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Abstract We study the numerical approximation on irreg-
ular domains with general grids of the system of poroe-
lasticity, which describes fluid flow in deformable porous
media. The flow equation is discretized by a multipoint
flux mixed finite element method and the displacements
are approximated by a continuous Galerkin finite element
method. First-order convergence in space and time is estab-
lished in appropriate norms for the pressure, velocity, and
displacement. Numerical results are presented that illustrate
the behavior of the method.

Keywords Poroelasticity · Geomechanics · Multipoint
flux mixed finite element · Continuous Galerkin · Finite
volume method

1 Introduction

Fluid motion through porous media and solid deforma-
tion are inherently coupled. Applications in the geosciences
where such coupling is important include environmental
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cleanup, petroleum production, solid waste disposal, and
carbon sequestration, with field phenomena such as surface
subsidence, uplift displacement, pore collapse, cavity gen-
eration, hydraulic fracturing, thermal fracturing, wellbore
collapse, sand production, and fault activation.

The mathematical model for the coupled fluid-solid sys-
tem used in this paper is the classical Biot consolidation
system in poroelasticity [6, 42] under a quasi-static assump-
tion. The system consists of an equilibrium equation for
the solid and a mass balance equation for the fluid. The
fluid pressure contributes to the total stress of the solid,
and the divergence of the solid displacement represents
an additional term in the fluid content. There is a large
body of literature on the numerical modeling of the cou-
pled system. In [30–32], Taylor-Hood finite elements are
employed for a displacement–pressure variational formula-
tion. A least squares formulation that approximates directly
the solid stress and the fluid velocity is studied in [25,
26]. Finite difference schemes on staggered grids designed
to avoid nonphysical oscillations at early times have been
developed in 1D in [15, 19]. The method in [15] can han-
dle discontinuous coefficients through harmonic averaging.
A formulation based on mixed finite element (MFE) meth-
ods for flow and continuous Galerkin (CG) for elasticity has
been proposed in [36, 37]. The advantage of this approach
is that the fluid approximation is locally mass conservative
and the fluid velocity is computed directly. Further work
addresses the problem of eliminating locking or removal of
nonphysical pressure oscillations via the use of discontin-
uous Galerkin (DG) for elasticity [27, 28, 38]. In [20], a
parallel domain decomposition method has been developed
for coupling a time-dependent poroelastic model in a local-
ized region with an elastic model in adjacent regions. Each
model is discretized independently on nonmatching grids
and the systems are coupled using DG jumps and mortars.
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Applications of the Biot system to the computational mod-
eling of coupled reservoir flow and geomechanics can be
found in [11, 17, 18, 41].

The focus of this paper is to develop a discretization
method for the poroelasticity system that is suitable for
irregular and rough grids and discontinuous full tensor
permeabilities that are often encountered in modeling sub-
surface flows. To this end, we develop a formulation that
couples multipoint flux mixed finite element (MFMFE)
methods for flow with CG for elasticity. The MFMFE
method was developed for Darcy flow in [21, 44, 47]. It
is locally conservative with continuous fluxes and can be
viewed within a variational framework as a mixed finite
element method with special approximating spaces and
quadrature rules. The MFMFE method allows for an accu-
rate and efficient treatment of irregular geometries and het-
erogeneities such as faults, layers, and pinchouts that require
highly distorted grids and discontinuous coefficients. The
resulting discretizations are cell-centered with convergent
pressures and velocities on general hexahedral and simpli-
cial grids. The reader is referred to [45] for the performance
of the MFMFE method for flow on a benchmark test using
rough 3D grids and anisotropic coefficients.

The MFMFE method was motivated by the multipoint
flux approximation (MPFA) methods [2, 3, 13, 14]. In the
MPFA finite volume framework, sub-edge (sub-face) fluxes
are introduced, which allows for local flux elimination
around grid vertices and reduction to a cell-centered pres-
sure scheme. Similar elimination is achieved in the MFMFE
variational framework, by employing appropriate finite ele-
ment spaces and special quadrature rules. The MFMFE
method is based on the BDM1 [9] or the BDDF1 [8] spaces
with a trapezoidal quadrature rule applied on the reference
element, [21, 44, 47]. We refer to [23, 24] for a related work
on quadrilateral grids using a broken Raviart-Thomas space
and to [1, 22] for papers utilizing both approaches.

The choice of CG for elasticity is reasonable if the per-
meability is not very small and locking is not an issue.
As mentioned above, there has been previous work on
employing DG for poroelasticity discretizations to eliminate
locking [27, 28, 38]. In [28], it was shown that DG degrees
of freedom may only be needed in localized regions, while
the less expensive CG may be used in the rest of the domain.
Since our goal in this paper is to emphasize the applicabil-
ity of the MFMFE method for flow in the Biot system, we
have chosen to consider only CG for elasticity, thus avoiding
the more complicated DG notation. Nevertheless, coupling
MFMFE for flow with DG or a combination of CG and
DG for elasticity is a possible choice that will be studied in
future papers.

In this paper, we develop convergence analysis for
the MFMFE-CG numerical approximation of the time-
dependent poroelasticity system. We study two versions of

the method: with a symmetric quadrature rule on simpli-
cial and smooth quadrilateral and hexahedral grids and a
nonsymmetric quadrature rule on rough quadrilateral and
hexahedral grids. The framework allows for handling hex-
ahedral grids with nonplanar faces defined via trilinear
mappings from the reference cube. The backward Euler
method is employed for time discretization. Theoretical and
numerical results demonstrate first-order convergence in
time and space for the fluid pressure and velocity, as well as
for the solid displacement.

The rest of the paper is organized as follows. The prob-
lem formulation and the numerical approximation are pre-
sented in Section 2. Known convergence results for the
MFMFE method on pure Darcy flow problem are given
in Section 3. The convergence analysis for the continu-
ous in time and the fully discrete schemes is developed in
Sections 4 and 5, respectively. Section 6 is devoted to com-
putational experiments. Finally, conclusions are given in
Section 7.

2 Problem formulation and discretizations

We first introduce some notations. For a domain � ⊂ R
d ,

d = 2, 3, let ‖ · ‖k,∞, k ∈ R, denote the norm in the
Sobolev space Wk,∞(�). Let ‖·‖k and | · |k be the norm and
seminorm, respectively, in the Hilbert space Hk(�). The
norm in L2(�) is denoted by ‖ · ‖. The L2(�)-inner prod-
uct is denoted by (·, ·) and for G ⊂ ∂�, 〈·, ·〉G denotes the
L2(G)-inner product or duality pairing. For a tensor-valued
function M, let ‖M‖α = maxi,j ‖Mij‖α for any norm ‖ · ‖α .

Let X � (�) Y denote that there exists a positive con-
stant C, independent of the mesh size h and the time step
size �t , such that X ≤ (≥) CY . The notation X � Y means
that both X � Y and X � Y hold.

Let � ⊂ R
d be a domain with a Lipschitz continuous

boundary ∂� and unit outward normal n. The poroelasticity
system [6, 42] in � over a time interval (0, T ], T > 0, reads

−∇·σ = f, in � × (0, T ], (2.1)

z = −K∇p, in � × (0, T ], (2.2)

∂

∂t
(c0p + α∇·u) +∇·z = s, in � × (0, T ], (2.3)

where f is an external force, s is a source or sink term, and

σ = λ tr(ε) I+2με−αp I, ε(u) = 1

2
(∇u+∇uT ). (2.4)

In the above constitute equations, u(x, t) is the displacement
of the porous rock, p(x, t) is the fluid pressure, z(x, t) is the
Darcy velocity, K(x) is a symmetric and uniformly positive
definite tensor representing the rock permeability divided by
the fluid viscosity, σ (x, t) is the total stress tensor, c0 > 0
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is the storage coefficient, α is the Biot–Willis constant, and
λ and μ are the Lamé constants

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
, (2.5)

where E is the Young’s module and ν is the Poisson’s ratio.
The gravity force is ignored for simplicity. We assume that
there exist constants 0 < k0 ≤ k1 such that for all x ∈ �,
K(x) satisfies

k0ξ
T ξ ≤ ξT K(x)ξ ≤ k1ξ

T ξ , ∀ ξ ∈ R
d . (2.6)

The above system is supplemented by the following bound-
ary and initial conditions, wherein ∂� = �u ∪ �σ and
∂� = �p ∪ �z,:

u = 0, on �u × (0, T ], (2.7)

σn = tN, on �σ × (0, T ], (2.8)

p = 0, on �p × (0, T ], (2.9)

z · n = 0, on �z × (0, T ], (2.10)

p(·, 0) = p0, in �, (2.11)

u(·, 0) = u0, in �. (2.12)

We assume that s(·, t) ∈ L2(�), f(·, t) ∈ (L2(�))d , u0 ∈
(L2(�))d , and p0 ∈ L2(�). The no-flow and homogeneous
Dirichlet boundary conditions are considered for simplicity.

