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Abstract. We present an expanded mixed finite element approximation of second-order elliptic
problems containing a tensor coefficient. The mixed method is expanded in the sense that three vari-
ables are explicitly approximated, namely, the scalar unknown, the negative of its gradient, and its
flux (the tensor coefficient times the negative gradient). The resulting linear system is a saddle point
problem. In the case of the lowest order Raviart–Thomas elements on rectangular parallelepipeds, we
approximate this expanded mixed method by incorporating certain quadrature rules. This enables
us to write the system as a simple, cell-centered finite difference method requiring the solution of a
sparse, positive semidefinite linear system for the scalar unknown. For a general tensor coefficient, the
sparsity pattern for the scalar unknown is a 9-point stencil in two dimensions and 19 points in three
dimensions. Existing theory shows that the expanded mixed method gives optimal order approxi-
mations in the L2- and H−s-norms (and superconvergence is obtained between the L2-projection
of the scalar variable and its approximation). We show that these rates of convergence are retained
for the finite difference method. If h denotes the maximal mesh spacing, then the optimal rate is
O(h). The superconvergence rate O(h2) is obtained for the scalar unknown and rate O(h3/2) for its
gradient and flux in certain discrete norms; moreover, the full O(h2) is obtained in the strict interior
of the domain. Computational results illustrate these theoretical results.
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1. Introduction. We consider mixed finite element approximations of second-
order elliptic problems with Dirichlet, Neumann, and Robin boundary conditions. In
mixed form, the problem is to find (u, p) such that

∇ · u = f in Ω,(1.1a)
u = −K∇p in Ω,(1.1b)

p = gD on ΓD,(1.1c)

u · ν = gN on ΓN ,(1.1d)

u · ν − gR1 p = gR2 on ΓR,(1.1e)

where Ω is a bounded domain in Rd (d = 2 or 3) with boundary ∂Ω = Γ
D ∪Γ

N ∪Γ
R

(ΓD ∩ ΓN = ΓD ∩ ΓR = ΓN ∩ ΓR = ∅); K(x) is a symmetric, positive definite second-
order tensor with components in L∞(Ω); ν is the outward, unit, normal vector on
∂Ω; and gR1 (x) ≥ 0. In applications to flow in porous media, p is the pressure, u is
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the Darcy velocity, and K is the conductivity tensor (permeability divided by fluid
viscosity); moreover, such boundary conditions arise naturally [5]. Generally, K is a
full tensor, either as measured directly or as homogenized from microscale data to the
grid-scale [6], [18], [21].

For simplicity, we assume that the problem has a unique solution; however, our
results carry over to the semidefinite, pure Neumann problem, where ΓN = ∂Ω and
f(x) and gN (x) satisfy the compatibility condition

∫
Ω f(x) dx =

∫
∂Ω g

N (x) ds(x).
We use affine mixed finite elements for approximating the solution of (1.1). We

concentrate on the case of the lowest order Raviart–Thomas spaces [28], [26], since
these are widely used in practice, though many of our results will be more general.

The usual mixed formulation requires the solution of a linear system in the form
of a saddle point problem, which can be expensive to solve. An alternate approach
was suggested by Arnold and Brezzi [4] (see also [10]). They used the hybrid (or
Lagrange multiplier) form of the equations. In their method, one eliminates the
velocity unknowns in terms of the pressures and the Lagrange multiplier pressures
that live on the element edges if d = 2 or faces if d = 3; furthermore, one can
easily eliminate the pressures to leave a system for the Lagrange multipliers alone.
Although there are more overall unknowns, it is simple to implement and requires
the solution of a sparse, positive definite linear system; that is, it is a face-centered
finite difference method. The lowest order Raviart–Thomas spaces have one Lagrange
multiplier unknown per edge or face.

In the case that K is a diagonal tensor and one uses the lowest order Raviart–
Thomas spaces defined over a rectangular grid, Russell and Wheeler [29] showed that
the system could be simplified by an appropriate use of quadrature rules. They were
able to approximate the usual mixed formulation so as to require the solution of a
sparse, positive definite linear system for the pressure unknowns. There is only one
such unknown per element, so the system is substantially smaller and therefore easier
to solve than in the hybrid method. Moreover, Russell and Wheeler showed that in fact
their quadrature rules turned the mixed method into a cell-centered finite difference
scheme with a five-point stencil (or “computational molecule”) if d = 2, or seven if
d = 3. Weiser and Wheeler [32] showed that the modified scheme converges at the rate
of the unmodified scheme. This is true also of the superconvergence that is obtained for
the velocity u and pressure p in certain discrete norms [25], [16], [17], [19]. If h denotes
the maximal mesh spacing, then the optimal convergence rate is O(h), but O(h2)
superconvergence is obtained in these discrete norms for the pure Neumann problem.

The main goal of this paper is to derive and exploit a connection between the
expanded mixed method and a certain cell-centered finite difference method. Using
approximate integration, a cell-centered finite difference stencil for the pressure will
be obtained after eliminating the velocity when K is not diagonal, without any loss in
the rate of convergence, and retaining the superconvergence phenomenon. This has
two advantages: first, a sparse, positive definite linear system results, and, second, the
method can be relatively easily incorporated into existing standard cell-centered finite
difference reservoir or groundwater simulators that handle diagonal K [27]. We also
address another computational difficulty, namely, that in practice the conductivity K
can be zero in a subdomain of Ω. The standard mixed variational formulation requires
inverting K, an impossibility in this degenerate case. Although our theory does not
extend to the degenerate case, our scheme is at least computationally well defined.

We consider the following expanded mixed formulation of (1.1) by explicitly in-
troducing the negative pressure gradient. We find (u, ũ, p) satisfying (1.1) with (1.1b)
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replaced by

ũ = −∇p in Ω,(1.2a)
u = Kũ in Ω.(1.2b)

Let V 0 and V N be the subspaces of V = H(Ω; div) consisting of functions with
normal trace on ΓN (weakly) equal to zero and gN , respectively; let Ṽ = (L2(Ω))d;
let W = L2(Ω); and let Λ = H1/2(∂Ω). Let (·, ·)S denote the L2(S)-inner product
(i.e., integration over the set S) or the duality pairing, where we omit S if S = Ω. We
have the following equivalent variational formulation of the expanded system (1.1a),
(1.2), (1.1c)–(1.1e): find u ∈ V N , ũ ∈ Ṽ , p ∈W , and λ ∈ Λ such that

(∇ · u, w) = (f, w), w ∈W,(1.3a)

(ũ,v) = (p,∇ · v)− (gD,v · ν)ΓD − (λ,v · ν)ΓR , v ∈ V 0,(1.3b)

(u, ṽ) = (Kũ, ṽ), ṽ ∈ Ṽ ,(1.3c)

(u · ν, µ)ΓR = (gR2 + gR1 λ, µ)ΓR , µ ∈ Λ.(1.3d)

One of the authors described the use of the expanded mixed formulation briefly
in a practical setting in [33]. A similar formulation was considered by Chen [11]
to approximate a nonlinear problem, using only the Brezzi–Douglas–Marini (BDM)
spaces [9]. He also presented a convergence analysis (see also [12]) but did not discuss
implementation. Koebbe [22] used the expanded mixed formulation to solve problems
with a tensor coefficient. He was concerned with implementation, but he did not
attempt to obtain a finite difference stencil. Rather, he solved a saddle point problem.
We consider a more general set of test and trial functions than either [11] or [22], since
they both took Ṽ = V .

The rest of the paper is organized as follows. In section 2 we formulate the
discrete approximation of (1.3). Stability and solvability are shown, and a conver-
gence theorem is given in section 3. The cell-centered finite difference stencil for
the pressure on rectangles is derived in section 4 and analyzed in section 5, showing
convergence at the optimal convergence rate O(h); moreover, our superconvergence
results for both u and p are presented in this section. It turns out that supercon-
vergence for p and λ is of rate O(h2), but for u and ũ it is only O(h3/2), being
degraded somewhat by the treatment of the boundary conditions; however, we show
that full superconvergence of rate O(h2) is obtained for u in the strict interior of
the domain. Finally, in section 6 we discuss some numerical results demonstrat-
ing our convergence results. We also present a modification of the finite difference
scheme that apparently achieves the full O(h2) superconvergence even up to the do-
main boundary.

2. The expanded mixed finite element method. Let {Th}h>0 be a quasi-
uniform family of finite element partitions of Ω such that no element crosses the bound-
aries of ΓD, ΓN , or ΓR, where h is the maximal element diameter. Let Vh×Wh be any
of the usual mixed finite element approximating subspaces of H(Ω; div)×W ; that is,
the Raviart–Thomas–Nedelec (RTN) spaces [30], [28], [26]; BDM spaces [9]; Brezzi–
Douglas–Fortin–Marini (BDFM) spaces [8]; Brezzi–Douglas–Duràn–Fortin (BDDF)
spaces [7]; or Chen–Douglas (CD) spaces [13]. Let Λh ⊂ L2(∂Ω) be the corresponding
hybrid space of Lagrange multipliers for the pressure [4], [10] restricted to ∂Ω. Define
V 0
h = Vh∩V 0, V Nh = {v ∈ Vh : (v ·ν−gN , µ)ΓN = 0 for all µ ∈ Λh}, and ΛRh = Λh|ΓR .
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Let Ṽh be a finite element subspace of Ṽ satisfying V Nh ⊆ Ṽh. Generally speaking,
Ṽh should have full flexibility on ΓN . Note that we do not require Ṽh ⊆ H(Ω; div),
since continuity of the normal component across the edges is not needed. Thus we
can think of Ṽh as a possibly discontinuous version of Vh with full degrees of freedom
near ∂Ω (although later we will simply take Ṽh = Vh).

