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a b s t r a c t

The aim of this paper is to quantify uncertainty of flow in porous media through stochastic modeling and
computation of statistical moments. The governing equations are based on Darcy’s law with stochastic
permeability. Starting from a specified covariance relationship, the log permeability is decomposed using
a truncated Karhunen–Loève expansion. Mixed finite element approximations are used in the spatial
domain and collocation at the zeros of tensor product Hermite polynomials is used in the stochastic
dimensions. Error analysis is performed and experimentally verified with numerical simulations. Compu-
tational results include incompressible and slightly compressible single and two-phase flow.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In groundwater flow problems, it is physically impossible to
know the exact permeability at every point in the domain. This is
due to the prohibitively large scope of realistic domains, inhomo-
geneity in the media, and also the natural randomness occurring
at very small scales. One way to cope with this difficulty is to mod-
el permeability (or porosity) as a stochastic function, determined
by an underlying random field with an experimentally determined
covariance structure.

The development of efficient stochastic methods that are appli-
cable to a wide range of subsurface flow models could substantially
reduce the computational costs associated with uncertainty quan-
tification (in terms of both time and resources required). Such
methods could facilitate the uncertainty analysis of complex, com-
putationally demanding models, where traditional methods may
not be feasible due to computational and time constraints. Interest
in developing these methods for flow in porous media has been
significant in the last years [8,27,48].

Stochastic modeling methods can be classified in three major
groups: (1) sampling methods [13,24], (2) moment/perturbation
methods [21,26,48,19,20] and (3) non-perturbative methods,
either based on polynomial chaos expansions [16,17,42–44,18] or
stochastic finite element methods [16,12,3]. In such order, we
can say that these methods range from being non-intrusive to very
intrusive in terms of modifying the original simulation model. The
best known sampling method is Monte Carlo simulation (MCS),

which involves repeated generation of random samplings (realiza-
tions) of input parameters followed by the application of the
simulation model in a ‘‘black box” fashion to generate the corre-
sponding set of stochastic responses. These responses are further
analyzed to yield statistical moments or distributions. The major
drawback of MCS is the high computational cost due to the need
to generate valid representative statistics from a large number of
realizations at a high resolution level.

Moment/perturbation and finite element stochastic methods
fall into the category of non-sampling methods. These methods
are suitable for systems with relatively small random inputs and
outputs. However, despite the apparent accuracy and mild cost
with respect to MCS, these methods also present some limitations
that have prevented them from being widely used. The problem is
that their semi-intrusive or fully intrusive character may greatly
complicate the formulation, discretization and solution of the
model equations, even in the case of linear and stationary input
distributions. There is also a high computational cost associated
with these methods since the number of terms needed to accu-
rately represent the propagation of uncertainties grows signifi-
cantly with respect to the degree of variability of the system. It is
still not clear how these methods may be formulated in the event
of high nonlinearities due to complex flow and chemical reactions
over arbitrary geometries.

On the other hand, stochastic finite elements exhibit fast con-
vergence through the use of generalized polynomial chaos repre-
sentations of random processes (i.e., generalizations of the
Wiener–Hermite polynomial chaos expansion to include a wider
class of random processes by means of global polynomial expan-
sions, piecewise polynomial expansions and wavelet basis expan-
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sions; see e.g. [3,40]). However, besides their very intrusive fea-
ture, the dimensionality of the discretized stochastic finite element
equations can be dramatically larger than the dimensionality of the
base case deterministic model.

A very promising approach for improving the efficiency of non-
sampling methods is the stochastic collocation method [2,41,45].
It combines a finite element discretization in physical space with
a collocation at specially chosen points in probability space. As a
result a sequence of uncoupled deterministic problems need to
be solved, just like in MCS. However, the stochastic collocation
method shares the approximation properties of the stochastic fi-
nite element method, making it more efficient than MCS. Choices
of collocation points include tensor product of zeros of orthogonal
polynomials [2,41], sparse grid approximations [15,28,30,38,41],
and probabilistic collocation [25]. The last two provide ap-
proaches to reduce the number of collocation points needed to
obtain a given level of approximation, leading to very efficient
algorithms.

In this paper we combine mixed finite element (MFE) discreti-
zations in physical space with stochastic collocation methods.
The choice of spatial discretization is suitable for flow in porous
media since it provides the solution such desired physical proper-
ties as local element-wise conservation of mass and a velocity field
with continuous normal components. We study incompressible
and slightly compressible single phase flow as well as two-phase
flow. The paper focuses on tensor product collocation methods.
Convergence analysis for the pressure and the velocity is presented
for single phase incompressible and slightly compressible flow. The
analysis follows the approach in [2] where standard Galerkin dis-
cretizations are studied. We show that the total error can be
decomposed into the sum of deterministic and stochastic errors.
Optimal convergence rates and superconvergence for the pressure
are established for the deterministic error. The stochastic error
converges exponentially with respect to the number of the colloca-
tion points. Numerical experiments for incompressible single
phase flow as well as slightly compressible single phase and two
phase flow confirm the theoretical convergence rates and demon-
strate the efficiency to our approach compared to MCS. In addition,
we find topological similarities between single and two-phase flow
pressure trends that could be key for improving the performance of
uncertainty quantification and management in complex flow
systems.

The rest of the paper is organized as follows: The model prob-
lem for incompressible single phase flow is presented in Section
2. The MFE stochastic collocation method is developed in Section
3 and analyzed in Section 4. Extensions to slightly compressible
single phase and two phase flow are developed in Section 5. Sec-
tions 6 and 7 contain numerical experiments for incompressible
and compressible flow, respectively. Some conclusions and future
directions are presented in Section 8.

