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A non-overlapping domain decomposition method is presented to solve a coupled Stokes–
Darcy flow problem in parallel by partitioning the computational domain into multiple
subdomains, upon which families of coupled local problems of lower complexity are for-
mulated. The coupling is based on appropriate interface matching conditions. The global
problem is reduced to an interface problem by eliminating the interior subdomain vari-
ables. The interface problem is solved by an iterative procedure, which requires solving
subdomain problems at each iteration. Finite element techniques appropriate for the type
of each subdomain problem are used to discretize it. The condition number of the resulting
algebraic system is analyzed and numerical tests verifying the theoretical estimates are
provided.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Partial differential equations modeling various physical phenomena that arise in many fields of science and engineering
often need to be coupled, since there are different processes taking place in different parts of the problem domain. Coupling
Stokes and Darcy equations is an interesting topic because of its broad scope of possible applications: surface and subsurface
water interaction, blood circulation, fuel cells, and filtration problems among others. Furthermore, the Stokes–Darcy flow can
be coupled with a transport equation [39], which can be used, for example, to estimate the risk of groundwater contamina-
tion from chemicals discharged in rivers or lakes. A variety of numerical methods exist for the coupled Stokes–Darcy prob-
lem [24,12,29,35,17]. In this work we propose an approach based on [24] for solving a coupled Stokes–Darcy flow system via
domain decomposition (DD). DD methods [25,33,38] naturally lead to designing parallel algorithms and allow different
numerical schemes within different subdomains to be employed, which makes them very attractive for multiphysics prob-
lems. Another advantage is the possibility to reuse existing computer code libraries for the subdomain problems. We follow
the approach from [21] to formulate a non-overlapping DD method that reduces the global problem to an interface problem,
which is solved iteratively. Each iteration requires solving in parallel local subdomain problems of lower complexity. The
types of the local problems depend on the boundary conditions of the differential problem and the equations used to match
the values of the unknowns on the interfaces between the subdomains. In this paper the possibility of using multiple sub-
domains is considered, which necessitates accounting for interfaces of the following types: Stokes–Darcy, Darcy–Darcy and
Stokes–Stokes. On the Stokes–Darcy interfaces the conditions are continuity of the normal velocity and normal stress, as well
as the Beavers–Joseph–Saffman [3,36] condition for the tangential Stokes velocity [24]. On the Stokes–Stokes interfaces the
velocity vector and the normal stress vector are continuous, while on the Darcy–Darcy interfaces the normal velocity and
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pressure are continuous. For simplicity of notation, we restrict the presentation to two connected regions, one Stokes and
one Darcy, each one subdivided into multiple subdomains. However, the formulation and the analysis naturally extend to
the case when the Stokes and Darcy regions consist of multiple disconnected components. To the best of our knowledge, this
is the first result in the literature that gives analysis of a domain decomposition algorithm for Stokes–Darcy problems with
many subdomains. We refer the reader to [13–15,23,18] for previous work on domain decomposition for Stokes–Darcy flows
in the two-subdomain case.

The discretization of the Stokes–Darcy flow problem is based on standard conforming Stokes finite elements in the Stokes
region and mixed finite elements in the Darcy region. We allow for the grids to be non-matching across the Stokes–Darcy
interfaces, but assume that the grids match on Stokes–Stokes and Darcy–Darcy interfaces. The discretization error in the case
of non-matching grids on all interfaces is studied in [20]. Our domain decomposition algorithm utilizes a Lagrange multiplier
k on the interfaces to impose the continuity of flux conditions. In particular, on Stokes–Darcy or Darcy–Darcy interfaces k is
the normal stress or pressure, respectively – a scalar quantity, while on Stokes–Stokes interfaces it is the normal stress vec-
tor. An interface problem for k is obtained by eliminating the subdomain velocities and pressures. Computing the action of
the interface operator requires solving Stokes subdomain problems of Neumann or Neumann–Robin type and Darcy subdo-
main problems of Dirichlet type. As a result, the Stokes subdomain problems can be singular. We employ an approach based
the FETI methods [16,38], which involves an auxiliary coarse problem to ensure that the local Stokes problems are solvable.
We establish that the interface operator Sh (h is the mesh size) is symmetric and positive definite and show that the different
interface types have different effect on its condition number. More precisely, condðShÞ ¼ Oðh�1Þ if there are no Stokes–Stokes
interfaces present, and condðShÞ ¼ Oðh�2Þ otherwise. Furthermore, very small values of the Darcy permeability dominate the
discretization effect, in which case we have condðShÞ ¼ Oðk�1Þ or condðShÞ ¼ Oðk�1h�1Þ in the cases with or without Stokes–
Stokes interfaces, respectively, where k is the characteristic permeability value. We note that our formulation is suitable for
the application of optimal interface preconditioners, such as balancing [27,28,10,32,18], which should improve the depen-
dence on h in the condition number, see [18] for the two-subdomain case.

The outline of the paper is the following. In Section 2 we introduce the mathematical model and its variational formula-
tion. The finite element discretization is discussed in Section 3. A non-overlapping DD method is developed in Section 4 and
analyzed in Section 5. Results from computational tests are provided in Section 6.

2. The mathematical model and the associated variational problem

The model we consider consists of Stokes flow in the fluid region XS � Rd and Darcy’s law in the porous medium region
XD � Rd, where d ¼ 2;3. These are separated by an interface CSD. Both XS and XD are bounded domains with outward unit
normal vectors nS and nD, respectively. Let CS :¼ @XS n CSD and CD :¼ @XD n CSD. The interface CSD and the boundaries CS and
CD are assumed to be polygonal (d ¼ 2) or polyhedral (d ¼ 3). Let X ¼ XS [XD represent the whole domain. The velocity and
the pressure in XS, respectively XD, are denoted by uS and pS, respectively uD and pD. The constant viscosity coefficients of the
flows in XS and XD are denoted by lS and lD, respectively. Let TðuS; pSÞ and DðuSÞ denote the stress and the deformation rate
tensors characterizing the flow in XS:
DðuSÞ ¼
1
2
ruS þruT

S

� �
; TðuS; pSÞ ¼ �pSIþ 2lSDðuSÞ:
Assuming Stokes flow and no slip boundary condition, ðuS; pSÞ satisfies in XS
�r � TðuS;pSÞ � �2lSr � DðuSÞ þ rpS ¼ fS in XS; ð2:1Þ
r � uS ¼ 0 in XS; ð2:2Þ
uS ¼ 0 on CS: ð2:3Þ
In the first equation fS represents a body force, which has the form fS ¼ qb, where q is the fluid density and b is the force per
unit mass of fluid. Assuming Darcy’s law and no flow through CD, ðuD; pDÞ satisfies in XD
lDK�1uD þrpD ¼ fD in XD; ð2:4Þ
r � uD ¼ qD in XD; ð2:5Þ
uD � nD ¼ 0 on CD: ð2:6Þ
Here K is the symmetric and uniformly positive definite rock permeability tensor, fD represents the gravity force (fD ¼ qg,
where g is the gravitational acceleration), and qD is an external source or sink term. The source qD is assumed to satisfy the
solvability condition
Z

XD

qD dx ¼ 0 ð2:7Þ
The mixed formulation (2.4)–(2.6) in the porous medium region naturally leads to direct approximation of the velocity. The
two subdomain models are coupled across CSD through the interface conditions
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uS � nS þ uD � nD ¼ 0 on CSD; ð2:8Þ
� ðTðuS; pSÞnSÞ � nS � pS � 2lSðDðuSÞnSÞ � nS ¼ pD on CSD; ð2:9Þ

�
ffiffiffiffiffi
Kl
p

lSa0
ðTðuS;pSÞnSÞ � sl

SD � �
ffiffiffiffiffi
Kl
p

a0
2ðDðuSÞnSÞ � sl

SD ¼ uS � sl
SD; l ¼ 1;d� 1 on CSD; ð2:10Þ
where fsl
SDg

d�1
l¼1 is an orthogonal system of unit tangent vectors on CSD. Conditions (2.8) and (2.9) incorporate continuity of

flux and normal stress, respectively. Condition (2.10) is known as the Beavers–Joseph–Saffman law [3,36], where
ffiffiffiffiffi
Kl
p

=a0 is a
friction coefficient, Kl ¼ ðKsl

SDÞ � sl
SD, and a0 > 0 is an experimentally determined slip coefficient.

For a domain G in Rd, the L2ðGÞ inner product and norm for scalar and vector-valued functions are denoted ð�; �ÞG and k � kG,
respectively. The norm and seminorm of the Hilbert spaces HkðGÞ are denoted by k � kk;G and j � jk;G, respectively. We omit G in
the subscript if G ¼ X. For a section of the domain or element boundary S � Rd�1 we write h�; �iS and k � kS for the L2ðSÞ inner
product (or duality pairing) and norm, respectively.

