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The aim of this paper is to introduce a new approach to efficiently solve sequences of problems that typ-
ically arise when modeling flow in stochastic porous media. The governing equations are based on
Darcy’s law with a stochastic permeability field. Starting from a specified covariance relationship, the
log permeability is decomposed using a truncated Karhunen–Loève expansion. Multiscale mortar mixed
finite element approximations are used in the spatial domain and a nonintrusive sampling method is
used in the stochastic dimensions. A multiscale mortar flux basis is computed for a single permeability,
called a training permeability, that captures the main characteristics of the porous media, and is used as a
preconditioner for each stochastic realization. We prove that the condition number of the preconditioned
interface operator is independent of the subdomain mesh size and the mortar mesh size. Computational
results confirm that our approach provides an efficient means to quantify the uncertainty for stochastic
flow in porous media.
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1. Introduction

In groundwater flow problems, it is physically impossible to
know the exact permeability at every point in the domain. This is
due to the prohibitively large scope of realistic domains, inhomo-
geneity in the media, and also the natural randomness occurring
at very small scales. One way to cope with this difficulty is to mod-
el permeability (or porosity) as a stochastic function, determined
by an underlying random field with an experimentally determined
covariance structure.

The development of efficient stochastic methods that are appli-
cable for flow in porous media has drawn significant interest in
recent years [13,48]. Stochastic sampling methods have grown in
popularity due to their nonintrusive nature in terms of modifying
a legacy simulation code. The best known sampling method is
Monte Carlo simulation (MCS), which involves repeated generation
of random samplings (realizations) of input parameters followed
by the application of the simulation model in a ‘‘black box’’ fashion
to generate the corresponding set of stochastic responses. These re-
sponses are further analyzed to yield statistical moments or distri-
butions. The major drawback of MCS is the high computational
cost due to the need to generate valid representative statistics from
a large number of realizations at a high resolution level.

One approach for improving the efficiency of non-sampling
methods is the stochastic collocation method [5,45,44]. It com-
bines a finite element discretization in physical space with a
ll rights reserved.

y).
collocation at specially chosen points in probability space. As a re-
sult, a sequence of uncoupled deterministic problems need to be
solved, just like in MCS. However, the stochastic collocation
method shares the approximation properties of the stochastic fi-
nite element method [6,41,15], making it more efficient than
MCS. Choices of collocation points include tensor product of zeros
of orthogonal polynomials [5,45], sparse grid approximations
[17,32,40,45], and probabilistic collocation [26].

A tremendous amount of research over the past thirty years has
been devoted to the efficient parallel solution of deterministic sub-
surface flow problems. Non-overlapping domain decomposition
methods are popular due to their ease of parallel implementation,
physically meaningful interface conditions, and ability to handle
different physical models in different subdomains. The mortar
finite element method is a generalization of these methods which
allows for nonconforming discretizations on the subdomain
interfaces and greater flexibility in the choice of interface approx-
imation spaces. This approach can also be interpreted as a nonstan-
dard variational multiscale method [3] with the subdomain
problems serving as the fine scale (h) and the interface problem
representing the coarse scale (H). This interpretation allows for a
posteriori error estimates and adaptive mesh refinement for both
the subdomain and mortar scales [42,34]. Furthermore, higher or-
der mortars can be employed, allowing for optimal fine scale con-
vergence with coarser mortar grids. The coarse scale interface
problem is usually solved via an iterative method such as the con-
jugate gradient or GMRES [24] and requires solving subdomain
problems in parallel on each iteration. Therefore the method relies
on the availability of an efficient and robust preconditioner, e.g.,
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Neumann–Neumann [28], balancing [27,14,35], or multigrid [43].
An advantage of the multiscale mortar formulation is that coarser
mortar grids imply fewer interface iterations resulting in fewer
number of subdomain solves.

Recently, an alternative algorithm, based on the multiscale
interpretation, has been developed for the mortar multiscale meth-
od [21]. In this approach, a set of multiscale flux basis functions are
computed for the coarse scale interface problem. As a result the
subdomain solves on each interface iteration are replaced by sim-
ple linear combinations of the multiscale flux basis functions. The
cost of computing a multiscale basis function is solving a subdo-
main problem. The number of multiscale flux basis functions per
subdomain is equal to the number of coarse scale mortar degrees
of freedom for this subdomain. In [21], this was shown to outper-
form the original algorithm with the balancing preconditioner in
many cases. The multiscale basis approach has been applied to sto-
chastic problems in [22]. There, a multiscale flux basis is computed
for each stochastic realization, which may lead to substantial com-
putational cost if many realizations are needed.

In this paper, we develop a multiscale preconditioner for the
mortar mixed finite element method of [3] that alleviates the need
to recompute the multiscale basis for each realization, when the
method is combined with a nonintrusive stochastic sampling
method. A multiscale mortar flux basis is computed for a single
permeability field, called a training permeability, that captures the
main characteristics of the porous media. The resulting coarse
scale interface operator is used as a preconditioner for the interface
operators in subsequent realizations. While both our method and
the method from [21] involve solving a coarse scale interface prob-
lem with a Krylov space method, as in [3], there is an important
difference between the two approaches. In [21], the multiscale flux
basis is used to replace the subdomain solves on each interface
iteration by linear combinations of basis functions. In this paper,
the multiscale flux basis is used as a preconditioner, which leads
to a reduced number of interface iterations, while subdomain
solves are still needed at each iteration. The current approach
has an advantage when applied in stochastic setting. A direct appli-
cation of the algorithm of [21], as it is done in [22], requires com-
puting a new multiscale flux basis for each stochastic realization.
With the approach in this paper, only one multiscale flux basis
based on a training permeability is computed and used as a pre-
conditioner for all realizations. The cost for computing the multi-
scale basis on a given subdomain is solving subdomain problems
for each coarse scale mortar degree of freedom associated with this
subdomain. Note that this is independent of the number of global
mortar degrees of freedom. This approach is usually significantly
less expensive compared to solving subdomain problems on each
interface iteration or recomputing the multiscale basis for each
realization, as confirmed by the computational experiments pre-
sented in Section 7.

The computational efficiency of our algorithm depends also on
the cost of applying the preconditioner and the number of interface
iterations. We prove that the condition number of the precondi-
tioned system is bounded by a constant independent of the subdo-
main mesh size, the number of subdomains, and the mortar mesh
size. As a result, the number of preconditioned interface iterations
is very small. This is confirmed in our computational experiments.
The cost of applying the preconditioner is solving an interface
problem for the training operator. This is done by an iterative pro-
cedure that requires computing the action of the training operator
on each iteration. This action is computed via a linear combination
of the multiscale basis functions. Since the basis is precomputed,
no additional subdomain solves are required for the precondition-
er, resulting in a very efficient algorithm.