2. Model problem: single phase incompressible flow

We begin with the mixed formulation of Darcy flow. Let
D � Rd; d ¼ 2;3 be a bounded Lipschitz domain and X be a sto-
chastic event space with probability measure P. The Darcy velocity
u and the pressure p satisfy P-almost everywhere in X

u ¼ �Kðx;xÞrp in D; ð2:1Þ
r � u ¼ q in D; ð2:2Þ
p ¼ pb on oD: ð2:3Þ

For simplicity we assume Dirichlet boundary conditions. More gen-
eral boundary conditions can also be considered via standard tech-
niques. The permeability K is a diagonal tensor with uniformly
positive and bounded in D elements. To simplify the presentation,

we will assume that K is a scalar function. Since the permeability
K is a stochastic function, p and u are also stochastic.

Throughout this paper the expected value of a random variable
nðxÞ with probability density function (p.d.f) qðyÞ will be denoted

E½n� ¼
Z

X
nðxÞdPðxÞ ¼

Z
R

yqðyÞdy:

2.1. The Karhunen–Loève (KL) expansion

In order to guarantee positive permeability almost surely in X,
we consider its logarithm Y ¼ lnðKÞ. Let the mean removed log
permeability be denoted by Y 0, so that Y ¼ E½Y � þ Y 0. Its covari-
ance function CYðx; �xÞ ¼ E½Y 0ðx;xÞY 0ð�x;xÞ� is symmetric and posi-
tive definite, and hence can be decomposed into the series
expansion

CYðx; �xÞ ¼
X1
i¼1

kifiðxÞ: ð2:4Þ

The eigenvalues ki and eigenfunctions fi of this series are computed
using CY as the kernel of the Type II Fredholm integral equationZ

D
CYðx; �xÞf ðxÞdx ¼ kf ð�xÞ: ð2:5Þ

The symmetry and positive definiteness of CY cause its eigenfunc-
tions to be mutually orthogonal, i.e., ðfm; fnÞL2ðDÞ ¼ dmn, and form a
complete spanning set. Using this fact the Karhunen–Loève expan-
sion of the log permeability can now be written as

Yðx;xÞ ¼ E½Y �ðxÞ þ
X1
i¼1

niðxÞ
ffiffiffiffi
ki

p
fiðxÞ; ð2:6Þ

where, if Y 0 is given by a Gaussian process, the ni are mutually
uncorrelated random variables with zero mean and unit variance
[16].

At this point, the KL expansion is truncated after N terms, which
is feasible to do as typically the ki decay rapidly [47]. If the expan-
sion is truncated prematurely, the permeability may appear too
smooth, so if more heterogeneity is desired then N should be in-
creased. This truncation allows us to write Yðx;xÞ ¼ Yðx;
n1ðxÞ; . . . ; nNðxÞÞ. The images of the random variables Ci ¼ niðXÞ
make up a finite dimensional vector space C ¼

QN
i¼1Ci � RN . If qi

corresponds to the p.d.f. of each ni, then the joint p.d.f. for the ran-
dom vector ðn1; . . . ; nNÞ is defined to be q ¼

QN
i¼1qi. Then we can

write Yðx;xÞ ¼ Yðx; yÞ, where y ¼ ðy1; . . . ; yNÞ and yi ¼ niðxÞ.
The numerical experiments described herein listed in Sections 6

and 7 will use the following specific covariance function (in 2-D)
originally taken from [47], in which ki and fiðxÞ can be found
analytically

CYðx; �xÞ ¼ r2
Y exp

�jx1 � �x1j
g1

� jx2 � �x2j
g2

� �
: ð2:7Þ

Here rY and gi denote variance and correlation length in the ith spa-
tial dimension, respectively. This covariance kernel is separable, so
Eq. (2.5) can be solved in each dimension individually, and then its
eigenvalues and eigenfunctions can be assembled by multiplication.
These eigenvalues will decay at a rate asymptotic to Oð1=N2Þ and for
this particular case can be computed analytically.

When the exact eigenvalues and eigenfunctions of the covari-
ance function CY can be found, the KL expansion is the most effi-
cient method for representing a random field. However, in most
cases, closed-form eigenfunctions and eigenvalues are not readily
available and numerical procedures need be performed for solving
the integral Eq. (2.5). Efficient methods for numerically computing
the KL expansion are reported in [37].
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2.2. Variational formulation

Appealing to the Doob–Dynkn Lemma [31], the p.d.f. for the
permeability K carries through to the solution of (2.1)–(2.3), so that
ðu; pÞ has the form

uðx;xÞ ¼ uðx; n1ðxÞ; . . . ; nNðxÞÞ ¼ uðx; y1; . . . ; yNÞ and
pðx;xÞ ¼ pðx; n1ðxÞ; . . . ; nNðxÞÞ ¼ pðx; y1; . . . ; yNÞ:

Since we will be computing statistical moments of the stochastic
solution to the mixed formulation of Darcy’s Law, this naturally
leads to introduce the spaces VðD;CÞ ¼ Hðdiv; DÞ � L2ðCÞ and
WðD;CÞ ¼ L2ðDÞ � L2ðCÞ with norms

kvk2
V ¼

Z
C

qðyÞ
Z

D
ðv � vþ ðr � vÞ2Þdxdy ¼ E½kvk2

Hðdiv;DÞ� and

kwk2
W ¼

Z
C

qðyÞ
Z

D
w2 dxdy ¼ E½kwk2

L2ðDÞ�:

The usual multiplication by a test function v 2 VðD;CÞ and
w 2WðD;CÞ and subsequent application of Green’s Theorem in
the system (2.1)–(2.3) leads to the weak formulation. That is, to find
uðx;xÞ 2 VðD;CÞ;pðx;xÞ 2WðD;CÞ such thatZ

C
ðK�1u; vÞL2ðDÞqðyÞdy ¼

Z
C
ððp;r � vÞL2ðDÞ � hpb; v � niL2ðoDÞÞqðyÞdy;

8v 2 V D;Cð Þ; ð2:8Þ

Z
C
ðr � u;wÞL2ðDÞqðyÞdy ¼

Z
C
ðq;wÞL2ðDÞqðyÞdy; 8w 2WðD;CÞ;

ð2:9Þ

where n is the outward normal to oD.

