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A multilevel Newton–Krylov interface solver for multiphysics
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SUMMARY

A multiblock approach to modelling 5ow in porous media allows for coupling di:erent physical and
numerical models in a single simulation through the use of mortar ;nite elements. The resulting
non-linear algebraic system is reduced to a non-linear interface problem which is solved by a full
approximation scheme (FAS) multigrid with a Newton-GMRES smoother. Copyright ? 2001 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Energy and environmental applications of 5ow in porous media modelling usually involve
solving systems of tens of millions of unknowns. The large scale is due to the size of the
simulation domain and the multiscale nature of the physical processes. Non-linearities due to
the presence of multiple 5owing phases add another degree of diCculty to the problem. Very
often, however, the complexity of the physics varies throughout the domain of interest. For
example, in enhanced oil recovery, natural gas often forms near production wells, but may
not be present away from them. A recently developed multiblock multiphysics formulation
decomposes the domain into a series of blocks (subdomains) and allows di:erent physical
models, grids, and numerical methods to be used in di:erent blocks [1–4]. Careful choice
of physical models and discretization schemes may lead to substantial computational savings
without sacri;cing accuracy.
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552 I. YOTOV

Mixed ;nite element methods are employed for subdomain discretizations due to their
local mass conservation property. The subdomains are coupled through physically mean-
ingful interface conditions in a numerically stable and accurate way. This is achieved by
introducing mortar ;nite elements along the interfaces [1, 2] (see Section 3 for a
detailed discussion).

Another critical issue is how to solve eCciently the non-linear algebraic system that arises
in the multiblock multiphysics discretization of multiphase 5ow in porous media, which is
the main subject of this paper. Because of the complexity of the formulation, loose cou-
pling between subdomains is desired. This is accomplished by reducing the global system
to a non-linear interface problem. The algorithm is based on a non-overlapping domain
decomposition algorithm originally proposed by Glowinski and Wheeler [5–7] for linear
single block problems and later extended to multiblock elliptic problems [1, 8] and two-
phase 5ow problems [9]. Other substructuring algorithms for mortar ;nite elements can be
found in References [10–12]. In its non-linear version [9] our method can be viewed as
a non-overlapping counterpart of some overlapping non-linear domain decomposition meth-
ods [13, 14]. Here we formulate the algorithm for multiblock multiphysics couplings. A new
feature in this case is that the number of interface variables may be di:erent on di:er-
ent interfaces. Our approach is suitable for parallel implementation and allows for rela-
tively easy coupling of existing simulators, since subdomain solves represent the dominant
computational cost.

We introduce two methods for the solution of the non-linear interface problem: an inexact
Newton-GMRES method [15] and a full approximation scheme (FAS) multigrid V-cycle [16]
with Newton-GMRES smoothing. The idea of using an inexact Newton step as a non-linear
smoother is new to the best of our knowledge. The eCciency of both methods depends on the
convergence of GMRES for computing the inexact Newton step. A physics-based Neumann–
Neumann preconditioner is constructed for accelerating the GMRES convergence.

The interface operator involves the solution of subdomain problems with Dirichlet boundary
conditions speci;ed by the current values of primary interface variables. Di:erent choices
of primary variables are possible, a:ecting the mathematical properties of the operator [4].
We shall discuss the implementation of the interface GMRES preconditioner for the various
choices and its e:ectiveness in handling degeneracies of the interface operator.

The rest of the paper is organized as follows. In the next section we present a multiblock
formulation for coupling single-phase, two-phase, and three-phase 5ow in porous media. The
multiblock discretization is given in Section 3. In Section 4 we describe the domain decom-
position solvers and preconditioners. Computational results are given in Section 5. The paper
ends with conclusions in Section 6.

2. MULTIBLOCK MULTIPHYSICS MODEL

In a multiblock formulation, the domain L⊂R3, is decomposed into a series of subdomains
Lk ; k =1; : : : ; nb. Let Nkl = @Lk ∩ @Ll be the interface between Lk and Ll. A physical model is
associated with each block. We consider three possible models — single-phase (water) 5ow,
two-phase (water and oil) 5ow, and three-phase (water, oil, and gas) 5ow, which commonly
occur in reservoir simulation. Each model is described by a set of di:erential equations derived
from a more general compositional model [17]. In particular, there are three components,
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W — water, O — oil, and G — gas, distributed among three phases, w — water, o — oil,
and g — gas.

2.1. Single-phase model

This model assumes that only one phase (w — water) is present and consists of one compo-
nent (W — water). The 5ow is governed by the conservation of mass equation for W

@(	NW)
@t

+∇ ·UW = qW (1)

where NW =w is the component concentration, w =w(Pw) is the phase density, 	 is the
porosity, qW is the source term, and

UW =Uw =− K
�w

w(∇Pw − wg∇D) (2)

is the Darcy velocity of phase w. Here Pw is the water phase pressure, �w is the phase viscosity,
K is the rock permeability tensor, g is the gravitational constant, and D is the depth. We note
that this is a mildly non-linear system, since the only non-linearity is w =w(Pw) and the
5uid is assumed slightly compressible.

