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Abstract
We develop a multipoint stress mixed finite element method

for linear elasticity with weak stress symmetry on quadrilat-

eral grids, which can be reduced to a symmetric and positive

definite cell centered system. The method utilizes the low-

est order Brezzi–Douglas–Marini finite element spaces for

the stress and the trapezoidal quadrature rule in order to

localize the interaction of degrees of freedom, which allows

for local stress elimination around each vertex. We develop

two variants of the method. The first uses a piecewise

constant rotation and results in a cell-centered system for

displacement and rotation. The second uses a continuous

piecewise bilinear rotation and trapezoidal quadrature rule

for the asymmetry bilinear form. This allows for further

elimination of the rotation, resulting in a cell-centered sys-

tem for the displacement only. Stability and error analysis

is performed for both methods. First-order convergence is

established for all variables in their natural norms. A duality

argument is employed to prove second order superconver-

gence of the displacement at the cell centers. Numerical

results are presented in confirmation of the theory.
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1 INTRODUCTION

Stress–displacement mixed finite element (MFE) elasticity formulations have been studied exten-

sively due to their local momentum conservation with continuous normal stress and locking-free

approximation, see [1] and references therein. These methods result in saddle point type algebraic
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systems, which may be expensive to solve. In this work we develop two stress–displacement MFE

methods for elasticity on quadrilateral grids that can be reduced to symmetric and positive definite

cell centered systems using a mass lumping technique. We have previously developed such meth-

ods on simplicial grids in [2]. Even though the formulation is similar, the stability and error analysis

on quadrilaterals differ significantly from those on simplices. The methods are referred to as mul-

tipoint stress mixed finite element (MSMFE) methods, adopting the terminology of the multipoint

stress approximation (MPSA) method developed in [3–5]. Our approach is motivated by the mul-

tipoint flux mixed finite element (MFMFE) method [6–8] for Darcy flow, and its closely related

multipoint flux approximation (MPFA) method [9–13]. The MFMFE method utilizes the lowest order

Brezzi–Douglas–Marini 1 spaces on simplices and quadrilaterals [14], as well as an enhanced

Brezzi–Douglas–Duran–Fortin 1 space [15] on hexahedral grids. There are two variants of the

MFMFE method—symmetric and non-symmetric. The symmetric version is designed for simplices

[8], as well as quadrilaterals and hexahedra that are O(h2)-perturbations of parallelograms and paral-

lelepipeds [6, 8]. It is related to the symmetric MPFA method [9, 16, 17]. The symmetric MFMFE

method is always well posed, but its convergence may deteriorate on general quadrilaterals or hexahe-

dra. The non-symmetric MFMFE method [7], which is related to the non-symmetric MPFA method [9,

12, 13], exhibits good convergence on general quadrilaterals or hexahedra, but it may become ill-posed

due to loss of coercivity if the grids are too distorted.

The MSMFE methods on quadrilaterals we develop in this paper are symmetric and are related to

the symmetric MFMFE method. The methods are based on the 1 spaces on quadrilaterals. We

consider the formulation with weakly imposed stress symmetry, for which there exist MFE spaces with

1 degrees of freedom for the stress. In this formulation the symmetry of the stress is imposed

weakly using a Lagrange multiplier, which is a skew-symmetric matrix and has a physical meaning of

rotation. Our first method, referred to as MSMFE-0, is based on the spaces 1 ×0 ×0 devel-

oped in [18, 19], using 1 stress and piecewise constant displacement and rotation. The 1

space has two normal degrees of freedom per edge, which can be associated with the two vertices.

An application of the trapezoidal quadrature rule for the stress bilinear form results in localizing the

interaction of stress degrees of freedom around mesh vertices. The stress is then locally eliminated and

the method is reduced to a symmetric and positive definite cell centered system for the displacement

and rotation. Our second method, MSMFE-1, is based on the spaces 1 ×0 ×1, with continu-

ous bilinear rotation, which is proposed in [20]. In this method we employ the trapezoidal quadrature

rule both for the stress and the asymmetry bilinear forms. This allows for further local elimination of

the rotation after the initial stress elimination, resulting in a symmetric and positive definite cell cen-

tered system for the displacement only. To the best of our knowledge, this is the first MFE method for

elasticity on quadrilaterals with such property.

We develop stability and error analysis for the two methods. The stability arguments follow the

framework established in [18], with modifications to account for the quadrature rules. The argument

in [18] explores connections between stable mixed elasticity elements and stable mixed Stokes and

Darcy elements. In the case of the MSMFE-0 method, the two stable pairs are 2×0 for Stokes and

1 × 0 for Darcy. Since the only term with quadrature is the stress bilinear form, the stability

argument in [18] can be modified in a relatively straightforward way. Proving stability of the MSMFE-1

method is more difficult. In this case the Stokes pair is 2 × 1. The difficulty comes from the fact

that the quadrature rule is also applied to the asymmetry bilinear forms, which necessitates establish-

ing an inf-sup condition for 2 ×1 with trapezoidal quadrature in the divergence bilinear form. We

do this by a macroelement argument motivated by [21]. It is based on establishing a local macroele-

ment inf-sup condition and combining the locally constructed velocities to obtain the global inf-sup

condition. We note that the proof is very different from the argument on simplices in [2]. In particular,
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on simplices one can establish a local inf-sup condition using vectors that are zero on the boundary of

the macroelement, which can be utilized in the global construction. This is not the case on quadrilat-

erals, which complicates the global construction significantly. The reader is referred to Section 4.1.1,

where the global Stokes inf-sup condition is established under a smoothness assumption on the grid

given in (M2). We would like to note that this result is important by itself, as it deals with the funda-

mental issue of inf-sup stability for Stokes finite element approximation with quadrature. We proceed

with establishing first order convergence for the stress in the H(div)-norm and for the displacement

and rotation in the L2-norm for both methods on elements that are O(h2)-perturbations of parallelo-

grams. This restriction is similar to the one in symmetric MPFA and MFMFE methods [8, 17]. Again,

the arguments are very different from the simplicial case, since the map to the reference element is

non-affine (bilinear), which complicates the estimation of the quadrature error. We further employ a

duality argument to prove second order superconvergence of the displacement at the cell centers.

The rest of the paper is organized as follows. The model problem and its MFE approximation

are presented in Section 2. The two methods and their stability are developed in Sections 3 and 4,

respectively. The error analysis is performed in Section 5. Numerical results are presented in Section 6.

2 MODEL PROBLEM AND ITS MFE APPROXIMATION

Let Ω be a simply connected bounded polygonal domain of R2 occupied by a linearly elastic body. We

write M, S, and N for the spaces of 2× 2 matrices, symmetric matrices, and skew-symmetric matrices,

all over the field of real numbers, respectively. The material properties are described at each point

x∈Ω by a compliance tensor A = A(x), which is a symmetric, bounded, and uniformly positive definite

linear operator acting from S to S. We also assume that an extension of A to an operator M → M

still possesses the above properties. We will utilize the usual divergence operator div for vector fields.

When applied to a matrix field, it produces a vector field by taking the divergence of each row. We

will also use the curl operator defined as curl𝜙 = (𝜕2𝜙,−𝜕1𝜙) for a scalar function 𝜙. Consequently,

for a vector field, the curl operator produces a matrix field, by acting row-wise.

Throughout the paper, C denotes a generic positive constant that is independent of the discretiza-

tion parameter h. We will also use the following standard notation. For a domain G⊂R2, the L2(G)

inner product and norm for scalar and vector valued functions are denoted (⋅, ⋅)G and ||⋅||G, respec-

tively. The norms and seminorms of the Sobolev spaces Wk, p(G), k∈R, p> 0 are denoted by ||⋅||k, p, G
and |⋅|k, p, G, respectively. The norms and seminorms of the Hilbert spaces Hk(G) are denoted by ||⋅||k, G
and |⋅|k, G, respectively. We omit G in the subscript if G = Ω. For a section of the domain or element

boundary S we write ⟨⋅, ⋅⟩S and ||⋅||S for the L2(S) inner product (or duality pairing) and norm, respec-

tively. We will also use the space H(div;Ω) = {v∈L2(Ω, R2) : div v∈L2(Ω)} equipped with the norm||v||div = (||v||2 + ||div v||2)1/2.

Given a compliance tensor A ∈ L∞(Ω,S) and a vector field f ∈ L2(Ω, R2) representing body forces,

the equations of static elasticity in Hellinger–Reissner form determine the stress 𝜎 and the displacement

u satisfying the constitutive and equilibrium equations respectively:

A𝜎 = 𝜖(u), div𝜎 = f in Ω, (2.1)

together with the boundary conditions

u = g on ΓD, 𝜎 n = 0 on ΓN , (2.2)

where 𝜖(u) = 1

2
(∇u + (∇u)T ), 𝜕Ω = ΓD ∪ΓN , and g∈H1/2(ΓD). We assume for simplicity that ΓD ≠ ∅.
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We consider a weak formulation for (2.1) and (2.2), in which the stress symmetry is imposed

weakly, using the Lagrange multiplier 𝛾 = Skew(∇u), Skew(𝜏) = 1

2
(𝜏 − 𝜏T ), from the space of

skew-symmetric matrices: find (𝜎, u, 𝛾) ∈ X × V × W such that:

(A𝜎, 𝜏) + (u, div 𝜏) + (𝛾, 𝜏) = ⟨g, 𝜏 n⟩ΓD , ∀𝜏 ∈ X, (2.3)

(div 𝜎, v) = (f , v), ∀v ∈ V , (2.4)

(𝜎, 𝜉) = 0, ∀𝜉 ∈ W, (2.5)

where the corresponding spaces are

X = {𝜏 ∈ H(div,Ω,M) ∶ 𝜏n = 0 on ΓN}, V = L2(Ω,R2), W = L2(Ω,N).

Problem (2.3)–(2.5) has a unique solution [22].

2.1 MFE method

Let h be a shape-regular and quasi-uniform quadrilateral partition of Ω [23], with h =
maxE∈h diam(E). For any element E ∈ h there exists a bilinear bijection mapping FE ∶ Ê → E, where

Ê = [0, 1]2 is the reference square. Denote the Jacobian matrix by DFE and let JE = ∣ det(DFE)∣. For

x = FE(x̂) we have

DF−1
E (x) = (DFE)−1(x̂), JF−1

E
(x) = 1

JE(x̂)
.

Let Ê has vertices r̂1 = (0, 0)T , r̂2 = (1, 0)T , r̂3 = (1, 1)T , and r̂4 = (0, 1)T with unit outward normal

vectors to the edges denoted by n̂i, i = 1, … , 4 (Figure 1). We denote by ri = (xi, yi)
T , i = 1, … , 4,

the corresponding vertices of the element E, and by ni, i = 1, … , 4, the corresponding unit outward

normal vectors. The bilinear mapping FE and its Jacobian matrix are given by

FE (̂r) = r1 + r21x̂ + r41ŷ + (r34 − r21)̂xŷ, (2.6)

DFE = [r21, r41] + [(r34 − r21)̂y, (r34 − r21)̂x], (2.7)

where rij = ri − rj. It is easy to see that the shape-regularity and quasi-uniformity of the grids imply

that ∀E ∈ h,

||DFE||0,∞,Ê ∼ h, ||DF−1
E ||

0,∞,Ê ∼ h−1, ||JE||0,∞,Ê ∼ h2, and ||JF−1
E
||

0,∞,Ê ∼ h−2, (2.8)

where the notation a∼ b means that there exist positive constants c0, c1 independent of h such that

c0b≤ a≤ c1b.