3. Stochastic collocation for mixed finite element methods

After expressing the log permeability as a truncated KL expan-
sion, the problem has now been reformulated in the finite dimen-
sional space D� C 2 RdþN . At this point, there are several ways in
which to discretize the problem. The Stochastic Finite Element
Method (SFEM) [12] considers solving the problem using full
dþ N dimensional finite elements. This method essentially at-
tempts to tackle a single and coupled high dimensional problem
at one fell swoop. The resulting system is significantly large, diffi-
cult to set up, and the solution algorithm does not easily lend itself
to parallelization.

A less intrusive approach is to use d-dimensional finite ele-
ments in the spatial domain D, and to sample the stochastic space
C only at certain points. By a simple Monte Carlo approach for in-
stance, we may choose M random stochastic points, and a deter-
ministic FEM problem may then be solved in physical space at
each realization. Finally, these solutions may then be averaged to-
gether in order to compute the various statistical moments of the
stochastic solution. The advantage of this method is that the deter-
ministic FEM problems are completely uncoupled, and may be
solved in parallel. The disadvantage of this method is that the con-
vergence rate is slow, e.g., kp� pM

MCkW ¼ Oð1=
ffiffiffiffiffi
M
p
Þ.

The Stochastic Collocation Method improves upon the Monte
Carlo approach by sampling at specially chosen collocation points
in order to form a polynomial interpolant in the stochastic space.
Different varieties of stochastic collocation arise by considering
different sets of collocation points. The simplest approach is a full
tensor product grid of collocation points. This will be the method
that is considered henceforth.

It should be noted that full tensor product grids of collocation
points suffer from the so-called” curse of dimensionality”. Increas-

ing the number of terms in the truncated KL expansion (2.6) in-
creases the number of stochastic dimensions in C which
exponentially increases the number of points in a full tensor prod-
uct grid. To cope with this problem, more advanced collocation
techniques are possible such as the so called probabilistic colloca-
tion method (see e.g. [25]) and the Smolyak sparse grids (see e.g.
[30,45]) but will not be considered in this paper.

3.1. Mixed finite element semidiscrete formulation

Let Th be a shape-regular affine finite element partition of the
spatial domain D [10]. A mixed finite element discretization
VhðDÞ �WhðDÞ � Hðdiv;DÞ � L2ðDÞ is chosen to satisfy a discrete
inf–sup condition. The semidiscrete formulation will be to find
uh : C! VhðDÞ and ph : C!WhðDÞ such that for a.e. y 2 C,

ðK�1uh; vhÞL2ðDÞ ¼ ðph;r � vhÞL2ðDÞ � hpb; vh � niL2ðoDÞ; 8vh 2 VhðDÞ;
ð3:1Þ

ðr � uh;whÞL2ðDÞ ¼ ðq;whÞL2ðDÞ; 8wh 2WhðDÞ: ð3:2Þ

By the general saddle point problem theory [7], a solution to this
problem exists and it is unique.

Any of the usual mixed finite element spaces may be consid-
ered, including the RTN spaces [36,29], BDM spaces [6], BDFM
spaces [5], BDDF spaces [4], or CD spaces [9]. On each element E
in the mesh, assume that the velocity space VhðEÞ contains
ðPrðEÞÞd, r P 0, with normal components on each edge (face) in
PrðcÞ, and that the pressure space WhðEÞ contains PsðEÞ. In all of
the above mixed FEM spaces, s ¼ r or s ¼ r � 1 when r P 1. In
the numerical experiments in Section 6, the lowest order Ravi-
art–Thomas RT0 spaces will be used on a uniform mesh of rectan-
gular elements in 2-D.

3.2. Stochastic collocation and fully discrete formulation

Let fykg; k ¼ 1; . . . ;Mm be a collection of points which form a
Haar set in C. Then these points will generate a unique N dimen-
sional polynomial interpolant Im of total degree m across the sto-
chastic space. The fully discrete solution is define to be

uh;mðx; yÞ ¼ Imuhðx; yÞ; ph;mðx; yÞ ¼ Imphðx; yÞ:

Let ðuhðx; ykÞ;phðx; ykÞÞ solve (3.1) and (3.2) for k ¼ 1; . . . ;Mm. Then
the fully discrete solution has the Lagrange representation:

uh;mðx; yÞ ¼
XMm

k¼1

uhðx; ykÞlkðyÞ; ð3:3Þ

ph;mðx; yÞ ¼
XMm

k¼1

phðx; ykÞlkðyÞ; ð3:4Þ

where flkg is the Lagrange basis lkðyjÞ ¼ dkj. As previously described,
to compute each uh;m and ph;m it is necessary to solve Mm uncoupled
deterministic problems.

