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Abstract In this paper, we develop a new mixed finite element method for elliptic
problems on general quadrilateral and hexahedral grids that reduces to a cell-centered
finite difference scheme. A special non-symmetric quadrature rule is employed that
yields a positive definite cell-centered system for the pressure by eliminating local
velocities. The method is shown to be accurate on highly distorted rough quadrilat-
eral and hexahedral grids, including hexahedra with non-planar faces. Theoretical and
numerical results indicate first-order convergence for the pressure and face fluxes.
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1 Introduction

Single phase incompressible flow in porous media is governed by coupled Darcy’s
law and continuity equation:

u = −K∇ p, (1.1)

∇ · u = f, (1.2)
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166 M. Wheeler et al.

where p is the pressure, u is the velocity, K represents the rock permeability divided
by fluid kinematic viscosity, and f is the source term. In [33,51], a special mixed finite
element (MFE) method called the multipoint flux mixed finite element (MFMFE) has
been developed for elliptic problems (1.1)–(1.2). This method reduces to a cell-cen-
tered finite difference scheme for the scalar variable and is accurate for discontinuous
full tensor coefficients on h2-perturbed parallelograms, simplicial grids, and h2-per-
turbed parallelepipeds. Cell-centered discretizations are very efficient and widely used
for modeling complex multiphase multicomponent fluid flows in porous media, since
multiscale spatial variability of the material properties often necessitate millions of
cells for accurate approximations. The goal of this paper is to develop a new MFMFE
method that is accurate on general quadrilaterals and hexahedra such as shown in Fig. 1.
This is a typical grid encountered in geological models. Furthermore, hexahedral grids
can represent highly irregular geometries with significantly reduced number of ele-
ments compared to tetrahedral grids. This is especially important in computationally
intensive applications such as carbon sequestration in saline aquifers.

MFE methods [14,15,20,22,40,41,45] are well suited to discretize this coupled
system, as they provide accurate and locally mass conservative velocities and can
accurately treat discontinuous full tensor coefficients. A standard formulation of MFE
yields a saddle point system and requires solving pressure and velocity simultaneously.
Another approach, the hybrid MFE formulation [12,16], reduces the discrete prob-
lem to a symmetric positive definite system for the pressure Lagrange multipliers on
element faces. In addition, efficient formulations that reduce to cell-centered pressure
schemes have also been developed. These apply appropriate MFE spaces and numeri-
cal quadrature rules for the velocity mass term. Examples include [42,48] for diagonal
permeability on rectangular grids based on the lowest order Raviart–Thomas MFE
method [41] and the expanded mixed finite element (EMFE) method for smooth full
tensor permeability on rectangular and cuboid grids [8] and smooth curvilinear grids
[7]. In the case of discontinuous permeability, EMFE loses accuracy unless the pressure
Lagrange multipliers are introduced along discontinuous interfaces [7]. The MFMFE

Fig. 1 General hexahedral mesh
for a geological computational
domain with layers and faults

123



MFMFE on distorted quadrilaterals and hexahedra 167

method [33,51] has been designed to be a cell-centered pressure scheme that is accu-
rate for both smooth and discontinuous full tensor permeability, but unfortunately it
is not accurate on general hexahedral grids.

The velocity finite element spaces in the above mentioned MFE methods on quadri-
lateral and hexahedral meshes are defined via a mapping from the reference rectangle
or cube using the Piola transformation [38,45]. This transformation preserves nor-
mal components of vectors and leads to continuous normal flux approximations on
the physical grid. Optimal order velocity convergence in the L2-norm on quadrilater-
als has been established for the Raviart–Thomas (RT) spaces [41,45] in [11,45,47].
However, approximation accuracy for the divergence of the velocity as well as for
the L2-norm of the velocity in other MFE spaces may be reduced due to failure of
the classical scaling arguments [11]. On hexahedra, the deterioration of accuracy is
even more severe due the fact that the constant vector is not contained in the velocity
space [39,43]. Optimal approximation and superconvergence properties in some MFE
methods can be obtained under a grid restrictions to h2-perturbed parallelograms or
parallelepipeds [27,33,51]. Efforts have been made to define accurate MFE methods
on highly distorted elements; proposed developments include [10,11,29,44] where
new families of quadrilateral finite element spaces and lowest order hexahedral finite
element spaces are obtained by enriching the classical Raviart–Thomas finite element
spaces. Other approaches employ composite-element techniques, see [36,43]. All of
these methods require solving saddle point problems in their standard forms.

The multipoint flux approximation (MPFA) method [3,4,24,23] has gained signif-
icant popularity since it combines the advantages of the above mentioned methods: it
is accurate for rough grids and rough full tensor coefficients, and reduces to a cell-cen-
tered pressure scheme. On quadrilaterals and hexahedra the method can be formulated
either on the physical space or on the reference space, leading to a a non-symmetric
or symmetric scheme, respectively [3]. The method was originally developed as a
non-variational finite volume method. However, the convergence analysis was per-
formed by formulating it as a MFE method with appropriate finite element spaces and
numerical quadrature rules for the local velocity elimination. In the case of quadrilat-
erals, this was done in [34,35] using a broken Raviart–Thomas space and in [51] using
the lowest order Brezzi–Douglas–Marini (BDM1) space. The latter work develops the
MFMFE method, which is also formulated and analyzed on simplicial elements in two
and three dimensions and is closely related to the MPFA method. In [33], this scheme
was extended to hexahedral elements by introduction of enhanced BDDF1 spaces. The
methods in [33,34,51] use symmetric quadrature rules and are related and in some
cases [1,34] equivalent to the reference space MPFA method. They were shown to
be accurate on h2-perturbed parallelograms and h2-perturbed parallelepipeds. Similar
approach has been developed on simplicial elements in [17]. The method analyzed
in [35] uses a non-symmetric quadrature rule and is first order accurate on general
quadrilaterals. It is shown to be equivalent to the physical space MPFA method.

In this paper we develop a new non-symmetric MFMFE method that is first order
accurate on general quadrilaterals and hexahedra. As in the symmetric MFMFE
method [33,50,51], we employ the lowest order BDM1 or enhanced BDDF1 spaces.
A non-symmetric quadrature rule is introduced for the velocity mass matrix that allows
for local velocity elimination and reduces the method to a cell-centered pressure
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system. Unlike its symmetric variant, the quadrature rule satisfies certain critical prop-
erties on the physical elements, which are key ingredients in the analysis. The method
is equivalent to the symmetric MFMFE method on cuboids and rectangles.

The quadrature rule is similar to the one proposed in [35] for quadrilateral grids.
However, the analysis in [35] does not extend to three dimensions, as it relies on the
approximation property of the RT0 velocity space, which is lost on general hexahe-
dral elements. For the same reason the analysis of the symmetric MFMFE method
in [33,51] cannot be extended to general hexahedra. Motivated by the fact that the
Piola transformation provides accurate interpolation of normal velocities on faces of
physical elements, we employ techniques from the analysis of mimetic finite differ-
ence (MFD) methods [18,37]. In particular, we first establish O(h) convergence for
‖�u − uh‖ (Theorem 3.1), where � is the enhanced BDDF1 mixed finite element
interpolant, using critical properties on the non-symmetric quadrature (Lemmas 2.2
and 2.4) and various bounds on general hexahedra (Lemmas 3.7, 3.8, and 3.10). Next,
we observe that � preserves the normal component of constant vectors on hexahedra
(Lemma 3.11) and linear vectors on quadrilaterals (Lemma 3.12). A key property here
is that the Piola image of a constant vector on a physical element has a linear normal
component in the reference element, which belongs to the BDDF1 space. We note that
such property does not hold for the RT0 interpolant, which has a constant normal com-
ponent on the reference element. This allows us to establish first order approximation
of the enhanced BDDF1 interpolant in a face-based L2-norm ‖u − �u‖Fh (Lemma
3.14), which gives first order accuracy for ‖u − uh‖Fh (Theorem 3.2). Finally, the
pressure error estimate (Theorem 4.3) uses the critical properties on the non-symmet-
ric quadrature rule as well as an inf–sup condition Lemma 4.15.

Our analysis applies to hexahedra with non-planar faces and it is confirmed by
the numerical experiments. Existing methods with pressure and velocity degrees of
freedom similar to our method, such as MFD methods [18], composite RT0 methods
[36,43], or finite volume methods [28], are limited to planar faces or require extra
tangential velocity degrees of freedom to handle non-planar faces [19].

As in the non-symmetric MPFA method on quadrilaterals [35] or the non-symmetric
local flux MFD method on polyhedra [37], a coercivity condition needs to be satisfied
for the well-posedness of the non-symmetric MFMFE method. The condition is similar
to the ones from [35,37] and depends on the element distortion and permeability anisot-
ropy. In our numerical examples we investigate these effects, although we emphasize
the convergence of the method. We also compare the behavior of the non-symmetric
MFMFE method to the symmetric version of the method, which is unconditionally
positive definite. As expected, the non-symmetric method converges on rough grids,
where the convergence of the symmetric method deteriorates. However, for some
highly anisotropic problems, the non-symmetric method loses coercivity, while the
symmetric method still works. Therefore one or the other method may be preferable,
depending on the properties of the grids and the permeability coefficient. This choice
can be made element by element. We refer the reader to [2,5,25,26] for more com-
prehensive studies of the grid aspect ratio and anisotropy effects on the monotonicity
and coercivity of the closely related MPFA method, where modified methods with
improved robustness have been developed. Furthermore, grid smoothing techniques
(Gridpro, http://www.gridpro.com/) or a posteriori error estimation and adaptive grid
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MFMFE on distorted quadrilaterals and hexahedra 169

refinement [46] could be employed to improve the robustness of the MFMFE method
and the solution quality.

The rest of the paper is organized as follows. In Sect. 2, the non-symmetric MFMFE
method is developed. In Sects. 3 and 4, the error analysis for the velocity and pressure,
respectively, is presented. In Sect. 5, numerical examples demonstrate the superior
convergence properties of the non-symmetric MFMFE method compared to the sym-
metric MFMFE method [33,51]. Conclusions are given in Sect. 6.

Throughout the paper we use the notation X � (�) Y to denote that there exists
a constant C , independent of the mesh size h, such that X ≤ (≥) CY . The notation
X � Y means that both X � Y and X � Y hold.

For a domain G ⊂ R
d , the L2(G) inner product and norm for scalar and vector

valued functions are denoted (·, ·)G and ‖ · ‖G , respectively. The norms and semi-
norms of the Sobolev spaces W k,p(G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and
| · |k,p,G , respectively. The norms and seminorms of the Hilbert spaces Hk(G) are
denoted by ‖ · ‖k,G and | · |k,G , respectively. We omit G in the subscript if G = �. For
a section of the domain, subdomain, or element boundary S ⊂ R

d−1 we write 〈·, ·〉S

and ‖ · ‖S for the L2(S) inner product (or duality pairing) and norm, respectively. For
a tensor-valued function M , let ‖M‖k,∞ = maxi, j ‖Mi j‖k,∞. Furthermore, let

H(div; G) =
{

v ∈ (L2(G))d : ∇ · v ∈ L2(G)
}

,

‖v‖div;G =
(
‖v‖2

G + ‖∇ · v‖2
G

)1/2
.