We next recall the variational formulation of (2.1)–(2.10) derived in [24]. The velocity–pressure spaces in the fluid region
XS are
XS ¼ fvS 2 ðH1ðXSÞÞ
d
;vS ¼ 0 on CSg and WS ¼ L2ðXSÞ:
In the porous medium region XD we introduce the spaces
XD ¼ fvD 2 Hðdiv; XDÞ : hvD � nD;ui@XD
¼ 0; 8u 2 H1

0;CSD
ðXDÞg
and
WD ¼ L2ðXDÞ;
where
Hðdiv; XDÞ ¼ fvD 2 ðL2ðXDÞÞ
d

: r � vD 2 L2ðXDÞg
and
H1
0;CSD
ðXDÞ ¼ fu 2 H1ðXDÞ : u ¼ 0 on CSDg:
The norm on XD is kvDkXD ¼ kvDk2
XD
þ kr � vDk2

XD

� �1=2
. We define X ¼ XS � XD and
W ¼ w ¼ ðwS;wDÞ 2WS �WD :

Z
X

wdx ¼ 0
� �

:

We also consider the space of continuous-normal-trace velocities
V ¼ fv ¼ ðvS;vDÞ 2 X : bSDðv;lÞ ¼ 0; 8l 2 KSDg;
where
KSD ¼ H1=2ðCSDÞ
and
bSDðv;lÞ ¼ hvS � nS þ vD � nD;liCSD
: V �KSD ! R:
A function k 2 KSD can be interpreted physically as the normal stress on the interface separating the two regions:
pS � 2lSðDðuSÞnSÞ � nS ¼ k ¼ pD on CSD:
Remark 2.1. Due to the choice of KSD the pairing bSDð�; �Þ is well-defined. If vD 2 Hðdiv; XDÞ and vD � nD ¼ 0 on @XD n CSD, then
vD � nD 2 H�1=2ðCSDÞ, see [17].

The weak form of (2.1)–(2.10) is: find ðu; pÞ 2 V �W satisfying
aðu;vÞ þ bðv; pÞ ¼ ðf;vÞX; v 2 V ; ð2:11Þ
bðu;wÞ ¼ �ðqD;wÞXD

; w 2W; ð2:12Þ
where
aðu;vÞ ¼ aSðuS;vSÞ þ aDðuD;vDÞ : X � X ! R;

bðv;wÞ ¼ bSðvS;wSÞ þ bDðvD;wDÞ : X �W ! R;
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aSðuS;vSÞ ¼ ð2lSDðuSÞ : DðvSÞÞXS
þ
Xd�1

l¼1

lSa0ffiffiffiffiffi
Kl
p uS � sl

SD;vS � sl
SD

	 

CSD

;

bSðvS;wSÞ ¼ �ðwS;r � vSÞXS
;

aDðuD;vDÞ ¼ ðlDK�1uD;vDÞXD
; and

bDðvD;wDÞ ¼ �ðwD;r � vDÞXD
:

We note that the continuity of flux (2.8) is an essential condition for the velocity space, while (2.9) and (2.10) are natural
conditions. Existence and uniqueness of a solution to (2.11) and (2.12) is established in [24].

3. Finite element discretization

Let XS, respectively XD, be decomposed into NS, respectively ND, non-overlapping Lipschitz polyhedral subdomains:
XS ¼ [NS
i¼1Xi; XD ¼ [N

i¼NSþ1Xi; N ¼ NS þ ND:
For 1 6 i 6 N, let ni be the outward unit normal vector to subdomain Xi. The exterior boundary of Xi, possibly with zero mea-
sure, is denoted by Ci;ext:
Ci;ext ¼ @Xi \ @X; 1 6 i 6 N:
Let Cij be the interfaces between the subdomains, again possibly with zero measure:
Cij ¼ @Xi \ @Xj; 1 6 i < j 6 N:
We also introduce the following notations to represent the union of the interfaces between the subdomains of the same
type:
CSS ¼ [16i<j6Ns @Xi \ @Xj
� �

;

CDD ¼ [Nsþ16i<j6N @Xi \ @Xj
� �

:

The union of all the interfaces is denoted by C:
C ¼ CSD [ CDD [ CSS:
Let Ai ¼ diamðXiÞ. We assume that the subdomain partition is shape-regular, in the sense that there exists a constant r > 0
independent of N such that
81 6 i 6 N; 8 j : jCijj > 0;
Ai

qi
6 r; Ai

qij
6 r; ð3:1Þ
where qi, receptively qij, is the diameter of the largest ball contained in Xi, respectively Cij, and the second condition is re-
quired when X � R3.

Let Th;i be a shape regular finite element partition of Xi; i ¼ 1;N, where h is the maximum element diameter. The shape
regularity of the grids is a standard finite element assumption needed in the error analysis. It is not needed in the analysis of
the convergence of the domain decomposition algorithm, other than for the Darcy elements along the interfaces. To simplify
the notation, we assume that the characteristic element size is the same in all subdomains. We assume that the traces of the
subdomain grids on the interfaces are quasi-uniform partitions:
9m > 0 : 8e 2Th;ijC; diamðeÞP h
m
: ð3:2Þ
We allow for the traces of the grids on CSD to be non-matching and assume that no point of the interface boundary @CSD

belongs to the interior of a face of an element of Th;i. We assume that the traces of the grids on CSS and CDD are matching.
For all 1 6 i 6 NS let XS

i ¼ XSjXi
, let WS

i ¼WSjXi
, and let XS

h;i �WS
h;i � XS

i �WS
i , be any Stokes finite element spaces satisfying

the inf-sup condition
inf
0–wh;i2WS

h;i

sup
0–vh;i2XS

h;i

ðwh;i;r � vh;iÞXi

kvh;ikH1ðXiÞ kwh;ikL2ðXiÞ
P bS > 0: ð3:3Þ
Examples of such spaces include the MINI elements [2], the Taylor–Hood elements [37], and the conforming Crouzeix–Rav-
iart elements [11]. For the analysis we will need a projection operator PS;i : ðH1ðXiÞÞ

d ! XS
h;i such that for all qi 2 ðH1ðXiÞÞ

d

ðr � ðqi �PS;iqiÞ;wh;iÞXi
¼ 0; 8wh;i 2WS

h;i: ð3:4Þ
The existence of such operator is shown in [7].
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Similarly, for all NS þ 1 6 i 6 N, let XD
i ¼ XDjXi

, let WD
i ¼WDjXi

, and let XD
h;i �WD

h;i � XD
i �WD

i be any of the well-known
mixed finite element spaces on Xi (see [7] section III.3), the RT spaces [34,31], the BDM spaces [6], the BDFM spaces [5],
the BDDF spaces [4], or the CD spaces [8]. All of the above spaces satisfy r � XD

h;i ¼WD
h;i and the inf-sup condition
inf
0–wh;i2WD

h;i

sup
0–vh;i2XD

h;i

ðwh;i;r � vh;iÞXi

kvh;ikHðdiv;XiÞkwh;ikL2ðXiÞ
P bD > 0: ð3:5Þ
Moreover, there exists a projection operator PD;i : ðH1ðXiÞÞ
d ! XD

h;i such that for all qi 2 ðH
1ðXiÞÞ

d

ðr � ðqi �PD;iqiÞ;wh;iÞXi
¼ 0; 8wh;i 2WD

h;i ð3:6Þ
and, for any element face e,
hðqi �PD;iqiÞ � ni;lhi@Xi
¼ 0; 8lh 2 XD

h;i � ni: ð3:7Þ
We also note that, if qi 2 ðH
eðXiÞÞ

d \ XD
i ;0 < e < 1, then PD;iqi is well defined and [30,1]
kPD;iqikXi
6 Cðkqike;Xi

þ kr � qikXi
Þ: ð3:8Þ
The finite element spaces on X are
XS
h ¼ fvh 2 ðH1ðXSÞÞ

d
: vhjXi

2 XS
h;i; 1 6 i 6 NS; vh ¼ 0 on CSg;

XD
h ¼ fvh 2 Hðdiv; XDÞ : vhjXi

2 XD
h;i; NS þ 1 6 i 6 N; vh � nD ¼ 0 on CDg;

Xh ¼ fvh 2 ðL2ðXÞÞd : vhjXS
2 XS

h; vhjXD
2 XD

h g;

WS
h ¼ fwh 2 L2ðXSÞ : whjXi

2WS
h;i; 1 6 i 6 NSg;

WD
h ¼ fwh 2 L2ðXDÞ : whjXi

2WD
h;i; NS þ 1 6 i 6 Ng;

Wh ¼ fwh 2 L2
0ðXÞ : whjXS

2WS
h; whjXD

2WD
h g;

KSD
h ¼ fv � nD : v 2 XD

hg on CSD
and
Vh ¼ fvh 2 Xh : bSDðvh;lhÞ ¼ 0 8lh 2 KSD
h g:
In the above, L2
0ðXÞ denotes the space of L2ðXÞ functions with zero mean value.

Remark 3.1. Since the function lh 2 KSD
h can be discontinuous, KSD

h å KSD. Therefore Vh å V , resulting in a non-conforming
and exterior approximation.