FIGURE 1 Degrees of freedom of Xh × Vh × W1
h
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The finite element spaces Xh×Vh×Wk
h ⊂ X×V×W are the triple (1)2×(0)2×(k)2×2,skew,

k = 0, 1, where k denotes the space of polynomials of degree at most k in each variable and each row

of an element of Xh is a vector in 1. On the reference square the spaces are defined as

X̂(Ê) = (1(Ê)2 + r1curl(̂x2ŷ) + s1curl(̂xŷ2)) × (1(Ê)2 + r2curl(̂x2ŷ) + s2curl(̂xŷ2))

=

(
𝛼1x̂ + 𝛽1ŷ + 𝛾1 + r1x̂2 + 2s1x̂ŷ 𝛼2x̂ + 𝛽2ŷ + 𝛾2 − 2r1x̂ŷ − s1ŷ2

𝛼3x̂ + 𝛽3ŷ + 𝛾3 + r2x̂2 + 2s2x̂ŷ 𝛼4x̂ + 𝛽4ŷ + 𝛾4 − 2r2x̂ŷ − s2ŷ2

)
, (2.9)

V̂(Ê) = (0(Ê))2, Ŵ
k
(Ê) =

(
0 p
−p 0

)
, p ∈ k(Ê) for k = 0, 1,

where 𝛼i, 𝛽 i, 𝛾 i, ri, si are real constants. Note that divX̂(Ê) = V̂(Ê) and for all 𝜏 ∈ X̂(Ê), 𝜏 nê ∈ 1(̂e)2
on any edge ê of Ê. It is well known [14, 15] that the degrees of freedom of 1(Ê) can be chosen

as the values of the normal components at any two points on each edge ê ⊂ 𝜕Ê. In this work we choose

these points to be the vertices of ê (Figure 1). This is motivated by the trapezoidal quadrature rule,

introduced in the next section. The spaces on any element E ∈ h are defined via the transformations

𝜏

↔ 𝜏 ∶ 𝜏T = 1

JE
DFE𝜏

T◦F−1
E , v ↔ v̂ ∶ v = v̂◦F−1

E , 𝜉 ↔ 𝜉 ∶ 𝜉 = 𝜉◦F−1
E , (2.10)

where 𝜏 ∈ X̂(Ê), v̂ ∈ V̂(Ê), and 𝜉 ∈ Ŵ
k
(Ê). Note that the Piola transformation (applied row-by-row)

is used for X̂(Ê). It satisfies, for all sufficiently smooth 𝜏

↔ 𝜏, v ↔ v̂, and 𝜙↔ 𝜙,

(div 𝜏, v)E = (div 𝜏, v̂)Ê, ⟨𝜏ne, v⟩e = ⟨𝜏n̂ê, v̂⟩ê, and curl 𝜙

↔ curl 𝜙. (2.11)

The spaces on h are defined by

Xh =
{
𝜏 ∈ X ∶ 𝜏|||E 

↔ 𝜏, 𝜏 ∈ X̂(Ê) ∀E ∈ h
}
,

Vh =
{

v ∈ V ∶ v|||E ↔ v̂, v̂ ∈ V̂(Ê) ∀E ∈ h
}
, (2.12)

W
0
h =

{
𝜉 ∈ W ∶ 𝜉|||E ↔ 𝜉, 𝜉 ∈ Ŵ

0
(Ê) ∀E ∈ h

}
,

W
1
h =

{
𝜉 ∈ (Ω,N) ⊂ W ∶ 𝜉|||E ↔ 𝜉, 𝜉 ∈ Ŵ

1
(Ê) ∀E ∈ h

}
.

Note that W1
h ⊂ H1(Ω), since it contains continuous piecewise 1 functions.

The MFE method for (2.3)–(2.5) is: find (𝜎h, uh, 𝛾h) ∈ Xh × Vh × Wk
h such that

(A𝜎h, 𝜏) + (uh, div𝜏) + (𝛾h, 𝜏) = ⟨g, 𝜏n⟩ΓD , 𝜏 ∈ Xh, (2.13)

(div𝜎h, v) = (f , v), v ∈ Vh, (2.14)

(𝜎h, 𝜉) = 0, 𝜉 ∈ W
k
h. (2.15)

It is shown in [18] that the method (2.13)–(2.15) in the case k = 0 has a unique solution and it is first

order accurate for all variables in their corresponding norms. The case k = 1 on rectangles is analyzed

in [20]. The framework from [18] can be used to analyze the case k = 1 on quadrilaterals. A drawback

of the method is that the resulting algebraic problem is a coupled stress–displacement–rotation system

of a saddle point type. In this paper we develop two methods that utilize a quadrature rule and can be

reduced to cell-centered systems for displacement–rotation and displacement only, respectively.
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2.2 A quadrature rule

Let 𝜑 and 𝜓 be element-wise continuous functions on Ω. We denote by (𝜑,𝜓)Q the application of the

element-wise tensor product trapezoidal quadrature rule for computing (𝜑,𝜓). The integration on any

element E is performed by mapping to the reference element Ê. For 𝜏, 𝜒 ∈ Xh, we have

∫E
A𝜏 ∶ 𝜒dx = ∫Ê

Â 1

JE
𝜏DFT

E ∶ 1

JE
𝜒DFT

EJE𝑑x̂ = ∫Ê
Â𝜏 1

JE
DFT

E ∶ 𝜒DFT
E𝑑x̂.

The quadrature rule on an element E is then defined as

(A𝜏, 𝜒)Q,E ≡
(

Â𝜏 1

JE
DFT

E, 𝜒DFT
E

)
Q̂,Ê

≡ ∣ Ê ∣
4

4∑
i=1

Â(̂ri)𝜏 (̂ri)
1

JE (̂ri)
DFT

E (̂ri) ∶ 𝜒 (̂ri)DFT
E (̂ri). (2.16)

The global quadrature rule is defined as (A𝜏, 𝜒)Q ≡ ∑
E∈h

(A𝜏, 𝜒)Q,E. We note that the quadrature rule

can be defined directly on a physical element E:

(A𝜏, 𝜒)Q,E = 1

2

4∑
i=1

∣ Ti ∣ A(ri)𝜏(ri) ∶ 𝜒(ri), (2.17)

where ∣Ti∣ is the area of triangle formed by the two edges sharing ri.

Recall that the stress degrees of freedom are the two normal components per edge evaluated at the

vertices (Figure 1). For an element vertex ri, the tensor 𝜒(ri) is uniquely determined by its normal

components to the two edges that share that vertex. Since the basis functions associated with a vertex

are zero at all other vertices, the quadrature rule (2.16) decouples the degrees of freedom associated

with a vertex from the rest of the degrees of freedom, which allows for local stress elimination.

We also employ the trapezoidal quadrature rule for the stress–rotation bilinear forms in the case of

bilinear rotations. For 𝜏 ∈ Xh, 𝜉 ∈ W1
h, we have

(𝜏, 𝜉)Q,E ≡
(

1

JE
𝜏FT

E , 𝜉JE

)
Q̂,Ê

≡ ∣ Ê ∣
4

4∑
i=1

𝜏 (̂ri)DFE (̂ri)T ∶ 𝜉 (̂ri). (2.18)

The next lemma shows that the quadrature rule (2.16) produces a coercive bilinear form.

Lemma 2.1 The bilinear form (A𝜏,𝜒)Q is an inner product on Xh and (A𝜏, 𝜏)1∕2
Q is a

norm in Xh equivalent to ∥ ⋅ ∥, that is, there exist constants 0<𝛼0 ≤ 𝛼1 independent of h
such that

𝛼0 ∥ 𝜏∥2 ≤ (A𝜏, 𝜏)Q ≤ 𝛼1 ∥ 𝜏∥2 ∀𝜏 ∈ Xh. (2.19)

Furthermore, (𝜉, 𝜉)1∕2
Q is a norm in W1

h equivalent to ∥ ⋅ ∥, and ∀𝜏 ∈ Xh, 𝜉 ∈ W1
h,

(𝜏, 𝜉)Q ≤C ∥ 𝜏 ∥ ∥ 𝜉∥.

Proof. The proof follows the argument of Lemma 2.2 in [2], using (2.17).
▪

3 THE MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD WITH
CONSTANT ROTATIONS (MSMFE-0)

Let 0 be the L2-orthogonal projection onto the space of piecewise constant vector-valued functions

on the trace of h on 𝜕Ω. Our first method, referred to as MSMFE-0, is: find 𝜎h ∈ Xh, uh ∈ Vh, and

𝛾h ∈ W0
h such that

(A𝜎h, 𝜏)Q + (uh, div𝜏) + (𝛾h, 𝜏) = ⟨0g, 𝜏n⟩ΓD , 𝜏 ∈ Xh, (3.1)

(div𝜎h, v) = (f , v), v ∈ Vh, (3.2)

(𝜎h, 𝜉) = 0, 𝜉 ∈ W
0
h. (3.3)
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The Dirichlet data are incorporated into the scheme as 0g, which is necessary for the optimal

approximation of the boundary condition term.

Theorem 3.1 The method (3.1)–(3.3) has a unique solution.

Proof. Using classical stability theory of MFE methods, the required Babuška–Brezzi

stability conditions [15] are:

(S1) There exists c1 > 0 such that

c1||𝜏||div ≤ (A𝜏, 𝜏)1∕2
Q (3.4)

for 𝜏 ∈ Xh satisfying (div𝜏, v) = 0 and (𝜏, 𝜉) = 0 for all (v, 𝜉) ∈ Vh × W0
h.

(S2) There exists c2 > 0 such that

inf
0≠(v,𝜉)∈Vh×W0

h

sup
0≠𝜏∈Xh

(div𝜏, v) + (𝜏, 𝜉)
∥ 𝜏∥div(∥ v ∥ + ∥ 𝜉 ∥)

≥ c2. (3.5)

Using (2.11) and divX̂(Ê) = V̂(Ê), the condition (div𝜏, v) = 0, ∀ v∈Vh implies that

div𝜏 = 0. Then (S1) follows from (2.19). The inf-sup condition (S2) has been shown in

[18]. ▪

3.1 Reduction to a cell-centered displacement-rotation system

The algebraic system that arises from (3.1)–(3.3) is of the form⎛⎜⎜⎜⎝
A𝜎𝜎 AT

𝜎u AT
𝜎𝛾

−A𝜎u 0 0

−A𝜎𝛾 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝜎

u
𝛾

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

g
−f
0

⎞⎟⎟⎟⎠ , (3.6)

where (A𝜎𝜎)ij = (A𝜏 j, 𝜏 i)Q, (A𝜎u)ij = (div𝜏 j, vi), and (A𝜎𝛾 )ij = (𝜏 j, 𝜉i). The method can be reduced to

solving a cell-centered displacement-rotation system as follows. Since the quadrature rule (A𝜎h, 𝜏)Q
localizes the basis functions interaction around mesh vertices, the matrix A𝜎𝜎 is block-diagonal with

2k× 2k blocks associated with vertices, where k is the number of elements that share the vertex, see

Figure 2 (left) for an example with k = 4. Lemma 2.1 implies that the blocks are symmetric and positive

definite. Therefore the stress 𝜎h can be easily eliminated by solving small local systems, resulting in

the cell-centered displacement-rotation system(
A𝜎uA−1

𝜎𝜎AT
𝜎u A𝜎uA−1

𝜎𝜎AT
𝜎𝛾

A𝜎𝛾A−1
𝜎𝜎AT

𝜎u A𝜎𝛾A−1
𝜎𝜎AT

𝜎𝛾

)(
u
𝛾

)
=

(
f̃
h̃

)
. (3.7)

The displacement and rotation stencils for an element E include all elements that share a vertex with E,

see Figure 2 (right) for an example of the displacement stencil. The matrix in (3.7) is clearly symmetric.

Furthermore, for any (vT 𝜉T )≠ 0,(
vT 𝜉T

)(
A𝜎uA−1

𝜎𝜎AT
𝜎u A𝜎uA−1

𝜎𝜎AT
𝜎𝛾

A𝜎𝛾A−1
𝜎𝜎AT

𝜎u A𝜎𝛾A−1
𝜎𝜎AT

𝜎𝛾

)(
v
𝜉

)
= (AT

𝜎uv + AT
𝜎𝛾𝜉)TA−1

𝜎𝜎(AT
𝜎uv + AT

𝜎𝛾𝜉) > 0, (3.8)

due to the inf-sup condition (S2), which implies that the matrix is positive definite.
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FIGURE 2 Finite elements sharing a vertex (left) and displacement stencil (right)

Remark 3.1 The MSMFE-0 method is more efficient than the original MFE method,

since it involves a smaller system, which is symmetric and positive definite. To quantify

the computational savings, consider a logically rectangular grid. In this case the number

of elements and vertices are approximately the same. Denote this number by m. In the

original system (3.6), there are eight stress degrees of freedom per vertex, two displace-

ment degrees of freedom per element, and one rotation degree of freedom per element,

resulting in approximately 11m unknowns. The reduced system (3.7) has only approxi-

mately 3m unknowns, a significant reduction. Moreover, the reduced system is symmetric

and positive definite, and thus efficient solvers such as the conjugate gradient method or

multigrid can be used for its solution. In comparison, the original system (3.6) is indefi-

nite and such fast solvers are not applicable. We further note that the additional cost for

solving the local vertex systems required to form (3.7) is O(m), which is negligible for

large m compared to the cost for solving the global systems (3.6) or (3.7) using a Krylov

space iterative method, which is at least O(m2).