In the mixed finite element approximation of (1.3), we seek uh ∈ V Nh , ũh ∈ Ṽh,
ph ∈Wh, λh ∈ ΛRh such that

(∇ · uh, w) = (f, w), w ∈Wh,(2.1a)

(ũh,v) = (ph,∇ · v)− (gD,v · ν)ΓD − (λh,v · ν)ΓR , v ∈ V 0
h ,(2.1b)

(uh, ṽ) = (Kũh, ṽ), ṽ ∈ Ṽh,(2.1c)

(uh · ν, µ)ΓR = (gR2 + gR1 λh, µ)ΓR , µ ∈ ΛRh .(2.1d)

We have many families of methods for various choices of Ṽh.
We find it convenient for the analysis and for finite differences below to formulate

the scheme without explicit reference to the Neumann boundary condition. Both
Neumann and Robin conditions affect the flow or flux, so let ΓF denote the interior
of Γ̄N ∪ Γ̄R and define

gF1 =

{
0 on ΓN ,

gR1 on ΓR,
gF2 =

{
gN , on ΓN ,

gR2 on ΓR,

and ΛFh = Λh|ΓF . An equivalent formulation is to find uh ∈ Vh, ũh ∈ Ṽh, ph ∈ Wh,
λh ∈ ΛFh such that

(∇ · uh, w) = (f, w), w ∈Wh,(2.2a)

(ũh,v) = (ph,∇ · v)− (gD,v · ν)ΓD − (λh,v · ν)ΓF , v ∈ Vh,(2.2b)

(uh, ṽ) = (Kũh, ṽ), ṽ ∈ Ṽh,(2.2c)

(uh · ν, µ)ΓF = (gF2 + gF1 λh, µ)ΓF , µ ∈ ΛFh .(2.2d)

It is easy to see that this modification does not change the scheme (2.1).

3. Convergence of the expanded mixed method. In this section we present
some error estimates for the approximate solution. For a domain S, let ‖·‖j,q,S denote
the norm of W j,q(S), the Sobolev space of j-times differentiable functions in Lq(S),
and let Hj(S) = W j,2(S), ‖ · ‖j,S denote its norm and ‖ · ‖−j,S denote the norm of its
dual space H−j(S) = (Hj(S))′. We may omit S if S = Ω. Our error will be measured
in the norms of L2 and H−s. We let C denote a generic positive constant that is
independent of the discretization parameter h.

We make explicit the following five hypotheses:
(H1) Problem (1.1) is 2-regular; i.e., given f , gD, and gF2 , there exists a unique

solution p ∈ H2(Ω) such that

‖p‖2 ≤ C{‖f‖0 + ‖gD‖3/2,ΓD + ‖gF2 ‖1/2,ΓF },

where C depends only on Ω, K, and gF1 ;
(H2) ∇ · Vh = Wh;
(H3) Vh · ν|∂Ω = Λh;
(H4) V Nh ⊂ Ṽh;
(H5) K is uniformly positive definite in Ω, and gR1 ≥ 0.
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Sufficient conditions for (H1) can be found in standard references on the theory of
elliptic partial differential equations (such as [23] and [20]; e.g., Grisvard [20] gives
the result for a two-dimensional, convex domain with a pure Dirichlet or Neumann
boundary condition). Note that in general (H1) essentially requires that the portions
Γ̄D and Γ̄F of ∂Ω be separated and so, if the boundary is connected, that one of these
sets vanish. The second and third hypotheses hold for the usual spaces defined over
triangles, tetrahedra, prisms, and rectangular parallelepipeds.

We need four projection operators and their approximation properties. Let Ph
denote L2-projection of W onto Wh: for ϕ ∈W , Phϕ ∈Wh is defined by

(Phϕ− ϕ,w) = 0, w ∈Wh.

For ϕ ∈W ,

‖Phϕ− ϕ‖−s ≤ C‖ϕ‖j hj+s, 0 ≤ s ≤ l, 0 ≤ j ≤ l,(3.1)

where l is associated with the degree of the polynomials in Wh. Similarly, let Π̃ denote
the L2-projection of Ṽ onto Ṽh and Qh denote L2(∂Ω)-projection onto Λh (or more
often L2(ΓF )-projection onto ΛFh ). For q ∈ Hj(Ω) and ψ ∈ Hj(∂Ω),

‖q− Π̃q‖−s ≤ C‖q‖j hj+s, 0 ≤ s ≤ k, 0 ≤ j ≤ k,(3.2)

‖Qhψ − ψ‖−s,∂Ω ≤ C‖ψ‖j,∂Ω h
j+s, 0 ≤ s ≤ m, 0 ≤ j ≤ m,(3.3)

where k and m are associated with the degree of the polynomials in Vh and Λh,
respectively, and where in (3.3) we can restrict to ΓF .

Each of the mixed spaces we consider has a projection operator Π : (H1(Ω))d →
Vh with the four properties

(∇ ·Πq, w) = (∇ · q, w), w ∈Wh (i.e., ∇ ·Πq = Ph∇ · q),(3.4)
‖Πq− q‖0 ≤ C‖q‖j hj , 1 ≤ j ≤ k,(3.5)
(Πq · ν, µ)e = (q · ν, µ)e, µ ∈ Λh (i.e., Πq · ν = Qhq · ν),(3.6)

where e is any element edge or face. The divergence and normal fluxes are well
approximated by (3.1) and (3.3).

Remark. For all our mixed spaces, l ≤ k and m = k. For the RTN and BDFM
spaces, l = k, and for the BDM and BDDF spaces, l = k−1. The CD spaces generalize
these spaces on prisms. The lowest-order RTN spaces have k = l = m = 1.

Before considering convergence, we show that the solution exists and is both
unique and stable.

THEOREM 3.1. Assume (H1)–(H5). If (uh, ũh, ph, λh) is a solution to (2.2), then

‖∇ · uh‖0 ≤ ‖f‖0,(3.7a)

‖uh‖0 + ‖ũh‖0 + ‖uh · ν‖0,ΓF + ‖ph‖0 + ‖
√
gF1 λh‖0,ΓF + ‖λh‖−1/2,ΓF

(3.7b)
≤ C{‖f‖0 + ‖gD‖1/2,ΓD + ‖gF2 ‖1/2,ΓF },

where C depends on Ω, ‖K‖1,∞, and ‖gF1 ‖0,∞,ΓF .
Proof. In (2.2), take w = ∇ · uh ∈ Wh to see (3.7a) and ṽ = uh ∈ Ṽh and

µ = uh · ν ∈ ΛFh to see that

‖uh‖0 ≤ C‖ũh‖0,(3.8)

‖uh · ν‖0,ΓF ≤ C{‖gF2 ‖0,ΓF + ‖
√
gF1 λh‖0,ΓF }.(3.9)
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Now let v = uh, ṽ = ũh, w = ph, and µ = λh. Together, the four equations of
(2.2) imply that for any ε > 0,

(Kũh, ũh) + (gF1 λh, λh)ΓF

= (f, ph)− (gD,uh · ν)ΓD − (gF2 , λh)ΓF

≤ C{‖f‖20 + ‖gD‖21/2,ΓD + ‖gF2 ‖21/2,ΓF }
+ ε{‖ph‖20 + ‖uh‖20 + ‖∇ · uh‖20 + ‖uh · ν‖20,ΓF + ‖λh‖2−1/2,ΓF },

(3.10)

where we use the following argument to handle ΓD. Let EgD ∈ H1(Ω) denote an
extension of gD such that

‖EgD‖1 + ‖EgD‖1/2,∂Ω ≤ C‖gD‖1/2,ΓD(3.11)

(first extend onto ∂Ω, and then extend into Ω). Then for any v ∈ Vh,

(gD,v · ν)ΓD = (EgD,∇ · v) + (∇EgD,v)− (EgD,v · ν)ΓF .(3.12)

We use a duality argument to control the pressures. Given ρ ∈ L2(Ω) and ψ ∈
H1/2(ΓF ), solve the problem

−∇ ·K∇ϕ = ρ in Ω,(3.13a)

ϕ = 0 on ΓD,(3.13b)

−K∇ϕ · ν − gF1 ϕ = ψ on ΓF .(3.13c)

By the regularity assumption (H1),

‖ϕ‖2 ≤ C{‖ρ‖0 + ‖ψ‖1/2,ΓF }.(3.14)

Let v = −ΠK∇ϕ ∈ Vh. Then (3.4), (3.6), and (3.5) show that ∇ · v = Phρ ∈ Wh,
v · ν = Qh(ψ + gF1 ϕ) on ΓF , and

‖v‖0 + ‖∇ · v‖0 + ‖v · ν‖0,ΓF ≤ C{‖ρ‖0 + ‖ψ‖1/2,ΓF }.(3.15)

Now (2.2b) implies that

(ph, ρ)− (λh, ψ)ΓF = (ũh,v) + (gD,v · ν)ΓD + (λh, gF1 ϕ)ΓF

≤ C{‖ũh‖0 + ‖gD‖1/2,ΓD + ‖
√
gF1 λh‖0,ΓF }{‖ρ‖0 + ‖ψ‖1/2,ΓF },

using the argument of (3.11)–(3.12) above. Therefore, first with ρ = ph and ψ = 0 to
obtain an estimate of ‖ph‖0 and then with ρ = 0 and a supremum on ψ having unit
norm to obtain an estimate of ‖λh‖−1/2,ΓF ,

‖ph‖0 + ‖λh‖−1/2,ΓF ≤ C{‖ũh‖0 + ‖gD‖1/2,ΓD + ‖
√
gF1 λh‖0,ΓF }.(3.16)

For ε small enough, the theorem follows from (3.10), (3.7a), (3.8)–(3.9), and
(3.16).