The following functional spaces will be used in the weak
formulation.

V =
{

v ∈ (H 1(�))d : v = 0 on �u

}
,

Z = {z ∈ H(div;�) : z · n = 0 on �z},
W = L2(�).

The weak formulation is: find u(·, t) ∈ V, z(·, t) ∈ Z, and
p(·, t) ∈ W , t ∈ [0, T ], such that

a(u, v) − α(p,∇·v) = (f, v) + 〈tN, v〉�σ , ∀ v ∈ V, (2.13)

(K−1z, q) − (p,∇·q) = 0, ∀q ∈ Z, (2.14)(
∂

∂t
(c0p+α∇·u), w

)
+ (∇·z, w)= (s, w),∀w ∈ W, (2.15)

u(·, 0) = u0, p(·, 0) = p0, (2.16)

where

a(u, v) = (σ (u) : ε(v)) = (2με(u) : ε(v)) + (λ∇·u,∇·v).

It is easy to see that a(·, ·) is coercive:

‖v‖2
1 � a(v, v), ∀ v ∈ (H 1(�))d . (2.17)

We first consider a semidiscrete approximation of the
system (2.13)–(2.16). We apply the CG method for the dis-
placement and the MFMFE method [21, 44, 47] for the
flow. Given finite element approximating spaces Vh ⊂ V,
Zh ⊂ Z, and Wh ⊂ W , the coupled MFMFE-CG method is:

find uh(t) ∈ Vh, zh(t) ∈ Zh, and ph(t) ∈ Wh, t ∈ [0, T ],
such that

a(uh, v) − α(ph,∇·v) = (f, v) + 〈tN, v〉�σ , ∀ v ∈ Vh, (2.18)

(K−1zh, q)Q − (ph,∇·q) = 0, ∀q ∈ Zh, (2.19)(
∂

∂t
(c0ph+α∇·uh), w

)
+(∇·zh, w)=(g, w),∀w ∈ Wh, (2.20)

uh(0) = Phu0, ph(0) = Qhp0, (2.21)

where Ph and Qh are projection operators onto Vh and Wh,
respectively, defined in (2.53) and (2.41), and (·, ·)Q is a
quadrature rule defined in Section 2.2.

There are two key ingredients in the MFMFE method.
The first is an appropriate choice of mixed finite element
spaces Zh and Wh and degrees of freedom. The second is a
specific choice of the numerical integration rules for (·, ·)Q
in (2.19). These two choices allow for flux variables associ-
ated with a vertex to be expressed by cell-centered pressures
surrounding the vertex. We consider two quadrature rules—
symmetric an nonsymmetric. The former works well on
affine or smooth grids, while the latter is designed to handle
rough quadrilateral or hexahedral grids.

In the next sections, we give details on the MFMFE
method and the CG method on various grids.

2.1 Finite element spaces

Assume that � can be exactly partitioned into a union of
finite elements of characteristic size h. The elements can
be triangles or quadrilaterals in 2D, tetrahedra or hexahe-
dra in 3D. Let us denote the family of partitions by Th

and assume that they are shape-regular and quasi-uniform
[12]. This is a standard assumption in finite element anal-
ysis. It was needed in the analysis of the MEMFE method
for Darcy flow in [21, 44, 47]. We utilize several auxiliary
results from these papers in our analysis. We further require
shape regularity of the grids for optimal approximation of
the finite element space in the elasticity equation. The dis-
placement, velocity, and pressure finite element spaces on
any physical element E are defined, respectively, via the
vector transformation

v ↔ v̂ : v = v̂ ◦ F−1
E ,

via the Piola transformation

q ↔ q̂ : q = 1

JE

DFE q̂ ◦ F−1
E , (2.22)

and via the scalar transformation

w ↔ ŵ : w = ŵ ◦ F−1
E ,

where FE denotes a mapping from the reference element Ê

to the physical element E, DFE is the Jacobian of FE , and
JE is its determinant. The Piola transformation preserves
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the normal components of the velocity vectors. The finite
element spaces Vh, Zh and Wh on Th are given by

Vh =
{

v ∈ V : v|E ↔ v̂, v̂ ∈ V̂(Ê), ∀E ∈ Th

}
,

Zh =
{

q ∈ Z : q|E ↔ q̂, q̂ ∈ Ẑ(Ê), ∀E ∈ Th

}
,

Wh =
{
w ∈ W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê), ∀E ∈ Th

}
,

(2.23)

where V̂(Ê), Ẑ(Ê) and Ŵ (Ê) are finite element spaces on
the reference element Ê.

Triangular elements In the case of triangles, Ê is the refer-
ence triangle with vertices r̂1 = (0, 0)T , r̂2 = (1, 0)T , and
r̂3 = (0, 1)T . Let ri (i = 1, 2, 3) be the corresponding ver-
tices on the physical element. The linear mapping FE has
the form

FE(r̂) = r1(1 − x̂ − ŷ) + r2x̂ + r3ŷ, (2.24)

and the spaces are chosen as for displacement

V̂(Ê) = (P1(Ê))2, (2.25)

and the lowest order BDM1 [9] spaces for flow

Ẑ(Ê) = (P1(Ê))2, Ŵ (Ê) = P0(Ê), (2.26)

where Pk denotes the space of polynomials of degree at
most k.

Convex quadrilaterals In the case of convex quadrilater-
als, Ê is the unit square with vertices r̂1 = (0, 0)T , r̂2 =
(1, 0)T , r̂3 = (1, 1)T , and r̂4 = (0, 1)T . Denote by ri , i =
1, . . . , 4, the corresponding vertices of E. In this case, FE is
the bilinear mapping given as

FE(r̂) = r1(1− x̂)(1− ŷ)+r2x̂(1− ŷ)+r3x̂ŷ+r4(1− x̂)ŷ,

(2.27)

and the spaces are for displacement

V̂(Ê) = (Q1(Ê))2, (2.28)

and the lowest order BDM1 [9] spaces for flow

Ẑ(Ê) = (P1(Ê))2 + r curl(x̂2ŷ) + s curl(x̂ŷ2),

Ŵ (Ê) = P0(Ê), (2.29)

where Q1 denotes bilinear or trilinear polynomial spaces
and r and s are real constants.

Tetrahedra In the case of tetrahedra, Ê is the reference
tetrahedron with vertices r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T ,
r̂3 = (0, 1, 0)T , and r̂4 = (0, 0, 1)T . Let ri (i = 1, . . . , 4)

be the corresponding vertices of E. The linear mapping for
tetrahedra has the form

FE(r̂) = r1(1 − x̂ − ŷ − ẑ) + r2x̂ + r3ŷ + r4ẑ, (2.30)

and the spaces are

V̂(Ê) = (P1(Ê))3, (2.31)

for displacement and the BDM1 spaces for flow [9]:

Ẑ(Ê) = (P1(Ê))3, Ŵ (Ê) = P0(Ê). (2.32)

Hexahedra In the case of hexahedra, Ê is the unit cube
with vertices r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T , r̂3 =
(1, 1, 0)T , r̂4 = (0, 1, 0)T , r̂5 = (0, 0, 1)T , r̂6 = (1, 0, 1)T ,
r̂7 = (1, 1, 1)T , and r̂8 = (0, 1, 1)T . Denote by ri =
(xi, yi, zi)

T , i = 1, . . . , 8, the eight corresponding vertices
of E. We note that the element can have nonplanar faces. In
this case, FE is a trilinear mapping given by

FE(r̂) = r1(1 − x̂)(1 − ŷ)(1 − ẑ) + r2x̂(1 − ŷ)(1 − ẑ)

+r3x̂ŷ(1 − ẑ) + r4(1 − x̂)ŷ(1 − ẑ)

+r5(1 − x̂)(1 − ŷ)ẑ + r6x̂(1 − ŷ)ẑ

+r7x̂ŷẑ + r8(1 − x̂)ŷẑ, (2.33)

and the spaces are defined by

V̂(Ê) = (Q1(Ê))3, (2.34)

for displacement and by enhancing the BDDF1 spaces [21]
for flow:

Ẑ(Ê) = BDDF1(Ê) + s2curl(0, 0, x̂2ẑ)T

+s3curl(0, 0, x̂2ŷẑ)T + t2curl(x̂ŷ2, 0, 0)T

+t3curl(x̂ŷ2ẑ, 0, 0)T + w2curl(0, ŷẑ2, 0)T

+w3curl(0, x̂ŷẑ2, 0)T ,

Ŵ (Ê) = P0(Ê), (2.35)

where the BDDF1(Ê) space is defined as [8]:

BDDF1(Ê) = (P1(Ê))3 + s0curl(0, 0, x̂ŷẑ)T

+s1curl(0, 0, x̂ŷ2)T + t0curl(x̂ŷẑ, 0, 0)T ,

+t1curl(ŷẑ2, 0, 0)T + w0curl(0, x̂ŷẑ, 0)T

+w1curl(0, x̂2ẑ, 0)T .