We remark that further reduction in the system (3.7) is not possible. In the next section

we develop a method with continuous bilinear rotations and a trapezoidal quadrature rule

applied to the stress-rotation bilinear forms. This allows for further local elimination of

the rotation, resulting in a cell-centered system for the displacement only.

4 THE MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD WITH
BILINEAR ROTATIONS (MSMFE-1)

In the second method, referred to as MSMFE-1, we take k = 1 in (2.9) and apply the quadrature rule to

both the stress bilinear form and the stress-rotation bilinear forms. The method is: find 𝜎h ∈ Xh, uh ∈
Vh and 𝛾h ∈ W1

h such that

(A𝜎h, 𝜏)Q + (uh, div𝜏) + (𝛾h, 𝜏)Q = ⟨0g, 𝜏n⟩ΓD , 𝜏 ∈ Xh, (4.1)

(div𝜎h, v) = (f , v), v ∈ Vh, (4.2)

(𝜎h, 𝜉)Q = 0, 𝜉 ∈ W
1
h. (4.3)



1894 AMBARTSUMYAN ET AL.

The stability conditions for the MSMFE-1 method are as follows:

(S3) There exists c3 > 0 such that

c3 ∥ 𝜏 ∥2
div≤ (A𝜏, 𝜏)Q,

for 𝜏 ∈ Xh satisfying (div𝜏, v) = 0 and (𝜏, 𝜉)Q = 0 for all (v, 𝜉) ∈ Vh × W1
h.

(S4) There exists c4 > 0 such that

inf
0≠(v,𝜉)∈Vh×W1

h

sup
0≠𝜏∈Xh

(div𝜏, v) + (𝜏, 𝜉)Q
∥ 𝜏∥div(∥ v ∥ + ∥ 𝜉 ∥)

≥ c4. (4.4)

4.1 Well-posedness of the MSMFE-1 method

The stability condition (S3) holds, since the spaces Xh and Vh are as in the MSMFE-0 method. How-

ever, (S4) is different, due to the quadrature rule in (𝜏, 𝜉)Q, and it needs to be verified. The next theorem,

proved in [2], provides sufficient conditions for a triple Xh × Vh ×W1
h to satisfy (S4), where we adopt

the notation b(q, w) = (div q, w) and b(q, w)Q = (div q, w)Q.

Theorem 4.1 Suppose that Sh ⊂H(div;Ω) and Uh ⊂ L2(Ω) satisfy

inf
0≠r∈Uh

sup
0≠z∈Sh

b(z, r)
∥ z∥div ∥ r ∥

≥ c5, (4.5)

that Qh ⊂H1(Ω, R2) and Wh ⊂ L2(Ω) are such that (w,w)1∕2
Q is a norm in Wh equivalent

to ∥w∥ and

inf
0≠w∈W1

h

sup
0≠q∈Qh

b(q,w)Q
∥ q∥1 ∥ w ∥

≥ c6. (4.6)

and that
curlQh ⊂ Sh × Sh. (4.7)

Then, Xh = Sh × Sh ⊂ H(div; Ω,M), Vh = Uh ×Uh ⊂L2(Ω, R2), and W1
h ={

𝜉 ∶ 𝜉 =
(

0 w
−w 0

)
, w ∈ Wh

}
⊂ L2(Ω,N) satisfy (S4).

Remark 4.1 Condition (4.5) states that Sh ×Uh is a stable Darcy pair. Condition (4.6)

states that Qh ×Wh is a stable Stokes pair with quadrature.

Lemma 4.1 Conditions (4.5) and (4.7) hold for Xh × Vh × W1
h defined in (2.9) and

(2.12).

Proof. According to the definition (2.9), we take

Sh = {z ∈ H(div; Ω) ∶ z|E 
↔ ẑ ∈ 1(Ê), z ⋅ n = 0 on ΓN},

Uh = {r ∈ L2(Ω) ∶ r|E ↔ r̂ ∈ 0(Ê)}, Wh = {w ∈ H1(Ω) ∶ w|E ↔ ŵ ∈ 1(Ê)}.

We note that Wh satisfies the norm equivalence (w,w)1∕2
Q ∼∥ w ∥, see Lemma 2.1. The

boundary condition in Sh is needed to guarantee the essential boundary condition in Xh
on ΓN . Since 1 × 0 is a stable Darcy pair [15], (4.5) holds. Next, following the
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construction in [18], we take 2(Ê) to be the reduced bi-quadratics (serendipity) space

[23],

2(Ê) = 2(Ê) + span{x̂2ŷ, x̂ŷ2},

and define the space Qh as

Qh = {q ∈ H1(Ω,R2) ∶ qi|E ↔ q̂i ∈ 2(Ê), i = 1, 2, ∀E ∈ h, q = 0 on ΓN}. (4.8)

One can verify that curl2(Ê) ⊂ 1(Ê). Due to (2.11), curlQh ⊂ Sh × Sh, not con-

sidering the boundary condition on ΓN . Finally, since for q∈Qh we have q = 0 on ΓN ,

then (curlq) n = 0 on ΓN , see [2, Lemma 4.2]. ▪

To prove (S4), it remains to show that (4.6) holds. It is shown in [21] that 2 − 1 is a stable

Stokes pair on rectangular grids. We need to verify that it is a stable Stokes pair with quadrature on

quadrilaterals, which we do next.

4.1.1 The inf-sup condition for the Stokes problem
We prove (4.6) using a modification of the macroelement technique presented in [21]. The idea is to

establish first a local inf-sup condition and then combine locally constructed velocity vectors to prove

the global inf-sup condition. We recall that in [21], it was sufficient to consider velocity functions that

vanish on the macroelement boundary in order to control the pressures locally. However, due to the

quadrature rule, this is not true in our case. We show how a similar result can be obtained without

restricting the velocity basis functions on the macroelement boundary, under a smoothness assumption

on the grid h.

For a finite element space Yh and a union of finite elements D, we let Yh(D) = Yh|D. For an element

E, we consider the span of shape functions associated with all edge degrees of freedom of Qh(E) and

denote it by Qe
h(E). Let

NE = {w ∈ Wh(E) ∶ b(q,w)Q,E = 0, ∀q ∈ Qe
h(E)}.

We make the following assumptions on the mesh.

(M1) Each element E has at most one edge on ΓN .

(M2) The mesh size h is sufficiently small and there exists a constant C such that for

every pair of neighboring elements E and Ẽ such that E or Ẽ is a

non-parallelogram, and every pair of edges e ⊂ 𝜕E∖𝜕Ẽ, ẽ ⊂ 𝜕Ẽ∖𝜕E that share a

vertex,

||re − rẽ||R2 ≤ Ch2,

where re and rẽ are the vectors corresponding to e and ẽ, respectively, and || ⋅ ||
R

2 is the Euclidean

vector norm.

Remark 4.2 Condition (M1) is needed to establish a local inf-sup condition. It requires

that corner elements do not have two edges on ΓN . Condition (M2) is needed to combine

the local results and prove the global inf-sup condition (4.6). We note that it is required

only for non-parallelogram elements. It is a mesh smoothness condition. For example, it is

satisfied if the mesh is generated by a C2 map of a uniform reference grid. The condition

on the mesh size h is given in the proof of Lemma 4.4.
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Lemma 4.2 Let (M1) hold. If E is a parallelogram, then NE is one-dimensional,
consisting of functions that are constant on E; otherwise NE = 0.

Proof. For any q∈Qh(E), w∈Wh(E), we have

b(q,w)Q,E = (tr(∇q),w)Q,E = 1

4

4∑
j=1

tr[DF−T
E (̂rj)∇̂q̂(̂rj)]ŵ(̂rj)JE (̂rj).

Consider first an element with no edges on ΓN . Denote the basis functions for Qe
h(E) by

qi = qn
i + qt

i, i = 1, … , 4, see Figure 3 (left). Without loss of generality, assume that

the edge corresponding to q1 is horizontal, that is, y2 − y1 = 0, x2 − x1 ≠ 0, x3 − x4 ≠ 0,

y4 − y1 ≠ 0, and y3 − y2 ≠ 0. A direct calculation gives

b(qt
1,w)Q,E = (y4 − y1)w(r1) + (y2 − y3)w(r2), (4.9)

b(qn
1,w)Q,E = (y1 − y2)w(r1) + (y2 − y1)w(r2), (4.10)

b(qt
2,w)Q,E = (x2 − x1)w(r2) + (x4 − x3)w(r3), (4.11)

b(qn
2,w)Q,E = (x2 − x3)w(r2) + (x3 − x2)w(r3), (4.12)

b(qt
3,w)Q,E = (y2 − y3)w(r3) + (y4 − y1)w(r4), (4.13)

b(qn
3,w)Q,E = (y3 − y4)w(r3) + (y4 − y3)w(r4). (4.14)

b(qt
4,w)Q,E = (x2 − x1)w(r1) + (x4 − x3)w(r4), (4.15)

b(qn
4,w)Q,E = (x1 − x4)w(r1) + (x4 − x1)w(r4). (4.16)

Let us set the above quantities equal to zero. Consider the vertically oriented edges of E.

From (4.11) and (4.15) we get

w(r2) = w(r3)
x4 − x3

x1 − x2

, w(r1) = w(r4)
x4 − x3

x1 − x2

. (4.17)

If x2 ≠ x3, we also get from (4.12) that w(r2) = w(r3). This together with (4.17) implies

that w(r1) = w(r4). Similarly, if x1 ≠ x4, it follows from (4.16) that w(r1) = w(r4), and

(4.17) implies that w(r2) = w(r3). Finally, if x2 = x3 and x1 = x4, we arrive to the same

conclusion directly from (4.17).

FIGURE 3 Left: interior element; middle: element with bottom edge on ΓN ; right: an interior element, surrounded by four

elements
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Next, consider the edges corresponding to q1 and q3. From (4.13) we get

w(r3) = w(r4)
y1 − y4

y2 − y3

. (4.18)

If y3 ≠ y4, (4.14) implies that w(r3) = w(r4). If y3 = y4, since y1 = y2, we obtain from

(4.18) that w(r3) = w(r4). Hence, w must be constant on E.

We next consider the case when one of the edges of E is on ΓN . Let this be the edge

associated with q1, as shown in Figure 3 (middle). Since the above argument above did

not use (4.9) or (4.10), the conclusion still applies.

Finally, if w is a nonzero constant in NE, setting Equations (4.10)–(4.16) to zero

implies that E is a parallelogram. ▪

Theorem 4.2 If (M1)–(M2) are satisfied, then (4.6) holds.

The proof of Theorem 4.2 is based on several auxiliary lemmas.

Lemmas 4.3 If (M1) holds, then there exists a constant 𝛽 > 0 independent of h such
that,

∀T ∈ h, sup
0≠q∈Qe

h(E)

b(q,w)Q,E||q||1,E ≥ 𝛽||w||E, ∀w ∈ Wh(E)∕NE.

Proof. The proof follows from Lemma 4.2 and a scaling argument, see [21, Lemma

3.1]. ▪

For E ∈ h, let P
E
h denote the L2-projection from Wh(E) onto NE.