Since (2.2) is a finite dimensional, square, linear system, uniqueness is equivalent
to existence. To see uniqueness, let f = gD = gF2 = 0.

COROLLARY 3.2. Assume (H1)–(H5). There exists a unique solution to (2.2).
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The next theorem expresses the error in approximating (1.3) by (2.2).
THEOREM 3.3. Assume (H1)–(H5). There exists a constant C, independent of h

and dependent on Ω, p, u, ‖K‖0,∞, and ‖gF1 ‖0,∞,ΓF such that

‖u− uh‖0 + ‖ũ− ũh‖0 + ‖
√
gF1 (λ− λh)‖0,ΓF

≤ C{‖u−Πu‖0 + ‖ũ− Π̃ũ‖0 + ‖λ−Qhλ‖0,ΓF }(3.17)

≤ Chj , 1 ≤ j ≤ min(k,m),
‖∇ · (u− uh)‖−s = ‖∇ · (u−Πu)‖−s

(3.18)
≤ Chj+s, 0 ≤ s ≤ l, 0 ≤ j ≤ l,

‖(u− uh) · ν‖0,ΓF ≤ C{‖
√
gF1 (λ− λh)‖0,ΓF + ‖(u−Πu) · ν‖0,ΓF }

(3.19)
≤ Chj , 0 ≤ j ≤ min(k,m).

Moreover, if 0 ≤ s ≤ min(k, l,m) − 1, Ω is (s + 2) regular, and C depends also on
‖K‖s+1,∞ and ‖gF1 ‖s+1,∞,ΓF , then for any 0 ≤ j ≤ min(k, l,m),

‖Php− ph‖−s + ‖Qhλ− λh‖−s−1/2,ΓF

≤ C{‖ũ− ũh‖0 + ‖u− uh‖0 + ‖∇ · (u− uh)‖0 + ‖(u− uh) · ν‖0,ΓF(3.20)

+‖
√
gF1 (λ− λh)‖0,ΓF + ‖Qhλ− λ‖0,ΓF }hs+1 ≤ Chj+s+1,

‖p− ph‖−s ≤ Chj+s,(3.21)

‖λ− λh‖−s−1/2,ΓF ≤ Chj+s+1/2,(3.22)

‖u− uh‖−s + ‖ũ− ũh‖−s
≤ C{[‖ũ− ũh‖0 + ‖u− uh‖0]hs

(3.23)
+[‖Php− ph‖0 + ‖Qhλ− λh‖0,ΓF ]hs−1

+‖Php− ph‖−s+1 + ‖Qhλ− λh‖−s+1/2,ΓF } ≤ Chj+s.

Remark. This theorem implies optimal order convergence for ‖p − ph‖−s, ‖u −
uh‖−s, ‖ũ − ũh‖−s, and ‖∇ · (u − uh)‖−s. Moreover, Php and ph are superclose in
the H−s-norm.

Proof. The theorem can be shown using techniques that have been developed
for the analysis of the usual mixed method. For example, using the four projection
operators, the proof is a relatively simple extension of that presented by Douglas
and Roberts [15]. Chen [11], [12] also analyzed a similar expanded mixed method.
We present briefly the proof here for completeness and for later analysis of the finite
difference scheme (see also [1], where a somewhat more general expanded mixed finite
element method is studied).

From (1.3) (with (1.3b) and (1.3d) extended to ΓF ) and (2.2) we get the error
equations

(∇ · (Πu− uh), w) = 0, w ∈Wh,(3.24a)

(Π̃ũ− ũh,v) = (Php− ph,∇ · v)− (Qhλ− λh,v · ν)ΓF , v ∈ Vh,(3.24b)

(u− uh, ṽ) = (K(ũ− ũh), ṽ), ṽ ∈ Vh,(3.24c)

((Πu− uh) · ν, µ)ΓF = (gF1 (λ− λh), µ)ΓF , µ ∈ ΛFh .(3.24d)



MIXED ELEMENTS FOR ELLIPTIC PROBLEMS WITH TENSORS 835

Take w = Php − ph, v = Πu − uh, ṽ = Π̃ũ − ũh, and µ = Qhλ − λh to obtain
the error estimate

‖ũ− ũh‖0 + ‖
√
gF1 (λ− λh)‖0,ΓF ≤ C{‖u−Πu‖0 + ‖ũ− Π̃ũ‖0 + ‖λ−Qhλ‖0,ΓF },

and take ṽ = Πu− uh to see that

‖u− uh‖0 ≤ C{‖u−Πu‖0 + ‖ũ− ũh‖0}.
Together with the approximation error estimates, these give (3.17). Now take w =
∇ · (Πu− uh) to see that in fact

∇ · (Πu− uh) = 0;(3.25)

thus, (3.18) follows. Finally, take µ = (Πu− uh) · ν to see that

‖(u− uh) · ν‖0,ΓF ≤ C{‖
√
gF1 (λ− λh)‖0,ΓF + ‖(u−Πu) · ν‖0,ΓF },

giving (3.19).
The estimates (3.20)–(3.22) of the pressure errors are more involved. Let ρ ∈

Hs(Ω), ψ ∈ Hs+1/2(ΓF ), and ϕ ∈ Hs+2(Ω) solve (3.13), and set v = −ΠK∇ϕ ∈ Vh.
Then ∇ · v = Phρ, v · ν = Qh(gF1 ϕ + ψ) on ΓF , and (3.14)–(3.15) hold. In fact, by
the (s+ 2)-regularity,

‖ϕ‖s+2 ≤ C{‖ρ‖s + ‖ψ‖s+1/2,ΓF }.(3.26)

Now (3.24b) gives

(Php− ph, ρ)− (Qhλ− λh, ψ)ΓF

= −(ũ− ũh,ΠK∇ϕ−K∇ϕ)− (K(ũ− ũh),∇ϕ−Π∇ϕ)

−(K(ũ− ũh),Π∇ϕ) + (Qhλ− λh, gF1 ϕ)ΓF ,

(3.27)

and, using (3.24c), integration by parts, (3.24a), and (3.24d), the last two terms are

−(K(ũ− ũh),Π∇ϕ) + (Qhλ− λh, gF1 ϕ)ΓF

= −(u− uh,Π∇ϕ−∇ϕ)− (u− uh,∇ϕ) + (gF1 (Qhλ− λh), ϕ)ΓF

= −(u− uh,Π∇ϕ−∇ϕ) + (∇ · (u− uh), ϕ)

−((u− uh) · ν, ϕ)ΓF + (gF1 (Qhλ− λh), ϕ)ΓF

= −(u− uh,Π∇ϕ−∇ϕ) + (∇ · (u− uh), ϕ− Phϕ)

−((u− uh) · ν, ϕ−Qhϕ)ΓF + (gF1 (λ− λh), ϕ−Qhϕ)ΓF

+(Qhλ− λ, gF1 ϕ−Qh(gF1 ϕ))ΓF .

Therefore,

(Php− ph, ρ)− (Qhλ− λh, ψ)ΓF

≤ C{‖ũ− ũh‖0 + ‖u− uh‖0 + ‖∇ · (u− uh)‖0 + ‖(u− uh) · ν‖0,ΓF

+‖
√
gF1 (λ− λh)‖0,ΓF + ‖Qhλ− λ‖0,ΓF }

·{‖K∇ϕ−ΠK∇ϕ‖0 + ‖∇ϕ−Π∇ϕ‖0
+‖ϕ− Phϕ‖0 + ‖ϕ−Qhϕ‖0,ΓF + ‖gF1 ϕ−Qh(gF1 ϕ)‖0,ΓF }

≤ C{‖ũ− ũh‖0 + ‖u− uh‖0 + ‖∇ · (u− uh)‖0 + ‖(u− uh) · ν‖0,ΓF

+‖
√
gF1 (λ− λh)‖0,ΓF + ‖Qhλ− λ‖0,ΓF }‖ϕ‖s+2h

s+1.