In practice, this Lagrange representation is not actually assem-
bled, since the end goal will be the computation of the stochastic
solution’s statistical moments such as expectation and variance.
After solving each deterministic problem at a collocation point, a
running total is tabulated in a weighted sum, e.g.,

E½ph;m�ðxÞ ¼
Z

C
ph;mðx; yÞqðyÞdy ¼

Z
C

Imphðx; yÞqðyÞdy

¼
Z

C

XMm

k¼1

phðx; ykÞlkðyÞqðyÞdy ¼
XMm

k¼1

wkphðx; ykÞ;

where the weights wk ¼
R

C lkðyÞqðyÞdy.
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3.3. Tensor product collocation

For stochastic collocation using a full tensor product grid, as-
sume that we wish to obtain accuracy up to polynomial of degree
mi in the ith component of C. This will require mi þ 1 points in the
ith direction. Let m ¼ ðm1; . . . ;mNÞ and define the space PmðCÞ ¼
Pm1 ðC1Þ � � � � � PmN ðCNÞ. Then the total number of collocation
points needed will be M ¼ dimPmðCÞ ¼

QN
i¼1ðmi þ 1Þ.

The one dimensional collocation points on the component Ci

will be the mi þ 1 zeros of the orthogonal polynomial qmiþ1 with re-
spect to the inner-product ðu; vÞqi

¼
R

Ci
uðyÞvðyÞqiðyÞdy. Let

Ii
mi
2 Pmi

ðCiÞ be the one-dimensional interpolant:

Ii
mi

uð�; yi;kÞ ¼ uð�; yi;kÞ; k ¼ 1; . . . ;mi þ 1:

Since the choice was made in Section 2.1 to use the particular
covariance function (2.7), with its KL expansion consisting of
Nð0;1Þ Gaussian distributed random variables, we have qi ¼

1ffiffiffiffi
2p
p e�y2

i
=2 and Ci ¼ R. The corresponding orthogonal polynomials un-

der this inner product will be the global Hermite polynomials

Hmi
ðyÞ ¼ mi!

X½mi=2�

j¼0

ð�1Þj ð2yÞmi�2j

j!ðmi � 2jÞ! ;

and their roots can be found tabulated in [1] or computed with a
symbolic manipulation software package.

4. Error analysis for single phase incompressible flow

The error between the true stochastic velocity u and the
approximate fully discrete velocity uh;m may be decomposed by
adding and subtracting the semidiscrete velocity uh

ku� uh;mkV 6 ku� uhkV þ kuh � uh;mkV

¼ ku� uhkV þ kuh � ImuhkV :

A similar decomposition holds for kp� ph;mkW . An a priori bound on
the first term follows, assuming enough smoothness of the solution,
from standard deterministic mixed FEM error analysis [7]

ku� uhk2
V þ kp� phk

2
W ¼

Z
C
ku� uhk2

Hðdiv;DÞ þ kp� phk
2
L2ðDÞ

� �
qðyÞdy

6 C
Z

C
h2rþ2kuk2

Hrþ1ðDÞ þ h2sþ2kr � uk2
Hsþ1ðDÞ

�
þh2sþ2kpk2

Hsþ1ðDÞ

�
qðyÞdy

¼ C h2rþ2kuk2
Hrþ1ðDÞ�L2ðCÞ

�
þh2sþ2kr � uk2

Hsþ1ðDÞ�L2ðCÞ

þh2sþ2kpk2
Hsþ1ðDÞ�L2ðCÞ

�
:

For the second term, an interpolation bound on C has recently been
found in [2] to be

kuh � ImuhkV þ kph � ImphkW 6 C
XN

i¼1

e�ci
ffiffiffiffi
mi
p

;

where ci > 0 are defined in [2]. In particular, it is shown in [2] that if
K is smooth enough in C, then the solution admits an analytic exten-
sion in a region of the complex plane containing Ci for i ¼ 1; . . . ;N,
and that ci depends on the distance between Ci and the nearest sin-
gularity in the complex plane. The KL expansion (2.6) satisfies the
smoothness assumption in [2]. As a result we have the following
theorem.

Theorem 4.1. Assume that u 2 Hrþ1ðDÞ � L2ðCÞ, r � u 2 Hsþ1ðDÞ
�L2ðCÞ, and p 2 Hsþ1ðDÞ � L2ðCÞ. Then there exists a constant C
independent of h and M such that

ku� uh;mkV þ kp� ph;mkW 6 C hrþ1 þ hsþ1 þ
XN

i¼1

e�ci
ffiffiffiffi
mi
p

 !
:

We next establish a superconvergence bound for the pressure.
For u 2 L2ðDÞ, denote with û its L2-projection in Wh satisfying

ðu� û;whÞL2ðDÞ ¼ 0 8 wh 2Wh; ð4:1Þ

ku� ûkL2ðDÞ 6 ChlkukHlðDÞ; 0 6 l 6 sþ 1: ð4:2Þ

Let P : ðH1ðDÞÞd ! VhðDÞ be the mixed finite element projection
operator satisfying

ðr � ðu�PuÞ;whÞL2ðDÞ ¼ 0 8wh 2Wh; ð4:3Þ

ku�PukðL2ðDÞÞd 6 ChlkukðHlðDÞÞd ; 1 6 l 6 r þ 1: ð4:4Þ

Theorem 4.2. Assume that problem (2.1)–(2.3) is H2-elliptic regular.
Under the assumptions of Theorem 4.1, there exists a constant C
independent of h and M such that

kp̂� ph;mkW 6 Cðhku� uhkV þ kph � ImphkWÞ:

Proof. The proof is based on a duality argument. Taking v ¼ vh and
w ¼ wh in the weak formulation (2.8)–(2.9) and subtracting the
semidiscrete formulation (3.1)–(3.2) gives the error equations for
a.e. y 2 C

ðK�1ðu� uhÞ; vhÞL2ðDÞ ¼ ðp̂� ph;r � vhÞL2ðDÞ 8vh 2 VhðDÞ; ð4:5Þ
ðr � ðu� uhÞ;whÞL2ðDÞ ¼ 0 8wh 2WhðDÞ: ð4:6Þ