Lemma 4.4 If (M1) and (M2) hold, then there exists a constant C1 > 0, such that for
every w∈Wh and for every E ∈ h that is either a non-parallelogram or a parallelogram
that neighbors parallelograms, there exists qE ∈ Qe

h(E) satisfying

b(qE,w)Q ≥ C1||(I − P
E
h )w||2E and ||qE||1 ≤ ||(I − P

E
h )w||E. (4.19)

Proof. Let w∈Wh. Due to Lemma 4.2, if E is not a parallelogram, then P
E
h w = 0 on

E. Otherwise, P
E
h w is the mean value of w on E. Lemma 4.3 implies that for every E there

exists qE ∈ Qe
h(E) such that

b(qE,w)Q,E = b(qE, (I − P
E
h )w)Q,E ≥ C||(I − P

E
h )w||2E and ||qE||1,E ≤ ||(I − P

E
h )w||E. (4.20)

We note that qE does not vanish outside of E; however, we will show that under

assumption (M2)

b(qE,w)Q,Ω∖E ≥ 0. (4.21)

In order to prove (4.21) let us consider a neighboring element Ẽ, see Figure 3 (right). Let

qE =
∑4

i=1 𝛼iqi. We first consider a non-parallelogram E. Consider the tangential degree

of freedom qt
1, associated with the edge shared by E and Ẽ. Using (4.9), we have

b(qt
1,w)Q,E = (y4 − y1)w(r1) + (y2 − y3)w(r2) ≔

4∑
j=1

𝛿t
1,jw(rj), (4.22)
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where 𝛿t
1,1 = (y4 − y1), 𝛿t

1,2 = (y2 − y3), and 𝛿t
1,j = 0 for j = 3, 4. For qn

1, using (4.10), we

have

b(qn
1,w)Q,E = (y1 − y2)w(r1) + (y2 − y1)w(r2) ≔

4∑
j=1

𝛿n
1,jw(rj). (4.23)

Using a similar expression for the rest of the degrees of freedom, we obtain

b(qE,w)Q,E =
4∑

i=1

𝛼ib(qi,w)Q,E =
4∑

i=1

4∑
j=1

𝛼i𝛿i,jw(rj),

where 𝛿i,j = 𝛿n
i,j + 𝛿t

i,j. We note that for all i, j, 𝛿i, j = 0 or ∣𝛿i, j ∣ = O(h). Using (4.13), we

also compute

b(qt
1,w)Q,Ẽ = (y1 − ỹ1)w(r1) + (̃y2 − y2)w(r2) ≔

4∑
j=1

𝜎t
1,jw(rj), (4.24)

where 𝜎t
1,1 = (y1 − ỹ1), 𝜎t

1,2 = (̃y2 − y2), and 𝜎t
1,j = 0 for j = 3, 4. Using (4.14), we have

b(qn
1,w)Q,Ẽ = (y1 − y2)w(r1) + (y2 − y1)w(r2) ≔

4∑
j=1

𝜎n
1,jw(rj). (4.25)

Therefore,

b(qE,w)Q,Ẽ =
4∑

i=1

𝛼ib(qi,w)Q,Ẽ =
4∑

i=1

4∑
j=1

𝛼i𝜎i,jw(rj).

Moreover, due to assumption (M2),

𝜎i,j = 𝛿i,j + 𝜃i,j,

with 𝜃i, j = 0 if 𝛿i, j = 0 and ∣𝜃i, j ∣ ≤Ch2 otherwise. Indeed, consider, for example, i= j= 1,

then, by (M2),

∣ 𝜎1,1 − 𝛿1,1 ∣=∣ 𝜎t
1,1 − 𝛿t

1,1 ∣=∣ (y1 − ỹ1) − (y4 − y1) ∣≤ Ch2.

Therefore, we obtain

b(qE,w)Q,Ẽ =
4∑

i=1

4∑
j=1

𝛼i𝜎i,jw(rj) = b(qE,w)Q,E +
4∑

i=1

4∑
j=1

𝛼i𝜃i,jw(rj)

≥ Ch2

4∑
j=1

(w(rj))2 +
4∑

i=1

4∑
j=1

𝛼i𝜃i,jw(rj), (4.26)

using the first inequality in (4.20), that P
E
h w = 0, and that

∥ w ∥2
E∼ h2

4∑
j=1

(w(rj))2, (4.27)

which follows from the norm equivalence ||w||E ∼ ||w||Q, E stated in Lemma 2.1 and the

shape regularity of the mesh.
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Finally, the second inequality in (4.20) and a scaling argument imply that for every

i = 1, … , 4 there exist constants bi, k, k = 1, … , 4, independent of h such that

𝛼i = h
4∑

k=1

bi,kw(rk). (4.28)

Then, there exists a constant C̃ independent of h such that||||||
4∑

i=1

4∑
j=1

𝛼i𝜃i,jw(rj)
|||||| =

||||||
4∑

i=1

h
4∑

k=1

bi,kw(rk)
4∑

j=1

𝜃i,jw(rj)
|||||| ≤ C̃h3

4∑
j=1

(w(rj))2. (4.29)

Combining (4.26)–(4.29) and taking h ≤ C∕C̃, we obtain (4.21):

b(qE,w)Q,Ẽ ≥ Ch2

4∑
j=1

(w(rj))2 − C̃h3

4∑
j=1

(w(rj))2 ≥ (C − C̃h)h2

4∑
j=1

(w(rj))2 ≥ 0.

Next, consider the case of a parallelogram E with parallelogram neighbors. In this

case, (4.22) and (4.24) give

b(qt
1,w)Q,E = (y4 − y1)(w(r1) − w(r2)), b(qt

1,w)Q,Ẽ = (y1 − ỹ1)(w(r1) − w(r2)). (4.30)

Similarly, (4.23) and (4.25) give

b(qn
1,w)Q,E = (y1 − y2)(w(r1) − w(r2)), b(qn

1,w)Q,Ẽ = (y1 − y2)(w(r1) − w(r2)).

Similar relationships hold for the rest of the basis functions. Therefore there exist posi-

tive constants ci, i = 1, … , 4, such that b(qi,w)Q,Ẽ = cib(qi,w)Q,E. We can assume that

𝛼ib(qi, w)Q, E ≥ 0 for i = 1, … , 4, since, if 𝛼ib(qi, w)Q, E < 0, it can be omitted from the lin-

ear combination qE =
∑4

i=1 𝛼iqi and the resulting qE would still satisfy (4.20). Therefore,

(4.21) holds:

b(qE,w)Q,Ẽ =
4∑

i=1

𝛼ib(qi,w)Q,Ẽ =
4∑

i=1

ci𝛼ib(qi,w)Q,E ≥ 0.

The assertion of the lemma now follows from (4.20) and (4.21), where the second

inequality in (4.19) follows from (4.28). ▪

We next note that the element norm equivalence (4.27) implies that for w∈Wh,

||w||2 ∼ h2

NW∑
j=1

(w(rj))2, (4.31)

where NW is the number of degrees of freedom of Wh. Therefore, to prove (4.6), it is sufficient to

control h2(w(rj))
2. We will consider three sets of vertices and show that each set can be controlled. Let

I1 = {j : rj is a vertex of a non - parallelogram },

I2 = {j : all elements sharing rj are parallelograms and at least one has a non - parallelogram

neighbor },

I3 = {j : all elements sharing rj are parallelograms with parallelogram neighbors }.

Clearly the union of the three sets covers all vertices of the mesh.
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Lemma 4.5 If (M1)–(M2) hold, there exists a constant C independent of h such that
for every w∈Wh, there exists q∈Qh such that

b(q,w)Q ≥ Ch2
∑

j∈I1∪I2

(w(rj))2, ||q||1 ≤∥ w ∥ . (4.32)

Proof. If j∈ I1, Lemma 4.4 and (4.27) imply that there exists qj ∈ Qe
h(E) such that

b(qj,w)Q ≥ Ch2(w(rj))2, ||qj||1 ≤ ||w||E, (4.33)

where E is the non-parallelogram element with vertex rj.

Next, consider j∈ I2. Let rk share an edge with rj. Note that its two neighboring ele-

ments are parallelograms. Denote them by E and Ẽ and let qt
1 be the tangential edge basis

function. Using (4.30), we can take q̃j = ch(w(rj) − w(rk))qt
1, which satisfies

b(q̃j,w)Q ≥ Ch2(w(rj) − w(rk))2, ∥ q̃j∥1 ≤∥ w∥E. (4.34)

Let rk be the vertex that belongs to a non-parallelogram, denoted by Ek. Then (4.33)

implies that there exists qk ∈ Qe
h(Ek) such that

b(qk,w)Q ≥ Ch2(w(rk))2, ∥ qk∥1 ≤∥ w∥Ek . (4.35)

Let qj = q̃j + qk. Due to (4.34) and (4.35), qj satisfies

b(qj,w)Q ≥ Ch2(w(rj))2, ∥ qj∥1 ≤∥ w∥E∪Ek . (4.36)

Finally, q∈Qh defined as the sum of the functions constructed in (4.33) and (4.36)

satisfies (4.32). ▪

We now consider the set of vertices I3. If rj and rk are two vertices in the set that share an edge,

(4.34) implies that if one of them is controlled, then so is the other. Therefore, it is enough to consider

a subset of vertices that do not share an edge, which we denote by Ĩ3. For each vertex rj, let Mj be

the union of elements that share rj. We note that the set S = {Mj ∶ j ∈ Ĩ3} is non-overlapping. Let

M = ∪j∈Ĩ3
Mj. For M ∈ S, let Qe

h(M) be the span of all edge degrees of freedom of Qh(M) and let

NM = {w ∈ Wh(M) ∶ b(q,w)Q,M = 0, ∀q ∈ Qe
h(M)}.

Recall that all elements in M are parallelograms. The argument of Lemma 4.2 can be easily extended to

show that NM consists of constant functions. For M ∈ S, let P
M
h denote the L2-projection from Wh(M)

onto NM . Since the neighbors of all elements in M are parallelograms, Lemma 4.4 implies that for any

w∈Wh, there exists qM ∈ Qe
h(M) satisfying

b(qM ,w)Q ≥ C1 ∥ (I − P
M
h )w ∥2

M and ∥ qM∥1 ≤∥ (I − P
M
h )w∥M . (4.37)

Let

Mh =
{
𝜇 ∈ L2(Ω) ∶ 𝜇|||M ∈ NM , ∀M ∈ S, 𝜇 = 0 otherwise

}
.

Let Ph be the L2-projection from Wh onto Mh. Then (4.37) implies that for any w∈Wh, there exists

q̃ ∈ Qh satisfying

b(q̃,w)Q ≥ C1 ∥ (I − Ph)w ∥2

M
and ∥ q̃∥1 ≤∥ (I − Ph)w∥M . (4.38)

The next lemma shows that Phw can also be controlled.
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Lemma 4.6 If (M1) holds, there exists a constant C2 > 0 such that for every w∈Wh
there exists g∈Qh such that

b(g,Phw)Q =∥ Phw ∥2

M
and ∥ g∥1 ≤ C2 ∥ Phw∥M .

Proof. Let w∈Wh be arbitrary. Since Phw∈L2(Ω), there exists z∈H1(Ω, R2) such that

div z = Phw and ∥ z∥1 ≤ C ∥ Phw∥M .

Following [21, Lemma 3.3], there exists an operator Ih ∶ H1(Ω,R2) → Q̃h such that

(div z, 𝜇) = b(Ihz, 𝜇), ∀𝜇 ∈ Mh, and ∥ Ihz∥1 ≤ C ∥ z∥1,

where Q̃h is the subspace of Qh consisting of element-wise mapped bilinear vector func-

tions. We note that the argument in [21, Lemma 3.3] requires that the interfaces between

macroelements have at least two edges. Recall that our macroelements consist of all paral-

lelograms sharing a vertex and their neighbors are also parallelograms. We can therefore

choose the subset Ĩ3 appropriately to satisfy this requirement. Here we also consider Ω∖M
as one macroelement.

We next note that for q ∈ Q̃h and 𝜇∈Mh, on any E ∈ h,

b(q, 𝜇)E = ∫Ê
tr(DF−T

E ∇̂q̂)𝜇JE𝑑x̂.

A direct calculation shows that the integrated quantity on Ê is bilinear, and hence,

using that the quadrature rule is exact for bilinears, b(Ihz,𝜇) = b(Ihz,𝜇)Q. The proof is

completed by taking g = Ihz. ▪

Lemma 4.7 If (M1) holds, there exists a constant C independent of h such that for
every w∈Wh, there exists q∈Qh such that

b(q,w)Q ≥ Ch2
∑
j∈I3

(w(rj))2, ∥ q∥1 ≤∥ w ∥ . (4.39)

Proof. Let w∈Wh be given, and let q̃ ∈ Qh, g ∈ Qh,C1 and C2 be as in (4.38) and

Lemma 4.6. Set q = q̃ + 𝛿g, where 𝛿 = 2C1(1 + C2
2)−1. We then have

b(q,w)Q = b(q̃,w)Q + 𝛿b(g,w)Q = b(q̃,w)Q + 𝛿b(g,Phw)Q + 𝛿b(g, (I − Ph)w)Q
≥ C1 ∥ (I − Ph)w ∥2

M
+𝛿 ∥ Phw ∥2

M
−𝛿 ∥ g∥1 ∥ (I − Ph)w∥M ≥ C1(1 + C2

2)−1 ∥ w ∥2

M
,

and ∥ q∥1 ≤∥ (I − Ph)w∥M + 𝛿C2 ∥ Phw∥M ≤ C ∥ w∥M . The assertion of the lemma

follows from (4.27). ▪

We are now ready to prove the main result stated in Theorem 4.2:

Proof of Theorem 4.2 The assertion of the theorem follows from Lemmas 4.5, 4.7, and

(4.31). ▪

We conclude with the solvability result for the MSMFE-1 method (4.1)–(4.3).

