sets

of multiscale basis are computed for both the Dirichlet solves in each CG iteration and the Neumann solves (36) in
the balancing preconditioner, and these solves are replaced by a linear combination of the corresponding multiscale
basis. Therefore, the maximal number of solves in the Darcy region is 2 max{Ni }

N
i=NS+1 + 8. We note that in the

original implementation, Method 1 and Method 2, the number of subdomain solves is proportional to the number
of CG iterations, while in the multiscale flux basis Method 3 and Method 4, the number of solves depends only
on the number of local mortar degrees of freedom. Furthermore, the balancing preconditioner significantly reduces
the number of CG iterations, which results in reduced computational time. In the examples below we compare all
four methods and identify the most efficient method in terms of maximal number of solves per subdomain and
computational time. We emphasize the comparison between the unpreconditioned Methods 1 and 3, as well as the
preconditioned Methods 2 and 4 for better demonstration of the multiscale flux implementation.

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 271

Table 1
Maximal number of solves per subdomain for each method.

Method 1 Niter + 3
Method 2 3Niter + 10
Method 3 max{Ni }

N
i=1 + 3

Method 4 max{max{Ni }
NS
i=1 + 3, 2 max{Ni }

N
i=NS+1 + 8}

Remark 3.1. In the numerical experiments we report both the number of subdomain solves and the CPU times. While
the former is accepted as an objective measure of the computational efficiency of domain decomposition methods, we
include the latter in order to provide a more complete picture of the total cost. We note that CPU runtime is highly
machine dependent. In particular, interprocessor communication cost may play a significant role. As a result, the gains
we observe in CPU time are smaller relative to the gains in number of solves. Communication cost can be reduced by
exploring redundancy and shared multi-core memory architectures, which is beyond the scope of the paper.

4. Numerical experiments

In this section we present three numerical tests to illustrate the efficiency of the multiscale flux basis implementation
by comparing the maximal number of subdomain solves and total runtime for Methods 1–4. In all examples, the lowest
order Taylor–Hood triangular finite elements are used in Stokes and the lowest order Raviart–Thomas rectangular
finite elements are used in Darcy. Discontinuous piecewise linear mortar finite elements are used for all mortar spaces
on subdomain interfaces. We take T(uS, ps) = −psI+2µS∇uS , µS = µD = µ and K = K I, where K is a uniformly
positive scalar function. All four methods produce the same solution, within the relative convergence tolerance 10−6.
We have previously performed extensive verification studies of the code, including testing the convergence of the
numerical solution to the true solution as the grids are refined, see [9]. The results indicate convergence of order
predicted by Theorem 2.1. One of the cases tested was the smooth solution in Example 1 below. The numerical tests
presented in this paper are run on a parallel cluster of Intel Xeon CPU E5-2650 v3 @ 2.30 GHz processors with
192 GB RAM. The problems are solved in parallel such that each subdomain is assigned to one core.

4.1. Example 1: Regular shape domain with smooth solution

In this example, the domain is the unit square with ΩS = (0, 1)× (0.5, 1) and ΩD = (0, 1)× (0, 0.5). The problem
has a given true solution such that

uS =

(2 − x)(1.5 − y)(y − ξ)

−
y3

3
+

y2

2
(ξ + 1.5)− 1.5ξ y − 0.5 + sin(ωx)

 ,
uD =

ω cos(ωx)y
χ(y + 0.5)+ sin(ωx)

,

pS = −
sin(ωx)+ χ

2K
+ µ(0.5 − ξ)+ cos(πy),

pD = −
χ

K

(y + 0.5)2

2
−

sin(ωx)y

K
,

where

µ = 0.1, K = 1, α = 0.5, G =

√
µK

α
, ξ =

1 − G

2(1 + G)
, χ =

−30ξ − 17
48

, and ω = 6.0.

The right hand sides fS , fD and qD in the Stokes–Darcy problem are computed using the given exact solution. The
problem is solved by the four methods using four different levels of domain decomposition: 2×2, 4×4, 6×6, 8×8 and
10×10 subdomains. In any level, each subdomain is discretized by a 10×10 or 4×4 local mesh in a “checkerboard”
manner, i.e., no neighboring subdomains have the same mesh. The mortar mesh on each subdomain interface is 2 × 1.
The outside boundary conditions are given as follows: for Darcy, the left boundary is of Neumann type and the bottom

272 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

Table 2
Example 1 test results.