(3.28)
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Take ψ = 0 and a supremum on ρ ∈ Hs(Ω) having unit norm to obtain an estimate
of ‖Php − ph‖−s, and then take ρ = 0 and a supremum on ψ ∈ Hs+1/2(ΓF ) having
unit norm to obtain an estimate of ‖Qhλ− λh‖−s−1/2,ΓF .

We finally obtain the estimates (3.23). Take ψ ∈ (Hs(Ω))d and v = Πψ in (3.24b)
to see that

(ũ− ũh, ψ) = (ũ− ũh, ψ −Πψ) + (Php− ph,∇ · (Πψ − ψ))

− (Qhλ− λh, (Πψ − ψ) · ν)ΓF

+ (Php− ph,∇ · ψ)− (Qhλ− λh, ψ · ν)ΓF

≤ ‖ũ− ũh‖0 ‖ψ −Πψ‖0 + ‖Php− ph‖0 ‖∇ · (Πψ − ψ)‖0
+‖Qhλ− λh‖0,ΓF ‖(Πψ − ψ) · ν‖0,ΓF
+ [‖Php− ph‖−s+1 + ‖Qhλ− λh‖−s+1/2,ΓF ]‖ψ‖s

≤ C{[‖ũ− ũh‖0 h+ ‖Php− ph‖0 + ‖Qhλ− λh‖0,ΓF ]hs−1

+‖Php− ph‖−s+1 + ‖Qhλ− λh‖−s+1/2,ΓF }‖ψ‖s.

This gives the second part of (3.23); the rest is similar, starting from (3.24c).

4. A cell-centered finite difference method. In this section we derive a
finite difference stencil for the pressure in the case of the lowest-order RTN spaces on
rectangles [28], [26]. Recall that on an element E ∈ Th,

Vh(E) = {(α1x1 + β1, α2x2 + β2, α3x3 + β3)T : αi, βi ∈ R},
Wh(E) = {α : α ∈ R},

and on an edge or face e,

Λh(e) = {α : α ∈ R},

where the last component in Vh should be deleted if d = 2. We use the standard nodal
basis, where for Vh and Λh the nodes are at the midpoints of the edges or faces of the
elements and for Wh the nodes are at the midpoints of the elements (cell centers).
We choose Ṽh = Vh in (2.2).

Our goal is to express approximately uh and ũh in terms of ph and λh from
(2.2b)–(2.2d); then (2.2a) will give us an equation for the pressures. To do this, we
use numerical quadrature rules for evaluating some of the integrals in (2.2). The
approximate problem is to solve for uh ∈ Vh, ũh ∈ Vh, ph ∈ Wh, and λh ∈ ΛFh such
that

(∇ · uh, w) = (f, w), w ∈Wh,(4.1a)
(ũh,v)TM = (ph,∇ · v)− (gD,v · ν)ΓD − (λh,v · ν)ΓF , v ∈ Vh,(4.1b)
(uh, ṽ)TM = (Kũh, ṽ)T, ṽ ∈ Vh,(4.1c)
(uh · ν, µ)ΓF = (gF2 + gF1 λh, µ)ΓF , µ ∈ ΛFh .(4.1d)

In this paper, (·, ·)M and (·, ·)T mean an application of the midpoint and the trape-
zoidal rule, respectively (in each coordinate direction), and for v,q ∈ Rd,

(v,q)TM =

{
(v1, q1)T×M + (v2, q2)M×T if d = 2,

(v1, q1)T×M×M + (v2, q2)M×T×M + (v3, q3)M×M×T if d = 3.
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FIG. 4.1. Nodal points for the standard basis functions (d = 2). (a) Stencil for the dependence
of ũh on ph. (b) Stencil for the dependence of uh on ũh. (c) Stencil for the pressure ph.

In other words, for computing an integral of the ith component of the vectors, i =
1, 2(, 3), we apply the trapezoidal rule in the ith direction and the midpoint rule in the
other directions. This choice of quadrature rules is compatible with the nodal basis
functions for Vh; it gives diagonal coefficient matrices for ũh in (4.1b) and for uh in
(4.1c). This technique is sometimes referred to as a lumped mass approximation. It
happens that for v,q ∈ Vh,

(v,q)TM = (v,q)T.

Also, the matrix given by (vi,vj)TM, where i and j run over a nodal basis of Vh,
is diagonal, independently of whether K is diagonal or not. This explains why the
expanded mixed method was used.

With the aid of Fig. 4.1, we now describe the meaning of (4.1). Equation (4.1b)
expresses the normal component of ũh at any nodal point as a difference of the
pressure at the midpoints of the two adjacent elements (see Fig. 4.1 (a)) or, near
the boundary, as a difference of a pressure and either a Lagrange multiplier pressure
or a Dirichlet pressure. This corresponds to a finite difference approximation of the
equation ũ = −∇p.

Equation (4.1c) expresses the normal component of uh at any node by the normal
components of ũh at the nodes of the adjacent elements as in Fig. 4.1 (b). Note that
uh does not depend on the components of ũh on the far left and right edges. Thus
we get a relatively compact finite difference approximation of the equation u = Kũ.

Finally, substituting (4.1b)–(4.1d) in (4.1a), we obtain a finite difference stencil for
the pressure, an approximation of the elliptic equation−∇·K∇p = f (see Fig. 4.1 (c)).
We get a 9-point stencil in two dimensions and a 19-point stencil in three dimensions.

If K is a diagonal tensor, the stencil is reduced to five or seven points, and
we recover the scheme of Russell and Wheeler [29], except that K is evaluated at
somewhat different points. The difference is that in [29] the TM rule is used for the
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last integral in (4.1c); whereas, here we use the trapezoidal rule to maintain symmetry
in the case that K is not diagonal.

If a uniform mesh and a constant K are used, we obtain a standard finite difference
procedure. In the strict interior

fij h
2 = 2(K11 +K22)ph,ij −K11(ph,i−1,j + ph,i+1,j)−K22(ph,i,j−1 + ph,i,j+1)

+ 1
2K12(ph,i+1,j−1 + ph,i−1,j+1 − ph,i−1,j−1 − ph,i+1,j+1),

and the local truncation error is O(h2), except near the boundary. Many other O(h2)
finite difference schemes can be constructed that vary mainly in how K is treated and
the second-order derivatives are approximated (see standard texts of finite difference
methods, e.g., [31] or [24]). We show in the next section that our scheme has global
convergence properties. Moreover, it is symmetric and locally conservative, and it has
a compact 9- or 19-point stencil and connections to mixed finite element methods.
Moreover, it can be extended easily to nonrectangular grids (see [1], [3], and [2]).

5. An error analysis of the finite difference method. For either quadrature
rule Q, let χS denote the characteristic function of the set S and extend the definition
of the discrete inner products to

(w,w)Q,S = (w,wχS)Q.

For w ∈W ∩ C0(Ω̄), v ∈ Ṽ ∩ (C0(Ω̄))d, and h implicitly fixed, let

‖w‖2M,S = (w,w)M,S , ‖v‖2TM,S = (v,v)TM,S , and ‖v‖2T,S = (v,v)T,S ,

where again we omit S if S = Ω; these can also be defined on Wh or Ṽh, where they
are norms. Clearly for v ∈ Vh,

1
C
‖v‖0 ≤ ‖v‖TM = ‖v‖T ≤ C‖v‖0;(5.1)

that is, these three norms are equivalent.
THEOREM 5.1. Assume (H1)–(H5). There exists a unique solution to (4.1). If

(uh, ũh, ph, λh) is the solution to (4.1), then (3.7a) and (3.7b) hold.
The proof is analogous to that given for Theorem 3.1 and its corollary, using (5.1).
Let us proceed with our error analysis of the finite difference scheme. We present

proofs only for the case d = 2; the generalization to d = 3 is straightforward.
We use relatively standard cell-centered finite difference notation. Let the grid

points be denoted by

(xi+1/2, yj+1/2), i = 0, . . . , Nx, j = 0, . . . , Ny,

and then define

xi = 1
2 (xi+1/2 + xi−1/2), i = 1, Nx,

yj = 1
2 (yj+1/2 + yj−1/2), j = 1, Ny,

hxi = xi+1/2 − xi−1/2, i = 1, Nx,

hyj = yj+1/2 − yj−1/2, j = 1, Ny,

h = max
i,j

(hxi , h
y
j ).
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We write q = (qx, qy) for q ∈ R2, and for any function g(x, y), let gij denote g(xi, yj),
let gi+1/2,j denote g(xi+1/2, yj), etc.

Before stating our results, we need the following definition.
DEFINITION 5.2. An asymptotic family of grids is said to be generated by a C2

map if each grid is the image by a fixed map of a grid that is uniform in each coordinate
direction, where each component of the map is strictly monotone and in C2(Ω̄).