Theorem 4.3 Under the assumptions (M1)–(M2), there exists a unique solution of
(4.1)–(4.3).
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Proof. The existence and uniqueness of a solution to (4.1)–(4.3) follow from (S3)

and (S4). Lemma 2.1 implies the coercivity condition (S3). Assuming (M1)–(M2), the

inf-sup condition (S4) follows from a combination of Theorem 4.1, Lemma 4.1, and

Theorem 4.2. ▪

4.2 Reduction to a cell-centered displacement system of the MSMFE-1 method

The algebraic system that arises from (4.1)–(4.3) is of the form (3.6), where the matrix A𝜎𝛾 is different

from the one in the MSMFE-0 method, due to the quadrature rule, that is, (A𝜎𝛾 )ij = (𝜏 j, 𝜉i)Q. As in the

MSMFE-0 method, the quadrature rule in (A𝜎h, 𝜏)Q in (4.1) localizes the basis functions interaction

around vertices, so the matrix A𝜎𝜎 is block diagonal with 2k× 2k blocks, where k is the number of

elements that share a vertex. The stress can be eliminated, resulting in the displacement-rotation system

(3.7). The matrix in (3.7) is symmetric and positive definite, due to (3.8) and the inf-sup condition (S4).

Furthermore, the quadrature rule in the stress-rotation bilinear forms (𝛾h, 𝜏)Q and (𝜎h, 𝜉)Q also

localizes the interaction around vertices, since there is one rotation basis function associated with each

vertex. Therefore the matrix A𝜎𝛾 is block-diagonal with 1× 2k blocks, resulting in a diagonal rotation

matrix A𝜎𝛾A−1
𝜎𝜎AT

𝜎𝛾 . As a result, the rotation 𝛾h can be trivially eliminated from (3.7), leading to the

cell-centered displacement system

(A𝜎uA−1
𝜎𝜎AT

𝜎u − A𝜎uA−1
𝜎𝜎AT

𝜎𝛾 (A𝜎𝛾A−1
𝜎𝜎AT

𝜎𝛾 )−1A𝜎𝛾A−1
𝜎𝜎AT

𝜎u)u = f̂ . (4.40)

The above matrix is symmetric and positive definite, since it is a Schur complement of the symmetric

and positive definite matrix in (3.7), see [24, Theorem 7.7.6].

Remark 4.3 The MSMFE-1 method is more efficient than the MSMFE-0 method and

the original MFE method, since it results in a smaller algebraic system. For example, on a

logically rectangular grid with approximately m elements and vertices, the MSMFE-1 sys-

tem (4.40) has approximately 2m unknowns compared to 3m unknowns in the MSMFE-0

system (3.7) and 11m unknowns in the MFE system (3.6).

5 ERROR ESTIMATES

In this section we establish optimal convergence for all variables, as well as the superconvergence for

the displacement. We start by providing several results that will be used in the analysis.

5.1 Preliminaries

For the rest of the paper we assume that the quadrilateral elements are O(h2)-perturbations of par-

allelograms known as h2-parallelograms. In particular, with the notation from Figure 1, we assume

that

∥ r34 − r21 ∥≤ Ch2. (5.1)

Elements of this type are obtained by uniform refinements of a general quadrilateral grid or if the

mesh is obtained by a smooth map. This is a standard assumption for the symmetric multipoint flux

approximation method [8], required due to the reduced approximation properties of the 1 space

on general quadrilaterals [25]. If (5.1) holds, it is easy to check that

|DFE|1,∞,Ê ≤ Ch2 and
|||| 1

JE
DFE

||||j,∞,Ê ≤ Chj−1, j = 1, 2. (5.2)
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In the analysis we will utilize several projection operators. It is known [14, 15, 26] that there exists

a projection operator Π ∶ X ∩ H1(Ω,M) → Xh such that

(div(Π𝜏 − 𝜏), v) = 0, ∀v ∈ Vh. (5.3)

The operator Π is defined locally on an element E by

Π𝜏

↔ Π̂𝜏, (5.4)

where Π̂ is a reference element interpolant. We will also utilize the lowest order Raviart–Thomas space

[15, 27]: X̂


(Ê) =
(
𝛼1 + 𝛽1x̂
𝛼2 + 𝛽2ŷ

)
×
(
𝛼3 + 𝛽3x̂
𝛼4 + 𝛽4ŷ

)
. The degrees of freedom of X̂


(Ê) are the values of

the normal components at the midpoints of the edges. A projection operator Π onto X
h similar to

(5.3) exists [15, 27], which satisfies for any edge e,⟨(Π 𝜏 − 𝜏)ne, 𝜒ne⟩e = 0, ∀𝜒 ∈ X

h . (5.5)

It is also easy to see that Π satisfies

div 𝜏 = div Π 𝜏, ∀𝜏 ∈ Xh (5.6)

and

∥ Π 𝜏 ∥≤ C ∥ 𝜏 ∥, ∀𝜏 ∈ Xh. (5.7)

Since the normal trace space X
h n consists of piecewise constant vector-valued functions on the trace

of h on 𝜕Ω, the L2-projection operator 0 utilized in (3.1) can be equivalently characterized as

for any 𝜙 ∈ L2(𝜕𝛺,R2), 0𝜙 ∈ X

h n is such that ⟨𝜙 − 0𝜙, 𝜏n⟩𝜕𝛺 = 0, ∀𝜏 ∈ X


h .

(5.8)

Let Qu
h be a projection operator onto Vh satisfying for any v∈L2(Ω, R2),

(Q̂uv̂ − v̂, ŵ)Ê = 0, ∀ŵ ∈ V̂(Ê), Qu
hv = Q̂uv̂◦F−1

E ∀E ∈ h. (5.9)

It follows from (2.11) that

(Qu
hv − v, div𝜏) = 0, ∀𝜏 ∈ Xh. (5.10)

Let Q𝛾
h be the L2-orthogonal projection operator onto Wk

h satisfying for any 𝜉 ∈L2(Ω, N),

(Q𝛾
h𝜉 − 𝜉, 𝜁) = 0, ∀𝜁 ∈ W

k
h. (5.11)

The next lemma summarizes the well-known approximation properties of the above operators.

Lemma 5.1 There exists a constant C independent of h such that

∥ v − Qu
hv ∥≤ C ∥ v∥rhr, ∀v ∈ Hr(Ω,R2), 0 ≤ r ≤ 1, (5.12)

∥ 𝜉 − Q𝛾
h𝜉 ∥≤ C ∥ 𝜉∥rhr, ∀𝜉 ∈ Hr(Ω,N), 0 ≤ r ≤ 1, (5.13)

∥ 𝜏 − Π𝜏 ∥≤ C ∥ 𝜏∥rhr, ∀𝜏 ∈ Hr(Ω,M), 1 ≤ r ≤ 2, (5.14)

∥ 𝜏 − Π 𝜏 ∥≤ C ∥ 𝜏∥rhr, ∀𝜏 ∈ Hr(Ω,M), 0 ≤ r ≤ 1, (5.15)

∥ div(𝜏 − Π𝜏) ∥ + ∥ div(𝜏 − Π 𝜏) ∥≤ C ∥ div𝜏∥r hr,∀𝜏 ∈ Hr+1(Ω,M), 0 ≤ r ≤ 1. (5.16)

Proof. Estimates (5.12) and (5.13) can be found in [23]. Estimates (5.14)–(5.16) are

proved in [25, 26]. ▪
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We note that on general quadrilaterals, (5.12), (5.13), and (5.15) are also valid, while (5.14) and

(5.16) hold only with r = 1 and r = 0, respectively.

Corollary 5.1 There exists a constant C independent of h such that for all E ∈ h,

∥ Π𝜏∥j,E ≤ C ∥ 𝜏∥j,E, ∀𝜏 ∈ Hj(E,M), j = 1, 2, (5.17)

∥ Π 𝜏∥1,E ≤ C ∥ 𝜏∥1,E, ∀𝜏 ∈ H1(E,M), (5.18)

∥ Q𝛾
h𝜉∥j,E ≤ C ∥ 𝜉∥j,E, ∀𝜉 ∈ H1(E,N), j = 1, 2. (5.19)

Proof. The proof follows from the approximation properties (5.13)–(5.15) and the use

of the inverse inequality, see for example, [2, Lemma 5.1]. ▪

We remind the reader that stress tensors are mapped from the reference element via the Piola

transformation, while displacements and rotations are mapped using standard change of variables, see

(2.10). The following results can be found in [8], where 𝜏

↔ 𝜏:|𝜏|j,Ê ≤ Chj ∥ 𝜏∥j,E, j ≥ 0, (5.20)

(𝜏 − Π̂

𝜏, 𝜒0)Q̂,Ê = 0 for all constant tensors 𝜒0, (5.21)|(AΠ𝜎, 𝜏 − Π 𝜏)|Q,E ≤ Ch ∥ 𝜎∥1,E ∥ 𝜏∥E ∀𝜏 ∈ Xh. (5.22)

Also, for 𝜉 ↔ 𝜉, using standard change of variables,|𝜉|j,Ê ≤ Chj−1 ∥ 𝜉∥j,E, |𝜉|j,∞,Ê ≤ Chj ∥ 𝜉∥j,∞,E, j ≥ 0. (5.23)

For 𝜏, 𝜒 ∈ Xh, 𝜉 ∈ W1
h, denote the element quadrature errors by

𝜃(A𝜏, 𝜒)E ≡ (A𝜏, 𝜒)E − (A𝜏, 𝜒)Q,E, 𝛿(𝜏, 𝜉)E ≡ (𝜏, 𝜉)E − (𝜏, 𝜉)Q,E,

and define the global quadrature errors by 𝜃(A𝜏,𝜒)|E = 𝜃(A𝜏,𝜒)E, 𝛿(𝜏, 𝜉)|E = 𝛿(𝜏, 𝜉)E. Similarly denote

the quadrature errors on the reference element by 𝜃(⋅, ⋅) and 𝛿(⋅, ⋅).
Denote A ∈ Wj,∞

h
if A ∈ Wj,∞(E)∀E ∈ h and ∥A∥j,∞ , E is uniformly bounded independently of h.

Lemma 5.2 If A ∈ W1,∞h
, there exists a constant C independent of h such that ∀𝜏 ∈ Xh,

𝜒 ∈ X
h ,

∣ 𝜃(A𝜏, 𝜒) ∣≤ C
∑
E∈h

h ∥ A∥1,∞,E ∥ 𝜏∥1,E ∥ 𝜒∥E. (5.24)

Moreover, there exist a constant C independent of h such that for all 𝜏 ∈ X
h and

𝜉 ∈ W1
h,

∣ 𝛿(𝜏, 𝜉) ∣≤ C
∑
E∈h

h ∥ 𝜏∥1,E ∥ 𝜉∥E, (5.25)

∣ 𝛿(𝜏, 𝜉) ∣≤ C
∑
E∈h

h ∥ 𝜏∥E ∥ 𝜉∥1,E. (5.26)

Proof. For a function 𝜑 defined on Ê, let 𝜑 be its mean value. We have

𝜃E(A𝜏, 𝜒) = 𝜃Ê

(
Â𝜏 1

JE
DFT

E, 𝜒DFT
E

)
= 𝜃Ê

(
(Â − ̄̂A)𝜏 1

JE
DFT

E, 𝜒DFT
E

)
+ 𝜃Ê

(
̄̂A𝜏

(
1

JE
DFT

E − 1

JE
DFT

E

)
, 𝜒DFT

E

)
+ 𝜃Ê

(
̄̂A𝜏 1

JE
DFT

E, 𝜒(DFT
E − DFT

E)
)
+ 𝜃Ê

(
̄̂A𝜏 1

JE
DFT

E, 𝜒DFT
E

)
≡

4∑
k=1

Ik. (5.27)
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Using the Bramble–Hilbert lemma [23], (2.8), (5.20), and (5.23), we bound the first term

on the right in (5.27) as follows:

∣ I1 ∣≤ C|Â|
1,∞,Ê ∥ 𝜏∥Ê ∥ 𝜒∥Ê ≤ Ch ∥ A∥1,∞,E ∥ 𝜏∥E ∥ 𝜒∥E. (5.28)

Similarly, using (2.8), (5.2), (5.20), and (5.23),

∣ I2 ∣ + ∣ I3 ∣≤ Ch ∥ Â∥
0,∞,Ê ∥ 𝜏∥Ê ∥ 𝜒∥Ê ≤ Ch ∥ A∥0,∞,E ∥ 𝜏∥E ∥ 𝜒∥E. (5.29)

To bound I4, recall that the trapezoidal quadrature rule is exact for bilinear functions.