Now consider the following auxiliary problem in mixed form:

wð�; yÞ ¼ �Kð�; yÞruð�; yÞ in D;

r � wð�; yÞ ¼ p̂� ph;m in D;

uð�; yÞ ¼ 0 on oD:

The elliptic regularity implies

kuð�; yÞkH2ðDÞ 6 Ckp̂� ph;mkL2ðDÞ: ð4:7Þ

Therefore,

kp̂� ph;mk
2
W ¼

Z
C
ðp̂� ph;m; p̂� ph;mÞL2ðDÞqðyÞdy

¼
Z

C
ðr � w; p̂� ph;mÞL2ðDÞqðyÞdy

¼
Z

C
ððr � w; p̂� phÞL2ðDÞ þ ðr � w; ph � ImphÞL2ðDÞÞqðyÞdy

¼ I þ II:

Applying the Cauchy–Schwarz inequality, we have

jIIj 6
Z

C
kr � wk2

L2ðDÞqðyÞdy
� �1=2 Z

C
kph � Imphk

2
L2ðDÞqðyÞdy

� �1=2

¼
Z

C
kp̂� ph;mk

2
L2ðDÞqðyÞdy

� �1=2

kph � ImphkW

¼ kp̂� ph;mkWkph � ImphkW :

Using (4.3) and (4.5) with vh ¼ Pw,

I ¼
Z

C
ðK�1ðu� uhÞ;PwÞL2ðDÞqðyÞdy

¼
Z

C
ððK�1ðu� uhÞ;Pw� wÞL2ðDÞ � ðu� uh;ruÞL2ðDÞÞqðyÞdy

¼ I1 þ I2:

The Cauchy–Schwarz inequality, (4.4), and (4.7) imply
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jI1j 6 C
Z

C
ku� uhk2

L2ðDÞqðyÞdy
� �1=2 Z

C
kPw� wk2

L2ðDÞqðyÞdy
� �1=2

6 Cku� uhkV h
Z

C
kwk2

ðH1ðDÞÞd qðyÞdy
� �1=2

6 Chku� uhkVkp̂� ph;mkW :

Using (4.6), (4.1), and (4.7), we have

jI2j ¼
Z

C
ðr � ðu� uhÞ;u�whÞL2ðDÞqðyÞdy

				
				

6 Cku� uhkV hkp̂� ph;mkW :

A combination of the above estimates completes the proof of the
theorem. h

Corollary 4.3. Under the assumptions of Theorem 4.2, there exists a
constant C independent of h and M such that

kp̂� ph;mkW 6 C hrþ2 þ hsþ2 þ
XN

i¼1

e�ci
ffiffiffiffi
mi
p

 !
:

5. Slightly compressible single and two-phase flow

In this section, we describe the extension of the stochastic
methods discussed in previous sections to the nonlinear conserva-
tion equations governing multiphase flow in porous media. Previ-
ous theoretical results are extended to slightly compressible flows.
For the the two-phase case only numerical results are reported
since few a priori estimates are known.

5.1. Two-phase flow

In the case of slightly compressible flow, the porosity / and per-
meability tensor K are spatially varying and constant in time reser-
voir data. We remark that in the general case, both porosity and
permeability may be stochastic random variables in space and
mutually correlated. For simplicity, we consider only the perme-
ability to be stochastic. Other rock properties involve relative per-
meability and capillary pressure relationships which are given
functions of saturations and possible also of position in the case
of different rock types. The well injection and production rates
are defined using the Peaceman well model [34] extended to mul-
tiphase and multicomponent flow, and they describe typical well
conditions for pressure or rate specified wells.

Let the lower case scripts w and o denote the water and oil
phase respectively. The corresponding phase saturations are de-
noted by Sw and So, the phase pressures by pw and po, and the well
injection/production rates by qw and qo.

Consider the two-phase immiscible slightly compressible oil-
water flow model in which the densities of oil and water are given
by the equation of state,

qn ¼ qref
n ecnðpn�pref

n Þ; ð5:1Þ

where qref
n is the reference density, pref

n is the reference pressure, and
cn is the compressibility for n ¼ w; o. The mass conservation equa-
tion and Darcy’s law are

un ¼ �
Kðx;xÞ

ln
qnknðrp� qnGrDÞ in D� J; ð5:2Þ

o

ot
ð/SnqnÞ þ r � un ¼ qn in D� J; ð5:3Þ

pn ¼ pn;b on oD� J; ð5:4Þ
pn ¼ pn;0 in D� f0g; ð5:5Þ

subject to the constitutive constraints

So þ Sw ¼ 1;
pcðSwÞ ¼ po � pw;

where ln is the density, G the magnitude of the gravitational accel-
eration, D the depth, and J ¼ ½0; T�.

5.2. Error analysis for single phase slightly compressible flow

In the case So ¼ 0, Eqs. (5.2)–(5.5) reduce to

u ¼ �Kðx;xÞ
l

qwðrp� qwGrDÞ in D� J; ð5:6Þ

o

ot
ð/qwÞ þ r � u ¼ q in D� J; ð5:7Þ

p ¼ pb on oD� J; ð5:8Þ
p ¼ p0 in D� f0g: ð5:9Þ

We retain the subscript w on the density to distinguish this quantity
from the probability density function. We make the following
assumptions on the data. There is a positive constant a such that

(A1) / 2 L1ðDÞ and 1
a 6 /ðxÞ 6 a,

(A2) qw 2W2;1ðRÞ and 1
a 6 qw; q

0
w; q

00
w 6 a.