2.2. Two-phase model

In this case both water phase w and oil phase o are present. The water component W exists
only in the water phase and the oil component O exists only in the oil phase. Let NW =wSw

and NO =oSo be the component concentrations, and let UW =Uw and UO =Uo be the com-
ponent 5uxes. The governing equations are

@(	NW)
@t

+∇ ·UW = qW (3)

@(	NO)
@t

+∇ ·UO = qO (4)

U� =− k�(S�)K
��

�(∇P� − �g∇D) (5)

where �=w; o denotes the phase, S� are the phase saturations, and k�(S�) are the phase
relative permeabilities. The above equations are coupled via the volume balance equation and
the oil–water capillary pressure relation

Sw + So = 1; pcow(Sw)=Po − Pw: (6)

2.3. Black-oil model

This model allows for all three phases and components to be present. The water component
W exists only in the water phase w, the oil component O exists only in the oil phase o, while
the gas component G is distributed among the oil phase o and the gas phase g according to
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the gas–oil ratio Rs(Po) [18]. The conservation equations are written for the components as
they appear on the surface, at stock-tank conditions (STC):

@(	 RNW)
@t

+∇ · RUW = RqW (7)

@(	 RNO)
@t

+∇ · RUO = RqO (8)

@(	 RNG)
@t

+∇ · RUG = RqG (9)

where

RNW =
Sw

Bw
; RNO =

So

Bo
; RNG =

Sg

Bg
+ Rs

So

Bo

are the component concentrations,

RUW =
Uw

Bw
; RUO =

Uo

Bo
; RUG =

Ug

Bg
+ Rs

Uo

Bo

are the component 5uxes,

Bw =
STC
W

w
; Bg =

STC
G

g
; Bo =

STC
O + RsSTC

G

o

are the formation volume factors, STC
i ; i=W; O; G are the component densities at STC,

Rqi = qi=STC
i are the component sources, and

U� = − k�(S�)K
��

�(∇P� − �g∇D); �=w; o; g (10)

are the phase Darcy velocities. Here we use bars to denote variables at STC. Throughout the
rest of the paper we will omit the bars to simplify the notation.

The model is completed with

Sw + So + Sg = 1; pcow(Sw)=Po − Pw; pcgo(Sg)=Pg − Po: (11)

The relationships Rs(Po); Bw(Pw); Bo(Po); Bg(Pg); pcow(Sw), and pcgo(Sg) are available from
measurements [18].

2.4. Interface conditions

To complete the multiblock formulation we need to impose matching conditions on subdomain
interfaces and boundary conditions on the outside boundary.

On each interface Nkl the following physically meaningful continuity conditions are imposed:

P�|Lk =P�|Ll on Nkl (12)

[Ui · �]kl ≡ Ui|Lk · �k +Ui|Ll · �l =0 on Nkl (13)

where �k denotes the outward unit normal vector on @Lk . Equations (12) and (13) represent
continuity of pressures and normal 5uxes, respectively (the plus sign in (13) is due to the
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opposite orientation of the normals on the two subdomains). The sets of phase indexes �
and component indexes i for which the above conditions are imposed depend on the physical
models imposed on the neighboring blocks. In particular, let N1 be the union of all interfaces
for which at least one of the neighbouring subdomain models is single phase, let N2 be the
union of all ‘two-phase=two-phase’ and ‘two-phase=black-oil’ interfaces, and let N3 be the
union of all black-oil=black-oil interfaces. Equations (12) and (13) then hold for �=w and
i=W on N1, for �=w; o and i=W;O on N2, and for �=w; o; g and i=W;O;G on N3.

In addition, the appropriate volume balance and capillary pressure relationships (6) or (11)
are assumed to hold on multiphase interfaces.

We assume for simplicity that no 5ow Ui · �=0 is imposed on @L, although more general
types of boundary conditions can also be treated.

Remark 2:1
We note that, in order for the multiphysics formulation to make sense, we must assume that
the oil phase is not present in a two-phase domain near a single-phase interface, and that the
gas phase is not present in a black-oil domain near a two-phase interface. If this is not true at
any time, then the interface must be moved or removed, which can be done dynamically during
the simulation. (See References [3, 4, 19] for more details about the multiphysics couplings.)