We should note that the multiscale preconditioner approach
developed in this paper is applicable not only to stochastic model-
ing, but to other problems where multiple problems with per-
turbed characteristics need to be solved. One example is applying
the multiscale mortar method to multiphase flow in porous media.
This is a time dependent nonlinear problem with coefficients that
change at each time step and each nonlinear iteration. The multi-
scale preconditioner can be computed for a fixed set of training
parameters and applied over a large number of time steps. This
work is the subject of a forthcoming publication.

A number of authors have recently considered domain
decomposition methods [50,25] and multiscale methods [4,29,
18,46,16] for stochastic partial differential equations. These pa-
pers focus on the combination of a deterministic algorithm with
a stochastic approximation method for efficient uncertainty
quantification for porous media flow. While this paper is
amongst the first to combine the mortar multiscale method with
a nonintrusive sampling technique (see also [22]), our focus is on
reusing of the multiscale basis associated with the training per-
meability to reduce the computational cost in each of the subse-
quent realizations. After completing this paper, we became
aware of [25] which combines a Schwartz overlapping domain
decomposition method and a nonintrusive sampling algorithm
with a Krylov recycling to reduce the computational cost in
assembling the Krylov basis for each stochastic realization. This
paper shares the concept of recycling information for different
realizations, but we recycle the coarse scale interface operator
rather than a Krylov basis.

The rest of the paper is organized as follows. In Section 2, we
introduce the model problem and the Karhunen–Loéve expansion.
The nonintrusive stochastic methods are defined in Section 3. In
Section 4, we define the mortar mixed finite element method. A
multiscale domain decomposition formulation of the method is gi-
ven in Section 5. The multiscale basis preconditioner is introduced
and analyzed in Section 6. In Section 7 numerical results are pro-
vided to confirm the theory and illustrate the efficiency of the
method for flow in porous media. Finally, Section 8 contains our
concluding remarks.
2. Model problem

We begin with the mixed formulation of Darcy flow. Let
D � Rd; d ¼ 2;3 be a bounded Lipschitz domain and X be a stochas-
tic event space with probability measure P. The Darcy velocity u
and the pressure p satisfy P-almost everywhere in X:

u ¼ �Kðx;xÞrp; in D;

r � u ¼ f ; in D;

p ¼ pb; on oD:

8><
>: ð2:1Þ

For simplicity we assume Dirichlet boundary conditions in the anal-
ysis. More general boundary conditions can also be considered via
standard techniques. The permeability K is a diagonal tensor with
uniformly positive and bounded elements in D. To simplify the pre-
sentation, we will assume that K is a scalar function. Since the per-
meability K is a stochastic function, p and u are also stochastic.

Throughout this paper the expected value of a random variable
n(x) with probability density function (p.d.f) q(y) will be denoted:

E½n� ¼
Z

X
nðxÞdPðxÞ ¼

Z
R

yqðyÞdy:
2.1. The Karhunen–Loève (KL) expansion

In order to guarantee positive permeability almost surely in X,
we consider the log transformed permeability Y = ln (K). Let the
mean removed log permeability be denoted by Y0, so that
Y = E[Y] + Y0. Its covariance function CYðx; �xÞ ¼ E½Y 0ðx;xÞY 0ð�x;xÞ�
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is symmetric and positive definite, and hence can be decomposed
into the series expansion:

CYðx; �xÞ ¼
X1
i¼1

kifiðxÞfið�xÞ: ð2:2Þ

The eigenvalues ki and eigenfunctions fi of this series are computed
using CY as the kernel of the Type II Fredholm integral equation:Z

D
CYðx; �xÞf ðxÞdx ¼ kf �xð Þ: ð2:3Þ

The Karhunen–Loève expansion of the log permeability can be writ-
ten as

Yðx;xÞ ¼ E½Y�ðxÞ þ
X1
i¼1

niðxÞ
ffiffiffiffi
ki

p
fiðxÞ; ð2:4Þ

where ni are mutually uncorrelated random variables with zero
mean and unit variance [23]. In the case where Y0 is given by a
Gaussian process, the ni are independent.

At this point, the KL expansion is truncated after N terms, which
is reasonable to do as typically the ki decay rapidly [49]. If the
expansion is truncated prematurely, the permeability may appear
too smooth. Increasing N introduces more heterogeneity into the
permeability realizations. This truncation allows us to write
Y(x,x) = Y(x,n1(x), . . . ,nN(x)). The images of the random variables
ni(X) make up a finite dimensional set SN ¼

QN
i¼1niðXÞ � RN . In

the case of Gaussian random variables, SN ¼ RN . If qi corresponds
to the p.d.f. of each ni, then the joint p.d.f. for the random vector
(n1, . . . ,nN) is defined to be q ¼

QN
i¼1qi. Then we can write

Y(x,x) = Y(x,y), where y = (y1, . . . ,yN) and yi = ni(x).
We use the following specific covariance function (in 2-D) orig-

inally taken from [49], in which ki and fi(x) can be found
analytically:

CYðx; �xÞ ¼ r2
Y exp � x1 � �x1j j

g1
� x2 � �x2j j

g2

� �
: ð2:5Þ

Here rY and gi denote variance and correlation length in the ith spa-
tial dimension, respectively. These eigenvalues will decay at a rate
asymptotic to O(1/N2) and for this particular case can be computed
analytically.

When the exact eigenvalues and eigenfunctions of the covari-
ance function CY can be found, the KL expansion is the most effi-
cient method for representing a random field. However, in most
cases, closed-form eigenfunctions and eigenvalues are not readily
available and numerical procedures need be performed for solving
the integral Eq. (2.3). Efficient methods for numerically computing
the KL expansion are reported in [38].