(2.36)

In above equations, si, ti , wi(i = 0, . . . , 3) are real
constants.

In all cases, the degrees of freedom (DOF) for displace-
ments are chosen as Lagrangian nodal point values. The
velocity DOF are chosen to be the normal components at
n points on each face where n is the number of vertices of
that face. We choose these points to be the vertices. The
dimension of the space is dnv , where d is the dimension
and nv is the number of vertices in E. Note that the orig-
inal BDDF1 spaces have only three DOF on square faces.
These spaces have been enhanced in [21] to have 4 DOF on
square faces. This special choice is needed in the reduction
to a cell-centered pressure stencil in a pure Darcy flow prob-
lem as described later in this section. In addition, the normal
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components of the velocity vectors on the faces (edges) are
preserved [10], under the Piola transformation (2.22):

(∇ · q, w)E = (∇̂ · q̂, ŵ)
Ê

and 〈q · ne, w〉e = 〈q̂ · n̂ê, ŵ〉ê,
(2.37)

which is needed for an H(div;�)-conforming velocity
space as required by (2.23).

Recall the projection operators in the space Zh and Wh.
The operator 
̂ : (H 1(Ê))d → Ẑ(Ê) is defined locally on
each element by

〈(
̂q̂ − q̂) · n̂ê, q̂1〉ê = 0, ∀ê ⊂ ∂Ê, (2.38)

where q̂1 ∈ P1(ê) for the case of the unit square (or sim-
plices) Ê, and q̂1 ∈ Q1(ê) for the case of the unit cube
Ê. The global operator 
 : Z ∩ (H 1(�))d → Zh on each
element E is defined by the Piola transformation:


q ↔ 
̂q, 
̂q = 
̂q̂. (2.39)

Furthermore, 
q ·n is continuous across element interfaces
and

(∇ · (
q − q), w) = 0, ∀w ∈ Wh. (2.40)

Let Q̂ be the L2(Ê)-orthogonal projection onto Ŵ (Ê),
satisfying for any ϕ̂ ∈ L2(Ê),

(ϕ̂ − Q̂ ϕ̂, ŵ)
Ê
= 0, ∀ ŵ ∈ Ŵ (Ê).

Let Qh : L2(�) → Wh be the projection operator satisfying
for any ϕ ∈ L2(�),

Qhϕ = Q̂ϕ̂ ◦ F−1
E on all E. (2.41)

It is easy to see that, due to (2.37),

(ϕ − Qhϕ,∇·q) = 0, ∀q ∈ Zh. (2.42)

2.2 A quadrature rule

We first introduce some notation on the element geome-
try. A quadrilateral in 2D or a hexahedral face in 3D with

vertices r1, r2, r3, and r4 (numbered counter clockwise) is
called an h2-parallelogram if

|r34 − r21|Rd � h2.

A hexahedron is called an h2-parallelepiped when all of its
faces are h2-parallelograms. We refer to grids of such ele-
ments as h2-perturbed grids. It holds for such grids that
|DFE |1,∞,Ê

� h2. We employ a symmetric quadrature rule

on affine and h2-perturbed grids and a nonsymmetric rule
on general quadrilaterals and hexahedra.

The integration on a physical element is performed by
mapping to the reference element and choosing a quadra-
ture rule on Ê. Using the Piola transformation, we write
(K−1·, ·) in (2.14) as

(K−1q, s)E =
(

1

JE

DF
T
EK−1(FE(x̂))DFE q̂, ŝ

)

Ê

≡ (ME q̂, ŝ)
Ê
,

where

ME = 1

JE

DF
T
EK−1(FE(x̂))DFE. (2.43)

Define a perturbed M̃E as

M̃E = 1

JE

DF
T
E

(
r̂
c,Ê

)
K

−1
E DFE, (2.44)

where r̂
c,Ê

is the centroid of Ê and KE denotes the mean

of K on E. In addition, denote the trapezoidal rule on Ê by
Trap(·, ·)

Ê
:

Trap(q̂, ŝ)
Ê
≡ |Ê|

k

k∑
i=1

q̂(r̂i ) · ŝ(r̂i ), (2.45)

where {r̂i}ki=1 are the vertices of Ê.
The symmetric quadrature rule is based on the original

ME while the nonsymmetric one is based on the perturbed
M̃E :

(K−1q, s)Q,E ≡
{

Trap(ME q̂, ŝ)
Ê
= |Ê|

k

∑k
i=1 ME(r̂i )q̂(r̂i ) · ŝ(r̂i ), symmetric,

Trap(M̃E q̂, ŝ)
Ê
= |Ê|

k

∑k
i=1 M̃E(r̂i )q̂(r̂i ) · ŝ(r̂i ), nonsymmetric.

(2.46)

Mapping back to the physical element E, we have the
quadrature rule on E as

(K−1q, s)Q,E =
⎧⎨
⎩

1
k

∑k
i=1 JE(r̂i )K

−1
E q(ri ) · s(ri ), symmetric,

1
k

∑k
i=1 JE(r̂i )

(
DF

−1
E

)T

(ri )DF
T
E

(
r̂
c,Ê

)
K

−1
E q(ri ) · s(ri ), nonsymmetric.

(2.47)
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We call the method symmetric or nonsymmetric MFMFE
method depending on the choice of quadrature rule. On
affine or h2-perturbed grids, both the symmetric and the
nonsymmetric MFMFE methods give first-order accurate
velocities and pressures, as well as second-order accurate
face fluxes and pressures at the cell centers [21, 44, 47]. On
general quadrilateral and hexahedral grids, the convergence
of the symmetric MFMFE method can deteriorate while
the nonsymmetric MFMFE method still gives first-order
accuracy [47]. This is due to the fact that the nonsym-
metric quadrature rule satisfies some critical properties on
the physical elements, see Lemma 3.3 and Lemma 3.4. On
affine grids, the two quadrature rules in (2.46) are the same
if the tensor K is constant in each element, since the Jaco-
bian is a constant matrix. The nonsymmetric quadrature rule
was originally proposed in [24] for quadrilateral grids.

The global quadrature rule on � is then given as

(K−1q, s)Q ≡
∑
E∈Th

(K−1q, s)Q,E.

Note that

(K−1q, s)Q =
∑
E∈Th

(K−1q, s)Q,E =
∑
c∈Ch

sT
c Mcqc, (2.48)

where Ch denotes the set of corner or vertex points in Th,
qc := {(q · ne)(rc)}nc

e=1, rc is the coordinate vector of point
c, and nc is the number of faces (or edges in 2D) that share
the vertex point c.

Lemma 2.1 ([21, 44]) The symmetric bilinear form
(K−1·, ·)Q is coercive in Zh and induces a norm in Zh

equivalent to the L2-norm:

(K−1q, q)Q � ‖q‖2, ∀q ∈ Zh. (2.49)

The analysis of the nonsymmetric MFMFE method
requires some additional assumptions.

Lemma 2.2 ([47]) Assume that Mc is uniformly positive
definite for all c ∈ Ch:

hdξT ξ � ξT Mcξ , ∀ξ ∈ R
nc . (2.50)

Then the nonsymmetric bilinear form (K−1·, ·)Q is coercive
in Zh and satisfies (2.49). If in addition

ξT MT
c Mcξ � h2dξT ξ , ∀ξ ∈ R

nc , (2.51)

then the following Cauchy-Schwarz type inequality holds:

(K−1q, s)Q � ‖q‖‖s‖ ∀q, s ∈ Zh, (2.52)

2.3 Reduction to a cell-centered pressure system
in the flow problem

The choice of trapezoidal quadrature rule implies that on
each element, the velocity degrees of freedom associated

with a vertex become decoupled from the rest of the degrees
of freedom. As a result, the assembled velocity mass matrix
in (2.19) has a block-diagonal structure with one block
per grid vertex. The dimension of each block equals the
number of velocity DOF associated with the vertex. For
example, this dimension is 12 for logically rectangular hex-
ahedral grids, see Fig. 1. Inverting each local block in the
mass matrix in (2.19) allows for expressing the velocity
DOF associated with a vertex in terms of the pressures at
the centers of the elements that share the vertex (there are
eight such elements in Fig. 1). Substituting these expres-
sions into the mass conservation equation (2.20) leads to
a cell-centered system for the pressures. The stencil is 9
or 27 points on logically rectangular quadrilateral or hex-
ahedral grids, respectively. The local linear systems and
the resulting global pressure system are positive definite
and therefore invertible for the symmetric MFMFE method
and, under a mild restriction on the shape regularity of the
grids and/or the anisotropy of the permeability, for the non-
symmetric MFMFE method; see (2.50) below. The reader
is referred to [21, 44, 46, 47] for further details on the
reduction to a cell-centered pressure system.