2 Definition of the method

We consider the system (1.1)–(1.2) in a domain � ⊂ R
d , d = 2, 3 with Lipschitz

continuous boundary. For simplicity we assume homogeneous Dirichlet boundary
conditions

p = 0 on ∂�,

although more general boundary conditions can also be treated. We assume that K is a
symmetric and uniformly positive definite tensor with L∞(�) components satisfying,
for some 0 < k0 ≤ k1 < ∞,

k0ξ
T ξ ≤ ξ T K (x)ξ ≤ k1ξ

T ξ, ∀x ∈ �, and ∀ξ ∈ R
d . (2.1)

2.1 Finite element mappings

Let Th be a conforming, shape-regular, quasi-uniform partition of � [21]. The elements
considered are quadrilaterals and hexahedra in two and three dimensions, respectively.
We assume that for any E ∈ Th there exists a bilinear (trilinear in 3D) bijection map-
ping FE : Ê → E , where Ê is the reference square (cube). Denote the Jacobian
matrix by DFE and let JE = det(DFE ). Assume that sign(JE ) > 0.
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170 M. Wheeler et al.

Denote the inverse mapping by F−1
E , its Jacobian matrix by DF−1

E , and let JF−1
E

=
det(DF−1

E ). We have that

DF−1
E (x) = (DFE )−1(x̂), JF−1

E
(x) = 1

JE (x̂)
.

In the case of hexahedra, Ê is the unit cube with vertices r̂1 = (0, 0, 0)T ,
r̂2 = (1, 0, 0)T , r̂3 = (1, 1, 0)T , r̂4 = (0, 1, 0)T , r̂5 = (0, 0, 1)T , r̂6 = (1, 0, 1)T ,
r̂7 = (1, 1, 1)T , r̂8 = (0, 1, 1)T . Denote by ri = (xi , yi , zi )

T , i = 1, . . . , 8, the eight
corresponding vertices of element E as shown in Fig. 2. We note that the element can
have non-planar faces. The outward unit normal vectors to the faces of E and Ê are
denoted by ni and n̂i , i = 1, . . . , 6, respectively. In this case FE is a trilinear mapping
given for x̂ = (x̂, ŷ, ẑ) ∈ Ê by

FE (x̂) = r1(1 − x̂)(1 − ŷ)(1 − ẑ) + r2 x̂(1 − ŷ)(1 − ẑ) + r3 x̂ ŷ(1 − ẑ)

+ r4(1 − x̂)ŷ(1 − ẑ) + r5(1 − x̂)(1 − ŷ)ẑ + r6 x̂(1 − ŷ)ẑ

+ r7 x̂ ŷ ẑ + r8(1 − x̂)ŷ ẑ

= r1 + r21 x̂ + r41 ŷ + r51 ẑ + (r34 − r21)x̂ ŷ + (r65 − r21)x̂ ẑ

+ (r85 − r41)ŷ ẑ + (r21 − r34 − r65 + r78)x̂ ŷ ẑ, (2.2)

where ri j = ri −r j . It is easy to see that each component of DFE is a bilinear function
of two space variables:

DFE (x̂) = [r21 + (r34 − r21)ŷ + (r65 − r21)ẑ + (r21 − r34 − r65 + r78)ŷ ẑ,

r41 + (r34 − r21)x̂ + (r85 − r41)ẑ + (r21 − r34 − r65 + r78)x̂ ẑ,

r51 + (r65 − r21)x̂ + (r85 − r41)ŷ + (r21 − r34 − r65 + r78)x̂ ŷ].
(2.3)

In the case of quadrilaterals, Ê is the unit square with vertices r̂1 = (0, 0)T ,
r̂2 = (1, 0)T , r̂3 = (1, 1)T , r̂4 = (0, 1)T . Let ri , i = 1, . . . , 4, be the corresponding
vertices of E . The bilinear mapping of quadrilaterals has the form, for x̂(x̂, ŷ) ∈ Ê ,

Fig. 2 Trilinear hexahedral mapping
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FE (x̂) = r1(1 − x̂)(1 − ŷ) + r2 x̂(1 − ŷ) + r3 x̂ ŷ + r4(1 − x̂)ŷ

= r1 + (r2 − r1)x̂ + (r4 − r1)ŷ + (r3 + r1 − r2 − r4)x̂ ŷ. (2.4)

The Jacobian matrix and its determinant are

DFE (x̂) = [r2 − r1 + (r3 + r1 − r2 − r4)ŷ, r4 − r1 + (r3 + r1 − r2 − r4)x̂], (2.5)

JE = 2|T1| + 2(|T2| − |T1|)x̂ + 2(|T4| − |T1|)ŷ, (2.6)

where |Ti | is the area of the triangle formed by the two edges sharing ri .
Using the above mapping definitions and the classical formula, for scalar φ(x) =

φ̂(x̂), ∇φ = (DF−1
E )T ∇̂φ̂, it is easy to see that, for any face or edge ei ⊂ E ,

ni = 1

Jei

JE (DF−1
E )T n̂i , Jei = |JE (DF−1

E )T n̂i |Rd , (2.7)

where | · |Rd is the Euclidean norm in R
d . Also, the shape regularity and quasiunifor-

mity of the grids imply that, for all E ∈ Th ,

‖DFE‖0,∞,Ê � h, ‖DF−1
E ‖0,∞,E � h−1,

‖JE‖0,∞,Ê � hd , ‖JF−1
E

‖0,∞,E � h−d .
(2.8)

2.2 Mixed finite element spaces

Let V̂(Ê) and Ŵ (Ê) be the finite element spaces on the reference element Ê . For
convenience, we use the same notation in two and three dimensions.

On the reference square, let V̂(Ê)×Ŵ (Ê) be the lowest order BDM1 finite element
space [15]:

V̂(Ê) = (P1(Ê))2 + r curl(x̂2 ŷ) + s curl(x̂ ŷ2),

Ŵ (Ê) = P0(Ê),
(2.9)

where r and s are real constants and (Pk)
d denotes the space of d-dimensional polyno-

mials of degree ≤ k. In the case of the unit cube, the space is defined by the enhanced
BDDF1 space [33]:

V̂(Ê) = BDDF1(Ê) + r2curl(0, 0, x̂2 ẑ)T + r3curl(0, 0, x̂2 ŷ ẑ)T

+ s2curl(x̂ ŷ2, 0, 0)T + s3curl(x̂ ŷ2 ẑ, 0, 0)T

+ t2curl(0, ŷ ẑ2, 0)T + t3curl(0, x̂ ŷ ẑ2, 0)T ,

Ŵ (Ê) = P0(Ê),

(2.10)

where the BDDF1 velocity spaces on the unit cube [14] is defined as
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BDDF1(Ê) = (P1(Ê))3 + r0curl(0, 0, x̂ ŷ ẑ)T + r1curl(0, 0, x̂ ŷ2)T

+s0curl(x̂ ŷ ẑ, 0, 0)T + s1curl(ŷ ẑ2, 0, 0)T

+t0curl(0, x̂ ŷ ẑ, 0)T + t1curl(0, x̂2 ẑ, 0)T . (2.11)

Here ri , si , ti , (i = 0, . . . , 3) are real constants. Note that in both cases

∇̂ · V̂(Ê) = Ŵ (Ê),

and that for all v̂ ∈ V̂ (Ê) and for any face (or edge) ê of Ê ,

v̂ · n̂ê ∈ P1(ê) on the unit square, v̂ · n̂ê ∈ Q1(ê) on the unit cube,

where Q1 is the space of bilinear functions. The degrees of freedom of V̂(Ê) are
chosen to be the values of v̂ · n̂ê at the corners of ê for all faces (or edges) of Ê .

The spaces V(E) and W (E) on any physical element E ∈ Th are defined via the
Piola transformation:

v ↔ v̂ : v = 1

JE
DF E v̂ ◦ F−1

E , (2.12)

and the standard scalar transformation

w ↔ ŵ : w = ŵ ◦ F−1
E . (2.13)

Under these transformations, the normal components of the velocity vectors on the
faces (edges) are preserved [16]:

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê and 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê. (2.14)

In addition, (2.7) implies that

v · ne = 1

Je
v̂ · n̂ê ◦ F−1

E (x), (2.15)

and (2.14) implies that

∇ · v =
(

1

JE
∇̂ · v̂

)
◦ F−1

E (x). (2.16)

Clearly, for v ∈ V(E), ∇ · v �= constant since JE is not constant on quadrilaterals
or hexahedra. Furthermore, while Je = |e| = constant on quadrilaterals, this is not
true on hexahedra. As a result v · ne ∈ P1(e) on quadrilaterals, but v · ne /∈ Q1(e) on
hexahedra.
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The finite element spaces Vh and Wh are given by

Vh =
{

v ∈ V : v|E ↔ v̂, v̂ ∈ V̂(Ê), ∀E ∈ Th

}
,

Wh =
{
w ∈ W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê), ∀E ∈ Th

}
,

(2.17)

where

V = H(div;�) =
{

v ∈ (L2(�))d : ∇ · v ∈ L2(�)
}

, W = L2(�).

Recall the projection operator in the space Vh . The operator �̂ : (H1(Ê))d → V̂(Ê)

is defined locally on each element by

〈(�̂q̂ − q̂) · n̂ê, q̂1〉ê = 0, ∀ê ⊂ ∂ Ê, (2.18)

where q̂1 ∈ P1(ê) for the case of the unit square Ê , and q̂1 ∈ Q1(ê) for the case of
the unit cube Ê . The global operator � : V ∩ (H1(�))d → Vh on each element E is
defined by the Piola transformation:

�q ↔ �̂q, �̂q = �̂q̂. (2.19)

Furthermore, (2.15) and (2.18) imply that �q · n is continuous across element inter-
faces, which gives �q ∈ Vh , and (2.16) implies that

(∇ · (�q − q), w) = 0, ∀w ∈ Wh . (2.20)

In the analysis, we will require a similar projection operator onto the lowest order
Raviart–Thomas velocity space [40,41]. The RT0 spaces are defined on the unit cube
as

V̂R(Ê) =
⎛
⎝

α1 + β1 x̂
α2 + β2 ŷ
α3 + β3 ẑ

⎞
⎠ , Ŵ R(Ê) = P0(Ê), (2.21)

and on the unit square as

V̂R(Ê) =
(

α1 + β1 x̂
α2 + β2 ŷ

)
, Ŵ R(Ê) = P0(Ê). (2.22)

Here αi and βi (i = 1, 2, 3) are real constants. In both cases, ∇̂ ·V̂R(Ê) = Ŵ R(Ê) and
v̂·n̂ê ∈ P0(ê). The degrees of freedom of V̂R(Ê) are chosen to be the constant values of
v̂ · n̂ê on all faces (or edges) of Ê . The projection operator �̂R : (H1(Ê))d → V̂R(Ê)

satisfies

〈(�̂R q̂ − q̂) · n̂ê, q̂0〉ê = 0, ∀ê ⊂ ∂ Ê, ∀q̂0 ∈ P0(Ê). (2.23)
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The spaces VR
h and W R

h on Th and the projection operator �R : (H1(�))d → VR
h are

defined similarly to the case of Vh and Wh . By definition, we have

VR
h ⊂ Vh, W R

h = Wh . (2.24)

The projection operator �R satisfies

(∇ · (�Rq − q), w) = 0, ∀w ∈ W R
h , (2.25)

and

∇ · v = ∇ · �Rv, ∀v ∈ Vh . (2.26)

It has been shown in [11,33,47] that on general quadrilaterals and h2-perturbed
parallelepipeds,

‖q − �q‖ + ‖q − �Rq‖ = O(h).