2.2. Variational formulation

Appealing to the Doob–Dynkin Lemma [33], the p.d.f. for the
permeability K carries through to the solution of Eq. (2.1), so that
(up) has the form:

u x;xð Þ ¼ u x; n1ðxÞ; . . . ; nNðxÞð Þ ¼ u x; y1; . . . ; yNð Þ and
p x;xð Þ ¼ p x; n1ðxÞ; . . . ; nNðxÞð Þ ¼ p x; y1; . . . ; yNð Þ:

Let D be decomposed into nonoverlapping subdomain blocks Di, so
that D ¼ [n

i¼1Di, and Di \ Dj = ; for i – j. The blocks need not share
complete faces, i.e., they need not form a conforming partition.
Let Ci,j = oDi \ oDj, C = [16i<j6n Ci,j, and Ci = oDi \ C = oDi noD de-
note interior block interfaces. Let:

Vi ¼ Hðdiv; DiÞ; V ¼a
n

i¼1
Vi;

Wi ¼ L2ðDiÞ; W ¼a
n

i¼1
Wi ¼ L2ðDÞ;

M ¼ l 2 H1=2ðCÞ : ljCi
2 Vi � mið Þ�; i ¼ 1; . . . ;n

n o
;

where mi is the outer unit normal to oDi and (�)* denotes the dual
space.

Let (�, �)S, S � Rd, denote the L2(S) inner product, and let h � , � iG,
G � Rd�1, denote the L2(G) inner product or duality pairing. Follow-
ing: [2,19,22], a weak form of (2.1) seeks uðx;xÞ 2 V� L2ðSNÞ;
pðx;xÞ 2W � L2ðSNÞ and kðx;xÞ 2 M � L2ðSNÞ such that, for each i:Z

SN

K�1u;v
� �

Di

q yð Þdy ¼
Z

SN

p;r � vð ÞDi
� hk;v � miiCi

�
�hg;v � miioDinC

�
q yð Þdy; ð2:6Þ

Z
SN

r � u;wð ÞDi
qðyÞdy ¼

Z
SN

ðf ;wÞDi
qðyÞdy; ð2:7Þ

Xn

i¼1

Z
SN

hu � mi;liCi
qðyÞdy ¼ 0; ð2:8Þ

for all v 2 Vi � L2ðSNÞ;w 2Wi � L2ðSNÞ, and l 2 M � L2ðSNÞ. Note
that k is the pressure on the block interfaces C and that (2.8) en-
forces weak continuity of u � m on each Ci,j.
3. Nonintrusive stochastic methods

Given the log permeability as a truncated KL expansion, the
problem is now formulated in the finite dimensional space
D� SN � RdþN . At this point, there are several ways in which to dis-
cretize the problem. The Stochastic Finite Element Method (SFEM)
[15] considers solving the problem using full d + N dimensional fi-
nite elements. The resulting system is significantly large, may be
difficult to set up, and the solution algorithm does not easily lend
itself to parallelization.

A less intrusive approach is to use d-dimensional finite ele-
ments in the spatial domain D, and to sample the stochastic space
SN only at certain points. The Monte Carlo method is the most pop-
ular of these sampling techniques. The advantage of this approach
is that the resulting deterministic FEM problems are completely
uncoupled, and may be solved in parallel. The disadvantage of
the Monte Carlo method is that the convergence rate with respect
to the stochastic space is slow, O 1=

ffiffiffiffiffieMp� �
, where eM is the number

of realizations.
The Stochastic Collocation Method is another nonintrusive ap-

proach that improves upon the Monte Carlo method by sampling
at specially chosen collocation points in order to form a polynomial
interpolant in the stochastic space. Different varieties of stochastic
collocation arise by considering different sets of collocation points.
The simplest approach is a full tensor product grid of collocation
points. For relatively small stochastic dimension N, the tensor
product stochastic collocation method converges much faster than
Monte Carlo when combined with finite element spatial approxi-
mation [19,5,45,44]. In this paper, we consider only the nonin-
trusive stochastic methods thereby reducing the stochastic
problem to a system of uncoupled deterministic problems.

It should be noted that full tensor product grids of collocation
points suffer from the so-called ‘‘curse of dimensionality’’. Increas-
ing the number of terms in the truncated KL expansion Eq. (2.4) in-
creases the number of stochastic dimensions, which exponentially
increases the number of points in a full tensor product grid. For
example, if k collocation points are used in each stochastic dimen-
sion, eM ¼ kN . To cope with this problem, more advanced colloca-
tion techniques are possible such as the so called probabilistic
collocation method (see e.g., [26]) and the Smolyak sparse grids
(see e.g., [44,32,31]). These advanced collocation techniques will
not be considered in this paper, but it is straightforward to extend
the multiscale preconditioning strategy defined in Section 6 to
these methods.



1254 M.F. Wheeler et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 1251–1262
In both the Monte Carlo and the stochastic collocation methods,
the goal is to find, for 1 6 m 6 eM , u{m} 2 V, p{m} 2W and k{m} 2M
such that for each i:

ðKfmgÞ�1ufmg;v
� �

Di

¼ ðpfmg;r � vÞDi

�hkfmg;v � miiDi
� hg;v � miioDinC;

r � ufmg;w
� �

Di
¼ ðf ;wÞDi

;

Pn
i¼1
hufmg � mi;liCi

¼ 0;

8>>>>>>>><
>>>>>>>>:

ð3:1Þ

for all v 2 Vi, w 2Wi, and l 2M, where fy1; y2; . . . yeMg are the chosen
sample points in SN , and K{m} = K(x,ym). We assume that for each
permeability realization there exist positive constants ĉfmg; bCfmg,
and ai such that:

ĉfmgain
Tn 6 nT KfmgðxÞn 6 bC fmgain

Tn; 8n 2 Rd;

8x 2 Di; i ¼ 1; . . . ; n: ð3:2Þ
4. The finite element approximation

Let T h;i be a conforming quasi-uniform affine finite element par-
tition of Di, 1 6 i 6 n, of maximal element diameter hi. Note that we
need quasi-uniformity and conformity only on each subdomain.
Our method allows for spatially varying hi, but to simplify the dis-
cussion, we let h = max16i6nhi and analyze the method in terms of
this single value h. We allow for the possibility that T h;i and T h;j do
not align on Ci,j. Define T h ¼ [n

i¼1T h;i, and let Eh be the union of all
interior edges (or faces in three dimensions) not including the sub-
domain interfaces and the outer boundaries. Let:

Vh;i �Wh;i � Vi �Wi;

be any of the usual mixed finite element spaces (e.g., those of
[9,10,30,11,37]), and let Vh or, equivalently, Vh � m contain the poly-
nomials of degree k. Then let:

Vh ¼a
n

i¼1
Vh;i; Wh ¼a

n

i¼1
Wh;i:

Note that the normal components of vectors in Vh are continuous
between elements within each block Di, but not across C.

