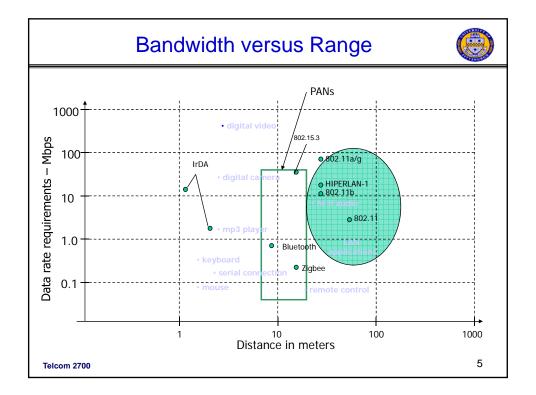
Wireless Personal Area Networks

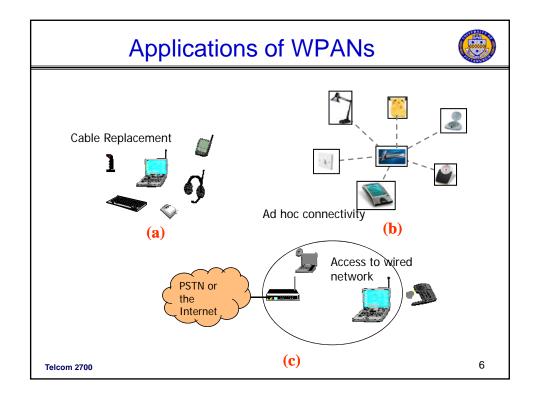
David Tipper Associate Professor

Graduate Telecommunications and Networking Program University of Pittsburgh Slides 16

Wireless Networks

- Wireless Wide Area Networks (WWANs)
 - Cellular Networks :
 - GSM, cdmaone (IS-95), UMTS, cdma2000 EV-DO
 - Satellite Networks:
 - Iridium, Globalstar, GPS, etc.
- Wireless Metro Area Networks (WMANs)
 - IEEE 802.16 WIMAX
- Wireless Local Area Networks (WLANs)
 - IEEE 802.11, a, b, g, etc. (infrastructure, ad hoc, sensor)
- Wireless Personal Area Networks (WPANs)
 - IEEE 802.15 (Bluetooth), IrDa, Zigbee, 6LowWPAN, proprietary sensor, etc.





What is a personal area network?

- Origins in the BodyLAN project initiated by BBN in the early 1990s for military
- Networking "personal" devices around a solider
 - Now networking devices around an individual
 - sensors, cameras, handheld computers, audio devices, cell phone, printers, etc.
- Goal was smart technology that self configures, recognizes other units within range and provides on the fly communications
- Universal short-range wireless capability
 - Use band available globally for unlicensed users
 - Low powered medium data rate

Bluetooth

- Much of the WPAN focus today is around Bluetooth
- Originated by Ericsson, Nokia, IBM, Toshiba, Intel formed a WPAN special interest group (SIG) 1998
- Named after King of Denmark and Norway
 - Kong Harald Blaatand (Bluetooth), 940 981.
- Specifies the complete system from the radio level up to the application level
- Protocol stack is partly in hardware and partly in software running on a microprocessor
- · Embedded devices
 - Low power
 - Low cost
- Uses ISM band of spectrum

Telcom 2700

IEEE 802.15

Bluetooth

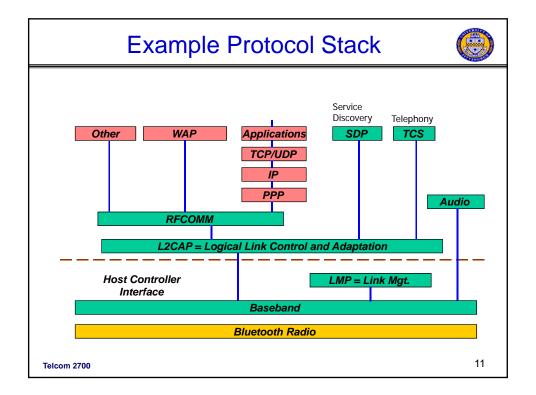
Functional block diagram of a Bluetooth trans-

- Started in 1997 as a sub-group of IEEE 802.11
- · Focused on WPANS
- Initial functional requirements
 - Low power devices
 - Range of 0-10m
 - Low data rates (19.2-100 kbps)
 - Small sizes (0.5 cubic inches)
 - Low cost
 - Multiple networks in the same area
 - Up to 16 separate devices in a PAN
- IEEE Took over Bluetooth standardization in 2000
 - Today over 2500 companies as Bluetooth SIG members http://www.bluetooth.com
 - Built-in Bluetooth chip shipped in more than 100 million cellular phones and laptops last year
 - Several millions of other communication devices
 - · Cameras, headsets, microphones, keyboards etc.