Subdomains Niter Solves Time (s) Niter Solves Time (s)

Method 1 Method 2
2 × 2 = 4 38 41 0.587 22 74 0.607
4 × 4 = 16 121 124 1.000 53 169 0.876
6 × 6 = 36 182 185 1.566 78 244 1.341
8 × 8 = 64 230 233 3.261 94 292 2.523
10 × 10 = 100 280 283 7.352 98 304 4.764

Method 3 Method 4
2 × 2 = 4 38 27 0.579 22 38 0.583
4 × 4 = 16 121 59 0.808 53 72 0.695
6 × 6 = 36 182 67 1.245 78 72 1.151
8 × 8 = 64 230 67 2.328 94 72 2.102
10 × 10 = 100 280 67 4.170 98 72 3.392

Bold denotes the smallest number of subdomain solves and the fastest run.

Table 3
Example 1 condition numbers.

Subdomains Method 1, 3 Method 2, 4
eig.min. eig.max. cond.num. eig.min. eig.max. cond.num.

2 × 2 = 4 0.349 36.9 105.7 0.409 10.730 26.2
4 × 4 = 16 0.134 90.0 670.8 0.134 30.409 226.3
6 × 6 = 36 0.082 134.7 1635.4 0.082 32.135 393.1
8 × 8 = 64 0.062 179.6 2881.6 0.061 32.108 527.1
10 × 10 = 100 0.050 224.5 4502.6 0.050 31.973 644.3

and right boundaries are of Dirichlet type; for Stokes, the left boundary is of Dirichlet type and the top and right
boundaries are Neumann type. Under this setting, all Stokes subdomains except the leftmost column are floating,
with kerMi = span{(0, 1)} if the domain has Stokes–Darcy interface on the bottom and kerMi = sp{(1, 0), (0, 1)}
otherwise. The test results for Example 1 are shown in Tables 2 and 3. In particular, number of CG iterations, maximal
number of subdomain solves, and maximal CPU time per subdomain are reported in Table 2, indicating the highest
workload of all CPUs in each parallel run. We note that the numbers match Table 1. The minimal and maximal
eigenvalues and condition number are reported in Table 3. The computed solution with 4 × 4 = 16 subdomains is
shown in Fig. 3.

Since the mesh size h decreases as we increase the number of subdomains, the interface condition number increases.
This is evident from Table 3. Methods 2 and 4, which employ the balancing preconditioner in the Darcy region,
control the maximal eigenvalue and result in a more modest increase in the condition number, compared to the
unpreconditioned Methods 1 and 3. This has an effect on the number of CG iterations reported in Table 2, with a
much sharper increase in Niter for Methods 1 and 3. Regarding the number of subdomain solves, we observe that the
multiscale flux basis Methods 3 and 4 have reduced number of solves compared to Methods 1 and 2. Method 3 has
the smallest number of subdomain solves in all cases (marked in bold). Also Method 3 and 4 only involve a fixed
number of solves for precomputing the multiscale flux basis, which depend on the local number degrees of freedom
of the mortar space. Note that the number of solves for both methods stay fixed from the 36 domains case to the 100
domains case, and will not change if more subdomains are added, since there are no more new mortar degrees of
freedom created per subdomain. In Method 4, the balancing preconditioner costs one extra local Neumann solve per
degree of freedom in the precomputation step for each Darcy subdomain. However, the significantly reduced number
of iterations results in reduced communication cost and savings in the overall computational time. We mark in bold
the fastest run for each case in Table 2, which is achieved by either Method 3 or 4 in all four levels. It is not easy
to make a fair comparison between Method 3 and 4, since the former reduces the number of solves, while the latter
reduces the number of iterations at the cost of extra solve per iteration. Nevertheless, both methods are more efficient
than Methods 1 and 2.

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 273

Fig. 3. Example 1, 16 subdomains, solution.

4.2. Example 2: Irregular shape domain with heterogeneous permeability

The second example is a Stokes–Darcy problem with heterogeneous permeability field on an irregularly shaped
domain. The domain is roughly contained in the [0, 2]× [0, 1] rectangular region, see Fig. 5, with the Stokes region in
the top half and the Darcy region at the bottom. Following [38,8], we handle the irregular geometry by the multipoint
flux mixed finite element method for the pressure in Darcy and standard conforming elements in Stokes. We also
impose the mortar conditions on curved interfaces by mapping the physical grids to reference grids with flat interfaces,
see [8].

The heterogeneous permeability is given by a single realization of a stochastic permeability field K , which can be
generated by a sum of the local Karhunen–Loève (KL) expansion [28]. Let Y = ln(K) and let Y ′ be defined by

Y ′(x, ω) := Y (x, ω)− E[Y](x),

where E[Y](x) stands for the expectation function. Denote the series expansion of the covariance function of Y as

CY (x, x) =

∞
j=1

λ j f j (x) f j (x).