However, on general hexahedra, it only holds that [29,39,43]

‖q − �q‖ + ‖q − �Rq‖ = O(1).

Due to the above property, the analysis in [35] of the non-symmetric MPFA method
on quadrilaterals does not extend to hexahedra.

Let Q̂ be the L2(Ê)-orthogonal projection onto Ŵ (Ê), satisfying for any ϕ̂ ∈
L2(Ê),

(ϕ̂ − Q̂ ϕ̂, ŵ)Ê = 0, ∀ ŵ ∈ Ŵ (Ê).

Let Qh : L2(�) → Wh be the projection operator satisfying for any ϕ ∈ L2(�),

Qhϕ = Q̂ϕ̂ ◦ F−1
E on all E .

It is easy to see that, due to (2.14),

(ϕ − Qhϕ,∇ · v) = 0, ∀ v ∈ Vh . (2.27)

Using a scaling argument and the Bramble–Hilbert lemma [21], it can be shown that

‖ϕ − Qhϕ‖ � h|ϕ|1. (2.28)
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2.3 Quadrature rule

The integration for the velocity mass matrix on any element E is performed by map-
ping to the reference element Ê and applying quadrature rule defined on Ê . Using
(2.17) and (2.12), we map the physical integral to the reference one; namely for all
q, v ∈ Vh , we have

(K −1q, v)E =
(

1

JE
DFT

E K −1(FE (x̂))DFE q̂, v̂
)

Ê
≡ (ME q̂, v̂)Ê ,

where

ME (x̂) = 1

JE (x̂)
DFT

E (x̂)K −1(FE (x̂))DFE (x̂). (2.29)

Define a constant matrix K E such that K
i j
E is the mean value of K i j on E , where

K
i j
E and K i j denote the elements on the i-th row and j-th column of matrix K E and

K respectively. Let r̂c,Ê denote the center of mass of Ê . Replacing DFT
E and K by

the constant matrices DFT
E (r̂c,Ê ) and K E respectively, we define

M̃E (x̂) = 1

JE (x̂)
DFT

E (r̂c,Ê )K
−1
E DFE (x̂). (2.30)

In addition, we use (·, ·)Q̂,Ê to denote the trapezoidal rule on Ê :

(q̂, v̂)Q̂,Ê ≡ |Ê |
2d

2d∑
i=1

q̂(r̂i ) · v̂(r̂i ), (2.31)

where r̂i are the vertices of element Ê defined in Sect. 2.1.
The quadrature rule on an element E is defined as

(K −1q, v)Q,E ≡ (M̃E q̂, v̂)Q̂,Ê = |Ê |
2d

2d∑
i=1

M̃E (r̂i )q̂(r̂i ) · v̂(r̂i ). (2.32)

Mapping back to the physical element E , we have the quadrature rule on E :

(K −1q, v)Q,E = 1

2d

2d∑
i=1

JE (r̂i )(DF−1
E )T (ri )DFT

E (r̂c,Ê )K
−1
E q(ri ) · v(ri ). (2.33)

This is related to a non-symmetric inner product used in mimetic finite difference
methods [32,37]. Note that this trapezoidal rule for the modified integrand induces a
non-symmetric quadrature rule unless the Jacobian matrix DFE is constant. A similar
quadrature rule on quadrilateral elements was introduced in [35], where the mean value

of K −1
E was used. Our choice of K

−1
E slightly simplifies the error analysis. However,

our analysis easily extends to the case of K −1
E , see Remark 4.6.
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The global quadrature rule on � is defined as

(K −1q, v)Q ≡
∑

E∈Th

(K −1q, v)Q,E .

Remark 2.1 The quadrature rule (2.33) becomes symmetric on parallelograms and
parallelepipeds. In such cases and when the permeability is a constant tensor in each
element, the method is equivalent to the symmetric MFMFE method [33,51], where
the quadrature rule is based on ME .

Next we discuss a property of the quadrature rule that leads to a cell-centered
pressure scheme. The corner vector q̂(r̂i ) is uniquely determined by its normal com-
ponents to the faces that share the vertex. Since we chose the velocity degrees of
freedom as the normal components to the face (edge) at each corner r̂i , the corner
vector q̂(r̂i ) can be uniquely expressed in terms of the degrees of freedom that share
the vertex r̂i . More precisely,

q̂(r̂i ) =
d∑

j=1

q̂ · n̂i j (r̂i )n̂i j ,

where n̂i j , j = 1, . . . , d, are the outward unit normal vectors to the faces (or edges)
sharing r̂i , and q̂·n̂i j (r̂i ) are the velocity degrees of freedom associated with this corner.
More precisely, the first index i denotes the node and the second index j denotes the
direction. Denote the basis functions associated with r̂i by v̂i j , j = 1, . . . , d, see Fig. 3:

v̂i j · n̂i j (r̂i ) = 1, v̂i j · n̂ik(r̂i ) = 0, k �= j, v̂i j · n̂lk(r̂l) = 0, l �= i, k = 1, . . . , d.

The quadrature rule (2.32) couples only the d basis functions associated with a corner.
For example, on the unit cube,

(M̃E v̂11, v̂11)Q̂,Ê = M̃11
E (r̂1)

8
, (M̃E v̂11, v̂12)Q̂,Ê = M̃21

E (r̂1)

8
,

(M̃E v̂11, v̂13)Q̂,Ê = M̃31
E (r̂1)

8
, and (M̃E v̂11, v̂i j )Q̂,Ê = 0, (2.34)

where i �= 1, j = 1, 2, 3.

Fig. 3 Degrees of freedom and basis functions for the enhanced BDDF1 velocity space on hexahedra
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The following are some properties of the quadrature rule that are key ingredients
in the velocity error analysis.

Lemma 2.1 ([33,51]) For any v̂ ∈ V̂ (Ê) and constant vector q̂0 on Ê, the numerical
quadrature rule satisfies

(v̂ − �̂R v̂, q̂0)Q̂,Ê = 0. (2.35)

Lemma 2.2 For any constant vector q0 on E and v ∈ Vh(E),

(K −1q0, v − �Rv)Q,E = 0. (2.36)

Proof By the definition (2.32) of the quadrature rule and the Piola transformation
(2.12),

(K −1q0, v − �Rv)Q,E = (M̃E q̂0, v̂ − �̂R v̂)Q̂,Ê

=
(

1

JE
DFT

E (r̂c,Ê )K
−1
E DFE JE DF−1

E q0, v̂ − �̂R v̂
)

Q̂,Ê

=
(

DFT
E (r̂c,Ê )K

−1
E q0, v̂ − �̂R v̂

)
Q̂,Ê

= 0, (2.37)

where we have used (2.35) in the last equality. ��

Lemma 2.3 For any constant vector q0 on Ê and v̂ ∈ RT0(Ê),

(DFE (r̂c,Ê )v̂, q0)Ê = (DFE v̂, q0)Ê . (2.38)

Proof Since the proofs in two and three dimensions are very similar, we give only
the proof for the 3D case. Let v̂ = [v̂1(x̂), v̂2(ŷ), v̂3(z)]T , r̂c,Ê = (x̂c, ŷc, ẑc), and
DFE = [ξ1(ŷ, ẑ), ξ2(x̂, ẑ), ξ3(x̂, ŷ)],. We have

(DFE v̂, q0)Ê =
∫

Ê

v̂1(x̂)ξ1(ŷ, ẑ) · q0 dx̂d ŷd ẑ

+
∫

Ê

v̂2(ŷ)ξ2(x̂, ẑ) · q0 dx̂d ŷd ẑ +
∫

Ê

v̂3(ẑ)ξ3(x̂, ŷ) · q0 dx̂d ŷd ẑ.

(2.39)
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Since the midpoint quadrature rule is exact for bilinear functions on a square, the first
term in the right in (2.39) can be written as

∫

Ê

v̂1(x̂)ξ1(ŷ, ẑ) · q0 dx̂d ŷd ẑ =
1∫

0

v̂1(x̂)dx̂

1∫

0

1∫

0

ξ1(ŷ, ẑ) · q0 d ŷdẑ

=
1∫

0

v̂1(x̂) dx̂

1∫

0

1∫

0

ξ1(ŷc, ẑc) · q0 d ŷdẑ =
∫

Ê

v̂1(x̂)ξ1(ŷc, ẑc) · q0 dx̂d ŷd ẑ.

Similar identities hold for the other terms on the right in (2.39). ��
Lemma 2.4 For any constant vector q0 on E and v ∈ RT0(E),

(K −1q0, v)Q,E = (K
−1
E q0, v)E . (2.40)

Proof The proof is similar to the proof of Lemma 3.1 in [35]. By the definition (2.32)
of the quadrature rule and the Piola transformation (2.12),

(K −1q0, v)Q,E =
(

1

JE
DFT

E (r̂c,Ê )K
−1
E DFE q̂0, v̂

)

Q̂,Ê

=
(

DFT
E (r̂c,Ê )K

−1
E q0, v̂

)
Q̂,Ê

=
(

DFT
E (r̂c,Ê )K

−1
E q0, v̂

)
Ê

=
(

K
−1
E q0, DFE (r̂c,Ê )v̂

)
Ê

=
(

K
−1
E q0, DFE v̂

)
Ê

= (K
−1
E q0, v)E , (2.41)

where we have used the fact that trapezoidal rule is exact for bilinear (trilinear) func-
tions on Ê , and (2.38). ��

2.4 The multipoint flux mixed finite element method

The method is defined as follows: find uh ∈ Vh and ph ∈ Wh such that

(K −1uh, v)Q − (ph,∇ · v) = 0, ∀v ∈ Vh (2.42)

(∇ · uh, w) = ( f, w), ∀w ∈ Wh (2.43)

Following the terminology from [33,51], we call the method (2.42)–(2.43) a non-sym-
metric multipoint flux mixed finite element (MFMFE) method, due to its relation to
the MPFA method and the non-symmetric quadrature rule (2.33).

For the solvability of this system, we require the bilinear form (·, ·)Q to be coercive.
This holds if the matrix Mc associated with (·, ·)Q is positive definite, see (3.27) in
Sect. 3.2.