Denote this map by F(x, y) = (F x(x), F y(y)) and note that in this case

hxi+1 − hxi = F xi+3/2 − 2F xi+1/2 + F xi−1/2 =
d2F x(x̄)
dx2 (h̄x)2,

where x̄ is between xi−1/2 and xi+3/2 and h̄x is the uniform grid spacing. This,
together with the smoothness of F, implies

|hxi+1 − hxi | ≤ Ch2 and, similarly, |hyj+1 − h
y
j | ≤ Ch2.(5.2)

5.1. An auxiliary estimate.
LEMMA 5.3. Assume that p ∈ C3,1(Ω̄), u ∈ (C1(Ω̄) ∩ W 2,∞(Ω))d, and K ∈

(C1(Ω̄) ∩W 2,∞(Ω))d×d. There exist U ∈ Vh, Ũ ∈ Vh, P ∈ Wh, and λ∗ ∈ ΛFh such
that

(Ũ,v)TM = (P,∇ · v)− (gD,v · ν)ΓD − (λ∗,v · ν)ΓF , v ∈ Vh,(5.1.1a)

(U, ṽ)TM = (KŨ, ṽ)T, ṽ ∈ Vh,(5.1.1b)

and there exists a constant C independent of h such that, for all i, j,

|Pij − pij | ≤ Ch2,(5.1.2)

|Ũxi+1/2,j − ũxi+1/2,j |+ |Ũ
y
i,j+1/2 − ũ

y
i,j+1/2| ≤ Ch

r̃,(5.1.3)

|Uxi+1/2,j − uxi+1/2,j |+ |U
y
i,j+1/2 − u

y
i,j+1/2| ≤ Ch

r,(5.1.4)

|λ∗ −Qhλ| ≤ Ch2,(5.1.5)

where λ∗ is given by (5.1.6) below, r̃ = 2 for all points not on ΓD and otherwise r̃ = 1,
and r = 1 in general but r = 2 in special circumstances. If K is diagonal, then r = 2
for all points not on ΓD. If the grids are generated by a C2 map, then r = 2 for points
strictly in the interior of Ω that lie on an edge or face e such that ē ∩ Γ̄D = ∅.

Proof. We apply a result due to Weiser and Wheeler [32, Lemma 4.1 and appendix]
to (ũ, p) satisfying the elliptic problem

∇ · ũ = F ≡ ∇ · ∇p in Ω,

ũ = −∇p in Ω,

p = G ≡ p|∂Ω on ∂Ω.

This gives a P satisfying (5.1.2), and, through (5.1.1a), Ũ satisfies (5.1.3) for r̃ = 2
strictly in the interior of Ω.

We define λ∗ by the requirement that on the boundary

Ũxi+1/2,j = ũxi+1/2,j and Ũyi,j+1/2 = ũyi,j+1/2,(5.1.6)
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and then (5.1.3) holds for r̃ = 2 on ΓF as well. Moreover, (5.1.5) holds easily by
Taylor’s theorem and (5.1.2). Finally, r̃ = 1 on ΓD.

It remains to show (5.1.4). Choosing ṽ in (5.1.1b) to be the basis function asso-
ciated with node (i+ 1/2, j), we have in the strict interior of Ω

Uxi+1/2,j = 1
2

[
(K11)i+1/2,j−1/2 + (K11)i+1/2,j+1/2

]
Ũxi+1/2,j

+
1

2(hxi + hxi+1)

{[
(K12)i+1/2,j−1/2Ũ

y
i+1,j−1/2

+ (K12)i+1/2,j+1/2Ũ
y
i+1,j+1/2

]
hxi+1

+
[
(K12)i+1/2,j−1/2Ũ

y
i,j−1/2 + (K12)i+1/2,j+1/2Ũ

y
i,j+1/2

]
hxi

}
,

i = 1, . . . , Nx − 1,

(5.1.7a)

and on ∂Ω

Uxi+1/2,j = 1
2

{[
(K11)i+1/2,j−1/2 + (K11)i+1/2,j+1/2

]
Ũxi+1/2,j

+
[
(K12)i+1/2,j−1/2Ũ

y
ı̂+1,j−1/2 + (K12)i+1/2,j+1/2Ũ

y
ı̂+1,j+1/2

]}
,

i = ı̂ = 0 or i = ı̂+ 1 = Nx.

(5.1.7b)

Since u = Kũ, Taylor’s theorem gives

uxi+1/2,j = 1
2

[
(K11)i+1/2,j−1/2 + (K11)i+1/2,j+1/2

]
ũxi+1/2,j

+
1

2(hxi + hxi+1)

{[
(K12)i+1/2,j−1/2ũ

y
i+1,j−1/2

+ (K12)i+1/2,j+1/2ũ
y
i+1,j+1/2

]
hxi(5.1.8a)

+
[
(K12)i+1/2,j−1/2ũ

y
i,j−1/2 + (K12)i+1/2,j+1/2ũ

y
i,j+1/2

]
hxi+1

}
+ O(h2), i = 1, . . . , Nx − 1,

uxi+1/2,j = 1
2

{[
(K11)i+1/2,j−1/2 + (K11)i+1/2,j+1/2

]
ũxi+1/2,j

+
[
(K12)i+1/2,j−1/2ũ

y
ı̂+1,j−1/2 + (K12)i+1/2,j+1/2ũ

y
ı̂+1,j+1/2

]}
(5.1.8b)

+ O(h), i = ı̂ = 0 or i = ı̂+ 1 = Nx,

where the last O(h) becomes O(h2) if K is diagonal. The coefficients in (5.1.7a) and
(5.1.8a) differ only in the weights hxi and hxi+1.

If K is diagonal,

|Uxi+1/2,j − uxi+1/2,j | ≤ C|Ũxi+1/2,j − ũxi+1/2,j |+O(h2),

and so (5.1.4) follows in this case.
If K is a full tensor, we add and subtract hxi+1 and hxi to the weights of the second

and third term on the right side of (5.1.8a), respectively. Subtracting from (5.1.7a),
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we have

|Uxi+1/2,j − uxi+1/2,j |
≤ C{h2 + |Ũxi+1/2,j − ũxi+1/2,j |

+|Ũyi+1,j−1/2 − ũ
y
i+1,j−1/2|+ |Ũ

y
i,j−1/2 − Ũ

y
i,j−1/2|

+|Ũyi+1,j+1/2 − ũ
y
i+1,j+1/2|+ |Ũ

y
i,j+1/2 − Ũ

y
i,j+1/2|}

+
1
4

{∣∣∣∣(K12)i+1/2,j−1/2
∂ũy

∂x
(x̄′, yj−1/2)

∣∣∣∣
+
∣∣∣∣(K12)i+1/2,j+1/2

∂ũy

∂x
(x̄′′, yj+1/2)

∣∣∣∣} |hxi+1 − hxi |, i = 1, . . . , Nx − 1,

(5.1.9)

where x̄′ and x̄′′ are points between xi and xi+1. We now combine estimates (5.1.9),
(5.2), and (5.1.3) to conclude (5.1.4) in the strict interior of Ω with r = 2 if the grids
are generated by a C2 map and ē ∩ Γ̄D = ∅, and otherwise r = 1. On ∂Ω, (5.1.7b)
and (5.1.8b) imply the estimate (5.1.4) only for r = 1.

In a similar way we estimate |Uyi,j+1/2 − u
y
i,j+1/2|.

COROLLARY 5.4. For the U ∈ Vh, Ũ ∈ Vh, P ∈Wh, and λ∗ ∈ ΛFh in Lemma 5.3,
there exists a constant C, independent of h, such that

‖Ũ− ũ‖TM ≤ Chr̃ and ‖U− u‖TM ≤ Chr,

where r̃ = 2 if ΓD = ∅ and r̃ = 3/2 otherwise and where r = 2 if K is diagonal and
ΓD = ∅, r = 3/2 if K is diagonal or the grids are generated by a C2 map, and r = 1
otherwise.

The proof is immediate, since ∂Ω is a set of dimension one less than that of Ω.

5.2. Estimates for the vectors u and ũ.
LEMMA 5.5. If 0 ≤ α ∈W 1,∞(ΓR), ϕ ∈ H1(ΓR), and µ ∈ ΛRh , then

(α(Qhϕ− ϕ), µ)ΓR ≤ C‖Qhϕ− ϕ‖0,ΓR ‖µ‖0,ΓR h.

Proof. It is well known that the difference of two weighted L2-projections are
superclose. In our case, for any χ1, χ2 ∈ ΛRh , χ1χ2 ∈ ΛRh ; therefore,

(α(Qhϕ− ϕ), µ)ΓR = ((α−Qhα)(Qhϕ− ϕ), µ)ΓR

≤ C‖α−Qhα‖0,∞,ΓR ‖Qhϕ− ϕ‖0,ΓR ‖µ‖0,ΓR
≤ C‖α‖1,∞,ΓR ‖Qhϕ− ϕ‖0,ΓR ‖µ‖0,ΓR h,

since Qh approximates optimally in L∞ as well as in L2.
THEOREM 5.6. Assume (H1)–(H5) and that gR1 ≥ γ > 0 on ΓR. There exists a

constant C, independent of h, such that

‖∇ · (u− uh)‖0 = ‖∇ · (u−Πu)‖0 ≤ Ch,

and, if gR1 ∈ W 1,∞(ΓF ), p ∈ C3,1(Ω̄), u ∈ (C1(Ω̄) ∩W 2,∞(Ω))d, and K ∈ (C1(Ω̄) ∩
W 2,∞(Ω))d×d, then

‖u− uh‖TM + ‖ũ− ũh‖TM + ‖Qhλ− λh‖0,ΓR + ‖(Πu− uh) · ν‖0,ΓF ≤ Chr,
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where r = 2 if K is diagonal and ΓD = ∅, r = 3/2 if K is diagonal or the grids are
generated by a C2 map, and r = 1 otherwise.