The semidiscrete weak formulation seeks uh : C� J ! VhðDÞ
and ph : C� J !WhðDÞ such that for a.e. y 2 C,

Kqw;h

l

� ��1

uh; vh

 !
L2ðDÞ

¼ ðph;r � vhÞL2ðDÞ � ðqw;hGrD; vhÞL2ðDÞ

� pb; vh � nh iL2ðoDÞ; ð5:10Þ
o

ot
ð/qw;hÞ;wh

� �
L2ðDÞ
þ ðr � uh;whÞL2ðDÞ ¼ ðq;whÞL2ðDÞ; ð5:11Þ

for all vh 2 VhðDÞ and wh 2WhðDÞ with the initial condition
phð0Þ ¼ p̂0, the L2ðDÞ projection of p0 onto WhðDÞ. To discretize in
stochastic space, we select a tensor product set of collocation points
based on the roots of orthogonal Hermite polynomials, and use the
Lagrange representations (3.3) and (3.4) for the velocity and pres-
sure respectively.

Define VJ ¼ L2ðCÞ � LpðJÞ � Hðdiv; DÞ, and WJ ¼ L2ðCÞ � LpðJÞ�
L2ðDÞ, with the norms

kvk2
VJ
¼
Z

C
qðyÞ

Z
J
kvkp

Hðdiv;DÞdt
� �1=p

dy;

kwk2
WJ
¼
Z

C
qðyÞ

Z
J
kwkp

L2ðDÞdt
� �1=p

dy;

where if p ¼ 1, the integral is replaced by the essential supremum.
As before, we add and subtract the semidiscrete velocity, split-

ting the error into
ku� uh;mkVJ

¼ ku� uhkVJ
þ ku� ImuhkVJ

;

which represents a deterministic discretization error and a stochas-
tic error. Similar decomposition holds for kp� ph;mkWJ

. Using the
deterministic error bounds [22,23,33]

ku� uhkHðdiv;DÞ�LpðJÞ þ kp� phkL2ðDÞ�LpðJÞ

6 C hrþ1kukHrþ1ðDÞ�LpðJÞ þ hsþ1kr � ukHsþ1ðDÞ�LpðJÞ

�
þhsþ1kpkHsþ1ðDÞ�LpðJÞ

�
;

and the argument for the proof of Theorem 4.1, we obtain the fol-
lowing result.

Theorem 5.1. Assume that u 2 Hrþ1ðDÞ � LpðJÞ � L2ðCÞ, r � u 2
Hsþ1ðDÞ � LpðJÞ � L2ðCÞ, and p 2 Hsþ1ðDÞ � LpðJÞ � L2ðCÞ. Then there
exists a constant C independent of h and M such that

ku� uh;mkVJ
þ kp� ph;mkWJ

6 C hrþ1 þ hsþ1 þ
XN

i¼1

e�ci
ffiffiffiffi
mi
p

 !
:
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6. Numerical experiments for single phase incompressible flow

The numerical experiments in this section were programmed
using the parallel mixed finite element software package PARCEL
[11], which is written in FORTRAN and parallelized using the Mes-
sage Passing Interface (MPI) Library. The MFE space is taken to be
the lowest order Raviart–Thomas RT0 space on a uniform mesh of
rectangular 2-D elements, which is also equivalent to a cell-cen-
tered finite difference approximation. This code divides the prob-
lem into 4 non-overlapping subdomains and the problem is
reformulated in terms of new variables along the subdomain inter-
faces. This reduced interface problem is solved using a conjugate
gradient iteration with a balancing domain decomposition
preconditioner.

The covariance function (2.7) was used to generate the KL
expansion of an isotropic permeability field, as given in [47]. The
algorithm starts by pre-computing and storing the eigenvalues
and cell-centered eigenfunction values for the KL expansion.
Implementation of the stochastic collocation method was achieved
by adding a loop around the deterministic solver and supplying it
with permeability realizations at each stochastic collocation point.
The solutions for both stochastic pressure and velocity are then
averaged together using the collocation weights in order to com-
pute their expectation and variance.

All numerical experiments are solved on the square domain
½0;1� � ½0;1�. Each use the same KL expansion for mean removed
log permeability Y 0 with variance rY ¼ 1, correlation lengths
g1 ¼ 0:20, g2 ¼ 0:125, and are truncated after N ¼ 6 terms.

In the numerical error studies, the reported pressure error is the
discrete L2 error computed at the cell centers. The velocity error is
the discrete L2 error computed at the midpoints of the edges. The
flux error is the discrete L2 error of the flux through the subdomain

interfaces computed at the midpoints of the edges. The stochastic
convergence is computed on a fixed 80� 80 spatial mesh. The ex-
pected solutions on stochastic tensor product grids made up of
2,3,4 collocation points in 6 stochastic dimensions are compared
to the mean solution using 5 collocation points. The deterministic
convergence is computed using a fixed stochastic tensor product
grid of with 4 collocation points in 6 stochastic dimensions. The
spatial mesh is refined from a 10� 10 grid to an 80� 80 grid,
and error is computed against the numerical solution on a
160� 160 grid.

We consider three cases:

� Problem A: Flow from left to right,
� Problem B: Quarter five-spot well distribution, and
� Problem C: Discontinuous permeability field.

6.1. Problem A: flow from left to right test

Problem A has Dirichlet boundary conditions p ¼ 1 on fx1 ¼ 0g,
p ¼ 0 on fx1 ¼ 1g and Neumann boundary conditions u � n ¼ 0
specified on both fx2 ¼ 0g; fx2 ¼ 1g. The source function is q ¼ 0.
The log permeability Y has zero mean.