Since 𝜒 ∈ X̂


(Ê) is linear, I4 = 0 for any constant tensor 𝜏. Using the Bramble–Hilbert

lemma, (2.8), (5.20), and (5.23), we have

∣ I4 ∣≤ C ∥ Â∥
0,∞,Ê|𝜏|1,Ê ∥ 𝜒∥Ê ≤ Ch ∥ A∥0,∞,E ∥ 𝜏∥1,E ∥ 𝜒∥E. (5.30)

Combining (5.27)–(5.30) and summing over the elements implies (5.24). Similarly, using

the exactness of the quadrature rule for bilinears, the Bramble–Hilbert lemma, (2.8), (5.2),

(5.20), and (5.23), we have

∣ 𝛿E(𝜏, 𝜉) ∣ =∣ 𝛿(𝜏DFT
E, 𝜉) ∣≤∣ 𝛿(𝜏(DFT

E − DFT
E), 𝜉) ∣ + ∣ 𝛿(𝜏DFT

E, 𝜉) ∣

≤ C(|DFE|1,∞,Ê ∥ 𝜏∥Ê ∥ 𝜉∥Ê+ ∥ DFE∥0,∞,Ê|𝜏|1,Ê ∥ 𝜉∥Ê) ≤ Ch ∥ 𝜏∥1,E ∥ 𝜉∥E,

which implies (5.25). Bound (5.26) follows in a similar way. ▪

Lemma 5.3 There exists a constant C independent of h such that for all 𝜏 ∈ Xh and
𝜉 ∈ W1

h,

∣ (𝜏 − Π 𝜏, 𝜉)Q ∣≤ Ch ∥ 𝜏 ∥∥ 𝜉∥1. (5.31)

Proof. The proof follows from mapping to the reference element and using (5.21). ▪

5.2 First order convergence for all variables

The convergence analysis presented below is different from the one on simplices from [2]. In particular,

since the quadrature error bounds (5.24)–(5.26) require that one of the arguments is in X
h , rather

than Xh, the error equations need to be manipulated in a special way.

Theorem 5.1 Let A ∈ W1,∞h
. If the solution (𝜎, u, 𝛾) of (2.3)–(2.5) is sufficiently

smooth, for its numerical approximation (𝜎h, uh, 𝛾h) obtained by either the MSMFE-0

method (3.1)–(3.3) or the MSMFE-1 method (4.1)–(4.3), there exists a constant C
independent of h such that

∥ 𝜎 − 𝜎h∥div+ ∥ u − uh ∥ + ∥ 𝛾 − 𝛾h ∥≤ Ch(∥ 𝜎∥1+ ∥ div𝜎∥1+ ∥ u∥1+ ∥ 𝛾∥1). (5.32)

Proof. We present the argument for the MSMFE-1 method, which includes the proof

for the MSMFE-0 method. We form the error system by subtracting the MSMFE-1

method (4.1)–(4.3) from (2.3)–(2.5):

(A𝜎, 𝜏) − (A𝜎h, 𝜏)Q + (u − uh, div𝜏) + (𝛾, 𝜏) − (𝛾h, 𝜏)Q = ⟨g − 0g, 𝜏n⟩ΓD , 𝜏 ∈ Xh, (5.33)

(div(𝜎 − 𝜎h), v) = 0, v ∈ Vh, (5.34)

(𝜎, 𝜉) − (𝜎h, 𝜉)Q = 0, 𝜉 ∈ W
1
h. (5.35)
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Using (5.10), (5.5), and (5.8), we rewrite the first error equation as

(A(Π𝜎 − 𝜎h), 𝜏)Q + (Qu
hu − uh, div𝜏)

= −(A𝜎, 𝜏) + (AΠ𝜎, 𝜏)Q − (𝛾, 𝜏) + (𝛾h, 𝜏)Q + ⟨[g], (𝜏 − Π 𝜏)n⟩ΓD . (5.36)

For the first two terms on the right above we write

−(A𝜎, 𝜏) + (AΠ𝜎, 𝜏)Q = −(A𝜎, 𝜏 − Π 𝜏) − (A(𝜎 − Π𝜎),Π 𝜏)
− (AΠ𝜎,Π 𝜏) + (AΠ𝜎,Π 𝜏)Q + (AΠ𝜎, 𝜏 − Π 𝜏)Q. (5.37)

The second two terms on the right in (5.36) can be rewritten as

−(𝛾, 𝜏) + (𝛾h, 𝜏)Q = −(𝛾, 𝜏 − Π 𝜏) − (𝛾 − Q𝛾
h𝛾,Π

 𝜏)
− (Π 𝜏,Q𝛾

h𝛾) + (Π 𝜏,Q𝛾
h𝛾)Q + (Q𝛾

h𝛾, 𝜏 − Π 𝜏)Q + (𝛾h − Q𝛾
h𝛾, 𝜏)Q. (5.38)

Combining the first terms in (5.37) and (5.38) with the last term in (5.36) gives

−(A𝜎, 𝜏 − Π 𝜏) − (𝛾, 𝜏 − Π 𝜏) + ⟨[g], (𝜏 − Π 𝜏)n⟩ΓD = 0, (5.39)

which follows from testing (2.3) with 𝜏 −Π 𝜏 and using (5.6). The rest of the terms in

(5.37) and (5.38) are bounded as follows. Using (5.14) and (5.7), we have

∣ (A(𝜎 − Π𝜎),Π 𝜏) ∣≤ Ch ∥ 𝜎∥1 ∥ 𝜏 ∥≤ Ch2 ∥ 𝜎 ∥2
1 +𝜖 ∥ 𝜏∥2. (5.40)

For the third and fourth terms on the right in (5.37), using (5.24), (5.17), and (5.18), we

obtain

∣ 𝜃(AΠ𝜎,Π 𝜏) ∣≤ Ch ∥ 𝜎∥1 ∥ 𝜏 ∥≤ Ch2 ∥ 𝜎 ∥2
1 +𝜖 ∥ 𝜏∥2. (5.41)

Using (5.22), we write

∣ (AΠ𝜎, 𝜏 − Π 𝜏)Q ∣≤ Ch ∥ 𝜎∥1 ∥ 𝜏 ∥≤ Ch2 ∥ 𝜎 ∥2
1 +𝜖 ∥ 𝜏∥2. (5.42)

We next bound the terms on the right in (5.38). Due to (5.13) and (5.7), we have

∣ (𝛾 − Q𝛾
h𝛾,Π

 𝜏) ∣≤ Ch ∥ 𝛾∥1 ∥ 𝜏 ∥≤ Ch2 ∥ 𝛾 ∥2
1 +𝜖 ∥ 𝜏∥2. (5.43)

Using (5.26), (5.7), and (5.19), we have

∣ 𝛿(Π 𝜏,Q𝛾
h𝛾) ∣≤ Ch ∥ 𝜏 ∥∥ 𝛾∥1 ≤ Ch2 ∥ 𝛾 ∥2

1 +𝜖 ∥ 𝜏∥2. (5.44)

Using Lemma 5.3, we obtain

∣ (Q𝛾
h𝛾, 𝜏 − Π 𝜏)Q ∣≤ Ch ∥ 𝛾∥1 ∥ 𝜏 ∥≤ Ch2 ∥ 𝛾 ∥2

1 +𝜖 ∥ 𝜏∥2. (5.45)

Combining (5.36)–(5.45), we obtain

(A(Π𝜎 − 𝜎h), 𝜏)Q + (Qu
hu − uh, div𝜏) ≤ Ch2(∥ 𝜎 ∥2

1 + ∥ 𝛾 ∥2
1) + 𝜖 ∥ 𝜏∥2 + (𝛾h − Q𝛾

h𝛾, 𝜏)Q. (5.46)

We next note that, using (5.3), the second error equation (5.34) implies that

div(Π𝜎 − 𝜎h) = 0. (5.47)

The third error equation (5.35) implies

(Π𝜎 − 𝜎h, 𝜉)Q = (Π𝜎 − 𝜎, 𝜉)Q + (𝜎 − Π 𝜎, 𝜉)Q − 𝛿(Π 𝜎, 𝜉) + (Π 𝜎 − 𝜎, 𝜉)
≤ Ch2 ∥ 𝜎 ∥2

1 +𝜖 ∥ 𝜉∥2, (5.48)
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using (5.14), (5.15), (5.25), and (5.18) for the inequality. We now set 𝜏 = Π𝜎 − 𝜎h in

(5.46), 𝜉 = 𝛾h − Q𝛾
h𝛾 in (5.48), use (2.19) and (5.47), and take ϵ small enough to obtain

∥ Π𝜎 − 𝜎h∥2 ≤ Ch2(∥ 𝜎 ∥2
1 + ∥ 𝛾 ∥2

1) + 𝜖 ∥ 𝛾h − Q𝛾
h𝛾∥

2. (5.49)

We apply the inf-sup condition (4.4) to (Qu
hu − uh,Q𝛾

h𝛾 − 𝛾h) ∈ Vh × W1
h and use (5.33)

to obtain

∥ Qu
hu − uh ∥ + ∥ Q𝛾

h𝛾 − 𝛾h ∥ ≤ C sup
𝜏∈Xh

−(A𝜎, 𝜏) + (A𝜎h, 𝜏)Q − (𝛾, 𝜏) + (Q𝛾
h𝛾, 𝜏)Q + ⟨g − 0g, 𝜏n⟩ΓD

∥𝜏∥div

≤ C(h ∥ 𝜎∥1 + h ∥ 𝛾∥1+ ∥ Π𝜎 − 𝜎h ∥), (5.50)

where the numerator terms have been bounded in a manner similar to the bounds for the

terms in the error equation (5.33) presented above. Next, we combine a sufficiently small

multiple of (5.50) with (5.49), and choose ϵ in (5.49) small enough to get

∥ Π𝜎 − 𝜎h ∥ + ∥ Qu
hu − uh ∥ + ∥ Q𝛾

h𝛾 − 𝛾h ∥≤ Ch(∥ 𝜎∥1+ ∥ 𝛾∥1). (5.51)

The assertion of the theorem follows from (5.51), (5.47), (5.12)–(5.14), and (5.16). The

proof for the MSMFE-0 method can be obtained by omitting the quadrature error terms

𝛿(⋅, ⋅). ▪

5.3 Second order convergence for the displacement

We next present superconvergence analysis for the displacement using a duality argument. We need

the following improved bounds on the quadrature errors.