3. MULTIBLOCK DISCRETIZATION

The subdomain equations are discretized by the lowest order Raviart–Thomas mixed ;nite
element spaces RT0 [20]. Consider a rectangular partition of Lk by Thk , where hk is associated
with the size of the elements. The RT0 spaces are de;ned on Thk by

Ṽhk = {v=(v1; v2; v3) : v|E =(�1x1 + �1; �2x2 + �2; �3x3 + �3)T :

�l; �l ∈R for all E ∈Thk

and each vl is continuous in the lth co-ordinate direction}

Vhk = {v∈ Ṽhk : v · �k =0 on @Lk ∩ @L}
Whk = {w : w|E = � : �∈R for all E ∈Thk}:

To impose the interface matching condition (12)–(13) we introduce a Lagrange multiplier
or mortar ;nite element space (see References [21–23] for the standard ;nite element and
Reference [24] for ;nite volume element formulation). Mortar mixed ;nite element methods
have been studied for elliptic problems in References [1, 2, 25] and for the Stokes problem
in Reference [26]. Optimal convergence is also shown for the case of a degenerate parabolic
equation arising in two phase 5ow in porous media [27]. Multiphysics applications can be
found in Reference [3].

The mortar ;nite element space Mhkl is de;ned on a rectangular grid Thkl on Nkl, where hkl

is associated with the size of the elements in Thkl . In this space we approximate the interface
pressures and concentrations, and impose weakly normal continuity of 5uxes.
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If the subdomain grids adjacent to Nkl match, we take Thkl to be the trace of the subdomain
grids and de;ne the matching mortar space by

Mm
hkl = {�: �|e = � : �∈R; for all e∈Thkl}:

If the grids adjacent to Nkl are non-matching, the interface grid need not match either of
them. A mild condition on Thkl to guarantee solvability and accuracy of the numerical scheme
must be imposed (see Remark 3.3). We de;ne our non-matching mortar space on an element
e∈Thkl by

Mn
h (e)= {�$1$2 + �$1 + %$2 + & : �; �; %; &∈R}

where $l are the co-ordinate variables on e. Then, for each Nkl, we give two possibilities for
the non-matching mortar space, a discontinuous and a continuous version, as

Mn;d
hkl

= {�: �|e ∈Mn
h (e) for all e∈Thkl}

Mn;c
hkl

= {�: �|e ∈Mn
h (e) for all e∈Thkl ; � is continuous on Nkl}:

We denote by Mhkl any choice of Mn;d
hkl

, Mn;c
hkl

, or Mm
hkl (on matching interfaces).

Remark 3:1
The usual piecewise constant Lagrange multiplier space for RT0 leads to only O(1) approxi-
mation on the interfaces in the case of non-matching grids. With the above choice for mortar
space, optimal convergence and, in some cases, superconvergence is recovered for both pres-
sure and velocity (see References [1, 2] for single phase 5ow and Reference [27] for two-phase
5ow).

We employ a variant of the mixed ;nite element method, the expanded mixed method. It
has been developed for accurate and eCcient treatment of irregular domains (see References
[28, 29] for single block and References [1, 25] for multiblock domains). In the context of
multiphase 5ow this method allows for proper treatment of the degeneracies in the di:usion
term (see Remark 3.2).

Following Reference [28], let, for �=w; o; g,

Ũ� =−∇P�:

Then

U� =
k�(S�)K

��
�(Ũ� + �g∇D)

Let 0= t0¡t1¡t2¡ · · ·, let Wtn = tn − tn−1, and let fn =f(tn). We ;rst state the backward
Euler multiblock expanded mixed ;nite element approximation of the subdomain equations.
Let 16k¡l6nb and n=1; 2; 3 : : : : Denoting +� =K=�� for single-phase, +� = k�K=�� for two-
phase, and +� = k�K=B��� for black oil, we solve for Un

h; i|Lk ∈Vhk , Ũn
h; �|Lk ∈ Ṽhk , Pn

h; �|Lk ∈Whk ,
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and Nn
h; i|Lk ∈Whk satisfying

∫
Lk

(	Nh; i)n − (	Nh; i)n−1

Wtn
w dx +

∫
Lk

∇ ·Un
h; iw dx=

∫
Lk

qi w dx; w∈Whk (14)

∫
Lk

Ũn
h; � · v dx=

∫
Lk

Pn
h; �∇ · v dx −

∫
@Lk\@L

PM;n
h; � v · �k d,; v∈Vhk (15)

∫
Lk

Un
h; i · ṽ dx=

∫
Lk

+n
�

n
� (Ũ

n
h; � + n

� g∇D) · ṽ dx; ṽ∈ Ṽhk (16)

∫
Lk

Un
h;G · ṽ dx=

∫
Lk

+n
g

n
g(Ũ

n
h; g + n

gg∇D) · ṽ dx

+
∫
Lk

Rs+n
o

n
o(Ũ

n
h; o + n

og∇D) · ṽ dx; ṽ∈ Ṽhk : (17)

Equations (14)–(16) hold for �=w and i=W on a single-phase block, for �=w; o and
i=W;O on a two-phase block, and for �=w; o; g and i=W;O;G on a black-oil block,
except for (16) which does not hold for gas. Equation (17) should be used in this case
instead. The phase pressures on the interface are approximated by the mortar ;nite element
variables PM;n

h; � |Nkl ∈Mhkl . Finally, the 5ux continuity is imposed weakly∫
Nkl

[Un
h; i · �]kl � d,=0; �∈Mhkl (18)

where i=W on N1; i=W;O on N2, and i=W;O;G on N3.