Let the mortar interface mesh T H;i;j be a quasi-uniform finite
element partition of Ci,j with maximal element diameter Hi,j. Let
H = max16i,j6nHi,j. In multiscale approximations one takes H > h.
Define T C;H ¼ [16i<j6nT H;i;j. For any s 2 T H;i;j, let:

Es ¼ E 2 T : oE \ s–;f g:

Denote by MH,i,j � L2(Ci,j) the mortar space on Ci,j containing either
the continuous or discontinuous piecewise polynomials of degree q
on T H;i;j, where q is at least k + 1. We remark that T H;i;j need not be
conforming if MH,i,j is discontinuous. Now let:

MH ¼ a
16i<j6n

MH;i;j;

be the mortar finite element space on C. For each subdomain Di, de-
fine a projection Qh;i : L2ðCiÞ ! Vh;i � mijCi

such that, for any /
2 L2(Ci):

/�Qh;i/;v � mi
	 


Ci
¼ 0; v 2 Vh;i: ð4:1Þ

We require that the following condition be satisfied [2], where in
this paper k � kr,S is the usual Sobolev norm of Hr(S) (we may drop
r if r = 0 and S if S = D).

Assumption 4.1. Assume that there exists a constant C, indepen-
dent of h and H, such that:� �

klkCi;j

6 C kQh;ilkCi;j
þ kQh;jlkCi;j

; l 2 MH; 1 6 i < j 6 n:

ð4:2Þ
Condition (4.2) says that the mortar space cannot be too rich com-
pared to the normal traces of the subdomain velocity spaces. There-
fore, in what follows, we tacitly assume that h 6 H 6 1. Condition
(4.2) is not very restrictive, and is easily satisfied in practice (see,
e.g., [35,47]). In the following, we treat any function l 2MH as ex-
tended by zero on oD.

In the mixed finite element approximation of (3.1), we seek, for
1 6 m 6 eM;ufmgh 2 Vh; p

fmg
h 2Wh and kfmgH 2 MH such that, for

1 6 i 6 n:

Kfmg
� ��1

ufmgh ;v
� �

Di

¼ pfmgh ;r � v
� �

Di

� kfmgH ;v � mi

D E
Ci

� g;v � mih ioDinC;

r � ufmgh ;w
� �

Di

¼ ðf ;wÞDi
;

Pn
i¼1

ufmgh � mi;l
D E

Ci

¼ 0;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4:3Þ

for all v 2 Vh,i, w 2Wh,i, and l 2MH. Strictly within each block Di, we
have a standard mixed finite element method with local conserva-
tion over each grid cell. Moreover, ufmgh � m is continuous on any ele-
ment edge (or face) with weak continuity of the flux across the
interfaces with respect to the mortar space MH.

Remark 4.2. As observed in [3,21], the mortar mixed finite
element method may be viewed as a nonstandard multiscale
method if a coarse mortar space is chosen. In this case, optimal
order error estimates can be obtained by choosing high-order
polynomials for the mortars. We refer the reader to [3,34] for more
details.
5. A multiscale domain decomposition formulation

Using a substructuring domain decomposition algorithm intro-
duced in [24], the linear system resulting from the mortar mixed
finite element method (4.3) on each realization can be reduced
to a coarse scale interface problem in the mortar space MH

[47,2,3]. The interface problem can be solved efficiently in parallel
via a Krylov space iterative method, with each iteration requiring
the solution of subdomain problems.

For each 1 6 m 6 eM , define a bilinear form dfmgH : L2ðCÞ�
L2ðCÞ ! R by

dfmgH ðk;lÞ ¼
Xn

i¼1

dfmgH;i ðk;lÞ ¼ �
Xn

i¼1

u�;fmgh ðkÞ � mi;l
D E

Ci

;

where the pair u�;fmgh ðkÞ;p�;fmgh ðkÞ
� �

2 Vh �Wh is computed by
solving:

ðKfmgÞ�1u�;fmgh ðkÞ;v
� �

Di

¼ p�;fmgh ðkÞ;r � v
� �

Di

�hk;v � miiCi
; v 2 Vh;i;

r � u�;fmgh ðkÞ;w
� �

Di

¼ 0; w 2Wh;i;

8>>>><
>>>>:

ð5:1Þ

for each 1 6 i 6 n for a given k 2 L2(C). Also define a linear func-
tional gfmgH : L2ðCÞ ! R by

gfmgH ðlÞ ¼
Xn

i¼1

gfmgh;i ðlÞ ¼
Xn

i¼1

�ufmgh � mi;l
D E

Ci

;

where the pair �ufmgh ; �pfmgh

� �
2 Vh �Wh solves, for 1 6 i 6 n:
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ðKfmgÞ�1 �ufmgh ;v
� �

Di

¼ �pfmgh ;r � v
� �

Di

� hg;v � miioDinC; v 2 Vh;i;

r � �ufmgh ;w
� �

Di

¼ ðf ;wÞDi
; w 2Wh;i:

8><
>:

ð5:2Þ

This gives, for each 1 6 m 6 eM , the coarse scale interface problem:

dfmgH ðk
fmg
H ;lÞ ¼ gfmgH ðlÞ; l 2 MH: ð5:3Þ

We remark that solving (5.2) corresponds to solving subdomain
problems with zero Dirichlet conditions along the mortar bound-
aries, and gfmgH represents the corresponding jump in the flux pro-
jected into the mortar space. Solving the coarse scale interface
problem (5.3) amounts to finding the proper mortar values to bal-
ance the jump in the flux.

It is straightforward to show (see [24,2]) that the multiscale
solution to (4.3) can be reconstructed from the solution kfmgH to
the interface problem Eq. (5.3) via:

ufmgh ¼ u�;fmgh kfmgH

� �
þ �ufmgh ; pfmgh ¼ p�;fmgh kfmgH

� �
þ �pfmgh : ð5:4Þ

The following result concerning the existence and uniqueness of the
coarse scale solution has been shown in [24,2].

Lemma 5.1. For 1 6 m 6 eM, the interface bilinear form dfmgH ð�; �Þ is
symmetric and positive definite on L2(D). If (4.2) holds, then dfmgH ð�; �Þ
is positive definite on MH. Moreover:

dfmgH;i ðl;lÞ ¼ ðKfmgÞ�1u�;fmgh ðlÞ; u�;fmgh ðlÞ
� �

Di

P 0: ð5:5Þ

We will find it useful to consider the linear algebraic version of
the discrete interface operator. For each 1 6 m 6 eM we define a
real NH � NH matrix DfmgH satisfying:

DfmgH k;l
h i

:¼ dfmgH ðk;lÞ 8k; l 2 MH; ð5:6Þ

where NH denote the number of degrees of freedom associated with
MH, and [�, �] is the Euclidean scalar product in RNH . For each l 2MH,
l denotes the vector of its values at the NH nodes. We note that
DfmgH ¼

Pn
i¼1D

fmg
H;i , where DfmgH;i satisfy:

DfmgH;i k;l
h i

¼ dfmgH;i ðk;lÞ 8k; l 2 MH:

The interface problem Eq. (5.3) can be written as

DfmgH k
fmg
H ¼ gfmgH ; ð5:7Þ

where the operator DfmgH is the discrete mortar version of the Stek-
lov–Poincaré operator [36].