Lemma 5.4 If A ∈ W2,∞h
, there exists a constant C independent of h such that for all

𝜏 ∈ Xh and 𝜒 ∈ X
h

∣ 𝜃(A𝜏, 𝜒) ∣≤ C
∑
E∈h

h2 ∥ 𝜏∥2,E ∥ 𝜒∥1,E. (5.52)

For all 𝜒 ∈ X
h , 𝜉 ∈ W1

h there exists a constant C independent of h such that

∣ 𝛿(𝜒, 𝜉) ∣≤ C
∑
E∈h

h2 ∥ 𝜒∥1,E ∥ 𝜉∥2,E. (5.53)

Proof. The proof of (5.52) is given in [8, Lemma 4.2]. It uses the Piano kernel

theorem [28, Theorem 5.2–3] and the fact that the quadrature rule is exact for bilinear

functions. The proof of (5.53) is similar. ▪

We consider the auxiliary elasticity problem: find 𝜙 and 𝜓 such that

𝜓 = A−1𝜖(𝜙), div𝜓 = (Qu
hu − uh) in Ω,

𝜙 = 0 on ΓD, 𝜓n = 0 on ΓN . (5.54)

We assume that the above problem is H2-elliptic regular, see [29] for sufficient conditions:

∥ 𝜙∥2 ≤ C ∥ Qu
hu − uh ∥ . (5.55)
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Theorem 5.2 If A ∈ W2,∞h
, (5.55) holds, and the solution (𝜎, u, 𝛾) of (2.3)–(2.5) is

sufficiently smooth, there exists a constant C independent of h such that

∥ Qu
hu − uh ∥≤ Ch2(∥ 𝜎∥2+ ∥ 𝛾∥2). (5.56)

Proof. We present the proof for the MSMFE-1 method and note that the proof for the

MSMFE-0 method can be obtained by omitting the terms arising due to the quadrature

error 𝛿(⋅, ⋅). We rewrite the error equation (5.36) as

(A(Π𝜎 − 𝜎h), 𝜏)Q + (Qu
hu − uh, div𝜏)

= (A(Π𝜎 − 𝜎), 𝜏) − 𝜃(AΠ𝜎, 𝜏) − (𝛾, 𝜏) + (𝛾h, 𝜏)Q + ⟨g − 0g, 𝜏n⟩ΓD .

and choose 𝜏 = Π A−1𝜖(𝜙) to obtain

∥ Qu
hu − uh∥2 = −(A(Π𝜎 − 𝜎h),Π A−1𝜖(𝜙))Q + (A(Π𝜎 − 𝜎),Π A−1𝜖(𝜙))

− 𝜃(AΠ𝜎,Π A−1𝜖(𝜙)) − (𝛾,Π A−1𝜀(𝜙)) + (𝛾h,Π A−1𝜀(𝜙))Q. (5.57)

For the second term on the right in (5.57), using (5.14) and (5.18), we have

∣ (A(Π𝜎 − 𝜎),Π A−1𝜖(𝜙)) ∣≤ Ch2 ∥ 𝜎∥2 ∥ 𝜙∥2. (5.58)

The third term on the right in (5.57) is bounded using (5.52), (5.17), and (5.18):

∣ 𝜃(AΠ𝜎,Π A−1𝜖(𝜙)) ∣≤ C
∑
E∈h

h2 ∥ AΠ𝜎∥2,E ∥ Π A−1𝜖(𝜙)∥1,E ≤ Ch2 ∥ 𝜎∥2 ∥ 𝜙∥2. (5.59)

The first term on the right in (5.57) can be manipulated as follows:

(A(Π𝜎 − 𝜎h),Π A−1𝜖(𝜙))Q,E = ((A − A)(Π𝜎 − 𝜎h),Π A−1𝜖(𝜙))Q,E

+(A(Π𝜎 − 𝜎h),Π (A−1 − A−1)𝜖(𝜙))Q,E + (A(Π𝜎 − 𝜎h),Π A−1(𝜖(𝜙) − 𝜖(𝜙1)))Q,E

+(A(Π𝜎 − 𝜎h),Π A−1
𝜖(𝜙1))Q,E ≡

4∑
k=1

Ik,

(5.60)

where A is the mean value of A on E and 𝜙1 is a linear approximation of 𝜙 such that, see

[23],

∥ 𝜙 − 𝜙1∥E ≤ Ch2 ∥ 𝜙∥2,E, ∥ 𝜙 − 𝜙1∥1,E ≤ Ch ∥ 𝜙∥2,E. (5.61)

Using (5.12), (5.61), and (5.18), we have

∣ I1 ∣ + ∣ I2 ∣ + ∣ I3 ∣≤ Ch ∥ Π𝜎 − 𝜎h∥E ∥ 𝜙∥2,E. (5.62)

For the last term on the right in (5.60), we first note that for a constant tensor 𝜏0, 𝜏0 =
JE𝜏0DF−T

E ∈ X̂


(Ê), so using (5.4) we have

Π 𝜏0 = 1

JE
Π̂


𝜏0DFT

E = 1

JE
𝜏0DFT

E = 𝜏0. (5.63)

Therefore

I4 = (Π𝜎 − 𝜎h, 𝜖(𝜙1))Q,E = (Π𝜎 − 𝜎h,∇𝜙1)Q,E − (Π𝜎 − 𝜎h,Skew(∇𝜙1))Q,E. (5.64)

For the second term on the right in (5.64) we write

(Π𝜎 − 𝜎h,Skew(∇𝜙1))Q,E = (Π𝜎 − 𝜎h,Skew(∇𝜙1) − Q𝛾
hSkew(∇𝜙1))Q,E
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+(Π𝜎 − 𝜎h,Q𝛾
hSkew(∇𝜙1))Q,E ≤ Ch ∥ Π𝜎 − 𝜎h∥E ∥ 𝜙∥2,E+ ∣ (Π𝜎 − 𝜎h,Q𝛾

hSkew(∇𝜙1))Q,E ∣, (5.65)

using (5.13) for the inequality. For the last term above, using the error equation (5.35),

we write

(Π𝜎 − 𝜎h,Q𝛾
hSkew(∇𝜙1))Q,E = (Π𝜎,Q𝛾

hSkew(∇𝜙1))Q,E − (Π𝜎,Q𝛾
hSkew(∇𝜙1))E

+ (Π𝜎 − 𝜎,Q𝛾
hSkew(∇𝜙1))E ≤ Ch2 ∥ 𝜎∥2,E ∥ 𝜙∥2,E, (5.66)

using (5.52) and (5.14) for the inequality.

We next bound the first term on the right in (5.64). Using that ∇𝜙1 = ∇̂𝜙1DF−1, we

write

(Π𝜎 − 𝜎h,∇𝜙1)Q,E = (Π̂𝜎 − 𝜎h, ∇̂𝜙1)Q̂,Ê. (5.67)

We note that 𝜙1 is bilinear. Let 𝜙1 be the linear part of 𝜙1. Then we have

(Π̂𝜎 − 𝜎h, ∇̂𝜙1)Q̂,Ê = (Π̂𝜎 − 𝜎h, ∇̂(𝜙1 − 𝜙1))Q̂,Ê + (Π̂𝜎 − 𝜎h, ∇̂𝜙1)Q̂,Ê. (5.68)

It follows from (2.6) that [∇̂(𝜙1 − 𝜙1)]i = ((r34 − r21) ⋅ [∇𝜙1◦FE]i)
(

ŷ
x̂

)
, i = 1, 2. Hence,

(5.1) implies

∣ (Π̂𝜎 − 𝜎h, ∇̂(𝜙1 − 𝜙1))Q̂,Ê ∣≤ Ch2 ∥ Π̂𝜎 − 𝜎h∥Ê ∥ ∇𝜙◦FE∥Ê ≤ Ch ∥ Π𝜎 − 𝜎h∥E ∥ 𝜙∥1,E, (5.69)

where we used (5.20) in the last inequality. For the last term in (5.68), using (5.21) and

the exactness of the quadrature rule for linear functions, we obtain

(Π̂𝜎 − 𝜎h, ∇̂𝜙1)Q̂,Ê = (Π̂


(Π̂𝜎 − 𝜎h), ∇̂𝜙1)Q̂,Ê = (Π̂


(Π̂𝜎 − 𝜎h), ∇̂𝜙1)Ê

= (Π̂


(Π̂𝜎 − 𝜎h), ∇̂(𝜙1 − 𝜙1))Ê + (Π̂


(Π̂𝜎 − 𝜎h), ∇̂𝜙1)Ê. (5.70)

We bound the first term on the right in (5.70) similarly to (5.69):

∣ (Π̂


(Π̂𝜎 − 𝜎h), ∇̂(𝜙1 − 𝜙1))Ê ∣≤ Ch2 ∥ Π̂𝜎−𝜎h∥Ê ∥ ∇𝜙◦FE∥Ê ≤ Ch ∥ Π𝜎−𝜎h∥E ∥ 𝜙∥1,E. (5.71)

Combining (5.60)–(5.71) and summing over the elements, we obtain

∣ (A(Π𝜎 − 𝜎h),Π A−1𝜖(𝜙))Q ∣≤ C(h ∥ Π𝜎 − 𝜎h ∥ +h2 ∥ 𝜎∥2) ∥ 𝜙∥2

+ ∣
∑
E∈h

(Π (Π𝜎 − 𝜎h),∇𝜙1)E ∣ . (5.72)

For the last term above, noting that integration by parts, (5.47), (5.6), 𝜙 = 0 on ΓD, and

(Π𝜎 − 𝜎h)n = 0 on ΓN imply
∑

E∈h
(Π (Π𝜎 − 𝜎h),∇𝜙)E = 0, we have||||∑E∈h

(Π (Π𝜎 − 𝜎h),∇𝜙1)E
|||| = ||||∑E∈h

(Π (Π𝜎 − 𝜎h),∇(𝜙1 − 𝜙))E
|||| ≤ Ch ∥ Π𝜎 − 𝜎h ∥∥ 𝜙∥2. (5.73)

It is left to bound the last two terms on the right in (5.57). We rewrite them as follows:

−(𝛾,Π A−1𝜖(𝜙)) + (𝛾h,Π A−1𝜖(𝜙))Q = −𝛿(Π A−1𝜖(𝜙),Q𝛾
h𝛾)

−(𝛾 − Q𝛾
h𝛾,Π

 A−1𝜖(𝜙)) + (𝛾h − Q𝛾
h𝛾,Π

 A−1𝜖(𝜙))Q. (5.74)

For the first term on the right-hand side we use (5.53), (5.18), and (5.19):

∣ 𝛿(Π A−1𝜖(𝜙),Q𝛾
h𝛾) ∣≤ C

∑
E∈h

h2 ∥ Π A−1𝜖(𝜙)∥1,E ∥ Q𝛾
h𝛾∥2,E ≤ Ch2 ∥ 𝜙∥2 ∥ 𝛾∥2. (5.75)



1910 AMBARTSUMYAN ET AL.

The second term on the right in (5.74) is bounded using the symmetry of A−1ϵ(𝜙), (5.13)

and (5.15):

∣ (𝛾 − Q𝛾
h𝛾,Π

 A−1𝜖(𝜙)) ∣=∣ (𝛾 − Q𝛾
h𝛾,Π

 A−1𝜖(𝜙) − A−1𝜖(𝜙)) ∣≤ Ch2 ∥ 𝛾∥1 ∥ 𝜙∥2. (5.76)

For the last term in (5.74) we have

(𝛾h − Q𝛾
h𝛾,Π

 A−1𝜖(𝜙))Q = (𝛾h − Q𝛾
h𝛾,Π

 (A−1 − A−1)𝜖(𝜙))Q

+ (𝛾h − Q𝛾
h𝛾,Π

 A−1(𝜖(𝜙) − 𝜖(𝜙1)))Q + (𝛾h − Q𝛾
h𝛾,Π

 A−1
𝜖(𝜙1))Q. (5.77)

We bound the first two terms on the right in (5.77) similarly to I2 and I3 in (5.62):

∣ (𝛾h − Q𝛾
h𝛾,Π

 (A−1 − A−1)𝜖(𝜙))Q

+ (𝛾h − Q𝛾
h𝛾,Π

 A−1(𝜖(𝜙) − 𝜖(𝜙1)))Q ∣≤ Ch ∥ 𝛾h − Q𝛾
h𝛾 ∥∥ 𝜙∥2. (5.78)

For the last term in (5.77), using (5.63) and the symmetry of A−1
𝜖(𝜙1), we have

(𝛾h − Q𝛾
h𝛾,Π

 A−1
𝜖(𝜙1))Q = (𝛾h − Q𝛾

h𝛾,A
−1
𝜖(𝜙1))Q = 0. (5.79)

The assertion of the theorem follows from combining (5.57)–(5.79) and using (5.51). ▪

6 NUMERICAL RESULTS

In this section we present numerical results that verify the theoretical results from the previous sections.

We focus on testing the convergence MSMFE-1 method on different types of quadrilateral grids. We

refer the reader to [2] for illustration of the performance of the method on simplicial grids for prob-

lems with discontinuous coefficients and for parameters in the nearly incompressible regime. We used

deal.II finite element library [30] for the implementation of the method. We consider a homogeneous

and isotropic body,

A𝜎 = 1

2𝜇

(
𝜎 − 𝜆

2𝜇 + 2𝜆
tr(𝜎)I

)
,

where I is the 2× 2 identity matrix and 𝜇 > 0, 𝜆> −𝜇 are the Lamé coefficients. We consider Ω = (0,

1)2 and the elasticity problem (2.1) and (2.2) with Dirichlet boundary conditions and exact solution

[18]

u0 =

(
cos(𝜋x) sin(2𝜋y)
cos(𝜋y) sin(𝜋x)

)
.