Proof. Subtracting (4.1) from (1.3a), (5.1.1), and (1.3d) extended to ΓF gives the
error equations

(∇ · (u− uh), w) = 0, w ∈Wh,(5.2.1a)

(Ũ− ũh,v)TM = (P − ph,∇ · v)− (λ∗ − λh,v · ν)ΓF , v ∈ Vh,(5.2.1b)

(U− uh, ṽ)TM = (K(Ũ− ũh), ṽ)T, ṽ ∈ Vh,(5.2.1c)

((Πu− uh) · ν, µ)ΓF = (gF1 (λ− λh), µ)ΓF , µ ∈ ΛFh .(5.2.1d)

Equation (5.2.1a) and (3.4) imply ∇ · (Πu − uh) = 0, giving the first part of the
theorem with (3.1).

Continuing, let v = Πu− uh, ṽ = Ũ− ũh, and µ = λ∗ − λh in (5.2.1b)–(5.2.1d),
and combine to obtain

(K(Ũ− ũh), Ũ− ũh)T + (gF1 (λ∗ − λh), λ∗ − λh)ΓF

= (Ũ− ũh,U−Πu)TM + (gF1 (λ∗ − λ), λ∗ − λh)ΓF .

The last term above is estimated as

(gF1 (λ∗ − λ), λ∗ − λh)ΓF

= (gF1 (Qhλ− λ), λ∗ − λh)ΓF + (gF1 (λ∗ −Qhλ), λ∗ − λh)ΓF

≤ C{‖Qhλ− λ‖0,ΓR h+ ‖λ∗ −Qhλ‖0,ΓR}‖λ∗ − λh‖0,ΓR ,

using Lemma 5.5. Thus, applying the Schwarz inequality, using that gR1 ≥ γ > 0, and
hiding some terms,

‖Ũ− ũh‖TM + ‖Qhλ− λh‖0,ΓR
≤ C{‖U−Πu‖TM + ‖Qhλ− λ‖0,ΓR h+ ‖λ∗ −Qhλ‖0,ΓR}.

Now, ṽ = U− uh in (5.2.1c) gives

‖U− uh‖TM ≤ C‖Ũ− ũh‖TM,

and µ = (Πu− uh) · ν in (5.2.1d) gives

‖(Πu−uh)·ν‖20,ΓF = (gF1 (Qhλ−λh), (Πu−uh)·ν)ΓF +(gF1 (λ−Qhλ), (Πu−uh)·ν)ΓF ,

and thus with Lemma 5.5,

‖(Πu− uh) · ν‖0,ΓF ≤ C{‖Qhλ− λh‖0,ΓR + ‖λ−Qhλ‖0,ΓR h}.

An application of Corollary 5.4, (5.1.5), (3.3), and the known estimates

‖Πu− u‖TM + ‖Πũ− ũ‖TM ≤ Ch2(5.2.2)

(see [25], [16], [17], [19]) completes the proof.
Remark. Theorem 5.6 states that, in the case of a full tensor, both uh and ũh are

superconvergent to the true solution in the discrete seminorm defined at the nodal
points (for each velocity component, in its direction at the centers of the edges or faces)
under our mild assumption on the grid. We also recovered the superconvergence result
for diagonal K [32] (extended to Robin conditions).
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5.3. Estimates for the scalars p and λ. We now consider bounding the error
in pressure for the finite difference method. From (1.3) and (4.1) we get the error
equations

(∇ · (u− uh), w) = 0, w ∈Wh,(5.3.1a)

(ũ− ũh,v) = (Php− ph,∇ · v)− (Qhλ− λh,v · ν)ΓF

− ETM(ũh,v),
v ∈ Vh,(5.3.1b)

(u− uh, ṽ) = (K(ũ− ũh), ṽ)− ETM(uh, ṽ) + ET(Kũh, ṽ), ṽ ∈ Vh,(5.3.1c)
((u− uh) · ν, µ)ΓF = (gF1 (λ− λh), µ)ΓF , µ ∈ ΛFh ,(5.3.1d)

where

EQ(q,v) = (q,v)− (q,v)Q, Q = TM or T.

It is well known [14] that the error in approximating an integral by either of these
rules is of order h2:

|EQ(q,v)| ≤ C
∑
E

∑
|α|=2

∥∥∥∥ ∂α∂xα
(q · v)

∥∥∥∥
0,1,E

h2.(5.3.2)

We will need the following lemma.
LEMMA 5.7. If the lowest-order RTN spaces on rectangles are used, then for any

q = (qx, qy) ∈ H1(Ω) and E ∈ Th,∥∥∥∥ ∂∂x (Πq)x
∥∥∥∥

0,E
≤
∥∥∥∥∂qx∂x

∥∥∥∥
0,E

and
∥∥∥∥ ∂∂y (Πq)y

∥∥∥∥
0,E
≤
∥∥∥∥∂qy∂y

∥∥∥∥
0,E

.

Proof. Without loss of generality, assume that E is the unit square. By definition,
Π satisfies on each edge e of E∫

e

(q · ν −Πq · ν) ds = 0.

Writing this for the two vertical edges, we have∫ 1

0
[qx(1, y)− (Πq)x(1, y)] dy = 0 and

∫ 1

0
[qx(0, y)− (Πq)x(0, y)] dy = 0.

Subtraction of the above equations and the fundamental theorem of calculus imply∫ 1

0

∫ 1

0

[
∂

∂x
qx(x, y)− ∂

∂x
(Πq)x(x, y)

]
∂vx

∂x
dx dy = 0, v ∈ Vh.

Therefore (Πq)x is the H1
0 -projection of qx in the x direction. Similarly, (Πq)y is the

H1
0 -projection of qy in the y direction, which proves the lemma.

THEOREM 5.8. Assume (H1)–(H5) and that gR1 ≥ γ > 0 on ΓR. If the grids
are quasiuniform, p ∈ C3,1(Ω̄), u ∈ (C1(Ω̄) ∩ W 2,∞(Ω))d, and K ∈ (C1(Ω̄) ∩
W 2,∞(Ω))d×d, then there exists a constant C, independent of h, such that

‖Php− ph‖0 + ‖Qhλ− λh‖−1/2,ΓF ≤ Ch2.
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Proof. To estimate the pressure error, we use a duality argument. Again, let
ρ ∈ L2(Ω), ψ ∈ H1/2(ΓF ), and ϕ ∈ H2(Ω) solve (3.13), set v = −ΠK∇ϕ, and note
that ∇·v = Phρ, v ·ν = Qh(ψ+gF1 ϕ), and (3.14)–(3.15) hold. We have with (5.3.1b),

(Php− ph, ρ)− (Qhλ− λh, ψ)ΓF

= −(ũ− ũh,ΠK∇ϕ−K∇ϕ)− (K(ũ− ũh),∇ϕ−Π∇ϕ)

− (K(ũ− ũh),Π∇ϕ) + (Qhλ− λh, gF1 ϕ)ΓF + ETM(ũh,ΠK∇ϕ),

which is analogous to (3.27). Thus, as in (3.28) for s = 0,

(Php− ph, ρ)− (Qhλ− λh, ψ)ΓF

≤ C{‖ũ− ũh‖0 + ‖u− uh‖0 + ‖∇ · (u− uh)‖0 + ‖(u− uh) · ν‖0,ΓF
+‖λ− λh‖0,ΓR + ‖Qhλ− λ‖0,ΓF }‖ϕ‖2 h

+|ETM(uh,Π∇ϕ)|+ |ET(Kũh,Π∇ϕ)|+ |ETM(ũh,ΠK∇ϕ)|.

(5.3.3)

Using (5.3.2) and the fact that the functions are in the discrete space, we have

|ETM(ũh,ΠK∇ϕ)| ≤ C
∑
E

{∥∥∥∥∂ũxh∂x
∥∥∥∥

0,E

∥∥∥∥ ∂∂x (ΠK∇ϕ)x
∥∥∥∥

0,E

+
∥∥∥∥∂ũyh∂y

∥∥∥∥
0,E

∥∥∥∥ ∂∂y (ΠK∇ϕ)y
∥∥∥∥

0,E

}
h2.

(5.3.4)

We observe by the inverse inequality (valid for quasi-uniform grids) and Lemma 5.7
that ∥∥∥∥∂ũxh∂x

∥∥∥∥
0,E

=
∥∥∥∥ ∂∂x (ũxh − (Πũ)x)

∥∥∥∥
0,E

+
∥∥∥∥ ∂∂x (Πũ)x

∥∥∥∥
0,E

≤ C‖ũxh − (Πũ)x‖0,Eh−1 +
∥∥∥∥∂ũx∂x

∥∥∥∥
0,E

≤ C‖ũh −Πũ‖0,Eh−1 + ‖ũ‖1,E .