It is shown in [47], see also [14,35], that there exist positive con-
stants c{m} and C{m} such that:

cfmg
Xn

i¼1

aijI oDiQh;ilj1=2;oDi
6 DfmgH l;l
h i

6 Cfmg
Xn

i¼1

aijI oDiQh;ilj1=2;oDi
; ð5:8Þ

for all l 2MH, where I oDi is a continuous piecewise linear interpo-
lant defined in [14,47,35]. The constants C{m} and c{m} do not depend
on h or H. They depend only mildly on K{m}, since the dependence on
the characteristic values ai is given explicitly.

An immediate consequence of Lemma 5.1 is that the conjugate
gradient method can be employed to solve the interface problem
Eq. (5.3). On each conjugate gradient iteration, the bilinear form
dfmgH ð�; �Þ needs to be evaluated, which requires computing u�;fmgh ðkÞ.
In the original implementation of the mortar mixed finite ele-
ment method [47,2,3], the action of the interface operator on each
conjugate gradient iteration is computed by solving subdomain
problems Eq. (5.1) to compute u�;fmgh ðkÞ. In [3], the mortar mixed fi-
nite element method is shown to be equivalent to a nonstandard
multiscale method with the subdomain problems discretized on
the fine scale and the mortar interface problem discretized on
the coarse scale. This relationship is exploited in [21], where a mul-
tiscale mortar flux basis is precomputed by solving (5.1) for each
mortar basis function. The multiscale basis functions are con-
structed by projecting the corresponding boundary fluxes into
the mortar space. Then, for each iteration, the action of the inter-
face operator is computed by taking a linear combination of the
multiscale basis functions.

More precisely, following [21], we let /fkgH;i

n oNH;i

k¼1
denote a basis

for the mortar space MH,i where NH,i is the number of degrees of
freedom associated with MH,i. A multiscale mortar flux basis,
wfkgH;i

n oNH;i

k¼1
, is computed by calculating the flux response for each

mortar basis function. This process is summarized in Algorithm 1
where QT

h;i : Vh;i � mi ! MH;i denotes the L2-orthogonal projection
from the normal trace of the velocity space into the mortar space.
In essence, Algorithm 1 computes:

wfmg;fkgH;i ¼ DfmgH;i /fkgH;i :

Algorithm 1: Construction of the multiscale mortar flux basis

for i = 1,2, . . . ,n do
for k = 1,2, . . . ,NH,i do

(a) Project /fkgH;i onto the subdomain boundary:
Qh;i/
fkg
H;i ¼ cfkgi :
(b) Solve the subdomain problems (5.1) with k ¼ cfkgi .
(c) Project the flux into the mortar space:� �
wfmg;fkgH;i ¼ �QT
h;iu

�;fmg
h cfkgi � mi:
(d) Store the multiscale basis function wfmg;fkgH;i .
end for

end for
Note that the number of solves (5.1) per subdomain depends
only on the number of mortar degrees of freedom associated with
the particular subdomain and may differ throughout the computa-
tional domain.

Once the multiscale basis is computed, the computation of the
action of the interface operator on every interface iteration is re-
duced to a linear combination of the basis functions. More pre-
cisely, if kH;i ¼

PNH;i

k¼1bk;i/
fkg
H;i :

DfmgH;i kH;i ¼ DfmgH;i

XNH;i

k¼1

bk;i/
fkg
H;i ¼

XNH;i

k¼1

bk;iD
fmg
H;i /fkgH;i ¼

XNH;i

k¼1

bk;iw
fmg;fkg
H;i ;

where, by abuse of notation, DfmgH;i is the portion of the matrix, DfmgH ,
corresponding to MH,i. In [21], this approach is applied to determin-
istic problems and it is shown to reduce the total number of subdo-
main solves in the case of a large number of subdomains with
relatively few mortar degrees of freedom on each interface, or if
the permeability is highly heterogeneous.

Remark 5.2. This approach is closely related (but more general)
than the substructuring methods developed in e.g., [8,7,1]. If
the basis functions for MH,i are chosen to be the Lagrange basis,
then this procedure is similar to the construction of the local
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contribution to the Schur complement [39,36]. Moreover the latter
approaches treat conforming Galerkin finite element methods and
not mixed methods.
6. A multiscale preconditioner

In [22], the multiscale basis method is combined with stochastic
collocation to model flow in non-stationary random porous media.
In that implementation, Algorithm 1 is repeated for each
1 6 m 6 eM . This requires recomputing the multiscale flux basis
for each realization. To avoid this extra expense we implement
Algorithm 1 for a carefully chosen training permeability and use
the corresponding interface operator as a preconditioner for each
of the subsequent realizations.

Let K denote a uniformly positive and bounded training perme-
ability. Let DH be the interface operator defined in Eq. (5.6), corre-
sponding to the global problem with permeability K.

For each 1 6 m 6 eM , we solve the preconditioned system:

D�1
H D

fmg
H k

fmg
H ¼ D�1

H gfmgH ; ð6:1Þ

using an iterative algorithm such as conjugate gradient or GMRES.
Note that in this approach, the action ofDfmgH is computed by solving
subdomain problems (5.1) with the true permeability K{m}, thus
avoiding the need to compute a multiscale basis for each
realization.

The preconditioner D�1
H is applied using a multiscale flux basis.

In particular, we employ Algorithm 1 with subdomain problems
Eq. (5.1) with permeability K to compute a multiscale flux basis
wfkgH;i . Note that only one multiscale flux basis is computed.

The action D�1
H l is computed by solving an interface problem

DHk ¼ l, for which we use an iterative algorithm such as conjugate
gradient. On each conjugate gradient iteration, the action of the
interface operator DH is computed using the linear combination
of multiscale basis functions:

DH;iki ¼
XNH;i

k¼1

bkw
fkg
H;i ;

thus avoiding the need to solve any additional subdomain prob-
lems. As a result, the cost of applying the multiscale preconditioner
D�1

H for each stochastic realization is relatively small.
The computational efficiency of our algorithm also depends on

the number of iterations for the preconditioned coarse scale inter-
face system Eq. (6.1). To address this issue, we present below a the-
oretical bound on the condition number.