The finite element discretization of 2.11,2.12 is the following: find ðuh; phÞ 2 Vh �Wh satisfying
aðuh;vhÞ þ bðvh;phÞ ¼ ðf;vhÞX; v 2 Vh; ð3:9Þ
bðuh;whÞ ¼ �ðqD whÞXD

; wh 2Wh: ð3:10Þ
Existence and uniqueness for (3.9) and (3.10) are proved in [24], along with the optimal error estimate
ku� uhkX þ kp� phkW 6 C hkS
S þ hkDþ1

D þ hlDþ1
D

� �
; ð3:11Þ
where ha;a ¼ S;D, characterizes the mesh used in Xa, kS is the polynomial degree of the velocity space in the fluid region, kD

is the polynomial degree of the velocity space in the porous region, and lD is the polynomial degree of the pressure space in
the porous region.

Remark 3.2. Although the convergence theory in [24] is stated under the assumption that the grids match on the interface
CSD, it is easy to check that, with the above choice of KSD

h , the results in [24] hold for non-matching grids as well.
4. Non-overlapping domain decomposition

In this section we present a domain decomposition algorithm for the solution of the algebraic system arising from (3.9)
and (3.10). The goal is to design an algorithm that performs well on distributed parallel computers and can utilize existing
and optimized software for solving the Stokes and the Darcy equations.
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Using ideas from [21], we use Lagrange multiplier spaces KSD
h , respectively KDD

h , to impose the continuity of the normal
velocity components on CSD, respectively CDD. The space KDD

h is defined analogously to KSD
h :
KDD
h ¼ fv � nD : v 2 XD

hg on CDD:
We also need the Lagrange multiplier space
KSS
h ¼ XS

hjCSS
on CSS:
Since the velocity has to be continuous in XS, on these interfaces we need to impose d conditions (constraints). Thus, the
functions kh 2 KSS

h are d-dimensional vectors. For example, if d ¼ 2, kh ¼ ðkh;n; kh;sÞ, where kh;n and kh;s are approximations
to the normal and the tangential components, respectively, of the stress vector on CSS. It is convenient to define the space
~Kh ¼ KSD
h �KDD

h �KSS
h :
To simplify the notations we will omit whenever it is possible the subscript h on the functions from the discrete spaces. We
introduce the bilinear forms
bDDðv;lnÞ ¼
X

Cij�CDD

hvi � ni þ vj � nj;lniCij
; v 2 Xh; ln 2 KDD

h

and
bSSðv;lÞ ¼
X

Cij�CSS

hvi � ni þ vj � nj;lniCij
þ
X

Cij�CSS

Xd�1

l¼1

hvi � sl
i þ vj � sl

j;l
l
siCij

; 8v 2 Xh; 8l ¼ ðln;lsÞ � ðln;l
1
s ; . . . ;ld�1

s Þ 2 KSS
h ;
where fsl
ig

d�1
l¼1 is an orthogonal system of unit vectors tangential to @Xi. We assume that fsl

ig
d�1
l¼1 are oriented in such a way

that sl
i ¼ �sl

j; hence bSSð�; �Þ represents the jumps of the normal and tangential velocity components with respect to the La-
grange multiplier space. Let us also introduce the global interface bilinear form
bIðv; ~lÞ ¼ bSDðv;lSDÞ þ bDDðv;lDDÞ þ bSSðv;lSSÞ; 8v 2 Xh; 8~l ¼ ðlSD;lDD;lSSÞ 2 ~Kh:
Let bi
Ið�; �Þ be the contribution to bIð�; �Þ from Xi:
bi
Iðv; ~lÞ ¼

hvi � ni;lni@Xin@X þ
Xd�1

l¼1

hvi � sl
i;ll

si@Xi\CSS
; 1 6 i 6 NS;

hvi � ni;lni@Xin@X; NS þ 1 6 i 6 N:

8>><
>>:
For 1 6 i 6 NS, let aið�; �Þ ¼ aSð�; �ÞjXS
h;i�XS

h;i
and bið�; �Þ ¼ bSð�; �ÞjXS

h;i�WS
h;i

. Similarly, for NS þ 1 6 i 6 N, let aið�; �Þ ¼ aDð�; �ÞjXD
h;i�XD

h;i
and bið�; �Þ ¼ bDð�; �ÞjXD

h;i�WD
h;i

. The restrictions of the right-hand side functions in (2.1), (2.4) and (2.5) on the subdomains are
denoted by
f i ¼
fSjXi

; 1 6 i 6 NS

fDjXi
; NS þ 1 6 i 6 N

(

and
qi ¼
0; 1 6 i 6 NS

qDjXi
; NS þ 1 6 i 6 N

:

(

Let vi and wi represent the restrictions of v 2 Xh and w 2Wh, respectively, on the subdomain Xi;1 6 i 6 N. Let ~Xh be the
velocity with no continuity imposed on CSS;CDD, and CSD:
~Xh ¼ fvh 2 ðL2ðXÞÞd : vhjXi
2 Xa

h;i; 1 6 i 6 N; vh ¼ 0 on CS; vh � nD ¼ 0 on CDg:
It is easy to see that (3.9) and (3.10) is equivalent to the following discrete formulation: find ðuh; ph;
~khÞ 2 ~Xh �Wh � ~Kh

satisfying
XN

i¼1

aiðuh;i;viÞ þ
XN

i¼1

biðvi; ph;iÞ þ bIðv; ~khÞ ¼
XN

i¼1

ðf i;viÞXi
; 8v 2 ~Xh

XN

i¼1

biðuh;i;wiÞ ¼ �
XN

i¼1

ðwi; qiÞXi
; 8w 2Wh

bIðuh; ~lÞ ¼ 0; 8~l 2 ~Kh:

ð4:1Þ
In the above ~kh ¼ ð~kh;n; ~k1
h;s; . . . ; ~kd�1

h;s Þ on Cij � CSS, where ~kh;n approximates �ðTðu; pÞniÞ � ni ¼ �ðTðu; pÞnjÞ � nj, and ~kl
h;s approx-

imates �ðTðu; pÞniÞ � sl
i ¼ �ðTðu; pÞnjÞ � sl

j. On Cij � CSD [ CDD; ~kh ¼ ~kh;n, where ~kh;n approximates pD.
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4.1. Coercivity and continuity of aið�; �Þ

Here we study the coercivity and continuity of the subdomain bilinear forms aið�; �Þ. This is needed for the well-posedness
of the subdomain problems involved in the domain decomposition algorithm, as well as for the analysis of the condition
number of the interface operator.

To estimate the bilinear forms in the Darcy region we assume that there exist two constants Kmin > 0 and Kmax > 0 such
that
8x 2 XD; 8n 2 Rd; Kminjnj2 6 nT KðxÞn 6 Kmaxjnj2; ð4:2Þ
where j � j denotes the Euclidean norm in Rd.
Recall that the kernel of the operator D consists of all rigid body motions
RB ¼ faþ b½x2;�x1�Tg; d ¼ 2;

faþ b� ½x1; x2; x3�Tg; d ¼ 3;

(

where a;b 2 Rd. The space spans two translations and one rotation in R2, and three translations and three rotations in R3. We
will utilize the well known Korn’s inequality [38]
DðviÞ;DðviÞð ÞXi
P CK;ikvik2

1;Xi
8vi 2 ðH1

0;cðXiÞÞ
d [ ðH1ðXiÞÞ

d
=RB; ð4:3Þ
where c � @Xi with jcj > 0 and ðH1
0;cðXiÞÞ

d ¼ fv 2 ðH1ðXiÞÞ
d

: v ¼ 0 on cg. Let
kerai ¼ fv 2 XS
i : aiðv;vÞ ¼ 0g:
Due to (4.2), kerai ¼ 0 in the Darcy region. The following lemma describes the kernels of the subdomain bilinear forms in the
Stokes region. We assume that the subdomain boundaries cannot intersect @X only along an edge in R3 and at a point in R2.