A similar expression holds for the y direction. Now, from (5.3.4) and again using
Lemma 5.7,

|ETM(ũh,ΠK∇ϕ)|

≤ C
∑
E

{‖ũh −Πũ‖0,Eh−1 + ‖ũ‖1,E}‖K∇ϕ‖1,Eh2

≤ C
∑
E

{‖ũh −Πũ‖0,E + ‖ũ‖1,E h}‖ϕ‖2,E h

≤ C{‖ũh −Πũ‖0 + ‖ũ‖1 h}‖ϕ‖2 h.

(5.3.5)

We bound the other two quadrature error terms similarly:

|ETM(uh,Π∇ϕ)| ≤ C{‖uh −Πu‖0 + ‖u‖1 h}‖ϕ‖2 h,
|ET(Kũh,Π∇ϕ)| ≤ C{‖ũh −Πũ‖0 + ‖ũ‖1 h}‖ϕ‖2 h,
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noting that the constants depend on ‖K‖2,∞. From (5.3.3), then,

(Php− ph, ρ)− (Qhλ− λh, ψ)ΓF

≤ C{‖ũ− ũh‖0 + ‖u− uh‖0 + ‖ũh −Πũ‖0 + ‖uh −Πu‖0
+‖∇ · (u− uh)‖0 + ‖(u− uh) · ν‖0,ΓF
+‖λ− λh‖0,ΓR + ‖Qhλ− λ‖0,ΓF + h}‖ϕ‖2 h,

(5.3.6)

which, combined with Theorem 5.6, the projection error estimates, (5.1), (5.2.2), and
(3.14), proves the result.

5.4. Interior estimates for the vectors u and ũ. We finally establish interior
estimates of u−uh and ũ−ũh that show in all cases essentially second-order supercon-
vergent rates of convergence. We will need Π̃T, the element-by-element trapezoidal
(i.e., corner) interpolation operator into Vh. We will need the following lemma.

LEMMA 5.9. If Φ ∈ C∞(Ω) and v ∈ Vh, then

‖(1−Π)(Φv)‖T ≤ C‖v‖TM h,

where C depends on Φ.
Proof. By (3.6), for any edge or face e with unit normal ν,

Π(Φv) · ν|e =
(

1
|e|

∫
e

Φ ds(x)
)

v · ν|e,

where |e| is the length or area of e; thus, at an element corner point ξ ∈ ∂e,

(1−Π)(Φv · ν)(ξ) =
(

Φ(ξ)− 1
|e|

∫
e

Φ ds(x)
)

v · ν(ξ)

is first-order accurate.
THEOREM 5.10. Assume (H1)–(H5) and that gR1 ≥ γ > 0 on ΓR. Let Ω′ be

compactly contained in Ω. For any ε > 0, there exists a constant Cε, independent of
h, such that if p ∈ C3,1(Ω̄), u ∈ (C1(Ω̄) ∩W 2,∞(Ω))d, K ∈ (C1(Ω̄) ∩W 2,∞(Ω))d×d,
and either K is diagonal or the grids are generated by a C2 map, then

‖u− uh‖TM,Ω′ + ‖ũ− ũh‖TM,Ω′ ≤ Cεh2−ε.

LEMMA 5.11. If Ω′′ is compactly contained in Ω and either K is diagonal or the
grids are generated by a C2 map, then

‖U− u‖TM,Ω′′ + ‖Ũ− ũ‖TM,Ω′′ ≤ Ch2,

where C is independent of Ω′′.
This is a corollary of Lemma 5.3.
Proof of Theorem 5.10. For i = 1, 2, . . ., fix domains Ωi such that

Ω′ ⊂⊂ Ωi+1 ⊂⊂ Ωi ⊂⊂ Ω0 = Ω,

and let 0 ≤ Φi+1 ∈ C∞0 (Ωi) with Φi+1 ≡ 1 on Ωi+1.
We will analyze the error equations (5.2.1). First note that (5.2.1) holds with the

TM quadrature rule replaced by the T rule. We have, using (5.2.1c) for some c > 0,

c‖Φ1/2
i+1(Ũ− ũh)‖2T,Ωi ≤ (K(Ũ− ũh),Φi+1(Ũ− ũh))T,Ωi

= (K(Ũ− ũh), Π̃T(Φi+1(Ũ− ũh)))T,Ωi

= (U− uh, Π̃T(Φi+1(Ũ− ũh)))T,Ωi

= (Φi+1(U− uh), Ũ− ũh)T,Ωi .

(5.4.1)
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Now (5.2.1b) with v = Π(Φi+1(Πu − uh)), the fact that ∇ · (Πu − uh) = 0, and
Lemma 5.9,

(Φi+1(U− uh), Ũ− ũh)T,Ωi

= (Φi+1(U−Πu), Ũ− ũh)T,Ωi

+ ((1−Π)(Φi+1(Πu− uh)), Ũ− ũh)T,Ωi

+ (P − ph,∇Φi+1 · (Πu− uh))Ωi

≤ ‖Φ1/2
i+1(U−Πu)‖T,Ωi ‖Φ

1/2
i+1(Ũ− ũh)‖T,Ωi

+ Ci+1‖Πu− uh‖TM,Ωi{‖Ũ− ũh‖TM,Ωih+ ‖P − ph‖0}

≤ 1
2c‖Φ

1/2
i+1(Ũ− ũh)‖2T,Ωi

+ Ci+1{‖U−Πu‖2T,Ωi + ‖Πu− uh‖2TM,Ωih

+‖Ũ− ũh‖2TM,Ωih+ ‖Πu− uh‖TM,Ωi‖P − ph‖0}.

(5.4.2)

Thus, using (5.1), (5.1.2), Corollary 5.4, Theorem 5.6, (5.2.2), and Lemma 5.11,

‖Φ1/2
i+1(Ũ− ũh)‖T,Ωi ≤ Ci+1 h{h+ ‖U− uh‖1/2TM,Ωi}

≤ Ci+1 h{h+ ‖Φ1/2
i (U− uh)‖1/2T,Ωi−1

}.
(5.4.3)

Likewise, (5.2.1c) gives for any η > 0,

‖Φ1/2
i+1(U− uh)‖2T,Ωi
= (U− uh, Π̃T(Φi+1(U− uh)))T,Ωi

= (K(Ũ− ũh), Π̃T(Φi+1(U− uh)))T,Ωi

= (K(Ũ− ũh),Φi+1(U− uh))T,Ωi

≤ C‖Φ1/2
i+1(Ũ− ũh)‖2T,Ωi + 1

2‖Φ
1/2
i+1(U− uh)‖2T,Ωi ;

(5.4.4)

therefore, with (5.4.3),

‖Φ1/2
i+1(U− uh)‖T,Ωi ≤ C‖Φ

1/2
i+1(Ũ− ũh)‖T,Ωi

≤ Ci+1 h{h+ ‖Φ1/2
i (U− uh)‖1/2T,Ωi−1

}.
(5.4.5)

Since Theorem 5.6 and Lemma 5.11 give

‖Φ1/2
i (U− uh)‖T,Ωi−1 ≤ Ci‖U− uh‖TM,Ωi−1 ≤ Cih3/2,

applying (5.4.5) recurrently, we see that

‖U− uh‖TM,Ω′ + ‖Ũ− ũh‖TM,Ω′ ≤ Cεh2−ε,

and the theorem follows from Lemma 5.11.

6. Some numerical experiments. In this section we present the results of
some numerical tests on the cell-centered finite difference method defined in section 4
which confirm some of the theoretical results from the previous section. We solve a



MIXED ELEMENTS FOR ELLIPTIC PROBLEMS WITH TENSORS 847

TABLE 6.1
Convergence rates for the relatively simple Dirichlet problem ‖p − ph‖M ≤ Cp hαp and ‖u −

uh‖TM ≤ Cu hαu .

Tensor Grid Cp αp Cu αu
D uniform 0.367 1.948 0.331 1.788
D C2-grid 0.050 2.127 0.104 2.069
D nonuniform 0.275 1.997 0.186 1.625
N uniform 0.394 1.950 0.287 1.762
N C2-grid 0.040 2.104 0.091 2.065
N nonuniform 0.291 1.993 0.161 1.542

problem on the unit square with either a Dirichlet or a Neumann boundary condition.
To stabilize the Neumann condition, we add p to the left-hand side of (1.1a).

The numerical tests are divided into three subsections. First, we consider a rel-
atively simple example, for which the loss of superconvergence due to the boundary
conditions is only very slight. Second, a relatively hard example, with a loss of h1/2

superconvergence near the boundary, is shown. Third, the harder example is solved
with a nonsymmetric variant of our cell-centered finite difference method that recovers
most of the superconvergence near the boundary.