The following result on the preconditioning of symmetric posi-
tive definite operators can be found in [36, Theorem 4.1.5.]

Theorem 6.1. Let D1 and D2 be two symmetric and positive definite
N � N real matrices. Assume that there exists constant C1 > 0 and
C2 > 0 such that:

C1 D1l;l½ � 6 D2l;l½ � 6 C2 D1l;l½ �;

for all l 2 RN where [�, �] is the Euclidean scalar product in RN. Then the
eigenvalues of the preconditioned matrix D�1

1 D2 satisfy:

C1 6 mmin 6 mmax 6 C2;

and the spectral condition number cond D�1
1 D2

� �
:¼ mmax

mmin
satisfies:

cond D�1
1 D2

� �
6

C2

C1
:

We are ready to present the main theoretical result in this
paper.
Theorem 6.2. Assume that (4.2) holds and that the training operator
DH satisfies a bound similar to (5.8),
c
Xn

i¼1

ai I oDiQh;il
 

1=2;oDi
6 DHl;l
� �

6 C
Xn

i¼1

ai I oDiQh;il
 

1=2;oDi
ð6:2Þ

for all l 2MH, where C and c are positive continuity and coercivity
constants. Then, for 1 6m 6M:

cond D�1
H D

fmg
H

� �
6

CCfmg

ccfmg
; ð6:3Þ

i.e., DH and DfmgH are uniformly spectrally equivalent.
Proof. From (5.8) and (6.2) we easily derive:

cfmg

C
DHl;l
� �

6 DfmgH l;l
h i

6
Cfmg

c
DHl;l
� �

:

The result (6.3) follows from Theorem 6.1. h
Remark 6.3. Although the condition number (6.3) does not
depend on h or H, it does depend through (6.2) and (5.8) on how
closely the training permeability, K , represents the permeability
for each of the realizations, K{m}. Thus, K should be chosen based
on the physical or the stochastic properties of the permeability in
(2.1).

We conclude this section with a comment on the scalability of
this approach. Although the multiscale basis preconditioner
bounds the number of subdomain solves for each realization,
the cost of applying the preconditioner may grow as the number
of subdomains increases or as the subdomain mesh size de-
creases. The dominant cost of the preconditioner, computing the
multiscale basis, is proportional to the number of mortar degrees
of freedom per subdomain and thus it does not grow with the
number of subdomains. On the other hand, the number of inter-
face iterations for applying the action of the preconditioner may
increase with the number of subdomains or when the subdomain
grids are refined. Even though the local computations are very
inexpensive (linear combinations of the multiscale basis), there
is some communication overhead that may affect the scalability
of the algorithm. In a related paper [20], we address the theoret-
ical complexity in solving the interface problem for the precondi-
tioner D�1

H using the multiscale basis and investigate the use of
preconditioners for this iteration, such as balancing or block
Jacobi with a coarse scale correction, and multilevel acceleration
methods, such as interface multigrid, to efficiently solve the
interface problem. For the numerical results in Section 7, the wall
clock time to apply the multiscale basis preconditioner is always
substantially less than the time to perform one solve per
subdomain.

7. Numerical results

In this section, we present numerical results supporting the the-
oretical results in Section 6. All results are computed in 2D using
the lowest order Raviart–Thomas RT0 spaces [37,12] on uniform
rectangular subdomain grids that do not necessarily match on
the interface.

First, we use a deterministic problem to demonstrate that the
condition number of the preconditioned system is independent of
the subdomain mesh size h, the mortar mesh size H, and the de-
gree of the mortar approximation q. Then we show that the
choice of the training permeability has a significant impact on
the condition number of the preconditioned system. Finally, we
apply the multiscale basis preconditioner to several problems
with a truncated Karhunen–Loéve expansion of a stochastic per-
meability field using a nonintrusive stochastic collocation
approximation.
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7.1. Optimality of the preconditioner

Define D = [0,1] � [0,1] and consider problem Eq. (2.1) with a
deterministic coefficient K(x) = 1 � 0.5sin (px1) sin (px2), f(x) = 1,
and pb = 0. We compute the multiscale basis functions based asso-
ciated with a relatively simple training permeability: KðxÞ ¼ 1.

First, we divide D into 16 equal sized subdomains in a 4 � 4 pat-
tern and choose continuous piecewise linear mortars with H = 2h.
In this, and the other two cases in this subsection, the outer itera-
tive method is GMRES (unrestarted) with a tolerance of 10�8 and
the preconditioning system is solved using CG with a tolerance
of 10�10. In Table 1, we see that refining the subdomain mesh size
has no effect on the number of interface iterations.

Next, we set h = 1/128 and use continuous piecewise linear
mortars with H = 2h. We vary the number of subdomains from 4
(2 � 2) to 256 (16 � 16). In Table 2, we observe that increasing
the number of subdomains does not affect the number of interface
iterations.

Finally, we set h = 1/128 and fix the number of subdomains at
16 (4 � 4). We choose H = 4h and vary the degree of the mortar
approximation from one to three and investigate both continuous
and discontinuous mortars. In Table 3, we see that the mortar de-
gree does not affect the number of interface iterations.

7.2. Choice of training permeability

Define D = [0,1] � [0,1] and consider problem Eq. (2.1) with a
deterministic coefficient K(x) as shown in Fig. 1(a) and f(x) = 0.
The boundary conditions are chosen to induce flow from left to
right: p = 1 on the left boundary, p = 0 on the right boundary, and
no flow u � m = 0 on the top and bottom boundaries. Also in Fig. 1,
we show the three different training permeabilities for this problem.
Table 3
Number of interface iterations for Example 7.1 as the mortar degree, m, increases and
the subdomain mesh size and the number of subdomains remain fixed. Here, (d)
denotes discontinuous polynomials.

h Subdomains m Iterations

1/128 16 1 10
1/128 16 2 10
1/128 16 3 10
1/128 16 1(d) 10
1/128 16 2(d) 10
1/128 16 3(d) 10

Table 1
Number of interface iterations for Example 7.1 as the subdomain mesh size, h,
decreases and the number of subdomains and the mortar degree, m, remain fixed.

h Subdomains m Iterations

1/64 16 1 10
1/128 16 1 10
1/256 16 1 10
1/512 16 1 10

Table 2
Number of interface iterations for Example 7.1 as the number of subdomains
increases and the subdomain mesh size, h, and the mortar degree, m, remain fixed.

h Subdomains m Iterations

1/128 4 1 10
1/128 16 1 10
1/128 64 1 10
1/128 256 1 10
The first permeability is very simple and reflects none of the phys-
ics. The second is somewhat closer, but still does not reflect the
discontinuities in the true permeability. The third training perme-
ability matches only the order of magnitude in each subdomain.
For this example, we use nonmatching grids as shown in Fig. 2(a)
and continuous linear mortars. The outer iterative method is
GMRES (unrestarted) with a tolerance of 10�6 and the precondi-
tioned system is solved using conjugate gradients with a tolerance
of 10�8. The computed pressure is shown in Fig. 2(b).