Remark 3:2
Introducing the pressure gradients Ũ� in the expanded mixed method allows for proper han-
dling of the degenerate (for S� =0) relative permeability k�(S�) in (15)–(16). It also allows,
even for a full permeability tensor K , to accurately approximate the mixed method on each
subdomain by cell-centred ;nite di:erences for Ni and P�. This is achieved by approximating
the vector integrals in (6) and (11) by a trapezoidal quadrature rule and eliminating Ũh; � and
Uh; i from the system [28, 29]. Relationships (6) and (11) allow for further eliminations and
the number of primary variables is reduced to the number of phases. In our case the choices
are Pw for single-phase, Po and NO for two-phase, and Pw; NO, and NG for black-oil.

Remark 3:3
A necessary condition for solvability of the scheme is that, for any ’∈Mhkl ,

Qh; k’=Qh; l’=0⇒’=0 (19)

where Qh; k is the L2-projection onto Vhk ·�k . This condition requires that the mortar grid
is not too ;ne compared to the subdomain grids and is easily satis;ed in practice (see
References [1, 2] for details).
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4. SOLUTION OF THE ALGEBRAIC SYSTEM

To solve the discrete system (14)–(18) on each time step, we reduce it to an interface
problem in the mortar space. This approach is based on a domain decomposition algorithm
for single phase 5ow developed originally for conforming grids [5], and later generalized to
non-matching grids coupled with mortars [1]. The core step in this algorithm is solving in
parallel a series of subdomain problems with speci;ed Dirichlet boundary conditions.

4.1. Reduction to an interface problem

Let

M1
h =

⊕
Nkl∈N1

Mhkl ; M2
h =

⊕
Nkl∈N2

Mhkl ×Mhkl ; M3
h =

⊕
Nkl∈N3

Mhkl ×Mhkl ×Mhkl

be the mortar ;nite element spaces on N1; N2, and N3, respectively. We de;ne non-linear
interface bivariate forms bj :Mj

h ×Mj
h →R on Nj (j=1; 2; 3) as follows. For  j ∈Mj

h and
�j ∈Mj

h let

bj( j; �j)=
∑

Nkl∈Nj

∫
Nkl

[Uj( j) · �]kl ·�jd,

where Uj( j) are solutions to the series of subdomain problems (14)–(17) with boundary
data PM

� ( j). Here and for the rest of the paper we omit for simplicity the time step and the
discretization indexes. To be more precise, on N1 we take

 1 =PM
w ; U1 =UW:

On N2 we have the following choices for interface primary variables and corresponding 5uxes:

 2;U2 =




(PM
o ; PM

w ); (UO;UW)

(PM
o ; NM

O ); (UO;UW)

(PM
w ; NM

O ); (UW;UO):

Note that the missing pressure in each of the last two choices can be determined by the
capillary pressure relationship (6) and the interface form b2(·; ·) is well de;ned. The ;rst
choice seems to be the natural one. The second one is considered due to its better properties
in degenerate conditions (see Section 4.4 below). The third one is the only possible choice
on a two-phase – black-oil interface, since black-oil phase equilibrium calculations must be
performed on the interface. For the same reason the only choice on N3 is

 3 = (PM
w ; NM

O ; NM
G ); U3 = (UW;UO;UG):

We note that di:erent orders of 5uxes could be chosen on N2 or N3, but this would unnec-
essarily increase the non-linearity of the interface operator.
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Let

Mh =M1
h ×M2

h ×M3
h

denote the mortar space on N=N1 ∪N2 ∪N3. We de;ne b :Mh ×Mh →R on N for  =( 1;  2;
 3) and �=(�1; �2; �3) such that

b( ; �)= b1( 1; �1) + b2( 2; �2) + b3( 3; �3):

We now de;ne a non-linear interface operator B :Mh →Mh by

〈B ; �〉= b( ; �); ∀�∈Mh

where 〈·; ·〉 is the L2-inner product in Mh. It is easy to see that

(P�( ); Ni( );Ui( ); PM
� ( ))

is the solution to (14)–(18), where  ∈Mh solves

B( )=0: (20)

The operator B is a Dirichlet to Neumann operator

B :D→N

where D is the set of primary mortar variables and N is the set of corresponding boundary
5uxes.

4.2. Cost of the interface operator evaluation

The non-linear iterative solvers for (20) described in the next section require evaluation of
the interface operator at each iteration. Here is the algorithm for evaluating B( ).