Lemma 2.5 If (3.27) holds, then the method (2.42)–(2.43) has a unique solution.
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Proof It is sufficient to show the uniqueness since (2.42)–(2.43) is a finite-dimensional
square linear system. We let f = 0 and choose v = uh and w = ph to conclude that
(K −1uh, uh)Q,�i = 0. Since (3.27) holds, the norm equivalence (3.28) implies that
uh = 0. For ph ∈ Wh ⊂ L2(�), there exists q ∈ (H1(�))d such that ∇ · q = ph

[31,30]. Taking v = �q in (2.42) and using (2.20) implies that ph = 0. ��

2.5 Reduction to a cell-centered stencil

In this section we describe how the multipoint flux mixed finite element method reduces
to a system for the pressure at the cell centers. Consider any interior vertex rc that is
shared by k elements E1, . . . , Ek ; see Fig. 4 for a two-dimensional example of five
quadrilaterals sharing a vertex. Denote the faces that share the vertex by e1, . . . , ek , and
the corresponding velocity basis functions associated with the vertex by v1, . . . , vk .
Let the normal components of uh on the edges be denoted by u1, . . . , uk . Note that
for clarity the normal velocities in Fig. 4 are drawn at a distance from the vertex.

Recall that the quadrature rule (K −1·, ·)Q decouples the basis functions that do not
share a vertex (see (2.34)). Setting v1 in (2.42) leads to coupling of u1 only with u2
and u5. Similarly, u2 is coupled only with u1 and u3, etc. Thus, the five equations
obtained by taking v = v1, . . . , v5 form a linear system for u1, . . . , u5.

We derive the local linear system for the example in Fig. 4. Without loss of gener-
ality, assume that edges e1 and e3 are mapped to horizontal reference edges, edges e2
and e4 are mapped to vertical reference edges, e5 in E1 is mapped to a vertical edge
and e5 in E5 is mapped to a horizontal reference edge.

Taking v = v3 in (2.42) gives

(K −1uh, v3)Q = (K −1uh, v3)Q,E3 + (K −1uh, v3)Q,E4 . (2.44)

By applying the quadrature rule (2.32), we have

Fig. 4 Five quadrilaterals
sharing a vertex and associated
degrees of freedom
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(K −1uh, v3)Q,E3 = (M̃E3 ûh, v̂3)Q̂,Ê

= u2(M̃E3 v̂2, v̂3)Q̂,Ê + u3(M̃E3 v̂3, v̂3)Q̂,Ê

= 1

4

(
−M̃12

E3
|e2|u2 + M̃11

E3
|e3|u3

)
|e3|, (2.45)

where we have used (2.15) in the last equality. Note that the components of M̃E3 are
evaluated at the vertex. Similarly, the second term on the right of (2.44) can be written
as

(K −1uh, v3)Q,E4 = 1

4

(
M̃11

E4
|e|3u3 − M̃12

E4
|e|4u4

)
|e3|. (2.46)

For the second term on the left of (2.42), we write

(ph,∇ · v3) = (ph,∇ · v3)E3 + (ph,∇ · v3)E4

= 〈ph, v3 · nE3〉e3 + 〈ph, v3 · nE4〉e3

= 〈 p̂h, v̂3 · n̂E3〉ê3 + 〈 p̂h, v̂3 · n̂E4〉ê3 = 1

2
(p3 − p4)|e3|. (2.47)

In the last equality we used the fact that trapezoidal rule is exact for the integrals on
ê3 since p̂h is constant and v̂3 · n̂ is linear (or bilinear for 3D elements). The above
results gives the equation associated with test function v3 as:

−1

2
M̃12

E3
|e2|u2 +

(
1

2
M̃11

E3
+ 1

2
M̃11

E4

)
|e3|u3 − 1

2
M̃12

E4
|e4|u4 = p3 − p4.

Similarly we derive the other four equations of the local system and write the system
as

AM̃cA

⎛
⎜⎜⎜⎜⎝

u1
u2
u3
u4
u5

⎞
⎟⎟⎟⎟⎠

= A

⎛
⎜⎜⎜⎜⎝

2p1 − 2p2
2p2 − 2p3
2p3 − 2p4
2p4 − 2p5
2p5 − 2p1

⎞
⎟⎟⎟⎟⎠

, (2.48)

where A = diag(|e1|, |e2|, |e3|, |e4|, |e5|) and

M̃c =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M̃11
E1

+ M̃11
E2

−M̃12
E2

−M̃12
E1

−M̃21
E2

M̃22
E2

+ M̃22
E3

−M̃21
E3

−M̃12
E3

M̃11
E3

+ M̃11
E4

−M̃12
E4

−M̃21
E4

M̃22
E4

+ M̃22
E5

−M̃21
E5

−M̃21
E1

−M̃12
E5

M̃11
E5

+ M̃22
E1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.49)
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Let Mc = AM̃cA. On general quadrilateral and hexahedral elements, Mc is not sym-
metric unless the meshes are parallelograms and parallelepipeds. The stability condi-
tion (3.27) ensures the solvability of this local system.

Let M be the matrix induced by the bilinear form (K −1·, ·)Q . Clearly M is block-
diagonal with each block Mc associated with a corner point c. The size of Mc is
nc × nc, where nc is the number of faces (or edges in 2D) that share the vertex point
c. The solution of the local nc × nc linear system allows for the normal component of
velocities ui , i = 1, . . . , nc to be expressed in term of the pressure degrees of freedom
pi , i = 1, . . . Nc at the cell centers, where Nc is the number of elements that share the
vertex c.

The discrete mass conservation equation (2.43) reads, taking w = 1 and using
(2.14),

(∇ · uh, 1)E =
∑

e∈∂ E

〈uh · ne, 1〉e =
∑

ê∈∂ Ê

〈ûh · n̂ê, 1〉ê, (2.50)

where ûh · n̂ê is linear (or bilinear) on the edge (or face) ê. Applying the trapezoidal
rule for the quantity 〈ûh · n̂ê, 1〉ê is exact and gives a linear combination of the normal
components of the velocities defined at the vertices of E . Then, substituting ui from
(2.48) into (2.50) gives a cell-centered stencil for the pressures. The pressure in each
element E is coupled only with the pressures in elements that share a vertex with
E . This gives a 9-point or a 27-point stencil on logically rectangular or cuboid grids,
respectively.

3 Convergence of the velocity

In the error analysis, we will make use of the following auxiliary lemmas on general
quadrilateral and hexahedral elements.

3.1 Auxiliary results

Lemma 3.6 ([33]) For any element E ∈ Th,

‖q‖ j,E � h−1‖q‖ j−1,E , j = 1, 2, ∀q ∈ Vh(E). (3.1)

The following are bounds on the Jacobian matrix terms that appear in the Piola
transformation (2.12).

Lemma 3.7 For a general quadrilateral and hexahedral element E ∈ Th,

∣∣∣∣
1

JE
DFE

∣∣∣∣
0,∞,E

� h1−d , (3.2)

|JE DF−1
E | j,∞,Ê � hd−1, j = 0, 1. (3.3)
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Proof The proof for general hexahedra can be found in [33]. The proof for general
quadrilaterals is similar. ��
Remark 3.2 Better bounds can be obtained under a certain restriction on the element
geometry. A quadrilateral in 2D or a hexahedral face in 3D with vertices r1, r2, r3,
and r4 (numbered counter clockwise) is called an h2-parallelogram if

|r34 − r21|Rd � h2.

A hexahedron is called an h2-parallelepiped when all of its faces are h2-parallelo-
grams. For h2-parallelograms and h2-parallelepipeds, one order higher estimate holds
for the one-seminorm; namely, |JE DF−1

E |1,∞,Ê � hd (see [51,33]), as compared to
(3.3) for general quadrilateral and hexahedral elements.

Lemma 3.8 For any element E ∈ Th,

‖q̂‖Ê � h−1+d/2‖q‖E , ∀q ∈ (L2(E))d , (3.4)

|q̂|1,Ê � (h−1+d/2‖q‖E + hd/2|q|1,E ), ∀q ∈ (H1(E))d . (3.5)

Proof Let q̃(x̂) = q ◦ F(x̂). By the standard scaling argument [21] and the shape
regularity of mesh,

|q̃| j,Ê � h j−d/2|q| j,E , j = 0, 1. (3.6)

The definition of the Piola transformation (2.12) implies,

q̂(x̂) = JE DF−1
E q̃(x̂). (3.7)

Then, by (3.3) and (3.6),

‖q̂‖Ê ≤ |JE DF−1
E |0,∞,Ê‖q̃‖Ê � hd−1h−d/2‖q‖E = h−1+d/2‖q‖E . (3.8)

Similarly, using (3.2), one can show

‖q‖E � h1−d/2‖q̂‖Ê . (3.9)

Next, using (3.7), (3.3), and (3.6), we get

|q̂|1,Ê � |JE DF−1
E |1,∞,Ê‖q̃‖Ê + |JE DF−1

E |0,∞,Ê |q̃|1,Ê

� hd−1h−d/2‖q‖E + hd−1h1−d/2|q|1,E

= h−1+d/2‖q‖E + hd/2|q|1,E . (3.10)

This gives (3.5). ��
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Lemma 3.9 The following trace inequality holds:

‖v · n‖∂ E � h−1/2‖v‖E ∀ v ∈ Vh, (3.11)

Proof First, note that (2.8) implies that Je � hd−1. Now, (3.11) follows from (2.15),
the norm equivalence on the reference element Ê , ‖v̂ · n̂‖

∂ Ê � ‖v̂‖Ê , and the scaling
estimate (3.4). ��
Lemma 3.10 The following estimates hold for all q ∈ (H1(E))d:

‖�Rq‖E + ‖�q‖E � ‖q‖E + h|q|1,E , (3.12)

‖∇ · �Rq‖E + ‖∇ · �q‖E � ‖∇ · q‖E . (3.13)

Proof We present the proof for �R . The proof for � is similar. First, note that

‖�̂R q̂‖Ê � ‖q̂‖Ê + ‖�̂R q̂ − q̂‖Ê � ‖q̂‖Ê + |q̂|1,Ê � ‖q̂‖1,Ê , (3.14)

where we have used the Bramble–Hilbert lemma in the second inequality. Now, using
(3.4), we have

‖�Rq‖E � h1−d/2‖�̂R q̂‖Ê � h1−d/2‖q̂‖1,E

� h1−d/2(h−1+d/2‖q‖E + hd/2|q|1,E ) = ‖q‖E + h|q|1,E , (3.15)

using (3.5) in the last inequality. This gives (3.12). To show (3.13) we write, using
(2.16) and (2.8),

‖∇ · �Rq‖E � h−d/2
E ‖∇̂ · �̂R q̂‖Ê ≤ h−d/2

E ‖∇̂ · q̂‖Ê � ‖∇ · q‖E ,

where we have used that ∇̂ · �̂R q̂ is the L2(Ê)-projection of ∇̂ · q̂. This completes
the proof of (3.13). ��

The next lemmas establish important properties of the mixed interpolant of constant
(in 3D) and linear (in 2D) vectors in a physical element.