In Fig. 3, we plot the norm of the relative residual using multi-
scale basis preconditioner from each of the training permeabilities.
We observe that choosing a training permeability that captures as
much of the physics as possible significantly reduces the number
of interface iterations.

In this example we could have chosen the training permeability
to match the true permeability and obtained convergence in one
step. However, recall that our true interest is in solving a sequence
of problems where the permeability is different for each
realization.

7.3. Permeabilities generated using a KL expansion

In this section, we compare the performance of a number of do-
main decomposition strategies for the solution of a series of inter-
face problems generated using a truncated KL expansion with a
nonintrusive stochastic method such as Monte Carlo or stochastic
collocation.

The four strategies considered in this paper are:

	 DD: standard iterative domain decomposition without
preconditioning.
	 BDD: iterative domain decomposition with a balancing

preconditioner.
	 MS: multiscale domain decomposition with the multiscale basis

recomputed for each realization.
	 MSPRE: iterative domain decomposition with multiscale basis

preconditioner.

The comparison of the methods is done in terms of number of
subdomain solves, which is the dominant computational cost. In
DD, one solve per subdomain is required for each interface itera-
tion. In BDD, three solves are required per subdomain per itera-
tion: one Dirichlet solve for the evaluation of the interface
operator, and two Neumann solves to apply the preconditioner
[14,35]. In MS, instead of solving subdomain problems for each
iteration, the action of the interface operator is computed via a
linear combination of a precomputed multiscale basis. A new ba-
sis is computed for each realization. The dominant cost is the
computation of the multiscale basis, which requires as many sub-
domain solves as the number of mortar degrees of freedom per
subdomain. In MSPRE, the iterative procedure requires one solve
per subdomain for each iteration. The preconditioner uses the
multiscale basis constructed using the training permeability which
we take to be the mean permeability. Each application of the pre-
conditioner requires solving a coarse scale equation using the
training multiscale basis, which does not involve additional sub-
domain solves.

Define D = [0,1] � [0,1] and consider problem Eq. (2.1) with sto-
chastic permeability K(x,x) that has an expected value shown in
Fig. 4(a). The boundary conditions are chosen to induce flow from
left to right as in the previous example. We discretize D into 25
subdomains in a 5 � 5 pattern, each with h = 1/360 giving 5184
equal sized elements per subdomain. The total number of elements
in the mesh is 129,600. We choose continuous quadratic mortars
and set H 


ffiffiffi
h
p

, giving 17 mortar degrees of freedom per subdo-
main boundary. The choice of high-order mortars on a coarse mesh



Fig. 1. True and training permeabilities for Example 7.2.

Fig. 2. Discretizations and mixed finite element solution for Example 7.2.
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is made to balance the fine scale and coarse scale errors in order to
obtain optimal order of accuracy on the fine scale (see Remark 4.2
and [3]).

The maximum number of mortar degrees of freedom associated
with a subdomain is 68, but some of the subdomains do not have
mortars on all boundaries and therefore have fewer mortar degrees
of freedom. In the tables below we report that each subdomain
performs 68 solves because if the multiscale basis is computed in
a parallel environment, those subdomains with less than 68 mortar
degrees of freedom will be waiting for the others to finish. In
Fig. 4(b), we plot the magnitude of the velocity field corresponding
to the mean of the permeability.

The performance of the multiscale basis preconditioner for each
permeability realization depends on the perturbation from the
mean permeability. This difference depends on the variance rY,
which affects the magnitude of the perturbations from the mean
permeability field, and the number of terms in the truncated Karh-
unen–Loéve expansion, which affects the fine scale variability. We
use correlation lengths g1 = 0.2 and g2 = 0.125 in the xi � direc-
tions. The mean removed permeability field is assumed to be
Gaussian, making the random variables mutually uncorrelated
with zero mean and unit variance. We test the multiscale precon-
ditioner by varying both rY and the number of terms in the KL
expansion.

If the number of terms (stochastic dimension) is relatively low,
then we use a stochastic collocation method with collocation
points chosen to be a tensor product of the roots of global Hermite
polynomials as in [19]. The accuracy of the computed statistics de-
pends on the order of the collocation method. Here, we choose a
relatively low order method with two collocation points per
dimension since our focus is on the performance of the precondi-
tioner. If the number of terms in the KL expansion is relatively



Fig. 3. Norm of the relative residual using the multiscale basis preconditioner
corresponding to each of the training permeabilities for Example 7.2.

Table 4
Number of solves per subdomain for Example 7.3 with rY = 0.25, 4 terms in the KL
expansion, and 16 stochastic realizations.

Method Total Average Minimum Maximum

DD 2825 176.6 165 186
BDD 1674 104.6 99 105
MS 1088 68 68 68
MSPRE 64(+68) 4 4 4

Table 5
Number of solves per subdomain for Example 7.3 with rY = 1.0, 4 terms in the KL
expansion, and 16 stochastic realizations.

Method Total Average Minimum Maximum

DD 2960 185 169 195
BDD 1680 105 105 105
MS 1088 68 68 68
MSPRE 84(+68) 5.25 4 6

Table 6
Number of solves per subdomain for Example 7.3 with rY = 10.0, 4 terms in the KL
expansion, and 16 stochastic realizations.

Method Total Average Minimum Maximum

DD 3827 239.2 195 285
BDD 1656 103.5 99 105
MS 1088 68 68 68
MSPRE 216(+68) 13.3 7 19

Table 7
Number of solves per subdomain for the model problem in Section 7.3 with rY = 1.0, 9
terms in the KL expansion, and 512 realizations corresponding to the samples points
for second order stochastic collocation.