Algorithm 1. feval( )

1. Project (orthogonally) mortar data onto the subdomain grids

PM
� ( )

Qk−→ RP�; k :

2. Solve in parallel subdomain problems (14)–(17) with boundary conditions RP�; k to com-
pute Ui; k on each Lk .

3. Project boundary 5uxes back to the mortar space

Ui; k · �k QT
k−→UM

i; k :

4. Compute 5ux jump in the mortar space. On each Nkl

[UM
i ]kl =UM

i; k +U
M
i; l :

The evaluation of B involves solving subdomain problems in parallel and two inexpensive
projection steps — from the mortar grid onto the local subdomain grids and from the local
grids onto the mortar grid. The subdomain problems are also non-linear and are solved by
a preconditioned Newton–Krylov solver [30–32].
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4.3. Iterative solution of the interface problem

We discuss two methods for the solution of (20): an inexact Newton-GMRES method and
a FAS mortar multigrid with Newton-GMRES smoothing.

4.3.1. Newton-GMRES solver. The inexact Newton step sk in

 (k+1) =  (k) + sk

is computed by a forward di:erence GMRES iteration for solving B′( (k))sk =−B( (k)). On
each GMRES iteration the action of the Jacobian B′( ) on a vector � is approximated by the
forward di:erence

D&B( :�)=
B( + &�)− B( )

&
:

The inexact Newton-GMRES algorithm is described in Reference [15]. We present here
for completeness the forward di:erence GMRES iteration for approximating the solution to
B′( )s=−B( ).

Algorithm 2. fdgmres(s;  ; B; &; 5; k max; )

1. s=0; r=−B( ); v1 = r=‖r‖2; = ‖r‖2; �=; k =0
2. While ¿5 and k¡k max do

(a) k = k + 1
(b) vk+1 =D&B( : vk)
(c) for j=1; : : : k

hjk =(vj; vk+1)
vk+1 = vk+1 − hjkvj

(d) hk+1; k = ‖vk+1‖2
(e) vk+1 = vk+1=‖vk+1‖2
(f) e1 = (1; 0; : : : ; 0)T ∈Rk+1

Find yk ∈Rk that solves minRk ‖�e1 −Hkyk‖Rk+1

(g) = ‖�e1 −Hkyk‖Rk+1

3. s=Vkyk .

Remark 4:1
The cost of the most expensive GMRES step

vk+1 =D&B( : vk) (21)

can be substantially reduced if the latest subdomain solution is used as an initial guess. Since
only the boundary data is O(&) perturbed, the subdomain solves typically converge in one
non-linear iteration.

4.3.2. FAS mortar multigrid V-cycle. Multigrid methods for mortar ;nite element discretiza-
tions of linear elliptic problems have been studied recently [33, 34, 8]. Our approach is based
on the one presented in Reference [8]. In its non-linear version it uses the Newton-GMRES
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algorithm from the previous section as a smoother. We de;ne a sequence of nested mortar
spaces

M1 ⊂M2 ⊂ · · ·⊂MJ =M:

Each space Mj; 16j6J , is associated with a mortar grid TN
hj and an interface operator

Bj :Mj →Mj as de;ned in Section 4.1. The intergrid transfer operators are de;ned as follows.
Coarse to fine Ij :Mj−1 →Mj;

Ij�j−1 =�j−1; �j−1 ∈Mj−1:

Note that Ij is the identity operator on Mj−1.
Fine to coarse Qj−1 :Mj →Mj−1;

〈Qj−1 j; �j−1〉= 〈 j;Ij�j−1〉;  j ∈Mj; �j−1 ∈Mj−1:

Note that Qj−1 is the orthogonal projection onto Mj−1 and the transpose of Ij.
The FAS multigrid V-cycle is de;ned as an iterative process for solving B( )= r:

 (n+1) =MG( (n); r)

where MG=MGJ is the multigrid operator de;ned recursively.

Algorithm 3. MGj(gj; rj) (16j6J )

1. (initialization)  (0)
j = gj.

2. (pre-smoothing)  (1)
j =  (0)

j + sm( 
(0)
j ); where sm( 

(0)
j ) is the m-th GMRES

iterate for solving B′
j ( 

(0)
j )s= rj − Bj( 

(0)
j ):

3. (coarse grid correction) If j¿1 then
(a) Initialize level j − 1:  (0)

j−1 =Qj−1( 
(1)
j )

(b) Project residual: rj−1 =Bj−1( 
(0)
j−1) + Qj−1(rj − Bj( 

(1)
j ))

(c) Correct:  (2)
j =  (1)

j +Ij[MGj−1( 
(0)
j−1; rj−1)−  (0)

j−1]
4. (post-smoothing)  (3)

j =  (2)
j + sm( 

(2)
j )

MGj(gj; rj)=  (3)
j .