Lemma 4.1. There are several possible cases for Stokes subdomains, 1 6 i 6 NS:

� if @Xi � CSS, then kerai ¼ RB,
� if @Xi \ @X–£, then kerai ¼ 0,
� if @Xi \ @X ¼£ and @Xi contains exactly one segment of CSD, then in R3 kerai spans one translation and two rotations and in

R2 it spans one translation and one rotation that are orthogonal to the tangent vectors on the CSD segment,
� if @Xi \ @X ¼£ and @Xi contains exactly two (non-connected) parallel segments of CSD, then kerai spans one translation that

is orthogonal to the tangent vectors on the segments,
� if @Xi \ @X ¼£ and @Xi contains exactly two non-parallel segments of CSD, then kerai spans one rotation that is orthogonal to

the tangent vectors on the segments,
� if @Xi contains more that two segments of CSD, then kerai ¼ 0.
Proof. Recall that
aiðui;viÞ ¼ ð2lSDðuiÞ : DðviÞÞXi
þ
Xd�1

l¼1

lSa0ffiffiffiffiffi
Kl
p ui � sl

SD;vi � sl
SD

	 

@Xi\CSD

:

The first case is immediate, since if @Xi � CSS, then kerai ¼ kerD ¼ RB. The second case follows from the Korn’s inequality
(4.3). Using (4.3), the other cases can be verified by direct calculation by checking which elements of RB are orthogonal to sl

SD

when restricted to CSD. Note that it is sufficient to consider the segments of CSD to be the planes fxi ¼ 0g (and fxi ¼ 1g in the
case of two parallel segments). h
Lemma 4.2. There exist positive constants C1;C2;C3, and C4, independent of h such that
for 1 6 i 6 NS;C1kvik2
1;Xi
6 aiðvi;viÞ 6 C2kvik2

1;Xi
; 8v 2 XS

h;i=kerai; ð4:4Þ

for NS þ 1 6 i 6 N; C3kvik2
Xi
6 aiðvi;viÞ 6 C4kvik2

Xi
; 8v 2 XD

h;i: ð4:5Þ
Proof. The upper bound of aið�; �Þ in the Stokes region is straightforward. In particular, if @Xi \ CSD–£,
aiðvi;viÞ 6 2lSjDðviÞj2Xi
þ lSa0ffiffiffiffiffiffiffiffiffi

Kmin
p

Xd�1

l¼1

kvi � sl
SDk

2
@Xi\CSD

6 2lSkvik2
1;Xi
þ Ctr;ilSa0ffiffiffiffiffiffiffiffiffi

Kmin
p kvik2

1;Xi
;
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where Ctr;i arises from applying the trace theorem for H1ðXiÞ functions. Then the upper bound in (4.4) holds with
C2 ¼ lS max 2;Ctr;ia0=

ffiffiffiffiffiffiffiffiffi
Kmin
p� �

. If @Xi \ CSD ¼£; aið�; �Þ is bounded above with C2 ¼ 2lS. If @Xi � CSS or @Xi \ @X–£, the low-
er bound in the Stokes region follows from Korn’s inequality (4.3) with C1 ¼ 2lSCK;i. For the other cases, using (4.3), one
needs to check coercivity for all elements of RB that are not in kerai. Let us consider the case X � R3; @Xi \ @X ¼£, and
@Xi contains exactly one segment of CSD, say ci

SD, which is in the plane fx3 ¼ 0g. Then the vectors in RB that are not in

kerai are s1
SD ¼ ð1;0;0Þ

T , s2
SD ¼ ð0;1;0Þ

T , and r ¼ ðx2;�x1;0ÞT . We have aiðsl
SD; sl

SDÞ ¼ ðlSa0=
ffiffiffiffiffi
Kl
p
Þjci

SDj and ksl
SDk

2
1;Xi
¼ jXij, so

(4.4) holds with C1 ¼ ðlSa0=
ffiffiffiffiffiffiffiffiffiffi
Kmax
p

Þjci
SDj=jXij. For r ¼ ðx2;�x1;0ÞT we have
hr � s1
SD; r � s1

SDici
SD
þ hr � s1

SD; r � s1
SDici

SD
¼ krk2

ci
SD
and
krk2
ci

SD
¼
Z

ci
SD

ðx2
1 þ x2

2ÞP c1A4
i ;
where c1 depends on r from (3.1). On the other hand, (3.1) implies that
krk2
Xi
6 c2Aikrk2

ci
SD
and
jrj21;Xi
¼ 2jXij 6 c3A3

i 6
c3

c1Ai
krk2

ci
SD
Combining the above inequalities implies (4.4) for r with C1 ¼ c1ðlSa0=
ffiffiffiffiffiffiffiffiffiffi
Kmax
p

ÞAi=ðc1c2A2
i þ c3Þ. The other cases from Lemma

4.1 can be treated similarly. This completes the proof of (4.4).
The assumption (4.2) directly implies (4.5) with C3 ¼ lD=Kmax and C4 ¼ lD=Kmin. h
4.2. Reduction to an interface problem

In this section we show that the algebraic system (4.1) can be reduced to a symmetric and positive definite interface prob-
lem. To do that we introduce families of local problems on each subdomain Xi.

Consider the set of Darcy subdomain problems on Xi;NS þ 1 6 i 6 N, with specified pressure kn on Cij: find
ðu	i ðknÞ; p	i ðknÞÞ 2 XD

h;i �WD
h;i such that
aiðu	i ðknÞ;viÞ þ biðvi;p	i ðknÞÞ ¼ �hkn;vi � nii@Xin@X; vi 2 XD
h;i; ð4:6Þ

biðu	i ðknÞ;wiÞ ¼ 0; wi 2WD
h;i ð4:7Þ
and the set of Stokes subdomain problems on Xi;1 6 i 6 NS, with specified normal stress kn on @Xi n @X and tangential stress
ks ¼ ðk1

s ; . . . ; kd�1
s Þ on CSS, k ¼ ðkn; ksÞ: find ðu	i ðkÞ; p	i ðkÞÞ 2 XS

h;i=kerai �WS
h;i such that
aiðu	i ðkÞ;viÞ þ biðvi;p	i ðkÞÞ ¼ �hkn;vi � nii@Xin@X �
Xd�1

l¼1

hkl
s;vi � sl

ii@Xi\CSS
; vi 2 XS

h;i=kerai; ð4:8Þ

biðu	i ðkÞ;wiÞ ¼ 0; wi 2WS
h;i: ð4:9Þ
Consider also the set of complementary Darcy subdomain problems on Xi;NS þ 1 6 i 6 N: find ð�ui; �piÞ 2 XD
h;i �WD

h;i such
that
aið�ui;viÞ þ biðvi; �piÞ ¼ ðf i;viÞXi
; vi 2 XD

h;i; ð4:10Þ

bið�ui;wiÞ ¼ �ðqi;wiÞXi
; wi 2WD

h;i ð4:11Þ
and the set of complementary Stokes subdomain problems on Xi;1 6 i 6 NS: find ð�ui; �piÞ 2 XS
h;i=kerai �WS

h;i such that
aið�ui;viÞ þ biðvi; �piÞ ¼ ðf i;viÞXi
; vi 2 XS

h;i=kerai; ð4:12Þ

bið�ui;wiÞ ¼ 0; wi 2WS
h;i: ð4:13Þ
It is straightforward to see that solving (4.1) is equivalent to solving the interface problem: find ~k ¼ ðkSD; kDD; kSSÞ 2 ~Kh

such that
shð~k; ~lÞ � �bIðu	ð~kÞ; ~lÞ ¼ bIð�u; ~lÞ; ~l 2 ~Kh ð4:14Þ
and recovering global velocity and pressure: uh ¼ u	ð~kÞ þ �u; ph ¼ p	ð~kÞ þ �p.
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Remark 4.1. The subdomain problems (4.6)–(4.9) and (4.10)–(4.13) are well posed due to the coercivity of aið�; �Þ from
Lemma 4.2 and the local discrete inf-sup conditions (3.5) and (3.3). The boundary conditions on the interfaces in the Darcy
region are of Dirichlet type:
pi ¼ kn; NS þ 1 6 i 6 N on CSD [ CDD:
The boundary conditions on the interfaces for the local Stokes problems are of Neumann type:
�ðTniÞ � ni ¼ kn; �ðTniÞ � sl
i ¼ kl

s; 1 6 l 6 d� 1; 1 6 i 6 NS on CSS
and of Neumann–Robin type:
�ðTniÞ � ni ¼ kn; �ðTniÞ � sl
i �

lSa0ffiffiffiffiffi
Kl
p ui � sl

i ¼ 0; 1 6 l 6 d� 1; 1 6 i 6 NS on CSD:
Note that the matrices of the Stokes problems can be singular and their solutions are determined up to an element of kerai.
This can be resolved by introducing an auxiliary coarse problem, as discussed in Section 4.3.
Remark 4.2. Introducing the Steklov–Poincaré type operator Sh : ~Kh ! ~Kh,
ðSh
~k; ~lÞ ¼ shð~k; ~lÞ 8~k; ~l 2 ~Kh;
the interface problem (4.14) can be written as: find ~k 2 ~Kh such that
Sh
~k ¼ gh; ð4:15Þ
where gh : ~Kh ! R, ghð~lÞ ¼ bIð�uh; ~lÞ;8 ~l 2 ~Kh.
The algebraic interpretation of the above method is as follows. Slightly abusing the notations, let u; p, and k represent the

degrees of freedom for velocity, pressure, and Lagrange multipliers, respectively. The discrete analogues of the right hand
side functions in the coupled system are denoted by f and q. The linear system arising in (4.1) is of the form
A BT LT

B 0 0
L 0 0

0
B@

1
CA

u

p

k

0
B@

1
CA ¼

f

q

0

0
B@

1
CA () M LT

L 0

 !
n

k

 �
¼

r

0

 �
;

where n ¼ ðu; pÞT is the vector of subdomain unknowns and r ¼ ðf ; qÞT . The interface problem (4.15) corresponds to the Schur
complement system
LM�1LTk ¼ LM�1r: ð4:16Þ
If an iterative method is employed for solving (4.16), each iteration will require evaluating the action of
M�1 ¼
M�1

1

. .
.