Then the KL-expansion of Y ′ with Nterm terms is given as

Y ′(x, ω) ≈

Nterm
j=1

ξ j (ω)

λ j f j (x),

where ξ j are normal random variables with zero mean and unit variance. In this example, the covariance function is
specified as

CY (x, x) = σ 2
Y exp

−|x1 − x1|

η1
−

|x2 − x2|

η2

with σY = 2.1, η1 = 0.1, η2 = 0.05 and Nterm = 400. For the mean value we set E[Y](x) = 1.0. A plot for the
permeability realization is shown in Fig. 4.

All methods are tested on four different levels of domain decompositions: 4×2, 8×4, 12×6 and 16×8. The local
meshes are 18 × 15, 15 × 12 “checkerboard” in Darcy; and 12 × 15, 9 × 12 “checkerboard” in Stokes. The mortar
mesh is 4 × 1 on each subdomain interface. The outside boundary conditions are given as follows. In Darcy, no flow
condition is specified on the left and right boundaries, with Dirichlet condition at the bottom. In Stokes, we specify
inflow condition on the left boundary, zero flow condition on the right, and zero stress condition on the top.

274 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

Table 4
Example 2 test results.

Subdomains Niter Solves Time (s) Niter Solves Time (s)

Method 1 Method 2
4 × 2 = 8 220 223 1.165 66 207 0.979
8 × 4 = 32 1069 1072 6.312 194 592 2.303
12 × 6 = 72 1525 1528 25.791 239 727 7.002
16 × 8 = 128 2375 2378 90.088 301 913 16.261

Method 3 Method 4
4 × 2 = 8 220 83 0.850 67 103 0.901
8 × 4 = 32 1069 115 2.260 194 136 1.733
12 × 6 = 72 1525 131 6.771 239 136 3.754
16 × 8 = 128 2375 131 24.407 301 136 9.828

Bold—denotes the smallest number of subdomain solves and the fastest run.

Table 5
Example 2 condition numbers.

Subdomains Method 1, 3 Method 2, 4
eig.min. eig.max. cond.num. eig.min. eig.max. cond.num.

4 × 2 = 8 0.114 416.2 3637.2 0.112 26.368 236.3
8 × 4 = 32 0.025 2228.8 88015.3 0.023 44.044 1904.4
12 × 6 = 72 0.017 2371.0 143620.6 0.016 38.682 2391.8
16 × 8 = 128 0.013 4444.5 351727.1 0.012 39.937 3325.1

Fig. 4. Example 2, 128 subdomains, permeability.

Table 4 shows the results using Methods 1–4, and Table 5 shows the corresponding eigenvalues and condition
numbers. Due to the size of Kmax and a small h as the number of subdomain grows, the problem has a huge condition
number and requires thousands of iterations for CG to converge in original MMMFEM implementation. With the
multiscale flux basis, the number of solves in Method 3 and Method 4 is an order of magnitude smaller than Method
1 and Method 2, respectively, since it is independent of Niter. We also observe that the communication cost plays a
role in the runtime. As a result, even though Method 3 has the smallest number of solves, it is slower than Method
4 in the last three cases. We note that the balancing preconditioner is very effective in this situation. The maximal
eigenvalue is controlled effectively and so is the number of CG iterations, as seen in Table 5. The gain in runtime due
to the balancing preconditioner becomes more significant when increasing the number of subdomain.

4.3. Example 3: Adaptive mesh in Darcy

The third test case illustrates how the multiscale flux basis method reduces the computational cost when adaptive
mesh refinement is used in the Darcy region. In this case, the permeability field K in the Darcy region is also
generated from a single realization of a stochastic field using the KL expansion and it is highly heterogeneous. The
KL parameters are correlation lengths η1 = 0.25 and η2 = 0.125, mean value E[Y](x) = 2.0, variance σY = 2.1 and
Nterm = 400. The generated permeability field is shown in Fig. 6. The domain is the unit square with the Stokes and
Darcy regions in the top and bottom half, respectively. The boundary conditions for Darcy are no flow condition on

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 275

Fig. 5. Example 2, 128 subdomains, velocity solution.

Table 6
Example 3 with adaptive mesh refinement, computational results.

Niter Max solves Time (s) Niter Max solves Time (s)

Method 1 Method 2

9715 9733 11.10 823 2481 5.57

Method 3 Method 4
9715 488 7.85 823 988 4.66

Bold—denotes the smallest number of subdomain solves and the fastest run.

the left and right with Dirichlet on the bottom. The boundary conditions for Stokes are inflow condition on the left and
zero stress on the right, with specified horizontal velocity and zero normal stress on the top. The problem is solved on
a 6 × 6 domain decomposition.