Note that the smoothing step in Algorithm 3 is equivalent to taking an inexact Newton-
GMRES step for solving Bj( j)= rj.

4.4. Properties of the interface operator

It is well known [35] that the Newton convergence depends on the invertibility of the Jacobian
matrix. Let us consider the operator on N2 and denote by ( 1;  2) and (U1;U2) the pairs of
primary mortar variables and resulting 5ux jumps, respectively. The Jacobian matrix has the
2× 2 block structure

B′ =


 9U1

9 1

9U1
9 2

9U2
9 1

9U2
9 2


 :

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:551–570



562 I. YOTOV

Since the 5ux of a given phase depends more strongly on this phase pressure, we take  1

and U1 to be the pressure and the 5ux of same phase. For the three primary mortar choices
we then have the interface operators

B :

(PM
o ; PM

w )→ (UM
O ;UM

W)

(PM
o ; NM

O )→ (UM
O ;UM

W)

(PM
w ; NM

O )→ (UM
W ;UM

O )

The ;rst choice leads to the simplest interface operator since it can be viewed as a composite
of two single phase Poincare–Steklov maps. Indeed, in this case the Jacobian matrix can be
reasonably well approximated by its block-diagonal

B′(PM
o ; PM

w )=




9UM
O

9PM
o

9UM
O

9PM
w

9UM
W

9PM
o

9UM
W

9PM
w


∼




9UM
O

9PM
o

0

0 9UM
W

9PM
w


 :

This mapping, however, becomes degenerate when the relative permeability k�(S�) of one of
the phases is zero on the interface. For example, if kw =0, then UM

W =0 independently of
the phase pressures PM

� and the second row of the Jacobian matrix becomes zero. Note that
the second choice ( 1;  2)= (PM

o ; NM
O ) leads to a non-degenerate operator in this case, since

9UM
w =9NM

O is non-zero. The map is, however, degenerate if ko = 0. In Section 4.5 we discuss
a careful construction of a preconditioner for the Jacobian matrix that handles the degeneracies
in each case.

4.5. Interface GMRES preconditioner

A well known drawback of GMRES is that it may converge very slowly if not preconditioned.
This may result in either a very expensive or a very inexact Newton step. To remedy this we
consider a left preconditioned GMRES which is based on solving

M−1B′( )s=−M−1B( )

where M is an easily invertible approximation to B′( ). The GMRES step (21) now becomes

vk+1 =M−1D&B( : vk): (22)

Remark 4:2
The preconditioned GMRES is consistent with the underlying physical interpretation of the
interface operator B while the unpreconditioned GMRES is not. Recall that B :  →U is
a Dirichlet to Neumann operator. Therefore in (21) the two consecutive Krylov vectors vk and
vk+1 have di:erent physical meanings. This inconsistency is corrected by the preconditioner,
since

M−1 :U→  

and

M−1D&B( : vk) :  →  :

Therefore the preconditioned GMRES builds a Krylov basis for the Dirichlet space  .
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4.5.1. A Neumann–Neumann preconditioner. We write the interface operator B and the ap-
proximation to its derivative D&B as sums of local subdomain Dirichlet to Neumann operators

B=
nb∑
k
Bk ; D&B=

nb∑
k
D&Bk

where Bk (D&Bk) involves a subdomain solve on Lk with a prescribed Dirichlet boundary
data. The Neumann–Neumann preconditioner M−1 is de;ned as a sum of (possibly inexact)
local Neumann solves (see Reference [36]):

M−1 =
nb∑
k

[D&Bk
−1

where [D&Bk
−1 is an approximation to (D&Bk)−1. To de;ne [D&Bk

−1 we consider the ;nite
di:erence approximation of the discrete Darcy’s law (15)–(17) and assume that the e:ect of
the boundary pressure is local to the neighbouring cell:

B̂i; k(PM
� )≡ Ûi; k · �k(PM

� )

= +�; k�; k

(
P�; k − PM

�

hk=2
+ �; kg∇D

)
; �=w; o; i=W;O (23)

B̂G; k(PM
g ; PM

o )≡ ÛG; k · �k(PM
g ; PM

o )= +g; kg; k

(
Pg; k − PM

g

hk=2
+ g; kg∇D

)

+Rs+o; ko; k

(
Po; k − PM

o

hk=2
+ o; kg∇D

)
(24)

where +� is de;ned in (16) and P�; k is the pressure in the cell next to the interface. This leads
to approximations

[D&Bi; k(PM
� : sP�)=

B̂i; k(PM
� + &sP�)− B̂i; k(PM

� )
&

=−2
+�; k�; k

hk
sP� ≡��; ksP� (25)

and

[D&BG; k(PM
g ; PM

o : sPo ; sPg )=−2
+g; kg; k

hk
sPg − 2Rs

+o; ko; k

hk
sPo ≡�g; k sPg + Rs�o; k sPo : (26)