2.4 Some preliminaries

In the analysis we, will make use of the following finite
element interpolants or projections. Let Ph be the elliptic
elasticity projection in Vh satisfying

a(Phu − u, v) = 0, ∀v ∈ Vh. (2.53)

The finite element elliptic elasticity theory [12], also [4, 29],
gives

‖u − Phu‖1 � h‖u‖2, (2.54)

‖(u − Phu)t‖1 � h‖ut‖2. (2.55)

It has been shown in [5, 21, 43] that on general quadrilater-
als and h2-parallelepipeds,

‖q − 
q‖ � h‖q‖1. (2.56)

However, on general hexahedra, it only holds that [16, 33,
40]

‖q − 
q‖ = O(1). (2.57)

On simplices, we have optimal interpolation error estimates
[9]:

‖q − 
q‖ � hr‖q‖r , r = 1, 2. (2.58)

Using a scaling argument and the Bramble-Hilbert lemma
[12], it can be shown that

‖ϕ − Qhϕ‖ � h‖ϕ‖1, (2.59)

‖(ϕ − Qhϕ)t‖ � h‖ϕt‖1. (2.60)
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Fig. 1 Interactions of the
velocity degrees of freedom in
the MFMFE method

In the analysis, we will use the following well-known
estimates [7]. There exists s1 ∈ P1(E) such that

‖p − s1‖j,E � h2−j‖p‖2,E, j = 0, 1, (2.61)

and

‖p − s1‖E � h‖p‖1,E. (2.62)

We also have [12]

‖K − KE‖E � h‖K‖1,E. (2.63)

Lemma 2.3 ([47]) For all q ∈ (H 1(E))d ,

‖
q‖E � ‖q‖E + h|q|1,E. (2.64)

In the analysis, we will require a similar projection oper-
ator onto the lowest order Raviart-Thomas velocity space
[34, 39]. The RT0 spaces are defined on the unit cube as

ẐR(Ê) =
⎛
⎝

α1 + β1x̂

α2 + β2ŷ

α3 + β3ẑ

⎞
⎠ , ŴR(Ê) = P0(Ê), (2.65)

and on the unit square as

ẐR(Ê) =
(

α1 + β1x̂

α2 + β2ŷ

)
, ŴR(Ê) = P0(Ê). (2.66)

Here, αiand βi(i = 1, 2, 3) are real constants. On simplicies,

ẐR(Ê) = (P1(Ê))d , ŴR(Ê) = P0(Ê). (2.67)

In all cases, ∇̂ · ẐR(Ê) = ŴR(Ê) and v̂ · n̂ê ∈ P0(ê). The
degrees of freedom of V̂R(Ê) are chosen to be the constant
values of v̂ · n̂ê on all faces (or edges) of Ê. The projection
operator 
̂R : (H 1(Ê))d → ẐR(Ê) satisfies

〈(
̂Rq̂ − q̂) · n̂ê, q̂0〉ê = 0, ∀ê ⊂ ∂Ê, ∀q̂0 ∈ P0(Ê).

(2.68)

The spaces ZR
h and WR

h on Th and the projection operator

R : (H 1(�))d → VR

h are defined similarly to the case of
Vh and Wh. By definition, we have

ZR
h ⊂ Zh, WR

h = Wh. (2.69)

The projection operator 
R satisfies

‖
Rq‖ � ‖q‖, ∀q ∈ Zh, (2.70)

and

(∇ · (
Rq − q), w) = 0, ∀w ∈ WR
h , (2.71)

which implies

∇ · q = ∇ · 
Rq, ∀q ∈ Zh. (2.72)

3 Convergence results of the MFMFE method on pure
flow problems

In this section, we state some known convergence results
for the MFMFE method applied to the pure Darcy flow
problem

(
K−1zh, q

)
Q
− (ph,∇·q) = 0, ∀q ∈ Zh, (3.73)

(∇·zh, w) = (g, w), ∀w ∈ Wh. (3.74)

3.1 Convergence of the symmetric MFMFE method

Let W
k,∞
Th

consist of functions φ such that φ|E ∈ Wk,∞(E)

for all E ∈ Th.

Theorem 3.1 ([21, 44]) On simplicial grids, h2-parallelo-
grams, and h2-parallelepipeds, if K−1 ∈ W

1,∞
Th

, then, the
velocity zh and the pressure ph of the symmetric MFMFE
method (3.73)–(3.74) satisfy

‖z − zh‖ � h‖z‖1, (3.75)

‖∇ · (z − zh)‖ � h‖∇ · z‖1, (3.76)

‖p − ph‖ � h(‖z‖1 + ‖p‖1). (3.77)

3.2 Convergence of the nonsymmetric MFMFE method

On simplicial grids, h2-parallelograms, and h2-parallelepi-
peds, the nonsymmetric MFMFE method has the same
order of accuracy as the symmetric method. In addition, the
nonsymmetric method has first-order convergence for the
velocity and pressure on general quadrilaterals and for the
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face flux and pressure on general hexahedra with nonplanar
faces.

Theorem 3.2 ([47]) Let K ∈ W
1,∞
Th

and K−1 ∈ W 0,∞(�) .
If (2.50) and (2.51) hold, then the velocity zh and the pres-
sure ph of the nonsymmetric MFMFE method (3.73)–(3.74)
satisfy

‖
z − zh‖ + ‖Qhp − ph‖ � h(|z|1 + ‖p‖2). (3.78)

This result further implies convergence of the computed
normal velocity to the true normal velocity on the element
faces. First, define a norm for vectors in � based on the
normal components on the faces of Th:

‖q‖2
Fh

:=
∑
E∈Th

∑
e∈∂E

|E|
|e| ‖q · ne‖2

e, (3.79)

where |E| is the volume of E and |e| is the area of e. This
norm gives an appropriate scaling of |�|1/2 for a unit vector.

Theorem 3.3 ([47]) Let K ∈ W
1,∞
Th

and K−1 ∈ W 0,∞(�).
If (2.50) and (2.51) hold, then the velocity zh of the nonsym-
metric MFMFE method (3.73)–(3.74) satisfies

‖z − zh‖Fh
� h(‖z‖1 + ‖p‖2). (3.80)

3.3 Auxiliary lemmas for the MFMFE method

We give several results from earlier papers on the MFMFE
method for Darcy that are utilized in our analysis.

Lemma 3.1 ([21, 44]) For the symmetric method on h2-
parallelograms and h2-parallelepipeds, if K−1 ∈ W

1,∞
Th

,
then for all q ∈ Zh,

|(K−1
z, q − 
Rq)Q| � h‖z‖1‖q‖. (3.81)

Lemma 3.2 ([21, 44]) For the symmetric method on h2-
parallelograms and h2-parallelepipeds, if K−1 ∈ W

1,∞
Th

,

then for all q ∈ Zh and for all s ∈ ZR
h

|σ(K−1q, s)| := |(K−1q, s) − (K−1q, s)Q|
�

∑
E∈Th

h‖K−1‖1,∞,E‖q‖1,E‖s‖E. (3.82)

Furthermore, the above bound holds on simplices for all
s ∈ Zh.

Lemma 3.3 ([47]) For the nonsymmetric method on gen-
eral quadrilateral or hexahedral elements, for any constant
vector s0 on E and for all q ∈ Zh(E),

(
K−1s0, q − 
Rq

)
Q,E

= 0. (3.83)

Lemma 3.4 ([47]) For the nonsymmetric method on gen-
eral quadrilateral or hexahedral elements, for any constant
vector s0 on E and q ∈ ZR

h (E),

(
K−1s0, q

)
Q,E

=
(

K
−1
E s0, q

)
E

. (3.84)

Lemma 3.5 ([47]) On general quadrilateral or hexahedral
elements, for any constant vector s0 on E,

∀ e ⊂ ∂E, 
s0 · ne = s0 · ne. (3.85)

4 Convergence of the semidiscrete poroelasticity scheme

We begin with a well-posedness result.