M�1
N

0
BB@

1
CCA;
i.e., solving local subdomain problems.

4.3. Floating Stokes subdomains

We refer to Stokes subdomains with non-trivial kerai as floating. In this section we present an approach to handle such
floating subdomains based on the FETI methods introduced by Farhat and Roux [16]. The one-level FETI method can be
viewed as a preconditioned conjugate gradient (PCG) algorithm incorporating an auxiliary coarse problem; see [38] for
implementation details.

In the formulation of the FETI methods the Moore-Penrose pseudoinverses Mþ
i of the local Stokes matrices Mi,

i ¼ 1; . . . ;NS, are used if the corresponding subdomain problems are singular. In our approach we avoid computing the
Moore-Penrose pseudoinverse by choosing the right hand side vector to be in the range of Mi and setting
Mþ

i ¼ ðMi þ
ffiffiffi
�
p

DiÞ
�1

, where � is the machine precision and Di is the velocity mass matrix. In problems (4.12) and (4.13)
we replace the functions f i with f i � f i; i ¼ 1; . . . ;NS, where f i is the orthogonal projection of f i onto kerai. The global
Stokes–Darcy problem can be written as
Mnþ LTk ¼ r; ð4:17Þ
subject to the constraint
Ln ¼ 0: ð4:18Þ
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The solution to (4.17) and (4.18) is of the form
n ¼ nþ n	ðkÞ;
where n solves the local problems with zero stress (or pressure) boundary conditions:
Mn ¼ r � r ð4:19Þ
and n	ðkÞ satisfies the equations
Mn	ðkÞ þ LTk ¼ r; ð4:20Þ

Ln	ðkÞ ¼ �Ln: ð4:21Þ
For the solvability of the above we need
ðr � LTkÞ 2 rangeðMÞ;
which is equivalent to
RTðr � LTkÞ ¼ 0; ð4:22Þ
where R is a matrix whose columns form a basis for kerðMÞ. More precisely, R has k ¼
P

iki columns, with ki columns for each
Stokes subdomain containing the basis for kerðMiÞ. If (4.22) holds, we have
n	ðkÞ ¼ Mþðr � LTkÞ þ Ra; ð4:23Þ
where a can be computed after k is found. Define
G ¼ LR:
Substituting (4.23) into (4.21), and using (4.19) and the solvability condition (4.22), problem (4.20) and (4.21) is transformed
into
LMþðr � LTkÞ þ Ga ¼ �Ln; ð4:24Þ

GTk ¼ RT r: ð4:25Þ
We can write
k ¼ k0 þ k1; ð4:26Þ
where k0 ¼ GðGT GÞ�1
RT r, and k1 2 kerðGTÞ. Next, we introduce the operator P ¼ I � GðGT GÞ�1

GT , which is the orthogonal pro-
jector onto kerðGTÞ. Applying PT on both sides of Eq. (4.24) and using the splitting (4.26) leads us to the interface problem
PT LMþLTk1 ¼ PT LðMþðr � LTk0Þ þ nÞ: ð4:27Þ
Note that for any l 2 kerðGTÞ; PT LMþLTl ¼ PT LMþLT Pl, which is symmetric and positive semi-definite, hence the above prob-
lem can be solved with the conjugate gradient method. Evaluation of Mþðr � LTk0Þ in the right hand side of (4.27) means
solving once
Mn0 ¼ r � LTk0;
which in the Stokes region is a set of compatible Neumann problems since k0 satisfies (4.25). Applying at each iterative step
the matrix PT LMþLT also involves solving compatible Stokes Neumann problems, because for any l 2 kerðGTÞ;RT LTl ¼ 0,
implying that
LTl ? kerðMÞ:
Note that the matrix GT G is of size k� k. Computing ðGT GÞ�1
requires solving a coarse problem, which reduces to solving local

ki � ki problems, due to the block-diagonal structure of GT G. The coarse problem resembles an element of the balancing
preconditioner introduced by Mandel [27]. Once k is computed, one can recover a using (4.24) and (4.19):
a ¼ �ðGT GÞ�1
GT LMþðr � LTkÞ:
5. Analysis of the interface operator

Here we derive estimates for the condition number of the interface operator stating explicitly the dependence on the
mesh size h, the subdomain size A, and the permeability K. We will omit the subscript h in most places throughout this
section. Let ( )
KSD;DD
h ¼ KSD

h [KDD
h and K̂SD;DD

h ¼ ln 2 KSD;DD
h :

Z
@XNSþ1n@X

ln ¼ 0 :
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Note that kn approximates the pressure on CSD [ CDD, which is determined up to a constant. The mean value constraint for
K̂SD;DD

h is one possible way to fix the constant. Also, since the interface solve (4.27) is performed in the subspace
fl : LTl ? kerðMÞg, it is enough to carry out the analysis of the interface operator in
K̂SS
h ¼ fl 2 KSS

h : bi
Iðr;lÞ ¼ 0 8r 2 kerai;1 6 i 6 NSg:
Let
K̂h ¼ K̂SD;DD
h � K̂SS

h :
In the remainder of the paper we will be using the notation
~l ¼ ðln;lÞ 2 K̂h; ln 2 K̂SD;DD
h ; l 2 K̂SS

h :
Lemma 5.1. The bilinear form sð�; �Þ is symmetric and positive definite on K̂h � K̂h.
Proof. The definition (4.14) of sð�; �Þ gives
sð~k; ~lÞ ¼
XN

i¼1

sið~k; ~lÞ;
where
sið~k; ~lÞ ¼ �bi
Iðu	i ðkÞ; ~lÞ ¼

�hu	i ðkÞ � ni;lni@Xin@X �
Xd�1

l¼1

hu	i ðkÞ � sl
i;ll

si@Xi\CSS
; 1 6 i 6 NS;

�hu	i ðknÞ � ni;lni@Xin@X; NS þ 1 6 i 6 N:

8>><
>>: ð5:1Þ
Taking vi ¼ u	i ð~lÞ in (4.6) and (4.8) gives
sið~l; ~kÞ ¼ aiðu	i ð~kÞ;u	i ð~lÞÞ;
which implies the symmetry of sð�; �Þ. Moreover,
sð~k; ~kÞ ¼
XN

i¼1

sið~k; ~kÞ ¼
XN

i¼1

aiðu	i ð~kÞ;u	i ð~kÞÞP 0: ð5:2Þ
Let sð~k; ~kÞ ¼ 0. Then u	i ð~kÞ 2 kerai, which implies that aiðu	i ð~kÞ;viÞ ¼ 0;8vi 2 Xh;i, for 1 6 i 6 N, using the characterization of
kerai from Lemma 4.1. Thus, (4.6) and (4.8) become:
�ðr � vi;p	i ðknÞÞXi
þ hkn;vi � nii@Xin@X ¼ 0; vi 2 XD

h;i; NS þ 1 6 i 6 N ð5:3Þ
and
�ðr � vi;p	i ðkÞÞXi
þ hkn;vi � nii@Xin@X þ

Xd�1

l¼1

hkl
s;vi � sl

ii@Xi\CSS
¼ 0; vi 2 XS

h;i=kerai; 1 6 i 6 NS; ð5:4Þ
respectively. Since also bi
Iðr; kÞ ¼ 0 and ðr � r; p	i ðkÞÞXi

¼ 0 for r 2 kerai, then (5.4) holds for all vi 2 XS
h;i.

For i ¼ NS þ 1, consider the auxiliary problem
wi ¼ �rui; r � wi ¼ 0 in Xi;

wi � ni ¼ knon@Xi n @X; wi � ni ¼ 0 on @Xi \ @X:
ð5:5Þ
This problem is well posed since
Z
@Xi

wi � ni ¼
Z
@Xin@X

kn ¼ 0:
Taking vi ¼ PD;iwi in (5.3),
0 ¼ �ðr �PD;iwi; p
	
i ðknÞÞXi

þ hkn;PD;iwi � nii@Xin@X ¼ hkn; kni@Xin@X ¼ kknk2
@Xin@X;
which implies kn ¼ 0 on @Xi n @X. Next, we order the remaining Darcy subdomains as follows: i ¼ NS þ 2; . . . ;N so that
cij � @Xi \ @Xj–£ for some j < i. Then, for i ¼ NS þ 2; . . . ;N we solve the problem
wi ¼ �rui; r � wi ¼ 0 in Xi;

wi � ni ¼ knonci � @Xi n ðcij [ @XÞ; wi � ni ¼ 0 on @Xi \ @X; ui ¼ 0 on cij;
ð5:6Þ
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which is well posed, since cij–£. Taking vi ¼ PD;iwi in (5.3) and using that kn ¼ 0 on cij, we obtain
0 ¼ �ðr �PD;iwi;p
	
i ðknÞÞXi

þ hkn;PD;iwi � niici
¼ hkn; knici

¼ kknk2
ci
;

hence kn ¼ 0 on ci. By induction, kn ¼ 0 on CSD [ CDD. It remains to show that k ¼ 0 on CSS. We may assume the first Stokes
subdomain to have a Darcy neighbor: @X1 \ CSD–£. Let w1 2 ðHðX1ÞÞd and u1 2 L2ðX1Þ solve the problem
�r � Tðw1;u1Þ ¼ 0 in X1; r � w1 ¼ 0 in X1;

w1 ¼ 0 on @X1 \ @X;
w1 ¼ k on @X1 \ CSS;

Tðw1;u1Þn1 ¼ 0 on @X1 \ CSD:

ð5:7Þ
Note that there is no compatibility condition for k needed for the well posedness of (5.7), since a Neumann condition is im-
posed on a non-empty part of the boundary. Furthermore, the Dirichlet boundary data belongs to H1=2ð@X1 \ ð@X [ CSSÞÞ,
since kj@X ¼ 0.