Lemma 3.11 In the case of hexahedra, for any constant vector q0 on E,

∀ e ⊂ ∂ E, �q0 · ne = q0 · ne. (3.16)

Proof The Piola transformation gives q̂0 = JE DF−1
E q0 with JE DF−1

E = CT
E , where

CE is the cofactor matrix of DFE . Then

q̂0 · n̂ê = CT
E q0 · n̂ê = CE n̂ê · q0.

It is easy to check by direct computation that

CE = [c1, c2, c3], c1 ∈ (P2,1,1(E))3, c2 ∈ (P1,2,1(E))3, c3 ∈ (P1,1,2(E))3,
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where Pα1,α2,α3 is the space of tensor-product polynomials of degree at most αi in
variable xi , i = 1, 2, 3. A closer inspection shows that CE n̂ê ∈ P1(ê)3. For example
on the face (x̂ = 0) of the reference element Ê , it is easy to calculate using (2.3)

CE n̂ê = −
⎡
⎣

(c2 + g2 ẑ)(d3 + g3 ŷ) − (d2 + g2 ŷ)(c3 + g3 ẑ)
(d1 + g1 ŷ)(c3 + g3 ẑ) − (c1 + g1 ẑ)(d3 + g3 ŷ)

(c1 + g1 ẑ)(d2 + g2 ŷ) − (d1 + g1 ŷ)(c2 + g2 ẑ)

⎤
⎦ ,

where the constant vectors are [c1 c2 c3]T = r41, [d1 d2 d3]T = r51, and [g1 g2 g3]T =
r85 − r21. This gives CE n̂ê · q0 ∈ P1(ê), implying that q̂0 · n̂ê ∈ P1(ê) ⊂ V̂(Ê) · n̂ê.

Now, (2.18) implies that �̂q̂0 · n̂ê = q̂0 · n̂ê and the proof is completed by using
(2.15). ��
Lemma 3.12 In the case of quadrilaterals, for any linear vector q1 on E,

∀ e ⊂ ∂ E, �q1 · ne = q1 · ne. (3.17)

Proof Let q̂1 = JE DF−1
E q1. Due to (2.15), it is enough to show on any edge ê,

�̂q̂1 · n̂ê = q̂1 · n̂ê. (3.18)

Let q1 = [a1 + b1x + c1 y a2 + b2x + c2 y]T and the constant normal vector
ne = [d1 d2]T . By (2.15)

q̂1 · n̂ê = |e|q1 · ne = |e|
2∑

i=1

(ai + bi x + ci y)di . (3.19)

Then by (2.4), we have q̂1 · n̂ê ∈ P1(ê). Now, (2.18) implies (3.18). ��
Remark 3.3 The above result in 3D relies on the key property that the Piola image of a
constant vector on a physical element has a linear normal component in the reference
element, which belongs to the BDDF1 space and the enhanced BDDF1 space. This
property does not hold for the RT0 interpolant, which has a constant normal component
on the reference element.

In the analysis, we will use the following well-known estimates [13]. There exists
q1 ∈ P1(E) such that

‖p − q1‖ j,E � h2− j‖p‖2,E , j = 0, 1, (3.20)

and

‖p − q1‖E � h‖p‖1,E . (3.21)

Using the trace inequality for Lipschitz domains [6,9],

∀ e ∈ ∂ E, ‖φ‖e � h−1/2‖φ‖E + h1/2|φ|1,E , ∀φ ∈ H1(E), (3.22)
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we have the interpolation estimate on e:

‖p − q1‖e � h3/2|p|2,E . (3.23)

We also have [21]

‖K − K E‖E � h‖K‖1,E . (3.24)

3.2 Coercivity of the velocity bilinear form

For the analysis of non-symmetric MFMFE method we require some properties of the
bilinear form (K −1·, ·)Q defined on the space Vh . Note that

(K −1q, v)Q =
∑

E∈Th

(K −1q, v)Q,E =
∑
c∈Ch

vT
c Mcqc = vT

�Mq�, (3.25)

where Ch denotes the set of corner or vertex points in Th , vc := {(v · ne)(xc)}nc
e=1, xc

is the coordinate vector of point c, and nc is the number of faces (or edges in 2D) that
share the vertex point c. An example of the nc × nc matrix Mc is given in (2.49). In
the above, v� is the global vector of values of the normal trace degrees of freedom of
v in Vh and M is the block-diagonal matrix with blocks Mc, c ∈ Ch . From (2.30) and
(2.8) one can see that

‖Mc‖0,∞,Ê � hd‖K −1‖0,∞,E . (3.26)

Lemma 3.13 Assume that Mc is uniformly positive definite for all c ∈ Ch:

hdξ T ξ � ξ T Mcξ , ∀ξ ∈ R
nc . (3.27)

Then the bilinear form (K −1·, ·)Q is coercive in Vh and induces a norm in Vh equiv-
alent to the L2-norm:

(K −1v, v)Q � ‖v‖2, ∀ v ∈ Vh . (3.28)

If in addition

ξ T MT
c Mcξ � h2dξ T ξ , ∀ ξ ∈ R

nc , (3.29)

then the following Cauchy–Schwarz type inequality holds:

(K −1q, v)Q � ‖q‖‖v‖ ∀q, v ∈ Vh, (3.30)

Proof Let v ∈ Vh . Using the shape regularity of Th , it is easy to check by direct
calculation that for all E ∈ Th

‖v‖2
E � hdvT

E vE ,
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where vE is the vector of values of the degrees of freedom of v in E . We then have

‖v‖2 �
∑

E∈Th

hdvT
E vE �

∑
c∈Ch

hdvT
c vc �

∑
c∈Ch

vT
c Mcvc = (K −1v, v)Q,

where we have used (3.27) and (3.25). This implies that Ms = 1
2 (M + MT ) is sym-

metric and positive definite and that (K −1v, v)Q = vT
�Mv� = vT

�Msv� is a norm.
The equivalence to ‖v‖ follows from (3.26). If (3.29) holds, then (3.30) follows from
the Cauchy–Schwarz inequality for the norm induced by the matrix MT M. ��

In practice, we can verify the assumptions (3.27) and (3.29) by considering only
the local d × d matrix associated with a vertex of an element E . In particular, M =∑

E∈Th
ME , where ME is a block diagonal matrix with 2d blocks of size d × d cor-

responding to the vertices of E . For any vertex c of E , denote the associated d × d
matrix by Mc

E . It is easy to check that

hdηT η � ηT Mc
Eη ∀ η ∈ R

d (3.31)

and

ηT (Mc
E )T Mc

Eη � h2dηT η, ∀ η ∈ R
d (3.32)

imply (3.27) and (3.29), respectively.
Conditions (3.31) and (3.32) impose restrictions on the element geometry and the

anisotropy of the permeability tensor K . We refer readers to [35,37] for discussions
on these conditions.

For the permeability tensor K , we will use the following notation. Let W α,∞
Th

consist
of functions φ such that φ|E ∈ W α,∞(E) for all E ∈ Th . Here α is an integer. Let
|||φ|||α,∞ = maxE∈Th ‖φ‖α,∞,E .

3.3 Convergence of the velocity to the interpolant of the solution

We are now ready to establish first order convergence of the computed velocity to the
MFE interpolant of the true solution.

Theorem 3.1 Let K ∈ W 1,∞
Th

(�) and K −1 ∈ W 0,∞(�). If (3.27) and (3.29) hold,
then the velocity uh of the non-symmetric MFMFE method (2.42)–(2.43) satisfies

‖�u − uh‖ � h(|u|1 + ‖p‖2), (3.33)

Proof Let v = �u − uh , and note that (1.2), (2.43), and (2.20) imply that

(∇ · v, w) = 0 ∀w ∈ Wh .
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Taking w ∈ Wh such that w|E = JE∇ · v for all E ∈ Th implies that ∇ · v = 0. Then
from (2.42) we have

(
K −1(�u − uh),�u − uh

)
Q

=
(

K −1�u, v
)

Q
− (ph,∇ · v) =

(
K −1�u, v

)
Q

=
∑

E∈Th

(
K −1�(u + K E∇q1), v

)
Q,E

−
∑

E∈Th

(
K −1�(K E∇q1), v

)
Q,E

≡ I1 + I2, (3.34)

where q1 is defined in (3.20). The term I2 in (3.34) can be manipulated as

(
K −1�(K E∇q1), v

)
Q,E

=
(

K −1 K E∇q1, v
)

Q,E

=
(

K −1 K E∇q1,�Rv
)

Q,E
=

(
∇q1,�Rv

)
E

, (3.35)

using (3.16), (2.36) and (2.40). Note that

∑
E∈Th

(∇ p,�Rv)E = (∇ p,�Rv) = (p,∇ · �Rv) = (p,∇ · v) = 0,

using (2.25) and the fact that p = 0 on ∂�. Then I2 can be further written as

I2 =
∑

E∈Th

(∇(p − q1),�Rv)E �
∑

E∈Th

‖∇(p − q1)‖E‖�Rv‖E

�
∑

E∈Th

h‖p‖2,E (‖v‖E + h|v|1,E ) � h‖p‖2‖v‖, (3.36)

where we have used (3.20), (3.12), and (3.1). To bound I1, we write

(K −1�(u + K E∇q1), v)Q,E � ‖�(u + K E∇q1)‖E‖v‖E

� (‖u + K E∇q1‖E + h|u + K E∇q1|1,E )‖v‖E

= (‖u + K E∇q1‖E + h|u|1,E )‖v‖E , (3.37)

using (3.30), (3.12), and the fact that K E∇q1 is a constant vector. It remains to estimate
‖u + K E∇q1‖E . From (3.20) and (3.24), we have

‖u + K E∇q1‖E ≤ ‖(K − K E )∇ p‖E + ‖K E∇(p − q1)‖E

� h(‖∇ p‖E + ‖p‖2,E ) � h‖p‖2,E . (3.38)

A combination of (3.37) and(3.38) gives

|I1| � h(‖p‖2 + |u|1)‖v‖. (3.39)
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The proof is completed by combining (3.34), (3.36), (3.39), and (3.28). ��

3.4 Convergence of the velocity on the element faces

In this section we show that the result from the previous section implies convergence
of the computed normal velocity to the true normal velocity on the element faces. We
introduce a norm for vectors in � based on the normal components on the faces of Th :

‖v‖2
Fh

:=
∑

E∈Th

∑
e∈∂ E

|E |
|e| ‖v · ne‖2

e, (3.40)

where |E | is the volume of E and |e| is the area of e. This norm gives an appropriate
scaling of size of |�| for a unit vector. The shape regularity assumption on the mesh
implies that |E |/|e| � h, which gives

‖v‖Fh � h1/2

⎛
⎝ ∑

E∈Th

∑
e∈∂ E

‖v · ne‖2
e

⎞
⎠

1/2

. (3.41)

The next result establishes approximation for the enhanced BDDF1 interpolant in the
norm ‖ · ‖Fh .