Lemma 4.1 The system (2.18)–(2.20) has a unique solu-
tion.

Proof For any fixed t this is a square finite dimensional
system and existence is equivalent to uniqueness. Take all
problem data to be zero. Take v = uh,t , q = zh, and w = ph

to conclude that

1

2

∂

∂t
a(uh, uh) + 1

2

∂

∂t
(c0ph, ph) +

(
K−1zh, zh

)
Q
= 0.

Integrating the above equation from 0 to t implies, using
(2.17) and (2.49), that uh(t) = zh(t) = ph(t) = 0.

The convergence analysis applies to simplices, h2-
parallelograms, and h2-parallelepipeds in the case of the
symmetric MFMFE method and in addition to general
quadrilaterals and hexahedra in the case of the nonsymmet-
ric MFMFE method.

Subtracting (2.18)–(2.20) from (2.13)–(2.15) gives the
error equations

a(Phu − uh, v) − α(Qhp − ph,∇·v) = T1(v), ∀v ∈ Vh, (4.1)(
K−1(
z − zh), q

)
Q
−(Qhp − ph,∇·q)=T2(q), ∀q ∈ Zh, (4.2)

(c0(Qhp − ph)t + α∇·(Phu − uh)t , w) + (∇·(
z − zh), w)

= T3(w), ∀w ∈ Wh, (4.3)
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where the right hand sides of (4.1)–(4.2) are

T1(v) := α(p − Qhp,∇·v), (4.4)

T2(q) := −(K−1z, q) + (K−1
z, q)Q, (4.5)

T3(w) := (α∇·(Phu − u)t , w). (4.6)

Lemma 4.2 In the case of the symmetric quadrature rule,
for all q ∈ Zh,

|T2(q)| � h‖z‖1‖q‖. (4.7)

In the case of the nonsymmetric quadrature rule, for all q ∈
Zh,

|T2(q)| � h(‖p‖2 + |z|1)‖q‖. (4.8)

Proof We first present the argument in the case of the
symmetric quadrature rule on h2-parallelograms and h2-
parallelepipeds. In this case, the quadrature error can be
bounded when one of the arguments is in the RT0 space
ZR

h , thus we need to project the test function using 
R . We
rewrite T2(q) as

T2(q) = −
(

K−1z, q − 
Rq
)
−

(
K−1(z − 
z), 
Rq

)

−
(

K−1
z, 
Rq
)
+

(
K−1
z, 
Rq

)
Q

+
(

K−1
z, q − 
Rq
)

Q

≡ J1 + J2 + J3 + J4 + J5. (4.9)

Taking q −
Rq as a test function (2.14) and using the fact
that ∇·(q − 
Rq) = 0, gives

J1 = 0. (4.10)

The second term in (4.9) can be bounded as

|J2| =
∣∣∣
(

K−1(z − 
z), 
Rq
)∣∣∣ � h‖K−1‖0,∞‖z‖1‖q‖,

(4.11)

by the interpolation bounds (2.56) and (2.70). The third and
fourth term in (4.9) are the quadrature error, which can be
bounded as

|J3 + J4| � h‖K−1‖1,∞‖z‖1‖q‖, (4.12)

using Lemma 3.2. For the fifth term in (4.9), we have

|J5| � h‖K−1‖0,∞‖z‖1‖q‖, (4.13)

which follows from Lemma 3.1. Combining (4.9)–(4.13)
implies

|T2(q)| � h‖K−1‖1,∞‖z‖1‖q‖. (4.14)

In the case of the symmetric quadrature rule on simplices,
the quadrature error can be bounded when both arguments
are in Zh, which simplifies the argument. We rewrite T2(q)

as

T2(q) = −(K−1(z − 
z), q) − (K−1
z, q) + (K−1
z, q)Q

≡ J̃2 + J̃3 + J̃4.

Note that terms J1 and J5 are not present. The term J̃2 is
bounded the same way as the term J2 in (4.11). The quadra-
ture error J̃3 + J̃4 is bounded as in (4.12), using Lemma 3.2.
This completes the proof on simplices.

In the case of the nonsymmetric quadrature rule, using
(2.14) and integration by parts, we rewrite T2(q) as

T2(q) = (∇p, q) +
∑
E∈Th

(
K−1
(z + KE∇s1), q

)
Q,E

−
∑
E∈Th

(
K−1
KE∇s1, q

)
Q,E

≡ I1 + I2 + I3 (4.15)

where s1 is defined in (2.61). By Lemmas 3.5, 3.3, and 3.4,
the term I3 can be written as

− I3 =
(

K−1
KE∇s1, q
)

Q,E

=
(

K−1KE∇s1, q
)

Q,E

=
(

K−1KE∇s1, 
Rq
)

Q,E

=
(
∇s1, 
Rq

)
E

. (4.16)

Then using the fact that (∇p, q − 
Rq) = −(p,∇·(q −

Rq)) = 0, we have

|I1 + I3| =
∣∣∣∣∣∣
∑
E∈Th

(
∇

(
p − s1

)
, 
Rq

)
E

∣∣∣∣∣∣
�

∑
E∈Th

‖∇(p − s1)‖E‖
Rq‖E

� h‖p‖2‖q‖, (4.17)

where we have used (2.61) and (2.70). From (2.61) and
(2.63),

‖z + KE∇s1‖E ≤ ‖(K − KE)∇p‖E + ‖KE∇(p − s1)‖E

� h(‖∇p‖E + ‖p‖2,E) � h‖p‖2,E.

(4.18)
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Then I2 can be bounded as

|I2| �
∑
E∈Th

‖

(

z + KE∇s1
)
‖E‖q‖E

�
∑
E∈Th

(
‖z + KE∇s1‖E + h|z + KE∇s1|1,E

)
‖q‖E

� h(‖p‖2 + |z|1)‖q‖, (4.19)

using (2.64) and (4.18). A combination of (4.17) and (4.19)
completes the proof.

Remark 4.1 The analysis of Lemma 4.6 for the sym-
metric and nonsymmetric MFMFE methods is dif-
ferent due to the fact that accuracy of the inter-
polant 
 deteriorates on general hexahedral grids, see
(2.57).

In the analysis below, we utilize the following space-time
norms. For any functional space S in � with a norm ‖ · ‖S ,
let

‖ϕ‖L2(S) =
(∫ T

0
‖ϕ(t)‖2

S dt

)1/2

,

‖ϕ‖L∞(S) = ess supt∈[0,T ] ‖ϕ(t)‖S.

Theorem 4.1 The solution (uh, ph, zh) of (2.18)–(2.21)
with the symmetric quadrature rule satisfies

‖u − uh‖L∞(H 1) + ‖p − ph‖L∞(L2) + ‖z − zh‖L2(L2)

� h
(‖u‖L∞(H 2) + ‖ut‖L2(H 2) + ‖p‖L∞(H 1)

+‖pt‖L2(H 1) + ‖z‖L2(H 1)

)
.

The solution in the case of the nonsymmetric quadrature
rule satisfies

‖u − uh‖L∞(H 1) + ‖p − ph‖L∞(L2) + ‖
z − zh‖L2(L2)

� h
(‖u‖L∞(H 2) + ‖ut‖L2(H 2) + ‖p‖L∞(H 1)

+‖pt‖L2(H 1) + ‖p‖L2(H 2) + ‖z‖L2(H 1)

)
.

Proof Take v = (Phu − uh)t , q = 
z − zh, and w =
Qhp − ph in (4.1)–(4.3) and sum to obtain

1

2
a(Phu − uh, Phu − uh)t + 1

2
(c0(Qhp − ph), Qhp − ph)t

+
(

K−1(
z − zh), 
z − zh

)
Q

= T1(Phu − uh)t + T2(
z − zh) + T3(Qhp − ph).

Integrating in time from 0 to t and using the initial
conditions (2.21) gives

1

2
(a(Phu − uh, Phu − uh) +(c0(Qhp − ph),Qhp − ph))

+
∫ t

0

(
K−1(
z − zh),
z − zh

)
Q

dτ

=
∫ t

0
T1 ((Phu − uh)t ) dτ +

∫ t

0
T2(
z − zh) dτ

+
∫ t

0
T3(Qhp − ph) dτ. (4.20)

The first term on the right above can be bounded by
integrating by parts in time:

∣∣∣∣
∫ t

0
T1 ((Phu − uh)t ) dτ

∣∣∣∣

=
∣∣∣∣−α

∫ t

0
((p − Qhp)t ,∇·(Phu − uh)) dτ

+ α(p − Qhp,∇·(Phu − uh))(t)

∣∣∣∣

≤ α

2

∫ t

0
‖(p − Qhp)t‖2 dτ + α

2

∫ t

0
‖Phu − uh‖2

1 dτ

+ α

4ε
‖(p − Qhp)(t)‖2 + αε‖(Phu − uh)(t)‖2

1,

(4.21)

where we have used (2.21) and the Young’s inequality

ab ≤ εa2 + 1

4ε
b2.