4.5.2. A preconditioner for D&B :PM
w →UM

W. In this case (25) gives, for a mortar 5ux vM
W ,

M−1(vM
W)=

nb∑
k

1
�w; k

vM
W ≡ 1

�w
vM
W

which is just a diagonal scaling.
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4.5.3. A preconditioner for D&B : (PM
o ; PM

w )→ (UM
O ;UM

W). As a ;rst step the Jacobian matrix
B′

k(P
M
w ; PM

n ) is approximated by its block-diagonal

B′
k(P

M
o ; PM

w )=




9UM
O; k

9PM
o

9UM
O; k

9PM
w

9UM
W; k

9PM
o

9UM
W; k

9PM
w


 ∼


 9UM

O; k

9PM
o

0

0 9UM
W; k

9PM
w


 :

The preconditioner M−1 is now de;ned from (25) for a given mortar 5ux (vM
O ; vM

W)

M−1

(
vM
O

vM
W

)
=

nb∑
k

( 1
�o; k

0

0 1
�w; k

)(
vM
O

vM
W

)
≡
(

1=�o 0

0 1=�w

)(
vM
O

vM
W

)
:

In the above derivation we assumed that the phase mobilities +� are non-zero. In the degenerate
cases we need to modify the de;nition of the preconditioner. Let us consider the case +w =0
(the case +o = 0 is treated similarly). In this case we set

M−1

(
vM
O

vM
W

)
=

(
1=�o 0

1=�o 1

)(
vM
O

vM
W

)
=

(
vM
O =�o

vM
O =�o

)

since vM
W =0, forcing the change in PM

o and PM
w to be the same. The capillary pressure relation

(6) implies that SM
w would not change which is consistent with the physical behaviour.

4.5.4. A preconditioner for D&B : (PM
o ; NM

O )→ (UM
O ;UM

W). Following the derivation in the pre-
vious case and using (25) we have

[D&Bk(PM
o ; NM

O : sPo ; sNO)=

(
�o; k sPo

�w; k sPw(sPo ; sNO)

)
:

To express sPw as a function of (sPo ; sNO). we must use the capillary pressure (6). Inverting this
non-linear function would lead to a non-linear preconditioner so we use instead a linear ;t

Rpc(NO)= aNO + b

where a and b are determined using (6). We now have

PM
w + sPw =PM

o + sPo − Rpc(N
M
O + sNO)

leading to

sPw = sPo − asNO

and

[D&Bk(PM
o ; NM

O : sPo ; sNO)=

(
�o; k 0

�w; k −a�w; k

)(
sPo

sNO

)
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We now de;ne M−1 for a given mortar 5ux (vM
O ; vM

W)

M−1

(
vM
O

vM
W

)
=

nb∑
k

(
1=�o; k 0

1=(a�o; k) −1=(a�w; k)

)(
vM
O

vM
W

)

=

(
1=�o 0

1=(a�o) −1=(a�w)

)(
vM
O

vM
W

)

which is well de;ned for non-zero mobilities +�. If +w =0 we set

M−1

(
vM
O

vM
W

)
=

(
1=�o 0

0 1

)(
vM
O

vM
W

)
=

(
vM
O =�o

0

)
:

If +o = 0 we set

M−1

(
vM
O

vM
W

)
=

(
0 1=�w

1 0

)(
vM
O

vM
W

)
=

(
vM
W =�w

0

)
:

Both cases force the correct change in PM
o and no change in NM

O .

4.5.5. A preconditioner for D&B : (PM
w ; NM

O )→ (UM
W ;UM

O ). Similarly to the previous section we
have in the non-degenerate case

M−1

(
vM
W

vM
O

)
=

(
1=�w 0

−1=(a�w) 1=(a�o)

)(
vM
W

vM
O

)
:

If +o = 0 we set

M−1

(
vM
W

vM
O

)
=

(
1=�w 0

0 1

)(
vM
W

vM
O

)
=

(
vM
W =�w

0

)
:

If +w =0 we set

M−1

(
vM
W

vM
O

)
=

(
0 1=�o

1 0

)(
vM
W

vM
O

)
=

(
vM
O =�o

0

)
:

Again the correct change in PM
w and no change in NM

O is forced.

Remark 4:3
In all of the cases considered above the computational cost for the preconditioner is negligible.
It involves either diagonal scaling or trivial local multiplication by a 2× 2 matrix.
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Figure 1. Numerical grids and initial 5uid distribution.

4.5.6. A preconditioner for D&B : (PM
w ; NM

O ; NG
O )→ (UM

W ;UM
O ;UM

G ). Following the derivation in
the previous cases, and using (25) and (26) we arrive at

[D&Bk(PM
w ; NM

O ; NM
G : sPw ; sNO ; sNG)=




�w; k sPw

�o; k sPo

�g; k sPg + Rs�o; k sPo


 :

We express sPo = sPo (sPw ; sNO ; sNG) and sPg = sPg (sPw ; sNO ; sNG) using a linearized version of (11).
We do not give details.