Lemma 3.14 On hexahedra,

‖(u − �u) · ne‖e � h1/2|u|1,E , (3.42)

and

‖u − �u‖Fh � h|u|1. (3.43)

On quadrilaterals,

‖(u − �u) · ne‖e � h j+1/2|u| j+1,E , j = 0, 1 (3.44)

and

‖u − �u‖Fh � h j+1|u| j+1, j = 0, 1. (3.45)

Proof Let q be any constant vector on E in the case of hexahedra or a linear vector
on E in the case of quadrilaterals. Lemma 3.11 and Lemma 3.12 imply that

‖(u − �u) · ne‖e = ‖(u − q) · ne − (�u − �q) · ne‖e

≤ ‖(u − q) · ne‖e + ‖�(u − q) · ne‖e. (3.46)
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By the trace inequality (3.22), we have

‖(u − q) · ne‖e � h−1/2‖u − q‖E + h1/2|u − q|1,E . (3.47)

The trace inequality (3.11) implies that

‖�(u − q) · ne‖e � h−1/2‖�(u − q)‖E � h−1/2‖u − q‖E + h1/2|u − q|1,E ,

(3.48)

where we have also used (3.12) in the last inequality. Taking q to be the L2-projection
of u into the space of constant vectors on E in the case of hexahedra or into the space
of linear vectors in the case quadrilaterals in (3.46)–(3.48) yields (3.42) and (3.44).
Inequalities (3.43) and (3.45) follow from (3.42) and (3.44), respectively, and (3.41).

��
Remark 3.4 The above result for the enhanced BDDF1 interpolant relies on
Lemma 3.11. Therefore, due to Remark 3.3, similar approximation result also holds
for the standard BDDF1 interpolant, but it does not hold for the RT0 interpolant.

Theorem 3.2 Let K ∈ W 1,∞
Th

(�) and K −1 ∈ W 0,∞
Th

(�). If (3.27) and (3.29) hold,
then the velocity uh of the non-symmetric MFMFE method (2.42)–(2.43) satisfies

‖u − uh‖Fh � h(‖u‖1 + ‖p‖2). (3.49)

Proof The triangle inequality gives

‖(u − uh) · ne‖e ≤ ‖(u − �u) · ne‖e + ‖(�u − uh) · ne‖e

� h1/2|u|1,E + h−1/2‖�u − uh‖E ,

where we have used (3.42) and (3.11) in the second inequality. The assertion of the
theorem follows by combining the above inequality with (3.41) and (3.33). ��
Remark 3.5 It is easy to see that the analysis presented in this section is valid also
for the method (2.42)–(2.43) using the BDDF1 space instead of the enhanced BDDF1
space. Recall that the standard BDDF1 MFE method does not converge on general
hexahedra. Our results indicate that, while the quadrature rule (·, ·)Q does not lead to a
cell-centered finite difference system for the pressure in the case of the BDDF1 space,
it does lead to a method that gives a first order accurate fluxes on the hexahedral faces.

4 Convergence of the pressure

Lemma 4.15 The spaces VR
h × Wh satisfy the inf–sup condition:

sup
0 �=v∈VR

h

(∇ · v, w)

‖v‖div
� ‖w‖, ∀w ∈ Wh . (4.1)

123



190 M. Wheeler et al.

Proof It is enough to show that ∀w ∈ Wh there exists v ∈ VR
h such that

(∇ · v, w) = ‖w‖2 and ‖v‖div � ‖w‖. (4.2)

As noted in the proof of Lemma 2.5, for any w ∈ Wh ⊂ L2(�), there exists q ∈ H1(�)

such that [31,30]

∇ · q = w and ‖q‖1 � ‖w‖, (4.3)

Using (2.25), we have

(∇ · �Rq, w) = (∇ · q, w) = ‖w‖2. (4.4)

Furthermore, (3.12), (3.13), and (4.3) imply that

‖�Rq‖div � ‖q‖1 � ‖w‖. (4.5)

Now, (4.4) and (4.5) imply that v = �Rq satisfies (4.2), which completes the proof.
��

Theorem 4.3 Assume that K ∈ W 1,∞
Th

(�), K −1 ∈ W 0,∞
Th

(�), and that (3.27) and
(3.29) hold. Then the pressure ph of the non-symmetric MFMFE method (2.42)–(2.43)
satisfies

‖p − ph‖ � h(|u|1 + ‖p‖2). (4.6)

Proof By Lemma 4.15, we have

‖Qh p − ph‖ � sup
v∈VR

h

(∇ · v, Qh p − ph)

‖v‖div
. (4.7)

Using (2.27) and (2.42), the numerator can be written as

(∇ · v, Qh p − ph) = (∇ · v, p − ph) = (∇ · v, p − q1) + (∇ · v, q1) − (∇ · v, ph)

= (∇ · v, p − q1)+
∑

E∈Th

∑
e∈∂ E

〈q1, v · n〉e+(K −1(�u − uh), v)Q

−
∑

E∈Th

(
(K −1�u, v)Q,E + (∇q1, v)E

)

≡ I1 + I2 + I3 + I4,

where q1 is defined by (3.21). Term I1 is estimated using (3.21):

|I1| � h‖p‖1‖∇ · v‖. (4.8)
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Using the continuity of p, (3.23), and (3.11), term I2 can be written as

|I2| =
∣∣∣∣∣∣
∑

E∈Th

∑
e∈∂ E

〈q1 − p, v · n〉e

∣∣∣∣∣∣
≤

∑
E∈Th

∑
e∈∂ E

‖q1 − p‖e‖v · n‖e

� h3/2|p|2h−1/2‖v‖ = h|p|2‖v‖. (4.9)

Using (3.30), term I3 is estimated from Theorem 3.1 as:

|I3| � h(|u|1 + ‖p‖2)‖v‖. (4.10)

Term I4 can be written as

I4 =
∑

E∈Th

(
(K −1�K∇ p, v)Q,E − (∇q1, v)E

)

=
∑

E∈Th

(
K −1�(K∇ p − K E∇q1), v

)
Q,E

+
∑

E∈Th

(
(K −1�K E∇q1, v)Q,E − (∇q1, v)E

)

≡ I a
4 + I b

4 (4.11)

Using (3.30) and (3.12), we estimate term I a
4 as

|I a
4 | �

∑
E∈Th

‖K −1�(K∇ p − K E∇q1)‖E‖v‖E

�
∑

E∈Th

(‖K∇ p − K E∇q1‖E + h|K∇ p − K E∇q1|1,E )‖v‖E

�
∑

E∈Th

(‖(K − K E )∇ p‖E + ‖K E (∇ p − ∇q1)‖E + h|p|2,E )‖v‖E

� h‖p‖2‖v‖, (4.12)

where we used (3.24) and (3.20) in the last inequality. Using (3.16) (or (3.17) for 2D)
and Lemma 2.4, we have that

I b
4 = (K −1 K E∇q1, v)Q − (∇q1, v) = 0. (4.13)

A combination of (4.7)–(4.13) and (2.28) completes the proof. ��
Remark 4.6 Our error analysis also holds when the mean value of K −1 is used in
the numerical quadrature rule (2.33) instead of the inverse of K . Let us denote this
quadrature rule by (·, ·)Q̃ :
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(K −1q, v)Q̃,E ≡ 1

2d

2d∑
i=1

JE (r̂i )(DF−1
E )T (ri )DFT

E (r̂c,Ê )K −1
E q(ri ) · v(ri ). (4.14)

It is easy to see that Lemma 2.4 takes the form

(K −1q0, v)Q̃,E = (K −1
E q0, v)E ,

with K
−1
E being replaced by K −1

E . Using this identity, (3.35) becomes

(
K −1 K E∇q1,�Rv

)
Q̃,E

=
(
∇q1,�Rv

)
E

+
((

K −1
E − K

−1
E

)
K E∇q1,�Rv

)
E

,

and I b
4 in (4.13) becomes

I b
4 = (K −1 K E∇q1, v)Q̃ − (∇q1, v) =

((
K −1

E − K
−1
E

)
K E∇q1, v

)
E

.

Note that the extra terms are O(h), as they involve the difference between K −1
E and

K
−1
E . Thus Theorems 3.1, 3.2, and 4.3 also hold for the quadrature rule (4.14).

5 Numerical experiments

In this section, we test both the symmetric and the non-symmetric MFMFE methods on
h2-parallelograms and h2-parallelepipeds as well as on highly distorted quadrilaterals
and hexahedra. The velocity error ‖�u−uh‖ is approximated by the trapezoidal quad-
rature rule. The face error ‖u −uh‖Fh is computed by the 3-point or 9-point Gaussian
quadrature rules on edges or faces. The pressure error ‖p − ph‖ is approximated
by the 9-point or 27-point Gauss quadrature rules on quadrilaterals and hexahedra.
The discrete L2 pressure error |||p − ph ||| is computed by the midpoint quadrature rule:
|||p− ph |||2 ≡ ∑

E∈Th
|E |(p− ph)2(me), where me is the center of mass of the element

E . We also report convergence in the discrete flux error

|||u − uh |||2Fh
≡

∑
E∈Th

∑
e∈∂ E

|E |
⎛
⎝ 1

|e|
∫

e

u · ne − 1

|e|
∫

e

uh · ne

⎞
⎠

2

.

The resulting linear algebraic system is solved using the software HYPRE (high per-
formance preconditioners) developed by researchers at Lawrence Livermore National
Laboratory.1

1 http://computation.llnl.gov/casc/hypre/software.html.
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5.1 2D examples

We consider two types of meshes—smooth and non-smooth. The smooth mesh is a
C∞ map of a uniform mesh on the unit square. The map is defined as

x = x̂ + 0.06 sin(2π x̂) sin(2π ŷ),

y = ŷ − 0.05 sin(2π x̂) sin(2π ŷ).

The mesh is shown on the left in Fig. 5. It is easy to check that in this case the elements
are h2-parallelograms. The second mesh consists of highly distorted quadrilaterals
generated by perturbing the uniform mesh points in a random direction by a distance
of size O(h), see the right Fig. 5. The grids on the different levels of refinement are
obtained by mapping or perturbing refinements of the uniform grid.

We consider problem (1.1)–(1.2) with a given analytical solution

p(x, y) = sin(3πx)2 sin(3πy)2,

and full permeability tensor

K =
(

2 1.25
1.25 3

)
.

The boundary conditions are of Dirichlet type.
We first test the convergence of ‖u−�u‖Fh . The results for u = −K∇ p, where p

and K are defined above, are given in Table 1. We observe second order convergence
on both the smooth grids and the rough grids, which confirms the theoretical results
in Sect. 3.4. The slight variation in the convergence rate on the randomly perturbed
grids is due to varying shape regularity constants on the different grid levels.