In this test, an adaptive mesh refinement algorithm [19,39] computes a posteriori error indicators in the Darcy
region and refines the local and mortar grids for subdomains with large error. The meshes in the Stokes region and on
the Stokes–Darcy interface are not affected. We set a starting local mesh of 4 × 4 in all subdomains and a uniform
mortar mesh of 2 × 1 on every edge. We again run and compare all four methods as in the previous two examples.
Table 6 reports the sum of numbers of CG iterations in all levels as well as the maximal number of solves and runtime.

The velocity computed by Method 3 on the last mesh refinement level is presented in Fig. 7. It is easy to observe
that regions with higher heterogeneity are refined more times. The total number of solves after the last refinement on
each subdomain for Method 1 and 3 are shown in Fig. 8 and Fig. 9, respectively. Without multiscale flux basis, the
number of solves is the same in all Darcy subdomains, regardless of the difference of their meshes. Stokes domains
report the same numbers with just four extra solves for implementing the FETI method. With multiscale flux basis,
the number of solves depends on the mortar degrees of freedom on the surrounding interfaces. Hence, with different
levels of mesh refinement, the Darcy subdomains are reporting different number of solves. Clearly the number of
solves is reduced significantly in Method 3 compared to Method 1. It is evident from the left column of Table 6, that
the multiscale flux basis saves roughly 95 percent in maximum solves and 30 percent in runtime. Comparing results
in the right column, Method 4 saves roughly 60 percent in maximum solves and 20 percent in runtime from Method
2. If there were more levels of mesh refinement, there would be more significant saving in both numbers, since the
computational saving due to the multiscale flux basis occurs on every refinement level.

5. Conclusion

In this paper, we develop a multiscale flux basis algorithm for the MMMFEM discretization of the coupled
Stokes–Darcy problem and compare it to the original implementation. The new method precomputes the basis by
solving a fixed number of subdomain solves, which depend on the number of coarse scale mortar degrees of freedom
per subdomain. The basis is used to replace the subdomain solves in the global interface iteration, completely
eliminating the dependency between the number of solves and the number of iterations. The numerical examples
for a variety of test cases show that the multiscale flux basis implementation is more computationally efficient than

276 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

Fig. 6. Example 3, permeability field on the last mesh refinement level.

Fig. 7. Example 3, velocity solution on the last mesh refinement level.

Fig. 8. Number of solves for Method 1, shown on each subdomain.

B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278 277

Fig. 9. Number of solves for Method 3, shown on each subdomain.

the original MMMFEM, and a greater savings occurs with increased number of subdomains and global mortar degrees
of freedom. We also demonstrate the multiscale flux basis can be combined with the balancing preconditioner in Darcy
to form a powerful solver for large-scale problems.

Acknowledgments

Third and fourth authors are partially supported by NSF grant DMS 1418947 and DOE grant DE-FG02-
04ER25618.

References

[1] G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally impermeable wall, J. Fluid. Mech 30 (1967) 197–207.
[2] P.G. Saffman, On the boundary condition at the surface of a porous media, Stud. Appl. Math. L (2) (1971) 93–101.
[3] W.J. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 40 (6) (2003) 2195–2218.
[4] M. Discacciati, E. Miglio, A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer.

Math. 43 (1–2) (2002) 57–74. 19th Dundee Biennial Conference on Numerical Analysis (2001).
[5] B. Rivière, I. Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal. 42 (5) (2005) 1959–1977.
[6] J. Galvis, M. Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal. 26

(2007) 350–384.
[7] V. Girault, D. Vassilev, I. Yotov, Mortar multiscale finite element methods for Stokes-Darcy flows, Numer. Math. 127 (2014) 93–165.
[8] P. Song, C. Wang, I. Yotov, Domain decomposition for Stokes-Darcy flows with curved interfaces, Proc. Comput. Sci. 18 (2013) 1077–1086.
[9] D. Vassilev, C. Wang, I. Yotov, Domain decomposition for coupled Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg. 268 (2014)

264–283.
[10] C. Bernardi, T.C. Rebollo, F. Hecht, Z. Mghazli, Mortar finite element discretization of a model coupling Darcy and Stokes equations, M2AN

Math. Model. Numer. Anal. 42 (3) (2008) 375–410.
[11] M. Discacciati, A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, in: Numerical

Mathematics and Advanced Applications, Springer Italia, Milan, 2003, pp. 3–20.
[12] M. Discacciati, A. Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of

Stokes and Darcy equations, Comput. Vis. Sci. 6 (2–3) (2004) 93–103.
[13] M. Discacciati, A. Quarteroni, A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal.