For the second term on the right in (4.20), using (4.7) or
(4.8), we have

∣∣∣∣
∫ t

0
T2(
z − zh) dτ

∣∣∣∣ � h2

4ε

∫ t

0

(
‖z‖2

1 + σ‖p‖2
2

)
dτ

+ε

∫ t

0
‖
z − zh‖2 dτ, (4.22)

where σ = 0 in the symmetric case and σ = 1 in the
nonsymmetric case. The bound on the last term in (4.20) is

∣∣∣∣
∫ t

0
T3(Qhp − ph) dτ

∣∣∣∣ ≤ α

2

∫ t

0
‖(Phu − u)t‖2

1 dτ

+α

2

∫ t

0
‖Qhp − ph‖2 dτ. (4.23)
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Combining (4.20)–(4.23), taking ε small enough, and using
(2.6), (2.17), the Gronwall inequality, (2.55), (2.59), and
(2.60), we obtain

‖Phu − uh‖L∞(H 1) + ‖Qhp − ph‖L∞(L2) + ‖
z − zh‖L2(L2)

� h
(‖ut‖L2(H 2) + ‖p‖L∞(H 1)

+ ‖pt‖L2(H 1) + σ‖p‖L2(H 2)

+ ‖z‖L2(H 1)

)
.

An application of the triangle inequality and (2.21),
(2.54), (2.59), and, in the case of the symmetric method,
(2.56) and (2.58), completes the proof of the theorem.

In the nonsymmetric case, using the approach in [47], we
can also derive an estimate for the velocity error on element
edges (faces). Consider the space-time extension of the face
norm ‖ · ‖Fh

defined in (3.79):

‖q‖L2(Fh) =
(∫ T

0
‖q(t)‖2

Fh
dt

)1/2

.

The proof of the result below follows from the argument of
Lemma 3.14 and Theorem 3.2 in [47].

Theorem 4.2 The velocity zh of (2.18)–(2.21) with the non-
symmetric quadrature rule, on general quadrilaterals and
hexahedra, satisfies

‖z − zh‖L2(Fh) � h
(‖u‖L∞(H 2)‖ut‖L2(H 2) + ‖p‖L∞(H 1)

+ ‖pt‖L2(H 1) + ‖p‖L2(H 2) + ‖z‖L2(H 1)

)
.

On general quadrilaterals with the nonsymmetric quadra-
ture rule, the following error estimate holds by the interpo-
lation estimate (2.56) and Theorem 4.1.

Theorem 4.3 The velocity zh of (2.18)–(2.21) with the
nonsymmetric quadrature rule on general quadrilaterals
satisfies

‖z − zh‖L2(L2) � h
(‖u‖L∞(H 2) + ‖ut‖L2(H 2) + ‖p‖L∞(H 1)

+‖pt‖L2(H 1) + ‖p‖L2(H 2) + ‖z‖L2(H 1)

)
.

5 Convergence of the fully discrete poroelasticity scheme

We employ the backward Euler method for time discretiza-
tion to obtain a fully discrete scheme. Let 0 = t0 < t1 <

· · · < tN = T be a partition of [0, T ]. Let �tn = tn+1 − tn,
n = 0, . . . , N − 1. We will use the notation ϕn = ϕ(tn). Let

∂n+1
t ϕ = ϕn+1 − ϕn

�tn
.

The fully discrete CG-MFMFE method for approximating
(2.13)–(2.16) is: find un+1

h ∈ Vh, zn+1
h ∈ Zh, and pn+1

h ∈
Wh, n = 0, . . . , N − 1, satisfying

a
(

un+1
h , v

)
− α

(
pn+1

h ,∇·v
)

= (fn+1, v) + 〈tN, v〉�σ , ∀ v ∈ Vh, (5.1)
(

K−1zn+1
h , q

)
Q
− (pn+1

h ,∇·q) = 0,∀q ∈ Zh, (5.2)

(
c0∂

n+1
t ph + α∂n+1

t ∇·uh,w
)
+

(
∇·zn+1

h ,w
)

= (sn+1, w), ∀w ∈ Wh, (5.3)

u0
h = Phu0, p0

h = Qhp0. (5.4)

We will use the following discrete space-time norms. For
any functional space S in � with a norm ‖ · ‖S , let

‖ϕ‖l2(S) =
(

N−1∑
n=0

‖ϕn+1‖2
S�tn

)1/2

,

‖ϕ‖l∞(S) = max
0≤n≤N

‖ϕn‖S.

In the analysis below, we will use in several occasions
that

∂n+1
t ϕ = ϕn+1

t + �tn

2
ϕtt (θ

n), θn ∈ [tn, tn+1].

Theorem 5.1 The solution (uh, ph, zh) of (5.1)–(5.4) with
the symmetric quadrature rule satisfies

‖u − uh‖l∞(H 1) + ‖p − ph‖l∞(L2) + ‖z − zh‖l2(L2)

� (h + �t)
(‖u‖l∞(H 2)

+‖ut‖l2(H 2) + ‖ut t‖L∞(H 1) + ‖p‖l∞(H 1)

+ ‖pt‖l2(H 1) + ‖ptt‖L∞(L2) + ‖z‖l2(H 1)

)
.

The solution in the case of the nonsymmetric quadrature
rule satisfies

‖u − uh‖l∞(H 1) + ‖p − ph‖l∞(L2) + ‖
z − zh‖l2(L2)

� (h + �t)
(‖u‖l∞(H 2)

+‖ut‖l2(H 2) + ‖ut t‖L∞(H 1) + ‖p‖l∞(H 1)

+‖pt‖l2(H 1) + ‖ptt‖L∞(L2) + ‖p‖l2(H 2)

+ ‖z‖l2(H 1)

)
.

Proof Subtracting (5.1)–(5.3) from (2.13)–(2.15) for each
n from 0 to N − 1, we obtain the error equations

a
(
(Phu − uh)

n+1, v
)
− α

(
(Qhp − ph)

n+1,∇·v
)

= α
(
(p − Qhp)n+1,∇·v

)
, ∀ v ∈ Vh, (5.5)
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(
K−1(
z − zh)

n+1, q
)

Q
−

(
(Qhp − ph)

n+1,∇·q
)

= −(K−1zn+1, q) +
(

K−1(
z)n+1, q
)

Q
, ∀q ∈ Zh,

(5.6)

(
c0∂

n+1
t (Qhp − ph) + α∂n+1

t ∇·(Phu − uh), w
)

+(∇·(
z − zh)
n+1, w)

=
(
α∂n+1

t ∇·(Phu − u), w
)
+ (rn+1, w),∀w ∈ Wh,

(5.7)

where

rn+1 ≡ −c0

(
pn+1

t − ∂n+1
t p

)
−α

(
(∇·u)n+1

t − ∂n+1
t ∇·u

)
.

(5.8)

Denote the right hand sides of (5.5)–(5.7) by T n+1
1 (v),

T n+1
2 (q), and T n+1

3 (w). Taking v = ∂n+1
t (Phu − uh), q =

(
z−zh)
n+1, and w = (Qhp−ph)

n+1 in (5.5)–(5.7), sum-
ming, and using that for any ξ and for any inner product
(·, ·)∗
(ξn+1, ξn+1 − ξn)∗ ≥ 1

2
(ξn+1, ξn+1)∗ − 1

2
(ξn, ξn)∗,

we obtain

1

2�tn

(
‖(Phu − uh)

n+1‖2
a − ‖(Phu − uh)

n‖2
a

)

+ c0

2�tn

(
‖(Qhp − ph)

n+1‖2 − ‖(Qhp − ph)
n‖2

)

+
(

K−1(
z − zh)
n+1, (
z − zh)

n+1
)

Q

≤ T n+1
1

(
∂n+1
t (Phu − uh)

)
+ T n+1

2

(
(
z − zh)

n+1
)

+ T n+1
3

(
(Qhp − ph)

n+1
)

,

(5.9)

where ‖v‖2
a = a(v, v). Multiplying by �tn and summing

for n = 0 to N − 1 gives

1

2
‖(Phu − uh)

N‖2
a +

c0

2
‖(Qhp − ph)

N‖2

+
N−1∑
n=0

�tn‖K−1/2(
z − zh)
n+1‖2

Q

≤
N−1∑
n=0

T n+1
1

(
∂n+1
t (Phu − uh)

)
�tn

+
N−1∑
n=0

T n+1
2

(
(
z − zh)

n+1
)

�tn

+
N−1∑
n=0

T n+1
3

(
(Qhp − ph)

n+1
)

�tn, (5.10)

where we have used the initial conditions (5.4). The first
term on the right above can be bounded using discrete
integration by parts in time

N−1∑
n=0

ξn+1(ηn+1−ηn) = ξNηN −
N−1∑
n=0

(ξn+1−ξn)ηn−ξ0η0.