Next, we test the convergence of the MFMFE method. Table 2 shows the numer-
ical results on h2-parallelogram meshes. As the theory predicts for the symmetric

Fig. 5 Smooth quadrilateral mesh (left) and randomly h-perturbed quadrilateral mesh (right)
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Table 1 Interpolation error
‖u − �u‖Fh

on the 2D meshes
1/h Mesh 1 Mesh 2

8 3.20E+0 – 3.43E+0 –

16 8.64E−1 1.89 9.30E−1 1.88

32 2.20E−1 1.97 2.47E−1 1.91

64 5.54E−2 1.99 5.34E−2 2.21

128 1.39E−2 1.99 1.38E−2 1.95

256 3.47E−3 2.00 3.80E−3 1.86

512 8.68E−4 2.00 8.86E−4 2.10

Table 2 Convergence in the 2D example on h2-parallelogram grids

1/h ‖p − ph‖ ‖�u − uh‖ ‖u − uh‖Fh

Symmetric MFMFE

8 4.46E−1 – 1.04E+1 – 1.11E+1 –

16 2.02E−1 1.14 4.41E+0 1.24 4.12E+0 1.43

32 9.67E−2 1.06 2.19E+0 1.01 1.83E+0 1.17

64 4.79E−2 1.01 1.10E+0 0.99 8.86E−1 1.05

128 2.39E−2 1.00 5.50E−1 1.00 4.40E−1 1.01

256 1.19E−2 1.01 2.75E−1 1.00 2.19E−1 1.01

512 5.97E−3 1.00 1.38E−1 0.99 1.10E−1 1.00

Non-symmetric MFMFE

8 4.45E−1 – 1.05E+1 – 1.10E+1 –

16 2.03E−1 1.13 4.38E+0 1.26 4.06E+0 1.44

32 9.67E−2 1.07 2.17E+0 1.01 1.81E+0 1.17

64 4.79E−2 1.01 1.09E+0 0.99 8.78E−1 1.04

128 2.39E−2 1.00 5.45E−1 1.00 4.36E−1 1.01

256 1.19E−2 1.01 2.73E−1 1.00 2.18E−1 1.00

512 5.97E−3 1.00 1.36E−1 1.01 1.09E−1 1.00

1/h |||p − ph ||| |||u − uh |||Fh
|||p − ph ||| |||u − uh |||Fh

Symmetric (left) and Non-symmetric (right) MFMFE

8 2.37E−1 – 8.40E+0 – 2.35E−1 – 8.31E+0 –

16 4.96E−2 2.26 2.46E+0 1.77 4.99E−2 2.24 2.39E+0 1.80

32 1.15E−2 2.11 6.35E−1 1.95 1.16E−2 2.10 6.12E−1 1.97

64 2.84E−3 2.02 1.61E−1 1.98 2.86E−3 2.02 1.55E−1 1.98

128 7.08E−4 2.00 4.05E−2 1.99 7.12E−4 2.01 3.89E−2 1.99

256 1.77E−4 2.00 1.01E−2 2.00 1.78E−4 2.00 9.74E−3 2.00

512 4.42E−5 2.00 2.53E−3 2.00 4.45E−5 2.00 2.44E−3 2.00

MFMFE method [51] and the non-symmetric MFMFE method, we observe first order
convergence for the pressure and the velocity. In addition, we obtain second order
superconvergence for the face flux and the pressure at the cell centers.

123



MFMFE on distorted quadrilaterals and hexahedra 195

Table 3 Convergence in the 2D example on randomly h-perturbed quadrilateral grids

1/h ‖p − ph‖ ‖�u − uh‖ ‖u − uh‖Fh

Symmetric MFMFE

8 6.02E−1 – 1.14E+1 – 1.32E+1 –

16 2.12E−1 1.51 4.86E+0 1.23 4.58E+0 1.53

32 9.95E−2 1.09 2.76E+0 0.82 2.47E+0 0.89

64 4.96E−2 1.00 1.94E+0 0.51 1.48E+0 0.74

128 2.51E−2 0.98 1.69E+0 0.20 1.34E+0 0.14

256 1.32E−2 0.93 1.60E+0 0.08 1.40E+0 <0

512 7.95E−3 0.73 1.60E+0 0.00 1.31E+0 0.10

Non-symmetric MFMFE

8 6.04E−1 – 1.15E+1 – 1.28E+1 –

16 2.17E−1 1.48 4.77E+0 1.27 4.23E+0 1.60

32 1.00E−1 1.12 2.38E+0 1.00 1.95E+0 1.12

64 4.97E−2 1.01 1.19E+0 1.00 8.02E−1 1.28

128 2.48E−2 1.00 5.92E−1 1.01 4.07E−1 0.98

256 1.24E−2 1.00 2.97E−1 1.00 2.24E−1 0.86

512 6.20E−3 1.00 1.49E−1 1.00 1.05E−1 1.09

1/h |||p − ph ||| |||u − uh |||Fh
|||p − ph ||| |||u − uh |||Fh

Symmetric (left) and Non-symmetric (right) MFMFE

8 3.51E−1 – 1.16E+1 – 3.48E−1 – 1.12E+1 –

16 6.42E−2 2.45 3.16E+0 1.88 7.14E−2 2.29 2.84E+0 1.98

32 1.35E−2 2.25 1.19E+0 1.41 1.33E−2 2.42 8.67E−1 1.71

64 5.21E−3 1.37 5.91E−1 1.01 3.15E−3 2.08 2.79E−1 1.64

128 4.94E−3 0.77 4.87E−1 0.28 7.58E−4 2.06 1.28E−1 1.12

256 4.88E−3 0.18 5.00E−1 <0 2.03E−4 1.90 6.86E−2 0.90

512 5.02E−3 <0 4.71E−1 0.09 4.83E−5 2.07 3.17E−2 1.11

Table 3 demonstrates the convergence behavior for the randomly perturbed grids
of size O(h). The numerical results show that the non-symmetric MFMFE method
has first order convergence for both the velocity and the pressure on these highly dis-
torted grids. Clearly the convergence of the velocity and the pressure of the symmetric
MFMFE method deteriorates.

5.2 3D examples

In the 3D examples we consider four hexahedral meshes. The first one is generated
using a smooth map of a uniform grid given by

x = x̂ + 0.03 sin(3π x̂) cos(3π ŷ) cos(3π ẑ),

y = ŷ − 0.04 cos(3π x̂) sin(3π ŷ) cos(3π ẑ),

z = ẑ + 0.05 cos(3π x̂) cos(3π ŷ) sin(3π ẑ).
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Fig. 6 The four 3D meshes: h2-perturbed hexahedral mesh (top-left), h-perturbed mesh [43] (top-right),
randomly h-perturbed hexahedral mesh (bottom-left), and h-perturbed mesh [29] (bottom-right)

This mapping yields an h2-parallelepiped mesh. We choose the second mesh to be an
h-perturbed grid given in [43]. The third mesh is generated by random perturbation of
uniform mesh points by a distance of size O(h). The fourth mesh is a h-perturbed fish-
bone-like mesh from [29]. Element faces are planar in the second mesh and non-planar
in the other three meshes. The four meshes are shown in Fig. 6.

We consider problem (1.1)–(1.2) with a given analytical solution

p(x, y, z) = x2(x − 1)2 y2(y − 1)2z2(1 − z)2,

and a full permeability tensor

K =
⎛
⎝

α 1 1
1 2 1
1 1 2

⎞
⎠ ,
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where α is a parameter.
The convergence of the interpolation error ‖u − �u‖Fh , u = −K∇ p, on the four

grids with α = 1 is presented in Table 4. We observe first order convergence for the
h-perturbed grids, as predicted by the theory. Moreover, second order convergence is
obtained for the smooth grids. This can be proven by a scaling argument using the fact
that the BDDF1 interpolant preserves the normal components of linear vectors on the
faces of the reference element. The scaling estimates developed in [33] for h2-per-
turbed grids allow for the scaling argument to be employed without loss of accuracy.
We note that such scaling argument would give no convergence on rough grids.

In order to explore the coercivity of the non-symmetric MFMFE method on dis-
torted grids and anisotropic full tensor coefficients, we tested α = 10, 100, 1000 on
the four meshes. In some cases the coercivity condition (3.27) was violated, leading
to a singular algebraic problem. For each mesh we report convergence for the largest
value of α among the three tested, for which the non-symmetric method was positive
definite. These values are α = 100 for mesh one, α = 1000 for mesh two, α = 10
for mesh three, and α = 100 for mesh four. As predicted by the theory in [33], the
symmetric method was coercive in all cases. As we report below, the non-symmetric
method exhibits first order convergence on all grids, while the convergence of the
symmetric method deteriorates on rough grids. We note that one or the other method
may be chosen element by element, depending on the roughness of the grid and the
permeability anisotropy, as it is done in the coupled example in Sect. 5.3. Further-
more, there have been a number of modifications developed in the literature for the
closely related MPFA method, which exhibit improved coercivity and monotonicity
properties, such as methods with compact stencils [2,5] or increased pressure sup-
port [25,26]. These approaches, as well as grid smoothing techniques (Gridpro, http://
www.gridpro.com/) or a posteriori error estimation and adaptive grid refinement [46],
could be explored for the MFMFE method, but this is beyond the scope of this paper.

We also test the convergence of the symmetric and non-symmetric MFMFE meth-
ods on the randomly h-perturbed mesh 3 for a problem with a variable full tensor
coefficient given by

K =
⎛
⎝

y2 + 2 cos(xy) sin(xz)
cos(xy) (x + 3)2 cos(yz)
sin(xz) cos(yz) (x + 1)2 + z2

⎞
⎠ .

Table 4 Interpolation error ‖u − �u‖Fh
on the 3D meshes

1/h Mesh 1 Mesh 2 Mesh 3 Mesh 4

4 1.21E−4 – 1.67E−4 – 1.36E−4 – 1.60E−4 –

8 3.20E−5 1.92 7.20E−5 1.21 4.04E−5 1.75 5.65E−5 1.50

16 7.26E−6 2.14 3.40E−5 1.08 1.57E−5 1.36 2.29E−5 1.30

32 1.72E−6 2.08 1.69E−5 1.01 8.57E−6 0.87 1.06E−5 1.11

64 4.22E−7 2.03 8.51E−6 0.99 3.98E−6 1.11 5.21E−6 1.02

128 1.05E−7 2.01 4.28E−6 0.99 2.04E−6 0.96 2.59E−6 1.01
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The pressure is as in the first four 3D examples.
Tables 5, 6, 7, 8 and 9 demonstrate the convergence behavior of both the symmetric

and the non-symmetric MFMFE methods for the five examples described above.
The non-symmetric MFMFE method developed in this paper exhibits first order

convergence for both velocity and pressure on all four meshes. These numerical results
confirm the theory established in Theorems 3.1, 3.2, and 4.3. Furthermore, the compu-
tational results indicate second order superconvergence for pressure at the cell centers
on all four meshes and for the face fluxes on the smooth mesh.

The symmetric MFMFE method on h2-parallelepipeds has been proven to have
first order convergence for velocity and pressure [33]. Table 5 confirms this theoreti-
cal result. We also observe similar convergence on the second and fourth meshes, see
Tables 6 and 8, respectively. However, on the randomly perturbed mesh, the conver-
gence of the velocity and the pressure in the symmetric MFMFE method deteriorates,
see Tables 7 and 9.