Fig. 1 shows a typical Monte Carlo realization of the isotropic
permeability field, and its corresponding solution. Figs. 2 and 3
show the expectation and variance of the stochastic solution. The
pressure variance is largest in a vertical strip in the middle of the
domain, away from the Dirichlet boundary edges. The velocity var-
iance is smallest along the Neumann edges and it is affected by the
direction of the flow. Table 1 shows the stochastic convergence.
We note that exponential convergence is observed for the stochas-
tic error. Table 2 shows the deterministic convergence. The num-
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Fig. 1. A Monte Carlo realization of the permeability field (left) and its corresponding solution (right) to problem A with six terms in KL expansion.
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Fig. 2. Expectation of solution (left), and variance of the pressure (right) to problem A with 46 collocation points.
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bers in parenthesis are the ratios between the errors on successive
levels of refinement. Superconvergence of the deterministic error is
observed for both the pressure and the velocity, confirming the
theory.

6.2. Problem B: quarter five-spot test

Problem B has no-flow boundary conditions u � n ¼ 0 on oD. The
spatial mesh is made up of 80� 80 elements. The source function
has a source q ¼ 100 in the upper left element and a sink q ¼ �100
in the lower right element, and is everywhere else q ¼ 0. The log
permeability Y has zero mean.

Figs. 4 and 5 show the expectation and variance of the stochas-
tic solution to problem B. The pressure variance is largest at the

wells and so is the velocity variance. However, the velocity vari-
ance is also affected by the no flow boundary conditions. Table 3
shows the stochastic convergence. We again observe exponential
convergence.

6.3. Problem C: discontinuous permeability test

Problem C has the same boundary conditions and source func-
tion as problem A. The log permeability Y has a mean of 4.6 in low-
er-left and upper-right subdomains, and zero mean in upper-left
and lower-right subdomains.

Figs. 6 and 7 show the expectation and variance of the stochas-
tic solution to problem C. The pressure variance is largest in the re-
gions where the pressure changes the most. The velocity variance
is largest at the cross-point, where the solution is singular and
the true velocity is infinite. Table 4 shows the stochastic conver-
gence. Despite the singularity in physical space, the solution pre-
serves it smoothness in stochastic space, and exponential
convergence is observed. Table 5 shows the deterministic conver-
gence. Due to the singularity at the cross-point, the convergence
rates have deteriorated, but appear to be approaching first order
for both the pressure and velocity.
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Fig. 3. Variance of the x-velocity component (left), and variance of the y-velocity component (right) to problem A with 46 collocation points.

Table 1
Stochastic convergence results for problem A

Coll. points Flux L2 error Pressure L2 error Velocity L2 error

26 2.34725998E�03 1.88268447E�05 1.63386987E�03
36 5.62408269E�05 1.20132144E�06 3.86677083E�05
46 3.85038674E�06 1.00645052E�07 2.62419902E�06

Table 2
Deterministic convergence results for problem A

Grid Flux L2 error Pressure L2 error Velocity L2 error

10 � 10 9.22149E�04 1.11495E�04 9.26733E�04
20 � 20 2.33581E�04 (3.9479) 2.73432E�05 (4.0776) 2.46538E�04 (3.7590)
40 � 40 5.59873E�05 (4.1720) 6.50603E�06 (4.2028) 5.99880E�05 (4.1098)
80 � 80 1.17766E�05 (4.7541) 1.30309E�06 (4.9927) 1.21597E�05 (4.9333)
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Fig. 4. Expectation of solution (left), and variance of the pressure (right) to problem B with 56 collocation points.
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7. Numerical results for slightly compressible flow

In this section, we model single phase slightly compressible
flow using the IPARS framework [35,39,32]. To compare the sto-
chastic collocation approaches with Monte Carlo, we consider a
two dimensional reservoir 1280� 1280 (ft2) with a mean perme-

ability field upscaled from the SPE10 Comparative Solution Upscal-
ing Project data set as shown in Fig. 8.

The initial pressure is set at 3550 (psi). Injection wells are
placed in each corner with a pressure of 3600 (psi), and a produc-
tion well in placed in the center with a pressure of 3000 (psi). The
numerical grid is 64� 64 and the simulations run for 50 days with
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Fig. 5. Variance of the x-velocity component (left), and variance of the y-velocity component (right) to problem B with 56 collocation points.

Table 3
Stochastic convergence results for problem B

Coll. points Flux L2 error Pressure L2 error Velocity L2 error

26 6.30703527E�05 6.41445607E�05 3.15266692E�05
36 2.39755565E�06 4.77299042E�07 1.14009004E�06
46 1.35972699E�07 3.45271568E�08 6.41590640E�08

P
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Fig. 6. Expectation of solution (left), and variance of the pressure (right) to problem C with 56 collocation points.
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Fig. 7. Variance of the x-velocity component (left), and variance of the y-velocity component (right) to problem C with 56 collocation points.

Table 4
Stochastic convergence results for problem C

Coll. points Flux L2 error Pressure L2 error Velocity L2 error

26 4.14095348E�02 1.63919311E�05 1.60948620E�02
36 5.04580970E�04 9.51941306E�07 2.58074051E�04
46 1.92383136E�05 1.25671461E�08 6.86101244E�06
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variable time stepping. We assume rY ¼ 1 and a correlation length
of 0.78 in each direction to enable the KL expansion to be truncated
at four terms. The collocation points are taken to be tensor prod-
ucts of the roots of Hermite polynomials as described in Section
3.3.

In Fig. 9 we plot the mean pressure fields at t ¼ 50 for the
Monte Carlo and stochastic collocation simulations respectively.
We include streamlines to indicate the direction of the flow. In
Fig. 10 we plot the standard deviation of the pressure fields at
t ¼ 50 for the Monte Carlo and stochastic collocation simulations,
respectively. In each case, we see that the stochastic collocation
provides results comparable to the Monte Carlo while requiring
fewer simulations. We note that the scale of the standard deviation
of the pressure is significantly less than that of the mean.