We have, using (5.4),

N−1∑
n=0

T n+1
1

(
∂n+1
t (Phu − uh)

)
�tn

= α

N−1∑
n=0

(
(p − Qhp)n+1,∇·∂n+1

t (Phu − uh)
)

�tn

= α
(
(p − Qhp)N ,∇·(Phu − uh)

N
)

−α

N−1∑
n=0

(
∂n+1
t (p − Qhp),∇·(Phu − uh)

n
)

�tn

≤ α

4ε
‖(p − Qhp)N‖2 + αε‖(Phu − uh)

N‖2
1

+α

2

N−1∑
n=0

(
‖(p − Qhp)n+1

t ‖ + �tn

2
‖ptt‖L∞(L2)

)2

�tn

+α

2

N−1∑
n=0

‖(Phu − uh)
n‖2

1�tn. (5.11)

For the second term on the right in (5.10), using Lemma 4.2,
we have

N−1∑
n=0

T n+1
2

(
(
z − zh)

n+1
)

�tn

� h2

4ε

(
‖z‖2

l2(H 1)
+ σ‖p‖l2(H 2)

)

+ε

N−1∑
n=0

‖(
z − zh)
n+1‖2�tn, (5.12)

where σ = 0 in the symmetric case and σ = 1 in the non-
symmetric case. The last term on the right in (5.10) can be
bounded as

N−1∑
n=0

T n+1
3 ((Qhp − ph)n+1)�tn ≤ α

4ε

N−1∑
n=0

‖∂n+1
t ∇·(Phu − u)‖2�tn

+ 1

4ε

N−1∑
n=0

‖rn+1‖2�tn + (α + 1)ε

N−1∑
n=0

‖(Qhp − ph)n+1‖2�tn

≤ α

4ε

N−1∑
n=0

(
‖∇·(Phu − u)n+1

t ‖ + �tn

2
‖∇·ut t‖L∞(L2)

)2

�tn

+ 1

4ε

N−1∑
n=0

(
c0

�tn

2
‖ptt‖L∞(L2) + α

�tn

2
‖∇·ut t‖L∞(L2)

)2

�tn

+(α + 1)ε

N−1∑
n=0

‖(Qhp − ph)n+1‖2�tn. (5.13)
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A combination of (5.10)–(5.13), taking ε small enough, and
using (2.6), (2.17), (5.4), the discrete Gronwall inequality,
and the approximation properties (2.55), (2.59), and (2.60),
gives

‖Phu − uh‖l∞(H 1)+‖Qhp − ph‖l∞(L2)+‖
z − zh‖l2(L2)

� (h + �t)
(‖ut‖l2(H 2) + ‖ut t‖L∞(H 1)

+‖p‖l∞(H 1) + ‖pt‖l2(H 1) + ‖ptt‖L∞(L2)

+σ‖p‖l2(H 2) + ‖z‖l2(H 1)

)
.

(5.14)

The statement of the theorem follows from the triangle
inequality and the application of (2.54), (2.59), (5.4), and,
in the case of the symmetric method, (2.56) and (2.58).

In the nonsymmetric case, similar to the semidiscrete
case, we can also derive an estimate for the velocity error
on element edges (faces). The proof of the result below fol-
lows from the argument of Lemma 3.14 and Theorem 3.2 in
[47].

Theorem 5.2 The velocity zh of (5.1)–(5.4) with the non-
symmetric quadrature rule satisfies

‖z − zh‖l2(Fh) � (h + �t)
(‖u‖l∞(H 2) + ‖ut‖l2(H 2)

+‖ut t‖L∞(H 1) + ‖p‖l∞(H 1)

+‖pt‖l2(H 1) + ‖ptt‖L∞(L2)

+‖p‖l2(H 2) + ‖z‖l2(H 1)

)
.

On general quadrilaterals with the nonsymmetric quadra-
ture rule, similarly to Theorem 4.3 in the semidiscrete case,
we have the following result.

Theorem 5.3 The velocity zh of (5.1)–(5.4) with the non-
symmetric quadrature rule on general quadrilaterals satis-
fies

‖z − zh‖l2(L2) � (h + �t)
(‖u‖l∞(H 2) + ‖ut‖l2(H 2)

+‖ut t‖L∞(H 1) + ‖p‖l∞(H 1)

+‖pt‖l2(H 1) + ‖ptt‖L∞(L2)

+‖p‖l2(H 2) + ‖z‖l2(H 1)

)
.

6 Computational experiments

In this section, we present several numerical experiments in
two dimensions designed to test the theoretical convergence
rates. We also illustrate the behavior of the method on a
problem with curved boundaries motivated by the cantilever
bracket problem.

6.1 Convergence tests

We first perform numerical convergence tests for the spa-
tial discretization of the problem (2.1)–(2.3) with given
analytical solutions

u =
(

sin(πt)x(1 − x)y(1 − y)

sin(πt)x(1 − x)y(1 − y)

)
and

p = t sin(2πx) sin(2πy).

The parameters in the equations are chosen to be α = 1,
ν = 0.2, E = 1, c0 = 0.1, and a full permeability tensor

K =
(

3 1
1 2

)
.

The boundary conditions are of Dirichlet type for both the
displacement and the pressure. The source terms in the
equations are specified accordingly. We consider a sequence
of smooth and randomly perturbed quadrilateral meshes, as
well as Kershaw meshes [45] and triangular meshes, see
Fig. 2.

The grid points in the quadrilateral meshes are defined
by mapping the grid points in a sequence of refined uniform
rectangular meshes. The smooth mapping is given by:

x = x̂ + 0.06 sin(2πx̂) sin(2πŷ),

y = ŷ − 0.05 sin(2πx̂) sin(2πŷ),

where (x̂, ŷ) is a grid point in the uniform mesh and (x, y)

is the corresponding grid point in the quadrilateral mesh.
Similarly, the interior grid points in the randomly perturbed
quadrilateral meshes are given by the mapping

x = x̂ + hηx, y = ŷ + hηy,

where h is the discretization parameter of the current level
of refinement and ηx and ηy are random numbers between
−0.25 and 0.25. Figure 2 shows the smooth and randomly
perturbed quadrilateral meshes as well as the triangular
mesh on a level of 20 by 20, and Kershaw mesh on a level
of 16 by 16.

Both the symmetric and the nonsymmetric methods for
flow are tested. The time step size is �t = 10−2 and the
final simulation time is T = 0.5.

Table 1 shows the convergence on the smooth quadrilat-
eral meshes. As the theory predicts both the symmetric and
the nonsymmetric MFMFE method for flow give first-order
convergence with respect to ‖u−uh‖L∞(H 1), ‖z−zh‖L2(L2)

and ‖p − ph‖L∞(L2).
Table 2 shows the convergence on the randomly per-

turbed quadrilateral meshes. Since these elements are not
h2-parallelograms, the convergence order of the symmetric
MFMFE method for the flow deteriorates and it affects the
convergence order for displacements. On the other hands, as
the theory predicts, the nonsymmetric MFMFE method has
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Fig. 2 Smooth quadrilateral mesh (top left), randomly perturbed quadrilateral mesh (top right), Kershaw mesh (bottom left), and triangular mesh
(bottom right)

first-order convergence for the flow and displacement also
has first-order convergence.

On the Kershaw meshes in Table 3, both the sym-
metric and the nonsymmetric MFMFE methods exhibit
first-order convergence for the flow and the displacement.

Even though the coarse grid is very rough, the sequence of
meshes is obtained via a uniform refinement. This results
in h2-perturbed grids, which explains the convergence of
both methods. Nevertheless, this example indicates that the
methods can handle well irregularly shaped elements.