Let ðwh
1;uh

1Þ 2 XS
h;1 �WS

h;1 be the finite element approximation to ðw1;u1Þ. Taking vi ¼ wh
1 in (5.4) and using the fact that

wh
1 ¼ k on @X1 \ CSS, we obtain
hk; ki@X1\CSS
¼ �hkn;w

h
1 � n1i@X1\CSD

¼ 0;
since kn ¼ 0 on CSD. Therefore k ¼ 0 on @X1 \ CSS. Similarly to the Darcy subdomains, we order the remaining Stokes subdo-
mains Xi, i ¼ 2; . . . ;NS, so that cij � @Xi \ @Xj–£ for some j < i. Then, we solve consecutively for i ¼ 2; . . . ;NS the problem
�r � Tðwi;uiÞ ¼ 0 in Xi; r � wi ¼ 0 in Xi;

wi ¼ 0 on @Xi \ @X;
wi ¼ k on ci � @Xi n ðcij [ @XÞ;
Tðwi;uiÞni ¼ 0 on cij [ ð@Xi \ CSDÞ:

ð5:8Þ
The above problem is well posed, due to the Neumann condition on cij.
If ðwh

i ;uh
i Þ 2 XS

h;i �WS
h;i is the finite element approximation to ðwi;uiÞ, then taking vi ¼ wh

i in (5.4) gives
0 ¼ hk; kici
þ hk;wh

i icij
þ hkn;w

h
i � nii@Xi\CSD

¼ hk; kici
;

since kn ¼ 0 on CSD and k ¼ 0 on cij. Therefore, k ¼ 0 on ci, and by induction we conclude that k ¼ 0 on CSS. h

As a result of Lemma 5.1, the conjugate gradient (CG) method can be applied for solving the algebraic problem (4.15). We
now continue with estimating the condition number of Sh.

Lemma 5.2. There exist positive constants CD;1 and CD;2 such that for all kn 2 K̂SD;DD
h

CD;1
K2

min

Kmax
kknk2

CSD[CDD
6

XN

i¼NSþ1

siðkn; knÞ 6 CD;2
Kmax

h
kknk2

CSD[CDD
: ð5:9Þ
Proof. The definition (5.1) of sið�; �Þ in the Darcy region gives
siðkn; knÞ ¼ �hu	i ðknÞ � ni; kni@Xin@X 6 ku
	
i ðknÞ � nik@Xin@Xkknk@Xin@X 6 CðmÞh�1=2ku	i ðknÞkXi

kknk@Xin@X;
where we have used a discrete trace inequality, see e.g. Lemma 4.1 in [1]. Note that the above constant depends on the quasi-
uniformity constant m from (3.2) as well as the shape regularity of the elements along the interface. The above inequality,
combined with (4.5) and (5.2), implies the upper bound in the lemma.

We prove the lower bound by induction. Consider again the auxiliary problem (5.5) with i ¼ Ns þ 1 and take vi ¼ PD;iwi in
(4.6) to obtain
kknk2
@Xin@X ¼ hkn;wi � nii@Xin@X ¼ hkn;PD;iwi � nii@Xin@X ¼ �aiðu	i ðknÞ;PD;iwiÞ þ ðr �PD;iwi; p

	
i ðknÞÞXi

¼ �aiðu	i ðknÞ;PD;iwiÞ

6 CK�1
minku	i ðknÞkXi

kwik1=2;Xi
6 CK�1

minku	i ðknÞkXi
kknk@Xin@X;
using (3.7), (3.6), (3.8), and the elliptic regularity [22,26]
kwk1=2;Xi
6 Ckknk@Xin@X: ð5:10Þ
The above bound, in combination with (4.5) and (5.2), implies
C
K2

min

Kmax
kknk2

@Xin@X 6 siðkn; knÞ; for i ¼ NS þ 1:
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Similarly to the procedure in the proof of Lemma 5.1, for i ¼ NS þ 2; . . . ;N, we solve the auxiliary problems (5.6) and take
vi ¼ PD;iwi in (4.6). Then,
kknk2
ci
¼ hkn;wi � niici

¼ hkn;PD;iwi � niici
¼ �aiðu	i ðknÞ;PD;iwiÞ � hkn;wi � niicij

6 CK�1
minku	i ðknÞkXi

kknkci
þ kknkcij

kwi � nikcij

6 CK�1
minK1=2

max s1=2
i ðkn; knÞkknkci

þ
Xi�1

k¼NSþ1

skðkn; knÞ
 !1=2

kwik1=2;Xi

0
@

1
A

6 CK�1
minK1=2

max s1=2
i ðkn; knÞ þ

Xi�1

k¼NSþ1

skðkn; knÞ
 !1=2

0
@

1
Akknkci

:

In the second inequality above we used (4.5) and (5.2), the induction hypothesis, and the trace inequality
kwi � nikcij

6 Ckwik1=2;Xi
, which follows by interpolating kwi � nik�1=2;@Xi

6 CkwikHðdiv;XiÞ ¼ CkwikXi
and kwi � nik�;@Xi

6 Ckwik1=2þ�;Xi

for � > 0. In the last inequality we used the elliptic regularity (5.10). After applying Young’s inequality we have
C
K2

min

Kmax
kknk2

ci
6

Xi

k¼NSþ1

skðkn; knÞ; for i ¼ NS þ 2; . . . ;N: ð5:11Þ
Summing over the subdomains gives the lower bound for
PN

k¼NSþ1skðkn; knÞ. h

Next, we consider the contributions to the interface operator due to the Stokes subdomains.

Lemma 5.3. There exist positive constants CS;1 and CS;2 such that for all ~k 2 K̂h
CS;1
K2

min

Kmax
hkkk2

CSS
6

XNS

i¼1

siðk; kÞ þ
XN

i¼NSþ1

siðkn; knÞ; ð5:12Þ

XNS

i¼1

siðk; kÞ 6 CS;2 kknk2
CSD
þ kkk2

CSS

� �
: ð5:13Þ
Proof. We begin with establishing the upper bound. The definition (5.1) of sið�; �Þ in the Stokes subdomains gives
siðk; kÞ ¼ �hu	i ðkÞ � ni; kni@Xi\CSD
� hu	i ðkÞ; ki@Xi\CSS

6 ku	i ðkÞ � nik@Xi\CSD
kknk@Xi\CSD

þ ku	i ðkÞk@Xi\CSS
kkk@Xi\CSS

6 Cku	i ðkÞk1;Xi
ðkknkCSD

þ kkkCSS
Þ:
Since (4.4) and (5.2) imply
ku	i ðkÞk1;Xi
6 C maxf1;K1=4

maxgs
1=2
i ðk; kÞ; ð5:14Þ
then
s1=2
i ðk; kÞ 6 C maxf1;K1=4

maxg kknkCSD
þ kkkCSS

� �
;

which yields (5.13).
Next, we derive the lower bound. Consider again problem (5.7) in X1, as well as in any Xi such that @Xi \ CSD–£ and its

finite element approximation. By regularity of the Stokes solution [19],
kwh
i k1;Xi

6 Ckkk1=2;@Xi\CSS
6 CðmÞh�1=2kkk@Xi\CSS

; ð5:15Þ
using also an inverse inequality [9], where m is the constant from (3.2).
Note that, since bi

Iðr; kÞ ¼ 0 and biðr; p	i ðkÞ ¼ 0 for r 2 kerai, then (4.8) holds for all vi 2 XS
h;i. We now have, taking vi ¼ wh

i in
(4.8),
kkk2
@Xi\CSS

¼ hk;wh
i i@Xi\CSS

¼ �aiðu	i ðkÞ;w
h
i Þ � hkn;w

h
i � nii@Xi\CSD

6 Cðmaxf1;K�1=2
min gku

	
i ðkÞk1;Xi

þ kknk@Xi\CSD
Þkwh

i k1;Xi

6 C max 1;
K1=4

max

K1=2
min

( )
s1=2

i ðk; kÞ þ
K1=2

max

Kmin

XN

k¼NSþ1

skðkn; knÞ
 !1=2

0
@

1
Ah�1=2kkk@Xi\CSS

;

using (5.14), (5.11), and (5.15) in the last inequality. The above inequality implies that
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K2
min

Kmax
hkkk2

@Xi\CSS
6 C maxf1;K1=2

mingsiðk; kÞ þ
XN

k¼NSþ1

skðkn; knÞ
 !