Next, we compare some numerical results for two phase (oil
and water) slightly compressible flow to the numerical results
for single phase slightly compressible flow computed above. The
mean permeability, the porosity, and the well models are same
as the previous example. We also use the same Karhunen–Loeve
expansion and collocation points. The initial oil pressure is set at
3550 [psi] and the initial water saturation is 0.2763.

In Figs. 11–13, we plot the mean and the standard deviation of
the oil pressure, the water saturation, and the cumulative oil pro-
duction respectively using 100 Monte Carlo simulations and 24 col-
location points. The statistics computed using collocation are
comparable to the Monte Carlo simulations while requiring less
computational effort.

Comparing Figs. 9 and 11, we see that the mean and the stan-
dard deviation of the pressure fields have similar topological fea-

Table 5
Deterministic convergence results for problem C

Grid Flux L2 error Pressure L2 error Velocity L2 error

10 � 10 12.2307702 0.0116301201 5.50891085
20 � 20 12.7644499 (0.9582) 0.00879426323 (1.3225) 4.34814306 (1.2670)
40 � 40 11.9079145 (1.0719) 0.00573525999 (1.5334) 2.99591277 (1.4514)
80 � 80 8.28362644 (1.4375) 0.00274973298 (2.0858) 1.52456248 (1.9651)

Fig. 8. Mean log-permeability field based on the SPE10 case.

Fig. 9. Mean pressure field and streamlines for slightly compressible flow using the mean permeability (a), 100 Monte Carlo simulations (b), 24 collocation points (c), and 34

collocation points (d).
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tures. This indicates that we may be able to use the single phase
solver, which is less expensive, to determine the appropriate num-
ber of terms in the Karhunen–Loeve expansion, to select the num-
ber of collocation points, or to design effective preconditioners.

To investigate the effect that changing rY in (2.7) has on the
output statistics, we repeat the above simulations for two phase
flow with rY ¼ 0:25 and with rY ¼ 3. In each case we apply the col-
location method with 34 points. In Figs. 14 and 15, we plot the
mean and the standard deviation of the oil pressure respectively.
Comparing with Fig. 11, we see that varying the standard deviation
of the permeability field affects the scale of the uncertainty but not
the overall topological features of the pressure field.

Finally, we compare the mean pressure field in Fig. 11 b with
the mean pressure computed using different correlation lengths
in the covariance function (2.7). In Fig. 16, we plot the mean pres-
sure using g1 ¼ 0:16 and g2 ¼ 0:23 as well as the mean pressure

using g1 ¼ g2 ¼ 0:08. We notice that the mean pressure differs only
slightly in each case, despite using different correlation lengths.
Theoretically, more terms in the KL expansion are required to accu-
rately represent the output statistics for shorter correlation
lengths. Current research is focusing on the development of a priori
and a posteriori techniques to predict the sufficient number of
terms in the KL expansion.

8. Conclusions

The present paper has focused on analyzing the combined use
of stochastic collocation methods and mixed finite elements for
quantifying the uncertainty of flow quantities for a given log-nor-
mal distributed permeability field. We have considered both
incompressible and slightly compressible single phase flow as well
as two-phase flow in a porous media. From a theoretical stand-

Fig. 10. Standard deviation of the pressure field for slightly compressible flow using 100 Monte Carlo simulations (a) and 34 collocation points (b).

Fig. 11. Mean of the oil pressure and mean streamlines using 100 Monte Carlo simulations (a), the mean of the oil pressure and mean streamlines using 24 collocation points
(b), the standard deviation of the oil pressure using 100 Monte Carlo simulations (c), and the standard deviation of the oil pressure using 24 collocation points (d).
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point, we have established convergence bounds for both the pres-
sure and the velocity. These results also hold for nonlinear diffu-
sion coefficients as occurring in the event of slight compressibility.

From a numerical standpoint, we were able to confirm numer-
ically the theoretical convergence rates for the stochastic and the
deterministic errors. We also observed that the stochastic colloca-
tion converges much faster (to the mean and variance) than the
standard MCS approach with a significantly reduced number of
simulations. This observation also holds for the two-phase case
where phase saturations follow a hyperbolic trend. The same sto-
chastic numerical convergence was also verified for the well pro-
duction curves.

The present work should set the basis for addressing a set of
more challenging issues. These issues include: (1) extension of re-
sults on non-stationary distributions in a domain decomposition

fashion (i.e., different subdomains following different random
permeability distributions) to account for multiple permeability
scales (some recent efforts on stochastic multiscale methods can
be seen in [14,46]); (2) design of specialized solvers and time-
stepping strategies capable of taking advantage of solution trends
displayed by the closeness of multiple simulations; (3) experi-
ences with probabilistic collocation methods and other stochastic
interpolation methods seeking to reduce the computational bur-
den due to the sampling and order of stochastic polynomial
approximations; and (4) define the order of stochastic approxima-
tions for KL and Hermite polynomials for highly complex flow
simulation models (e.g., compositional EOS flow) based on the
stochastic of simpler flow models such as single-phase flow and
streamlines, as well as incorporation of a priori information using
Bayesian inference.

Fig. 12. Mean of the water saturation using 100 Monte Carlo simulations (a), the mean of the water saturation using 24 collocation points (b), the standard deviation of the
water saturation using 100 Monte Carlo simulations (c), and the standard deviation of the water saturation using 24 collocation points (d).
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Fig. 13. Mean (a) and standard deviation (b) of the cumulative oil production using 100 Monte Carlo simulations and 24 collocation points.
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