45 (3) (2007) 1246–1268.
[14] R.H.W. Hoppe, P. Porta, Y. Vassilevski, Computational issues related to iterative coupling of subsurface and channel flows, Calcolo 44 (1)

(2007) 1–20.
[15] J. Galvis, M. Sarkis, FETI and BDD preconditioners for Stokes-Mortar-Darcy systems, Commun. Appl. Math. Comput. Sci. 5 (2010) 1–30.
[16] C. Farhat, F.X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Methods Engrg.

32 (1991) 1205–1227.
[17] A. Toselli, O. Widlund, Domain Decomposition Methods—Algorithms and Theory, Springer-Verlag Berlin Heidelberg, 2005.

http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref1
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref2
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref3
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref4
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref5
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref6
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref7
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref8
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref9
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref10
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref11
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref12
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref13
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref14
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref15
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref16
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref17

278 B. Ganis et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 259–278

[18] B. Ganis, I. Yotov, Implementation of a Mortar Mixed Finite Element Method using a Multiscale Flux Basis, Comput. Methods Appl. Mech.
Engrg. 198 (49–52) (2009) 3989–3998.

[19] T. Arbogast, G. Pencheva, M.F. Wheeler, I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul. 6 (1) (2007)
319.

[20] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the
origins of stabilized methods, Comput. Methods Appl. Mech. Engrg. 127 (1995) 387–401.

[21] T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal. 42 (2004) 576–598.
[22] T.Y. Hou, X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134

(1997) 169–189.
[23] Z. Chen, T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp. 72 (2003)

541–576.
[24] Y. Efendiev, J. Galvis, X.-H. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions, J. Comput.

Phys. 230 (4) (2011) 937–955.
[25] Y. Efendiev, J. Galvis, T.Y. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys. 251 (2013) 116–135.
[26] J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces,

Multiscale Model. Simul. 8 (5) (2010) 1621–1644.
[27] I. Ambartsumyan, E. Khattatov, C. Wang, I. Yotov, Stochastic multiscale flux basis for Stokes-Darcy flows, preprint.
[28] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.
[29] L.C. Cowsar, J. Mandel, M.F. Wheeler, Balancing domain decomposition for mixed finite elements, Math. of Comp. 64 (211) (1995)

989–1015.
[30] J. Mandel, Balancing domain decomposition, Commun. Numer. Methods Eng. 9 (3) (1993) 233–241.
[31] G. Pencheva, I. Yotov, Balancing domain decomposition for mortar mixed finite element methods on non-matching grids, Numer. Linear

Algebra Appl. 10 (2003) 159–180.
[32] C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Internat. J. Comput. & Fluids 1

(1) (1973) 73–100.
[33] D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (4) (1984) 337–344 (1985).
[34] C. Bernardi, G. Raugel, Analysis of some finite elements for the Stokes problem, Math. Comp. (1985) 71–79.
[35] R.A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: Mathematical Aspects of the Finite Element

Method, in: Lecture Notes in Mathematics, vol. 606, Springer-Verlag, New York, 1977, pp. 292–315.
[36] F. Brezzi, J. Douglas Jr., L.D. Marini, Two families of mixed elements for second order elliptic problems, Numer. Math. 88 (1985) 217–235.
[37] F. Brezzi, J. Douglas Jr., R. Duràn, M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51

(1987) 237–250.
[38] M.F. Wheeler, G. Xue, I. Yotov, A multiscale mortar multipoint flux mixed finite element method, ESAIM Math. Model. Numer. Anal. 46 (4)

(2012) 759–796.
[39] M.F. Wheeler, I. Yotov, A posteriori error estimates for the mortar mixed finite element method, SIAM J. Numer. Anal. 43 (3) (2005)

1021–1042.

http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref18
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref19
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref20
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref21
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref22
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref23
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref24
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref25
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref26
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref28
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref29
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref30
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref31
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref32
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref33
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref34
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref35
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref36
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref37
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref38
http://refhub.elsevier.com/S0045-7825(16)30874-X/sbref39

	A multiscale flux basis for mortar mixed discretizations of Stokes--Darcy flows
	Introduction
	Model problem and MMMFEM
	Stokes--Darcy coupled problem
	Domain decomposition and variational formulation
	Discretization
	Reduction to an interface problem
	Algebraic interpretation and FETI method
	Iterative solution of the interface problem

	Multiscale flux basis implementation
	Numerical experiments
	Example 1: Regular shape domain with smooth solution
	Example 2: Irregular shape domain with heterogeneous permeability
	Example 3: Adaptive mesh in Darcy

	Conclusion
	Acknowledgments
	References