:

In the following we will omit maxf1;K1=2
ming, since Kmin is typically small. We continue by induction. Let us order the remain-

ing Stokes subdomains Xi, so that cij � @Xi \ @Xj–£ for some Xj from the set previously considered. Let ðwh
i ;uh

i Þ be the finite
element approximation to the problem
�r � Tðwi;uiÞ ¼ 0 in Xi; r � wi ¼ 0 in Xi;

wi ¼ ky on @Xi;
where
ky ¼
0 on @Xi \ @X
k on ci ¼ @Xi n ð@X [ cijÞ;
kþ gni on cij

8><
>:
and g 2 H1=2
00 ðcijÞ; g 2 XS

h;i � ni is chosen so that
Z
cij

g ¼ �
Z
@Xin@X

k � ni;
which guarantees that
R
@Xi

ky � ni ¼ 0 and the well-posedness of the problem. It is easy to see that
kgkcij
6 Ckkk@Xin@X: ð5:16Þ
By Stokes regularity [19] and inverse inequality,
kwh
i k1;Xi

6 Ckkyk1=2;@Xi
6 CðmÞh�1=2kkk@Xin@X: ð5:17Þ
Note also that, due to the Dirichlet boundary condition, the pressure is determined up to a constant and it can be fixed by
restricting it to WS

h;i;0, the space of functions with mean value zero. As a result, we only have that
ðr � wh
i ;wiÞXi

¼ 0 8wi 2WS
h;i;0:
However, we also have that
ðr � wh
i ;1ÞXi

¼
Z
@Xi

wh
i � ni ¼

Z
@Xi

ky � ni ¼ 0;
implying that ðr � wh
i ;wiÞXi

¼ 0 8wi 2WS
h;i.

We now have, taking vi ¼ wh
i in (4.8) and using (5.14), (5.17), and (5.16),
kkk2
@Xin@X ¼ hk;w

h
i ici
þ hk;wh

i � gniicij
¼ �aiðu	i ðkÞ;w

h
i Þ � hk; gniicij

6 C ku	i ðkÞk1;Xi
kwh

i k1;Xi
þ kkkcij

kgkcij

� �

6 C s1=2
i ðk; kÞ þ

K1=2
max

Kmin

Xi�1

k¼1

skðk; kÞ þ
XN

k¼NSþ1

skðkn; knÞ
 !1=2

0
@

1
Ah�1=2kkk@Xin@X;
where we also used the induction hypothesis in the last inequality. The above inequality implies that
K2
min

Kmax
hkkk2

@Xin@X 6 C
Xi

k¼1

skðk; kÞ þ
XN

k¼NSþ1

skðkn; knÞ
 !

:

Summing over the subdomains implies (5.12). h
Theorem 5.1. If there are no Stokes–Stokes interfaces, then
CD;1
K2

min

Kmax
6

sð~k; ~kÞ
k~kk2

C

6 2 max CD;2
Kmax

h
;CS;2

� �
; 8~k 2 K̂h: ð5:18Þ
In the presence of Stokes–Stokes interfaces, then
K2
min

2Kmax
min CD;1;CS;1h

� �
6

sð~k; ~kÞ
k~kk2

C

6 2 max CD;2
Kmax

h
;CS;2

� �
; 8~k 2 K̂h: ð5:19Þ
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Proof. If CSS ¼£, from Lemmas 5.2 and 5.3 we conclude that
CD;1
K2

min

Kmax
kknk2

CSD[CDD
6 sð~k; ~kÞ 6 CD;2

Kmax

h
kknk2

CSD[CDD
þ CS;2kknk2

CSD
; 8~k 2 K̂h;
which implies (5.18). If CSS–£, Lemma 5.2 and Lemma 5.3 imply
K2
min

2Kmax
ðCD;1kknk2

CSD[CDD
þ CS;1hkkk2

CSS
Þ 6 sð~k; ~kÞ 6 CD;2

Kmax

h
kknk2

CSD[CDD
þ CS;2ðkknk2

CSD
þ kkk2

CSS
Þ; 8~k 2 K̂h;
which implies (5.19). h
Corollary 5.1. The condition number for the algebraic system associated with the coupled Stokes–Darcy flow problem satisfies
condðShÞ ¼ Oðh�1Þ; if CSS ¼£;

condðShÞ ¼ Oðh�2Þ; if CSS–£:
We also note that if the permeability in the porous medium has a characteristic length k that is smaller than h, then CS;2

dominates CD;2
Kmax

h on the right hand sides of (5.18) and (5.19), implying that
condðShÞ ¼ Oðk�1Þ; if CSS ¼£;

condðShÞ ¼ Oðk�1h�1Þ; if CSS–£:
6. Numerical experiments

We present several numerical experiments that illustrate the behavior of the method. In the first test we solve a coupled
problem with known analytical solution on different meshes and compute the associated error to verify the convergence of
the discretization scheme. In the other tests, which are aimed to examine the convergence of the iterative method, we vary
either the mesh size, the permeability, or the number of subdomains. The computational domain is X ¼ XS [XD, where the
Stokes domain XS ¼ ½0;1� � ½12 ;1� and Darcy domain XD ¼ ½0;1� � ½0; 1

2�. For simplicity we set
TðuS;pSÞ ¼ �pSIþ lruS
in the Stokes equation in XS, and
K ¼ KI
in the Darcy equation in XD, where K is a positive constant. To discretize the system of equations we use the Taylor–Hood
[37] triangular finite elements in XS and the lowest order Raviart–Thomas [34] rectangular finite elements in XD. The grid for
the discretization in XS is obtained by first partitioning the domain into rectangles and then dividing each rectangle along its
diagonal into two triangles. The grids in XS and XD match on the interface CSD.

In our implementation we utilize direct subdomain solvers. This is reasonable, since in practice sufficient number of pro-
cessors can assure that the subdomain problems are of small to moderate size. As a result the convergence of the interface CG
is not affected by inexact subdomain solves. Furthermore, the LU factorization is reused multiple times with different right
hand sides at each CG iteration.

For the first test we consider the following analytical solution satisfying the flow equations in XS and XD along with the
conditions on the interface CSD:
uS ¼
ð2� xÞð1:5� yÞðy� nÞ

� y3

3 þ
y2

2 ðnþ 1:5Þ � 1:5ny� 0:5þ sinðxxÞ

" #
;

uD ¼
x cosðxxÞy

vðyþ 0:5Þ þ sinðxxÞ

" #
;

pS ¼ �
sinðxxÞ þ v

2K
þ lð0:5� nÞ þ cosðpyÞ;

pD ¼ �
v
K
ðyþ 0:5Þ2

2
� sinðxxÞy

K
;

where
l ¼ 0:1; K ¼ 1; a0 ¼ 0:5; G ¼
ffiffiffiffiffiffiffi
lK

p
a0

; n ¼ 1� G
2ð1þ GÞ ; v ¼ �30n� 17

48
; and x ¼ 6:0:
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Fig. 1. Computed solution in the first test on a mesh with h ¼ 1=64.
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Fig. 2. Computed velocity field in the first test: horizontal velocity (left); vertical velocity (right).

Table 1
Numerical errors and convergence rates in XS .

h kuS � uS;hk1;XS
rate kpS � pS;hk0;XS

rate

1/8 1.69e-01 8.83e-03
1/16 4.23e-02 2.00 2.23e-03 1.98
1/32 1.05e-02 2.00 5.59e-04 2.00
1/64 2.64e-03 2.00 1.41e-04 1.99
1/128 6.68e-04 1.98 3.59e-05 1.97

Table 2
Numerical errors and convergence rates in XD .

h jjjuD � uD;hjjjXD
rate jjjpD � pD;hjjjXD

rate

1/8 6.04e-02 5.14e-03
1/16 1.54e-02 1.97 1.29e-03 1.99
1/32 3.88e-03 1.99 3.22e-04 2.00
1/64 9.71e-04 2.00 8.04e-05 2.00
1/128 2.43e-04 2.00 2.02e-05 1.99
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Table 3
Convergence of interface CG: K = 1.0, 2 subdomains.

h eig:min. eig:max. condðShÞ iter:num.

1/8 4.552 14.637 3.2 7
1/16 4.649 23.064 5.0 11
1/32 4.676 45.317 9.7 17
1/64 4.683 90.479 19.3 24
1/128 4.685 180.958 38.6 35

Table 4
Convergence of interface CG: K = 2.0, 2 subdomains.

h eig:min. eig:max. condðShÞ iter:num.

1/8 8.073 23.930 3.0 8
1/16 8.216 45.477 5.5 12
1/32 8.254 90.490 11.0 17
1/64 8.263 180.918 21.9 25
1/128 8.266 361.902 43.8 36

Table 5
Convergence of interface CG: K = 0.01, 2 subdomains.