5. COMPUTATIONAL RESULTS

In this section we present multiphysics simulations illustrating the eCciency of the non-
linear interface solvers described in the previous section. We consider a three-block dipping
reservoir. The initial hydrostatic 5uid distribution is given in Figure 1. Due to gravity only
water (the darker shade) is present below the water–oil contact. Gas phase is only present
at the top above a speci;ed gas–oil contact. A production well is placed near the top and
several water-injection wells are placed near the bottom to maintain pressure (see Figure 2).
The simulation is performed using single-phase (water) model in the bottom block, a two-
phase (oil and water) model in the middle block and a black-oil (oil, water, and gas) model
in the top block. The interface primary variables are PM

w on the ;rst interface and (PM
w ; NM

O )
on the second interface. The reader is referred to Reference [3] for a more detailed physical
description of the problem.

In all examples the non-linear interface residuals are measured in the l2 vector norm scaled
by 1=

√
N , where N is the number of interface variables. The scaling guarantees that the norm

of a constant interface function is independent of the mortar grid. The non-linear interface
iteration is terminated when the residual norm becomes smaller than 10−4.
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Figure 2. Water pressure contours.

Table I. FAS multigrid performance on a ;xed grid.

mg levels Smoothings V -cycles Avg. resid. reduction

2 1 6 0.141
3 1 5 0.092
4 1 5 0.093

2 3 3 0.0064
3 3 3 0.006
4 3 3 0.006

We ;rst study the performance of the interface multigrid. The numerical grids are 5× 15× 6
in the bottom block, 14× 20× 6 in the middle block, and 10× 11× 10 in the top block.
Discontinuous piecewise linear mortars on 4× 10 and 4× 5 grids are used to couple the
subdomains. In Table I we report the number of V-cycles and the average residual reduction on
a typical time step for various choices of multigrid levels and number of smoothings. We note
that for a ;xed number of smoothings both the number of V -cycles and the residual reduction
are very weakly dependent on the number of multigrid levels. To assess the scalability of
the algorithm we also ran the simulation on three additional grids — a coarsening and two
levels of re;nement of the above grid by a factor of two in each direction (thus increasing
the number of degrees of freedom by a factor of eight on each level). The results for three
smoothings are given in Table II. The mild dependence of the number of V-cycles and the
residual reduction on the size of the problem indicates very good scalability.

In the next study we run the above simulation using the Newton-GMRES interface solver.
In particular we are interested in the e:ect of the GMRES preconditioner on the linear and
non-linear convergence. As can be seen in Figure 3 the GMRES preconditioner improves
signi;cantly the linear convergence. As a result the desired relative linear tolerance 0:01 is
achieved within the prescribed number of GMRES iterations (10 in this case), which is not the
case for the unpreconditioned version. We recall that the cost for applying the preconditioner
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Table II. FAS multigrid performance on a sequence of re;ned grids.

Re;nement Subdomain Mortar mg V -cycles Avg. resid.
level DOF DOF levels reduction

1 936 88 2 2 0.005
2 7110 320 3 3 0.006
3 56880 1280 4 4 0.018
4 455040 5120 5 4 0.031

Figure 3. E:ect of preconditioner on interface GMRES convergence.

Figure 4. E:ect of preconditioner on interface Newton convergence.

is negligible, since it involves either a diagonal scaling or a block-diagonal scaling with 2× 2
blocks. The more accurate Newton steps taken with the preconditioned GMRES lead to a
much faster (superlinear) interface Newton convergence (see the left plot in Figure 4). We
note that the linear solver cost per Newton iteration in both runs is the same, so the overall
computational cost is directly proportional to the number of Newton iterations. This is due to
the fact that the linear tolerance is set low enough so that the imposed limit of 10 GMRES
iterations is always reached.
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Finally, we study the scalability of the preconditioned Newton-GMRES solver by running
the simulation on a grid re;ned by two in each direction. The right plot in Figure 4 shows
only a slight dependence of the Newton convergence on the size of the problem. Here, as in
the left plot, the number of linear iterations per Newton step in both runs equals 10.

6. CONCLUSIONS

We present two methods for solving the non-linear interface algebraic system that arises in the
discretization of multiblock multiphysics problems: an inexact Newton-GMRES method and
a FAS multigrid V -cycle with Newton-GMRES smoothing. As indicated by the numerical
experiments, both algorithms exhibit a very mild dependence of the number of non-linear
iterations on the problem size and, in the multigrid case, on the number of grid levels.
The overall eCciency strongly depends on the behaviour of the GMRES solver. A Neumann–
Neumann preconditioner is constructed that accelerates substantially the GMRES convergence.
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