6.1. A relatively simple example. In these numerical experiments, the con-
ductivity tensor is either diagonal or full (nondiagonal) with variable components:

K = D =
(

10 0
0 1

)
or K = N =

(
(x+ 2)2 + y2 sin(xy)

sin(xy) 1

)
.

The true solution is

p = x3y + y4 + sin(x) cos(y),

with f and gD or gN defined accordingly by (1.1).
Convergence rates are established by running cases for six levels of grid refinement,

starting with h = 1/5 on level one and refining by a factor of two for each successive
level until h = 1/160 for level six. Assuming that the error takes the form Chα, C
and α are determined to give the best least squares fit to the data. We consider three
types of grids, a uniform grid, a C2-grid generated by a C2 mapping of the uniform
grid, and a nonuniform grid that is a random perturbation of the uniform grid. The
C2 map is defined by

F x(x) =
e−2x − 1
e−2 − 1

, F y(y) =
25− (5− 4y)2

24
.

The results for the Dirichlet and Neumann problems are presented in Tables 6.1
and 6.2, respectively. Quadrature rules are used for calculating the error; that is,
the results presented are for the norm ‖ · ‖M for pressure and ‖ · ‖TM for velocity.
The convergence rate for the pressure is O(h2) in all cases. The Neumann problem’s
velocity is also O(h2) convergent for both the diagonal and the nondiagonal tensors. A
slight loss of convergence is observed for the Dirichlet problem for all but the C2-grid,
but it is still at least O(h3/2).

The C2-grid provides the best results since we refined more where the solution
is large (near the corner at (1,1)). Thus, the map induces a somewhat better than
halving of the grid size where the solution is difficult to approximate. The loss of
superconvergence for the velocity in these examples due to the boundary conditions
is slight, since the boundary flux is nearly in the normal direction.
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TABLE 6.2
Convergence rates for the relatively simple Neumann problem ‖p − ph‖M ≤ Cp hαp and ‖u −

uh‖TM ≤ Cu hαu .

Tensor Grid Cp αp Cu αu
D uniform 2.091 2.005 0.069 1.996
D C2-grid 0.564 2.107 0.012 2.089
D nonuniform 1.370 2.081 0.047 2.063
N uniform 7.565 2.005 0.182 1.946
N C2-grid 1.565 2.105 0.022 2.072
N nonuniform 5.194 2.094 0.097 1.892

FIG. 6.1. The computed pressure and velocity for the relatively hard problem with a large
tangential flux (h = 1/20).

TABLE 6.3
Convergence rates for the relatively hard problem ‖p − ph‖M ≤ Cp hαp and ‖u − uh‖TM ≤

Cu hαu .

BC Levels Cp αp Cu αu
Dirichlet 1–7 2.339 2.000 0.759 1.445
Dirichlet 6–7 2.346 2.000 1.005 1.496
Neumann 1–7 2.416 1.936 0.386 1.333
Neumann 6–7 3.340 1.998 0.839 1.472

6.2. A relatively hard example. In the following experiments, we show that
the loss of a half power of h is genuine if the tangential component of the flux through
the boundary is large and that this loss occurs strictly on the boundary. The problem
has the true solution

p = (x− x2)(y − y2)

and the conductivity tensor

K =
(

11 9
9 13

)
.

Note that this conductivity causes a large diagonal component to the flow (see Fig. 6.1);
that is, there are significant tangential fluxes on the element boundaries.

The rates of convergence on uniform grids are shown in Table 6.3. They are com-
puted by a least squares fit to the data from the seven levels of refinement starting
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A. Dirichlet problem B. Neumann problem

FIG. 6.2. Velocity convergence rates for the relatively hard problem.

A. Neumann problem B. Dirichlet

FIG. 6.3. Magnitude of the velocity error in the relatively hard problem with a large tangential
flux (h = 1/20).

TABLE 6.4
Interior convergence rates for the relatively hard problem ‖u− uh‖TM,Ω′h

≤ Cu hαu .

BC Levels Cu αu
Dirichlet 1–7 0.464 1.818
Dirichlet 6–7 0.959 1.950
Neumann 1–7 0.471 1.587
Neumann 6–7 1.897 1.836

with h = 1/10 and also to the data from only the last two levels. The results indicate
that a relatively fine mesh is needed for this problem to be in the asymptotic range of
convergence for the velocity. This can also be seen in Fig. 6.2, where the velocity con-
vergence rates are plotted, computed by comparing the error from any two successive
levels. Fig. 6.3 shows that the velocity error is concentrated near the boundary.

We did not compute interior estimates for a fixed domain Ω′; rather, we used Ω′h,
the full domain less the elements touching ∂Ω. In Table 6.4, these interior estimates
for the velocity nearly show the full O(h2) superconvergence.
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6.3. A nonsymmetric cell-centered finite difference method. In this sub-
section we present a nonsymmetric variant of our finite difference method that ap-
pears to be superconvergent even at the boundary of the domain. We define it only
for Dirichlet or Neumann boundary conditions (i.e., assume ΓR = ∅). The nonsym-
metric method is based on an extension of the domain. The method is unmodified in
the interior; thus, the nonsymmetry appears only near the boundary. We begin with
some notation.

We assume explicitly that Ω is a rectangular parallelepiped. Let Ω̂h denote the
extension of Ω by one element beyond ∂Ω. This extension should respect any un-
derlying C2 map that generates the grid. Let Ω̂h be decomposed into the union
Ω̂h = Ω ∪ ΩDh ∪ ΩNh ∪ ΩCh , disjoint except for edge or face overlap, where ΩD

h and
ΩNh consist of the elements outside Ω that are adjacent to ΓD and ΓN , respectively,
and ΩCh denotes the elements outside Ω but not adjacent to ∂Ω (i.e., the “corner”
elements).

Let V̂h × Ŵh denote the lowest order Raviart–Thomas space defined on Ω̂h such
that for any v ∈ V̂h, v · νh = 0, where νh is the outer unit normal to ∂Ω̂h. Let V̂ Ch
denote the subset of V̂h for which v · ν|e = 0 on any edge or face e strictly outside
Ω∪ΩCh ; that is, V̂ Ch has possibly nonzero nodal degrees of freedom only on the edges
or faces of Ω and the corner elements of ΩC

h . Further, let ŴN,C
h denote the subset of

Ŵh for which w = 0 on ΩDh .
On an element E with area or volume |E|, let

fh(x) =


f if x ∈ E ⊂ Ω,

− 1
|E|
∫
∂E∩ΓN g

N ds if x ∈ E ⊂ ΩNh ,

0 otherwise.

(6.3.1)

The nonsymmetric method is to find uh ∈ V̂ Ch , ũh ∈ V̂h, and ph ∈ Ŵh such that

(∇ · uh, w)Ωh = (fh, w)Ωh , w ∈ ŴN,C
h ,(6.3.2a)

(ũh,v)TM,Ωh = (ph,∇ · v)Ωh , v ∈ V̂h,(6.3.2b)

(uh, ṽ)TM,Ωh = (Kũh, ṽ)T,Ωh , ṽ ∈ V̂ Ch ,(6.3.2c)

where we must further define ph on ΩDh . For E1 ⊂ ΩDh such that E2 ⊂ Ω shares its
edge or face e on ∂Ω, let hi = |Ei|/|e|, i = 1, 2, and then define by extrapolation

ph|E1 − ph|E2

1
2 (h1 + h2)

=
1
|e|
∫
e
gD ds− ph|E2

1
2h2

;

that is,

ph|E1 =
h1 + h2

h2|e|

∫
e

gD ds− h1

h2
ph|E2 .(6.3.2d)

For an element E ⊂ ΩNh , let e = ∂E ∩ ∂Ω, and set w equal to the characteristic
function of E. Then (6.3.2a) implies that∫

e

gN ds = −
∫
∂E

uh · ν∂E ds = uh · ν∂Ω|e| −
∫
∂E∩∂ΩCh

uh · ν∂E ds;
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TABLE 6.5
Convergence rates for the relatively hard problem using the nonsymmetric method ‖p−ph‖M ≤

Cp hαp and ‖u− uh‖TM ≤ Cu hαu .

BC Levels Cp αp Cu αu
Dirichlet 1–5 1.971 2.091 0.831 1.741
Dirichlet 4–5 1.386 1.998 1.887 1.957
Neumann 1–5 0.825 1.727 0.839 1.963
Neumann 4–5 2.153 1.979 0.938 1.992

A. Neumann problem B. Dirichlet

FIG. 6.4. Magnitude of the velocity error in the relatively hard problem with a large tangential
flux using the nonsymmetric method (h = 1/20).

thus, uh · ν is set properly on Neumann edges or faces that do not touch the corners.
Indeed, for an edge or face e ⊂ ΓN that does touch a corner point or line, uh · ν may
not be the average of gN ; rather, only the net flux into the corner element is correct
(by (6.3.2a)).

If we repeat the relatively hard experiments of the previous subsection, we recover
the full O(h2) superconvergence of the velocity with this nonsymmetric method in the
asymptotic regime. The rates of convergence are presented in Table 6.5. The error
seems to be concentrated near the corners of the domain, as seen in Fig. 6.4.
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