The Lamè coefficients are chosen as 𝜆 = 123, 𝜇 = 79.3.

We study the convergence of the MSMFE-1 method on four different types of grids. For the first

test, we use a sequence of square meshes generated by sequential uniform refinement of an initial

mesh with characteristic size h = 1/2 (Figure 4). For the second test, an initial general quadrilateral

grid is used, and a sequence of meshes is obtained by sequential splitting of each element into four.

This refinement procedure produces h2-parallelogram grids (Figure 5), where the initial coarse grid is

also shown. For the third test, we consider a sequence of smooth quadrilateral meshes. Each mesh is

produced by applying a smooth map x = x̂ + 0.1 sin(2𝜋x̂) sin(2𝜋ŷ)
(

1
1

)
to a uniformly refined square

mesh, starting with h = 1/2 (Figure 6). For the fourth test, we use sequences of quadrilateral grids

obtained by random perturbation of square grids. In particular, at each refinement level, the vertices of

a square grid a moved randomly within a circle with radius of size(h𝛼)with 𝛼 = 1, 3/2, 2. We note that
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FIGURE 4 Computed solution on a square mesh, h = 1/64 [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Computed solution on a h2-parallelogram mesh, h = 1/32 [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Computed solution on a smooth quadrilateral mesh, h = 1/64 [Color figure can be viewed at

wileyonlinelibrary.com]

the grids in the first and third tests satisfy both the stability condition (M2) and the h2-parallelogram

condition (5.1). The grids in the second test satisfy (5.1), but may violate (M2) along the edges of

the initial coarse grid. However, we further note that (M2) is not needed on parallelograms and the

elements in test two are h2-parallelograms. Finally, in the fourth test, both (M2) and (5.1) may be

violated for 𝛼 < 2.

The computed solutions for tests 1–3 are shown in Figures 4–6, respectively. The solutions are

similar despite the different types of grids. The highly distorted elements in the third test do not affect

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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the quality of the solution. The convergence results are presented in Tables 1–3. We observe at least

first order of convergence for all variables, as predicted in (5.32), as well as superconvergence of the

displacement error evaluated at the cell centers (5.56).

The results from test four on (h𝛼)-perturbed grids illustrate the effect of violating the

h2-parallelogram condition (5.1) and possibly (M2) when 𝛼 < 2. Figure 7 in the (h)-perturbed grid

displays visible effects of the irregularly shaped elements on the computed stress and rotation. The

convergence results for 𝛼 = 1, 3/2, 2 are presented in Tables 4–6, respectively. We observe loss of con-

vergence for the stress and rotation in the case 𝛼 = 1. First order convergence in stress is recovered

when 𝛼 = 3/2, while the rotation still converges sub-optimally. In the case 𝛼 = 2, which satisfies the

h2-parallelogram condition (5.1), at least first order convergence is observed for all variables, as well

as displacement superconvergence, as predicted by the theory.

7 CONCLUSIONS

We presented two MFE methods for linear elasticity on quadrilateral grids that reduce to symmetric

and positive definite cell-centered algebraic systems. The methods utilize the 1 space for the

TABLE 1 Convergence on square grids

∥𝝈−𝝈h∥ ∥div(𝝈−𝝈h)∥ ∥u− uh∥ ∥ Qu
hu − uh ∥ ∥𝜸− 𝜸h∥

h Error Rate Error Rate Error Rate Error Rate Error Rate

1/2 7.61E− 01 — 9.73E− 01 — 7.19E− 01 — 4.76E− 01 — 8.17E− 01 —

1/4 3.74E− 01 1.02 5.42E− 01 0.84 4.56E− 01 0.66 1.06E− 01 2.17 3.91E− 01 1.06

1/8 1.66E− 01 1.17 2.72E− 01 0.99 2.33E− 01 0.97 2.76E− 02 1.93 1.15E− 01 1.77

1/16 7.91E− 02 1.07 1.36E− 01 1.00 1.17E− 01 0.99 7.25E− 03 1.94 3.04E− 02 1.92

1/32 3.90E− 02 1.02 6.79E− 02 1.00 5.86E− 02 1.00 1.84E− 03 1.98 7.75E− 03 1.97

1/64 1.94E− 02 1.01 3.39E− 02 1.00 2.93E− 02 1.00 4.62E− 04 1.99 1.95E− 03 1.99

TABLE 2 Convergence on h2-parallelogram grids

∥𝝈−𝝈h∥ ∥div(𝝈−𝝈h)∥ ∥u− uh∥ ∥ Qu
hu − uh ∥ ∥𝜸− 𝜸h∥

h Error Rate Error Rate Error Rate Error Rate Error Rate

1/3 5.92E− 01 — 8.00E− 01 — 5.35E− 01 — 1.63E− 01 — 5.98E− 01 —

1/6 2.78E− 01 1.09 4.06E− 01 0.98 3.11E− 01 0.78 1.05E− 01 0.63 3.38E− 01 0.82

1/12 1.37E− 01 1.02 2.03E− 01 1.00 1.58E− 01 0.98 2.95E− 02 1.84 1.38E− 01 1.30

1/24 6.93E− 02 0.98 1.01E− 01 1.00 7.90E− 02 1.00 8.04E− 03 1.87 4.87E− 02 1.50

1/48 3.50E− 02 0.99 5.07E− 02 1.00 3.95E− 02 1.00 2.08E− 03 1.95 1.66E− 02 1.55

1/96 1.76E− 02 0.99 2.53E− 02 1.00 1.97E− 02 1.00 5.26E− 04 1.98 5.67E− 03 1.55

TABLE 3 Convergence on smooth quadrilateral grids

∥𝝈−𝝈h∥ ∥div(𝝈−𝝈h)∥ ∥u−uh∥ ∥ Qu
hu − uh ∥ ∥𝜸− 𝜸h∥

h Error Rate Error Rate Error Rate Error Rate Error Rate

1/4 4.27E− 01 — 6.22E− 01 — 4.71E− 01 — 1.64E− 01 — 4.53E− 01 —

1/8 2.22E− 01 0.94 3.46E− 01 0.85 2.68E− 01 0.81 7.09E− 02 1.21 2.14E− 01 1.08

1/16 1.12E− 01 0.99 1.78E− 01 0.96 1.37E− 01 0.97 2.51E− 02 1.50 9.29E− 02 1.21

1/32 5.61E− 02 1.00 9.00E− 02 0.99 6.84E− 02 1.00 7.35E− 03 1.77 3.21E− 02 1.53

1/64 2.81E− 02 1.00 4.51E− 02 1.00 3.42E− 02 1.00 1.94E− 03 1.92 1.04E− 02 1.63

1/128 1.40E− 02 1.00 2.26E− 02 1.00 1.71E− 02 1.00 4.93E− 04 1.98 3.41E− 03 1.61
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FIGURE 7 Computed solution on a (h) randomly perturbed mesh, h = 1/64 [Color figure can be viewed at

wileyonlinelibrary.com]

weakly-symmetric stress. The MSMFE-0 method employs the trapezoidal rule for the stress bilinear

form, which allows for local stress elimination. The MSMFE-1 method employs in addition the trape-

zoidal rule for the stress-rotation bilinear forms with continuous bilinear rotation. This allows for

further local elimination of the rotation variable, resulting in a cell-centered displacement system. To

our knowledge, these are the first such MFE methods for elasticity on quadrilaterals in the literature.

Well-posedness and error analyses are performed for both methods. The theory is illustrated by numer-

ical experiments. In particular, first order convergence is established and observed for all variables and

second order convergence is obtained for the displacement at the cell centers on smooth quadrilateral

or h2-parallelogram grids. A loss of convergence is observed on non-smooth quadrilateral grids. There

are several possible extensions of the presented methods. One is to consider a non-symmetric formu-

lation of the MSMFE method, similar to the non-symmetric MFMFE and MPFA methods developed

TABLE 4 Convergence on (h) randomly perturbed grids

∥𝝈−𝝈h∥ ∥div(𝝈−𝝈h)∥ ∥u−uh∥ ∥ Qu
hu − uh ∥ ∥𝜸− 𝜸h∥

h Error Rate Error Rate Error Rate Error Rate Error Rate

1/4 4.186e− 01 — 5.894e− 01 — 4.856e− 01 — 1.416e− 01 — 3.968e− 01 —

1/8 1.986e− 01 1.08 3.375e− 01 0.80 2.443e− 01 0.99 4.482e− 02 1.66 1.625e− 01 1.29

1/16 1.173e− 01 0.76 2.239e− 01 0.59 1.254e− 01 0.96 1.557e− 02 1.53 8.360e− 02 0.96

1/32 8.929e− 02 0.39 1.835e− 01 0.29 6.285e− 02 1.00 8.819e− 03 0.82 7.584e− 02 0.14

1/64 8.120e− 02 0.14 1.702e− 01 0.11 3.205e− 02 0.97 7.132e− 03 0.31 7.151e− 02 0.08

1/128 7.915e− 02 0.04 1.660e− 01 0.04 1.696e− 02 0.92 6.582e− 03 0.12 7.193e− 02 −0.01

TABLE 5 Convergence on (h3∕2) randomly perturbed grids

∥𝝈−𝝈h∥ ∥div(𝝈−𝝈h)∥ ∥u−uh∥ ∥ Qu
hu − uh ∥ ∥𝜸− 𝜸h∥

h Error Rate Error Rate error Rate error Rate error Rate

1/4 3.800e− 01 — 5.492e− 01 — 4.604e− 01 — 1.084e− 01 — 3.883e− 01 —

1/8 1.680e− 01 1.18 2.884e− 01 0.93 2.335e− 01 0.98 2.883e− 02 1.91 1.191e− 01 1.71

1/16 8.008e− 02 1.07 1.475e− 01 0.97 1.174e− 01 0.99 7.422e− 03 1.96 3.233e− 02 1.88

1/32 3.981e− 02 1.01 7.499e− 02 0.98 5.865e− 02 1.00 1.916e− 03 1.95 1.083e− 02 1.58

1/64 2.021e− 02 0.98 3.832e− 02 0.97 2.932e− 02 1.00 4.981e− 04 1.94 5.407e− 03 1.00

1/128 1.048e− 02 0.95 1.998e− 02 0.94 1.466e− 02 1.00 1.335e− 04 1.90 3.610e− 03 0.58

http://wileyonlinelibrary.com
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TABLE 6 Convergence on (h2) randomly perturbed grids

∥𝝈−𝝈h∥ ∥div(𝝈−𝝈h)∥ ∥u−uh∥ ∥ Qu
hu − uh ∥ ∥𝜸− 𝜸h∥

h Error Rate Error Rate Error Rate Error Rate Error Rate

1/4 3.750e− 01 — 5.457e− 01 — 4.568e− 01 — 1.056e− 01 — 3.899e− 01 —

1/8 1.664e− 01 1.17 2.866e− 01 0.93 2.333e− 01 0.97 2.786e− 02 1.92 1.154e− 01 1.76

1/16 7.913e− 02 1.07 1.456e− 01 0.98 1.171e− 01 0.99 7.256e− 03 1.94 3.046e− 02 1.92

1/32 3.898e− 02 1.02 7.328e− 02 0.99 5.860e− 02 1.00 1.842e− 03 1.98 7.784e− 03 1.97

1/64 1.941e− 02 1.01 3.671e− 02 1.00 2.931e− 02 1.00 4.625e− 04 1.99 1.976e− 03 1.98

1/128 9.697e− 03 1.00 1.837e− 02 1.00 1.465e− 02 1.00 1.157e− 04 2.00 5.146e− 04 1.94

in [7, 9, 12, 13], which provide first order convergence on general quadrilateral grids. A second exten-

sion is to develop the methods on hexahedral grids, following the approach in [6] for the MFMFE

method in the symmetric case and [7] in the non-symmetric case. This would require developing sta-

ble weakly-symmetric elasticity finite element spaces Xh ×Vh ×Wh that utilize an enhanced 1

space for the stress. A third extension is to develop higher order methods, which requires constructing

suitable general order family of stress spaces and quadrature rules. Such construction has been done for

the MFMFE method on quadrilaterals and hexahedra in [31], see also [32] for second-order MFMFE

methods on hybrid grids. A fourth possible extension is to develop these methods on polytopal grids

using mimetic finite differences (MFD) or mixed virtual element methods (VEM). Relevant works

include the local flux MFD method [33], the MFD method for elasticity from [34], and the mixed VEM

method for elasticity developed in [35].
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