5.3 A coupled scheme

Both the theory and the numerical examples confirm that the symmetric MFMFE
method is accurate on h2-parallelograms and h2-parallelepipeds, and the non-symmet-
ric MFMFE method is accurate on general quadrilateral and hexahedral grids. Recall
that the distinction between these two methods lies in the numerical quadrature, which
is defined at the element level. Thus the symmetric and the non-symmetric MFMFE

Table 5 Convergence in the first 3D example on smooth hexahedral grids with α = 100

1/h ‖p − ph‖ ‖�u − uh‖ ‖u − uh‖Fh

Symmetric MFMFE

8 1.48E−05 – 5.15E−03 – 3.82E−03 –

16 7.17E−06 1.05 2.77E−03 0.89 1.80E−03 1.09

32 3.56E−06 1.01 1.43E−03 0.95 8.67E−04 1.05

64 1.78E−06 1.00 7.25E−04 0.98 4.30E−04 1.01

Non-symmetric MFMFE

8 1.48E−05 – 5.74E−03 – 4.37E−03 –

16 7.19E−06 1.04 2.56E−03 1.06 1.67E−03 1.39

32 3.56E−06 1.01 1.25E−03 1.03 7.59E−04 1.14

64 1.78E−06 1.00 6.26E−04 1.00 3.71E−04 1.03

1/h |||p − ph ||| |||u − uh |||Fh
|||p − ph ||| |||u − uh |||Fh

Symmetric (left) and Non-symmetric (right) MFMFE

8 4.12E−06 – 1.31E−03 – 3.87E−06 – 1.58E−03 –

16 1.05E−06 1.97 4.59E−04 1.51 1.04E−06 1.90 4.08E−04 1.95

32 2.69E−07 1.96 1.27E−04 1.85 2.68E−07 1.96 1.01E−04 2.01

64 6.84E−08 1.98 3.37E−05 1.91 6.77E−08 1.99 2.57E−05 1.97
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Table 6 Second 3D example on an h-perturbed grid with α = 1000

1/h ‖p − ph‖ ‖�u − uh‖ ‖u − uh‖Fh

Symmetric MFMFE

8 1.57E−05 – 9.38E−02 – 5.70E−02 –

16 7.83E−06 1.00 4.97E−02 0.92 2.91E−02 0.97

32 3.90E−06 1.01 2.60E−02 0.93 1.50E−02 0.96

64 1.95E−06 1.00 1.33E−02 0.97 7.69E−03 0.96

Non-symmetric MFMFE

8 1.57E−05 – 9.70E−02 – 5.80E−02 –

16 7.81E−06 1.01 5.17E−02 0.91 3.00E−02 0.95

32 3.90E−06 1.00 2.66E−02 0.96 1.54E−02 0.96

64 1.95E−06 1.00 1.35E−02 0.98 7.79E−03 0.98

1/h |||p − ph ||| |||u − uh |||Fh
|||p − ph ||| |||u − uh |||Fh

Symmetric (left) and Non-symmetric (right) MFMFE

8 3.06E−06 – 2.35E−02 – 2.64E−06 – 2.29E−02 –

16 9.15E−07 1.74 9.91E−03 1.25 6.87E−07 1.94 9.79E−03 1.23

32 2.47E−07 1.89 4.76E−03 1.06 1.76E−07 1.96 4.76E−03 1.04

64 6.13E−08 2.01 2.39E−03 0.99 4.53E−08 1.96 2.39E−03 0.99

Table 7 Third 3D example on a randomly h-perturbed grid with α = 10

1/h ‖p − ph‖ ‖�u − uh‖ ‖u − uh‖Fh

Symmetric MFMFE

8 1.49E−05 – 7.16E−04 – 5.25E−04 –

16 7.27E−06 1.04 4.71E−04 0.60 3.25E−04 0.69

32 3.82E−06 0.93 3.75E−04 0.33 3.09E−04 0.07

64 2.31E−06 0.73 3.48E−04 0.11 2.76E−04 0.16

Non-symmetric MFMFE

8 1.50E−05 – 7.29E−04 – 5.37E−04 –

16 7.21E−06 1.06 3.75E−04 0.96 2.59E−04 1.05

32 3.57E−06 1.01 1.88E−04 1.00 1.52E−04 0.77

64 1.78E−06 1.00 9.45E−05 0.99 7.32E−05 1.05

1/h |||p − ph ||| |||u − uh |||Fh
|||p − ph ||| |||u − uh |||Fh

Symmetric (left) and Non-symmetric (right) MFMFE

8 3.79E−06 – 2.26E−04 – 3.64E−06 – 2.42E−04 –

16 1.73E−06 1.13 1.17E−04 0.95 1.02E−06 1.84 8.01E−05 1.60

32 1.47E−06 0.24 1.17E−04 0.00 2.63E−07 1.96 3.84E−05 1.06

64 1.49E−06 <0 1.10E−04 0.09 6.62E−08 1.99 1.73E−05 1.15
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Table 8 Fourth 3D example on an h-perturbed grid with α = 100

1/h ‖p − ph‖ ‖�u − uh‖ ‖u − uh‖Fh

Symmetric MFMFE

8 1.53E−05 – 7.39E−03 – 6.27E−03 –

16 7.38E−06 1.05 3.79E−03 0.96 3.15E−03 0.99

32 3.65E−06 1.02 1.91E−03 0.99 1.59E−03 0.99

64 1.82E−06 1.00 9.57E−04 1.00 7.96E−04 1.00

Non-symmetric MFMFE

8 1.52E−05 – 7.40E−03 – 6.33E−03 –

16 7.36E−06 1.05 3.81E−03 0.96 3.17E−03 1.00

32 3.65E−06 1.01 1.92E−03 0.99 1.59E−03 1.00

64 1.82E−06 1.00 9.62E−04 1.00 7.97E−04 1.00

1/h |||p − ph ||| |||u − uh |||Fh
|||p − ph ||| |||u − uh |||Fh

Symmetric (left) and Non-symmetric (right) MFMFE

8 3.97E−06 – 2.22E−03 – 3.64E−06 – 2.21E−03 –

16 1.04E−06 1.93 8.14E−04 1.45 1.01E−06 1.85 7.51E−04 1.56

32 2.57E−07 2.02 3.86E−04 1.08 2.83E−07 1.84 3.27E−04 1.20

64 6.30E−08 2.03 1.97E−04 0.97 9.28E−08 1.61 1.60E−04 1.03

Table 9 Fifth 3D example on a randomly h-perturbed grid with a variable permeability

1/h ‖p − ph‖ ‖�u − uh‖ ‖u − uh‖Fh

Symmetric MFMFE

8 1.48E−05 – 9.15E−04 – 6.61E−04 –

16 7.26E−06 1.03 5.87E−04 0.64 4.06E−04 0.70

32 3.82E−06 0.93 4.64E−04 0.34 3.83E−04 0.08

64 2.30E−06 0.73 4.30E−04 0.11 3.40E−04 0.17

Non-symmetric MFMFE

8 1.49E−05 – 9.23E−04 – 6.66E−04 –

16 7.20E−06 1.05 4.68E−04 0.98 3.21E−04 1.05

32 3.57E−06 1.01 2.36E−04 0.99 1.90E−04 0.76

64 1.78E−06 1.00 1.18E−04 1.00 9.11E−05 1.07

1/h |||p − ph ||| |||u − uh |||Fh
|||p − ph ||| |||u − uh |||Fh

Symmetric (left) and Non-symmetric (right) MFMFE

8 3.54E−06 – 2.65E−04 – 3.37E−06 – 2.78E−04 –

16 1.70E−06 1.06 1.35E−04 0.97 9.92E−07 1.76 8.83E−05 1.65

32 1.48E−06 0.20 1.39E−04 <0 2.54E−07 1.97 3.98E−05 1.15

64 1.49E−06 <0 1.31E−04 0.09 6.41E−08 1.99 1.71E−05 1.22
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methods can be easily coupled element by element. In particular, one can select the
symmetric quadrature rule for h2-perturbed elements and the non-symmetric quadra-
ture rule for highly distorted elements. To test this concept, we choose the “coupled”
mesh as shown in Fig. 7 consisting of the randomly h-perturbed and the h2-perturbed
meshes from Fig. 5, as well as a uniform mesh. The analytical solution, permeability,
and boundary condition are the same as in Sect. 5.1. Table 10 demonstrates that the
coupled method has first order convergence for the pressure and the velocity and has
second order convergence for the pressure at the cell centers.

Fig. 7 A “coupled” mesh
consists of h2-perturbed and
randomly h-perturbed
quadrilaterals, and uniform
rectangles

Table 10 Symmetric MFMFE coupled with Non-symmetric MFMFE

1/h ‖p − ph‖ ‖�u − uh‖ ‖u − uh‖Fh

4 3.40E+0 – 4.52E+1 – 5.86E+1 –

8 5.96E−1 2.51 1.02E+1 2.15 1.18E+1 2.31

16 2.03E−1 1.55 4.37E+0 1.22 4.00E+0 1.56

32 9.72E−2 1.06 2.16E+0 1.02 1.75E+0 1.19

64 4.79E−2 1.02 1.11E+0 0.96 8.58E−1 1.03

128 2.39E−2 1.00 5.53E−1 1.01 4.25E−1 1.01

256 1.20E−2 0.99 2.77E−1 1.00 2.13E−1 1.00

1/h |||p − ph ||| |||u − uh |||Fh

4 3.04E+0 – 5.47E+1 –

8 3.96E−1 2.94 9.82E+0 2.48

16 4.77E−2 3.05 2.49E+0 1.98

32 1.17E−2 2.03 7.07E−1 1.82

64 2.91E−3 2.01 2.39E−1 1.56

128 7.73E−4 1.91 1.00E−1 1.26

256 1.84E−4 2.07 4.75E−2 1.07
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6 Conclusions

In this paper, a non-symmetric MFMFE method on both quadrilaterals and hexahedra
is developed based on BDM1 and enhanced BDDF1 spaces, and a special quadrature
rule. This method gives a cell-centered pressure stencil by locally eliminating the
velocity degrees of freedom. On highly distorted quadrilateral and hexahedral grids,
the non-symmetric MFMFE method gives better approximation than the symmetric
formulation from [33,51]. In particular, the non-symmetric MFMFE method exhibits
first order convergence for pressure and normal velocities on faces, as well as second
order superconvergence for the pressure at the cell centers. Furthermore, second order
superconvergence is observed for the face fluxes on smooth meshes. The method can
handle non-planar hexahedral faces. Since the symmetric and non-symmetric MFMFE
methods are locally defined, they can be coupled so that the non-symmetric method is
applied to highly distorted elements. Affine elements can also be coupled with quad-
rilateral and hexahedral elements. We remark that based on accurate velocities on
faces one can obtain accurate velocity inside elements by applying post-processing
techniques [49].
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