Table 1 Convergence on
smooth quadrilaterals h ‖u − uh‖l∞(H 1) Rate ‖p − ph‖l∞(L2) Rate ‖z − zh‖l2(L2) Rate

Symmetric MFMFE method for flow

1/10 4.23e-02 – 6.76e-02 – 4.62e-01 –

1/20 1.53e-02 1.47 3.38e-02 1.00 2.00e-01 1.21

1/40 6.44e-03 1.25 1.69e-02 1.00 9.53e-02 1.07

1/80 3.04e-03 1.08 8.44e-03 1.00 4.70e-02 1.02

1/160 1.50e-03 1.02 4.22e-03 1.00 2.34e-02 1.01

Nonsymmetric MFMFE method for flow

1/10 4.16e-02 – 6.73e-02 – 4.65e-01 –

1/20 1.50e-02 1.47 3.37e-02 1.00 2.02e-01 1.20

1/40 6.40e-03 1.23 1.69e-02 1.00 9.65e-02 1.07

1/80 3.04e-03 1.07 8.44e-03 1.00 4.77e-02 1.02

1/160 1.50e-03 1.02 4.22e-03 1.00 2.38e-02 1.00
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Table 2 Convergence on
randomly perturbed
quadrilaterals

h ‖u − uh‖l∞(H 1) Rate ‖p − ph‖l∞(L2) Rate ‖z − zh‖l2(L2) Rate

Symmetric MFMFE method for flow

1/10 4.28e-02 – 6.76e-02 – 4.84e-01 –

1/20 1.68e-02 1.35 3.40e-02 0.99 2.33e-01 1.05

1/40 7.90e-03 1.09 1.71e-02 0.99 1.51e-01 0.63

1/80 4.31e-03 0.87 8.80e-03 0.96 1.25e-01 0.27

1/160 3.00e-03 0.52 4.99e-03 0.82 1.23e-01 0.02

Nonsymmetric MFMFE method for flow

1/10 4.14e-02 – 6.73e-02 – 4.80e-01 –

1/20 1.57e-02 1.40 3.37e-02 1.00 2.09e-01 1.20

1/40 7.03e-03 1.16 1.68e-02 1.00 1.00e-01 1.06

1/80 3.41e-03 1.04 8.40e-03 1.00 4.96e-02 1.01

1/160 1.71e-03 1.00 4.21e-03 1.00 2.48e-02 1.00

Table 3 Convergence on
Kershaw mesh h ‖u − uh‖l∞(H 1) Rate ‖p − ph‖l∞(L2) Rate ‖z − zh‖l2(L2) Rate

Symmetric MFMFE method for flow

1/8 1.65e-01 – 1.69e-01 – 2.03e+00 –

1/16 8.44e-02 0.97 8.53e-02 0.99 1.05e+00 0.95

1/32 4.16e-02 1.02 4.02e-02 1.09 4.49e-01 1.23

1/64 1.92e-02 1.12 1.91e-02 1.07 1.71e-01 1.39

Nonsymmetric MFMFE method for flow

1/8 1.49e-01 – 1.52e-01 – 1.45e+00 –

1/16 8.10e-02 0.88 8.20e-02 0.89 7.78e-01 0.90

1/32 4.07e-02 0.99 3.94e-02 1.06 3.24e-01 1.26

1/64 1.91e-02 1.09 1.90e-02 1.05 1.37e-01 1.24

Table 4 Convergence on
triangles h ‖u − uh‖l∞(H 1) Rate ‖p − ph‖l∞(L2) Rate ‖z − zh‖l2(L2) Rate

1/10 3.58e-02 – 5.08e-02 – 3.40e-01 –

1/20 1.50e-02 1.25 2.49e-02 1.03 1.35e-01 1.33

1/40 7.08e-03 1.08 1.24e-02 1.01 6.23e-02 1.12

1/80 3.45e-03 1.04 6.16e-03 1.01 3.03e-02 1.04

1/160 1.72e-03 1.00 3.07e-03 1.00 1.51e-02 1.00

Table 5 Convergence in time
on a 160 × 160 triangular mesh �t ‖u − uh‖l∞(H 1) Rate ‖p − ph‖l∞(L2) Rate ‖z − zh‖l2(L2) Rate

1/8 6.51e-05 – 1.42e-05 – 7.58e-05 –

1/16 2.84e-05 1.20 6.32e-06 1.17 2.59e-05 1.55

1/32 1.30e-05 1.13 2.92e-06 1.11 9.82e-06 1.40

1/64 6.17e-06 1.08 1.40e-06 1.06 4.15e-06 1.24

1/128 3.02e-06 1.03 6.83e-07 1.04 1.89e-06 1.13
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Fig. 3 Quadrilateral (left) and triangular mesh (right) for the cantilever bracket problem

On triangular meshes in Table 4, both the symmetric
and nonsymmetric methods are the same since the Jaco-
bian matrix is constant. As the theory indicates, we observe
first-order convergence for the displacements, velocity, and
pressure.

In the next example, we perform convergence study with
respect to the discretization in time by fixing the spatial
mesh. The exact solutions are chosen as

u =
(

t12x(1 − x)y(1 − y)

t12x(1 − x)y(1 − y)

)
and p = t12x(1 − x)y(1 − y).

Fig. 4 Displacements in x direction (left) and y direction (middle), and pressure (right) on quadrilateral (top row) and triangular meshes (bottom
row) for the cantilever bracket problem at time t = 10
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Fig. 5 Transients of displacement in x direction (top row) and y direction (middle row), and pressure (bottom row) at t = 2, 6, 50 for the cantilever
bracket problem on the quadrilateral mesh

Fig. 6 The effect of the displacement to the flow: pressure at t = 1 for α = 1, 0.7, 0.3, 0



74 Comput Geosci (2014) 18:57–75

The parameters in this example are α = 10, ν = 0.2,
E = 1, c0 = 100, and the permeability tensor is as in the
previous example. The boundary conditions are of Dirichlet
type for both the displacement and the pressure. The final
time is T = 0.5. We run a sequence of simulations with
refined time steps on a fixed 160 × 160 triangular spatial
mesh. Table 5 indicates first-order convergence in time as
the theory predicts.

6.2 An example with irregular geometry

Here, we illustrate the behavior of the method (2.18)–(2.21)
for the poroelasticity system on a domain with curved
boundaries using both quadrilateral and triangular meshes
as shown in Fig. 3. The elasticity boundary conditions are
motivated by the cantilever bracket problem. This problem
was studied in [27, 35] for a fluid saturated bracket using the
system of poroelasticity (2.1)–(2.3). The elasticity boundary
conditions are

u = 0 on �1,

σn = 0 on �2 ∪ �3,

σn = (0,−1)T on �4,

where �1 and �2 are the left and right boundaries of �,
and �3 and �4 are the bottom and top boundaries of �,
respectively. The flow boundary condition is of Dirichlet
type:

p = 20 on ∂�.

The physical properties in (2.1)–(2.4) are given as ν = 0.4,
E = 104, f = 0, c0 = 10−5, and K = 10−7. The source
terms are f = 0, s = 0, and the coupling parameter is α = 1.
The time step size is �t = 1 in all subsequent numerical
examples. The symmetric MFMFE method is applied for
the flow discretization.

Figure 4 shows the displacement and pressure on quadri-
lateral and triangular meshes at time t = 10. The numerical
solutions on the two different meshes agree well. The x
displacement increases along the x direction and the y dis-
placement decreases along the y direction due to the traction
boundary condition at the top boundary and zero displace-
ment at the left boundary. Although the pressure is constant
on the boundary and the permeability is homogeneous, the
interior pressure is much lower than the boundary pressure
due to the coupling effect.

Figure 5 shows the transients of the displacements and
the pressure on the quadrilateral mesh. When the solution
reaches steady state at t = 50, the x displacement has maxi-
mum at the upper right corner while the y displacement has
minimum at the lower right corner. The pressure initially
exhibits a sharp boundary layer, which is smoothed out over
time with the pressure gradually increasing in the interior.

Still, at steady state, the pressure is lower in the interior than
on the boundary.

To study the poroelasticity coupling effect on the pres-
sure, we take c0 = 0 and gradually vary α = 1 to α = 0.
Figure 6 shows pressure profiles on the quadrilateral mesh
at t = 1 with different α. As α decreases, the interior pres-
sure becomes closer to the boundary pressure. When α = 0,
the elasticity and flow are decoupled and the pressure is
constant on the whole domain due to the homogeneous
permeability field.

7 Conclusions

The poroelasticity problem is discretized by the multipoint
flux mixed finite element for flow and the continuous piece-
wise linear Galerkin finite element method for elasticity.
A priori error analysis is carried out for the displacement,
pressure, and velocity. A series of numerical experiments on
quadrilateral and simplicial meshes are conducted to verify
the theoretical convergence rates. The transient and cou-
pling effects are studied on a curved domain for a problem
motivated by the cantilever bracket problem.
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