Method Total Average Minimum Maximum

DD 98544 192.5 160 225
BDD 53106 103.7 99 105
MS 34816 68 68 68
MSPRE 3463(+68) 6.8 5 10
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large, then we use a Monte Carlo sampling method to generate the
realizations.

All of the following numerical experiments use GMRES for the
interface iterations with a tolerance of 10�6. The preconditioner
is applied using GMRES using a block Jacobi preconditioner with
a coarse scale correction (see [1,20]) with a tolerance of 10�8.
The block Jacobi preconditioner is only applicable when the multi-
scale basis has been assembled. We can also use interface multi-
grid [43,20] to efficiently solve the interface problem required for
the application of the preconditioner.

In the tables below we report some statistics for the number of
solves per subdomain: the total number of subdomain solves for all
realizations, the average number of subdomain solves per realiza-
tion, as well as the minimum and maximum number of subdomain
solves amongst the realizations. For a fair comparison, the number
68 has been added to the total number of solves for MSPRE to ac-
count for the cost in assembling the preconditioner.

7.3.1. Fixed number of kl terms, Varying rY

In the first set of experiments we take 4 terms in the KL expan-
sion with second order stochastic collocation in each dimension,
giving 24 = 16 realizations. We test three cases, rY = 0.25, 1, and
10. In Table 4, we give the performance of the preconditioner for
Fig. 4. Mean permeability and the magnitude of the
rY = 0.25 corresponding to the perturbation of the permeability
field in each realization being relatively small.

For DD and MSPRE, the number of subdomain solves equals the
number of interface iterations. The multiscale basis preconditioner
performs very well and reduces significantly the number of
corresponding velocity solution for Example 7.3.



Fig. 5. Two stochastic permeability realizations (left) and the logarithm of the magnitude of the corresponding velocity fields (right) for Example 7.2 with 100 terms in the KL
expansion.

Table 8
Number of solves per subdomain for Example 7.3 with rY = 1.0, 100 terms in the KL
expansion, and 1000 Monte Carlo realizations.

Method Total Average Minimum Maximum

DD 203587 203.6 144 283
BDD 104460 104.5 99 108
MS 68000 68 68 68
MSPRE 11262(+68) 11.3 6 33
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subdomain solves. For MS, the number of subdomain solves is
determined by the number of multiscale basis functions for each
realization. Hence the number of solves does not depend on the
number of interface iterations and stays constant over all realiza-
tions. The multiscale basis preconditioner performs the fewest
number of subdomain solves amongst the methods considered.
In Tables 5 and 6, we give the results for rY = 1 and rY = 10. As
we increase rY the average performance of the multiscale basis
preconditioner degrades slightly, but it is still significantly more
efficient than the other two methods.

7.3.2. Fixed rY, varying the number of KL terms
In the second set of experiments, we set rY = 1.0 and vary the

number of terms in the KL expansion. First, we compare the num-
ber of subdomain solves for each of the four methods using 9 terms
in the KL expansion. As in the previous cases, two stochastic collo-
cation points were chosen in each stochastic dimension, giving
29 = 512 realizations. In Table 7, we see that reusing the multiscale
basis as a preconditioner requires an order of magnitude fewer
solves per subdomains than recomputing the multiscale basis for
each realization, and in even larger savings compared to the DD
and BDD approaches. Note also that the proportion of the cost
associated with the construction the preconditioner (68 solves
per subdomain) is smaller in this case in comparison with the pre-
vious cases with fewer realizations.

Next, we increase the number of terms in the KL expansion to
100. Since the stochastic dimension is 100, tensor product stochas-
tic collocation using only 2 collocation points per dimension would
require 2100 realizations which is computationally infeasible. A
sparse grid collocation method would greatly reduce the number
of realizations required [17,18,32], but our focus is on the perfor-
mance of the preconditioner for typical realizations rather than
actually computing a mean or variance of the solution. Therefore,
we use a Monte Carlo sampling technique to generate 1000 realiza-
tions and test the preconditioner on these problems. In Fig. 5 we
plot two permeability realizations (left) and the logarithm of the
magnitude of the corresponding velocity fields (right). The compu-
tational cost for the four methods is reported in Table 8. Despite
the fact that we have introduced more variability into the perme-
ability realizations, the multiscale basis preconditioner based on
the expected permeability still performs quite well and is easily
the most efficient of the four methods.

Remark 7.1. We note that decreasing the subdomain mesh size h
and increasing the number of subdomains would increase the
number of solves per subdomain for DD and, with a smaller
polylogarithmic rate, for BDD, while the number of solves per
subdomain would remain fixed for MS and MSPRE. Furthermore,
refining the mortar mesh, i.e., decreasing H, would also increase
the number of solves per subdomain for DD and BDD due to more
interface iterations. The effect on MS and MSPRE would also be
increased number of solves per subdomain to compute the basis,
which is less significant, especially for MSPRE, since the basis is
computed only once.
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We end this section with a remark on constructing multiple
training operators. As the numerical results demonstrate, the mul-
tiscale preconditioner is most effective if the realizations are rela-
tively close to the training permeability. If the perturbations grow
too large, then using MSPRE may become more expensive than MS
or BDD. In this case, multiple preconditioners may be constructed
and used only for ‘‘nearby’’ realizations. For example, if a Markov
chain Monte Carlo method is used, one multiscale preconditioner
may be used for each random walk. If a truncated KL expansion
with P terms is used with stochastic collocation, a multiscale basis
may be constructed for each realization of a shorter KL expansion
with L < P terms. Each realization of the longer KL expansion can be
viewed as a perturbation of a particular realization in the shorter
expansion. Therefore, the multiscale basis corresponding to the
realization in the shorter expansion should be a better precondi-
tioner than the multiscale basis from the mean permeability. We
elected not to pursue this issue in this paper for the sake of space,
but this may be the subject of future work.
8. Conclusion

We have introduced a new approach for efficient uncertainty
quantification by combining a nonintrusive stochastic method
with the construction of a multiscale mortar basis. The multiscale
basis is constructed for a carefully chosen training operator and is
reused as a preconditioner for subsequent realizations.

The numerical results confirm that the condition number of the
multiscale basis preconditioned interface problem is independent
of the subdomain mesh size h and the mortar mesh size H. Further-
more, for stochastic flow in porous media, the preconditioner
reuses the multiscale basis, leading to a very efficient algorithm.
The performance of the preconditioner is relatively robust with re-
spect to the variance of the stochastic permeability and the dimen-
sion of the stochastic space if a suitable training permeability is
chosen.
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