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.302 8.688 28.8 8
1/16 0.263 8.719 33.1 9
1/32 0.270 8.734 32.3 8
1/64 0.278 8.746 31.5 10
1/128 0.280 8.758 31.3 13

Table 6
Convergence of interface CG: K = 1.0, 4 subdomains.

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.404 25.467 63.1 21
1/16 0.236 50.519 213.7 38
1/32 0.134 100.979 754.8 65
1/64 0.092 202.092 2191.0 95
1/128 0.065 404.432 6183.2 146

Table 7
Convergence of interface CG: K = 2.0, 4 subdomains.

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.404 50.413 124.8 22
1/16 0.249 100.762 404.8 39
1/32 0.149 201.802 1350.0 66
1/64 0.083 404.096 4874.3 117
1/128 0.084 808.813 9582.9 152

Table 8
Convergence of interface CG: K = 0.01, 4 subdomains.

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.118 10.846 91.6 19
1/16 0.127 10.856 85.4 19
1/32 0.087 10.858 124.4 22
1/64 0.056 10.859 195.3 27
1/128 0.035 10.860 308.7 39
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Table 9
Convergence of interface CG: K = 1.0, 16 subdomains.

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.287 32.000 111.5 42
1/16 0.125 64.000 512.3 78
1/32 0.062 128.000 2060.6 131
1/64 0.032 256.000 7907.6 236
1/128 0.019 512.000 27115.1 410

Table 10
Convergence of interface CG: K = 1.0, 64 subdomains.

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.375 31.976 85.3 53
1/16 0.131 64.000 488.2 92
1/32 0.063 128.000 2038.6 152
1/64 0.032 256.000 8035.1 260
1/128 0.019 512.000 27073.1 454

Table 11
Convergence of interface CG: K = 1.0, 4 subdomains (Stokes only).

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.245 8.037 32.8 20
1/16 0.121 8.087 66.6 29
1/32 0.061 8.099 133.4 36
1/64 0.030 8.102 266.6 47
1/128 0.015 8.103 532.1 58

Table 12
Convergence of interface CG: K = 1.0, 16 subdomains (Stokes only).

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.251 5.667 22.6 24
1/16 0.123 5.819 47.4 31
1/32 0.061 5.857 96.5 42
1/64 0.030 5.867 193.0 54
1/128 0.015 5.869 385.5 68

Table 13
Convergence of interface CG: K = 1.0, 64 subdomains (Stokes only).

h eig:min. eig:max. condðShÞ iter:num.

1/8 0.222 2.719 12.3 22
1/16 0.124 3.043 24.5 28
1/32 0.061 3.127 51.0 37
1/64 0.030 3.148 103.7 49
1/128 0.015 3.153 207.4 63

Table 14
Convergence of interface CG: K = 1.0, 4 subdomains (Darcy only).

h eig:min. eig:max. condðShÞ iter:num.

1/8 4.051 22.623 5.6 10
1/16 4.061 45.193 11.1 15
1/32 4.063 90.433 22.3 22
1/64 4.064 180.929 44.5 32
1/128 4.064 512.000 126.0 46
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The right hand sides fS; fD, and qD for the Stokes–Darcy flow system are obtained by plugging the analytical solution into
(2.1), (2.4), and (2.5), respectively. The boundary conditions are as follows: for the Stokes region, the velocity uS is specified
on the left boundary, and the normal and tangential stresses ðTnSÞ � nS and ðTnSÞ � sS are specified on the top and right bound-
aries; for the Darcy region, the normal velocity uD � nD is specified on the left boundary and the pressure pD is specified on the
bottom and right boundaries. In this example we use 4� 4 ¼ 16 subdomains, 8 in each region. Under these boundary con-
ditions, the six Stokes subdomains on the right are floating: each of the three on the top row has ðu;vÞ ¼ ð1;0Þ and ð0;1Þ as a
basis of kerðMiÞ, while that basis for each of the three on the second row consists only of ð0;1Þ. The computed solution on a
mesh with h ¼ 1=64 is shown in Fig. 1. The contour plots in Fig. 2 represent the two components of the computed velocity
field. We see that the domain decomposition scheme correctly imposes continuity of the normal velocity on CSD, but allows
for discontinuous tangential velocity across the interface. For our choice of finite element spaces, kS ¼ 2 and kD ¼ lD ¼ 0, so
the error bound (3.11) predicts second order convergence in the Stokes region and first order convergence in the Darcy re-
gion. The results reported in Table 1 and Table 2 confirm the expected rates. Note that we report the cell-centered L2-errors
jjj � jjj in the Darcy region, which are superconvergent for both the pressure and the velocity. This is consistent with the
theory for mixed finite element methods for Darcy on rectangular grids.

In the next test, for different permeabilities we vary either the mesh size or the number of subdomains to examine the
convergence of the iterative method. In Table 3 and Table 4 we see that on two subdomains, when h < K , the minimal eigen-
value of the interface operator does not change much as we refine the mesh, while the maximal eigenvalue changes as
Oðh�1Þ, according to (5.18), which results in condition number of order Oðh�1Þ. In this case we also see that changing the
permeability for a fixed h has no effect on the condition number, which can be explained by the fact that the permeability
constants Kmin and Kmax appearing in the estimates of the Rayleigh quotient (5.18) cancel one another when we divide the
upper bound by the lower bound. Table 5 shows the behavior of the method when K < h, in which case both the minimal and
the maximal eigenvalues of the interface operator are dominated by constants independent of h, and consequently the
condition number does not change significantly as the mesh is refined. This is consistent with (5.18).

In the presence of Stokes–Stokes interfaces, if h < K , the bounds in (5.19) imply that the maximal eigenvalue of the inter-
face operator is Oðh�1Þ while the minimal is OðhÞ, which means that the condition number is Oðh�2Þ. This estimate is
supported by the results reported in Tables 6 and 7. We also see that the largest eigenvalue is doubled when K is doubled,
which is consistent with the upper bound in (5.19). For K < h, Table 8 shows that the maximal eigenvalue does not change
when the mesh is refined, confirming the upper bound in (5.19).

Finally we test the effect of the subdomain size on the condition number, running the above tests with K ¼ 1:0 on
4� 4 ¼ 16 and 8� 8 ¼ 64 subdomains. Comparing Table 6 on 4 subdomains and Table 9 on 16 subdomains, we see that
the minimal eigenvalue is approximately proportional to the subdomain size. This is expected for domain decomposition
methods without a coarse solve [38]. However, when comparing Tables 9 and 10, we notice that the minimal eigenvalue
does not change. The reason is that the minimal eigenvalue is controlled by the Stokes region, where it is independent of
the subdomain size due the coarse solve we have implemented to handle the local Stokes Neumann problems. This can
be observed in Tables 11–16, where the results for Stokes only and Darcy only problems are reported. In particular, the
minimal eigenvalue is smaller for Stokes compared to Darcy on the same mesh and number of subdomains, while the
maximal eigenvalue is larger for Darcy. Furthermore, for Stokes the minimal eigenvalue is OðhÞ and independent of subdo-
main size, while the maximal eigenvalue is Oð1Þ. For Darcy, the minimal eigenvalue is proportional to the subdomain size
and the maximal eigenvalue is Oðh�1Þ.
Table 15
Convergence of interface CG: K = 1.0, 16 subdomains (Darcy only).

h eig:min. eig:max. condðShÞ iter:num.

1/8 2.166 23.601 10.9 16
1/16 2.172 45.239 20.8 22
1/32 2.174 90.477 41.6 31
1/64 2.174 256.000 117.7 45
1/128 2.174 512.000 235.5 63

Table 16
Convergence of interface CG: K = 1.0, 64 subdomains (Darcy only).

h eig:min. eig:max. condðShÞ iter:num.

1/8 1.065 31.361 29.4 26
1/16 1.069 47.773 44.7 31
1/32 1.070 128.000 119.6 44
1/64 1.070 256.000 239.2 61
1/128 1.070 512.000 478.4 87
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7. Conclusions

We have developed an iterative substructuring domain decomposition method for coupled Stokes–Darcy flows with
multiple subdomains. The discretization uses conforming Stokes finite elements and mixed finite elements in the Darcy
region. The coupled system is reduced to an interface problem for a Lagrange multiplier that models the normal stress or
pressure on Stokes–Darcy or Darcy–Darcy interfaces and the normal stress vector on Stokes–Stokes interfaces. Computing
the action of the interface operator requires solving Stokes subdomain problems with Neumann or Neumann–Robin bound-
ary conditions and Darcy subdomain problems of Dirichlet type. Since the Stokes problems can be singular, a FETI type coarse
solve is utilized. No coarse solve is needed to solve the Darcy subdomain problems. The analysis of the condition number for
the unpreconditioned algorithm shows possible Oðh�2Þ dependence due to the different type of Stokes and Darcy boundary
value subdomain problems. We further observe dependence on small permeability values and dependence on the subdo-
main size in the Darcy region. The algorithm lends itself to the application of optimal interface preconditioners, such as
balancing [27,28,10,32,18], which should improve the dependence on h; k, and subdomain size in the condition number.
Such preconditioners will be investigated in future work.
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