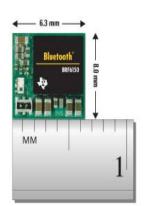
Telcom 2700 8

IEEE 802.15 today

- Task Group 1 (802.15.1)
 - PHY and MAC layer design for wirelessly connecting devices entering a personal operating space (POS)
 - POS is a 10m space around a person who is stationary or in motion
- Task Group 2 (802.15.2)
 - Coexistence of WLANs and WPANs
 - Interoperability between a WLAN and WPAN device
- Task Group 3 (802.15.3)
 - Higher data rates (> 20 Mbps) (Kodak, Cisco, Motorola)
 - Multimedia applications like digital imaging and video
 - UWB radios WiMedia protocol stack at higher layers
- Task Group 4 (802.15.4)
 - Low data rates and ultra low power/complexity devices for sensor networking
 - Home automation, smart tags, interactive toys, location tracking, etc.
 - Zigbee is now part of this group


Telcom 2700

Bluetooth Protocol Architecture


- Bluetooth architecture has three types of protocols
- 1. Core protocols
 - Radio
 - Baseband
 - Link manager protocol (LMP)
 - Logical link control and adaptation protocol (L2CAP)
 - Service discovery protocol (SDP)
- 2. Cable replacement and Telephony protocols
 - RFCOMM
 - Telephony control specification binary (TCS BIN)
- 3. Adopted protocols
 - PPP
 - TCP/UDP/IP
 - WAP
 - Etc.

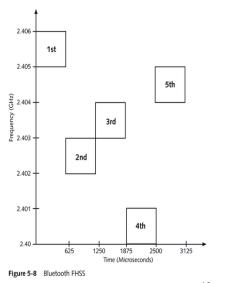
Bluetooth RF and Baseband Layers

- Operates in the same 2.4 GHz bands as IEEE 802.11b
- Channels are 1MHz wide (79 or 23 channels depending on country)
- Modulation :
 - GFSK at 1Mbps on air
 - Version 2.0 Enhanced Data Rate 2-level -GFSK: 2Mbps rate
- Error control depends on connection and rate either
 - 1/3 convolutional coded FEC,
 - 2/3 FEC
 - ARQ
- Single chip implementation < \$5 a chip

12

Telcom 2700

Bluetooth FHSS

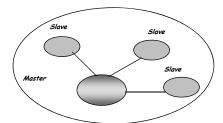


Employs *frequency hopping* spread spectrum

Reduce interference with other devices

Pseudorandom hopping 1600 hops/sec- time slot is defined as 625 microseconds

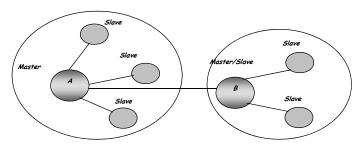
Packet 1-5 time slots long TDD up/downlink System is FH/FDMA/TDD



Telcom 2700

13

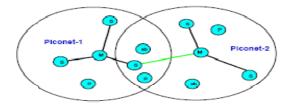
Bluetooth Architecture



- Scattered ad-hoc topology called a ``scatter-net"
- A "cell" or "piconet" is defined by a Master device
 - The master controls the frequency hopping sequence
 - The master also controls the transmission within its piconet using a TDMA structure
- There is NO contention within a piconet
- There is interference between piconets in the same geographic space

Telcom 2700 14

Bluetooth Architecture (2)



- A device can belong to several piconets
- A device can be the master of only one piconet
- A device can be the master of one piconet and slave of another piconet or a slave in different piconets

Bluetooth Architecture (3)

- The Master device is the device that initiates an exchange of data
- The Slave device is a device that responds to the Master
 - Slaves use the frequency hopping pattern specified by the Master
- A slave can transmit ONLY in response to a Master
- A Master device can simultaneously control seven slave devices and might have up to 200 slave devices in a piconet
- Multiple piconets in the same geographic space interfere with each other
 - FH-SS is used so multiple piconets can coexist in same space

Telcom 2700

Bluetooth Device Address

16

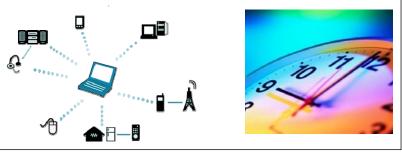
- Each Bluetooth device has a 48 bit IEEE 802 MAC address
 - Called the Bluetooth Device Address (BD_ADDR)
 - This MAC address is split into three parts
 - The Non-significant Address Part (NAP)
 - Used for encryption seed
 - The Upper Address part (UAP)
 - Used for error correction seed initialization and FH sequence generation
 - The Lower Address Part (LAP)
 - Used for FH sequence generation
- Additional address fields are used once in a piconet
 - Active member address
 - · Address valid as long as device is active slave in a piconet
 - Parked member address
 - · Address valid as long as a device is a parked slave in a piconet

Bluetooth connections

- Synchronous connection-oriented (SCO) link
 - "Circuit-switched"
 - periodic single-slot packet assignment
 - Symmetric 64 kbps full-duplex
 - Up to three simultaneous links from master
- Asynchronous connection-less (ACL) link
 - Packet data
 - Variable packet size (1-5 slots)
 - Asymmetric bandwidth point to multipoint
 - Maximum Asymmetric rate: 723.2 kbps (57.6 kbps return channel)
 - Symmetric data rates: 108.8 432.6 kbps
 - FEC/ARQ used for error control

Telcom 2700 18

Bluetooth Power Control


- Three classes of devices exist
 - Class 1: 100 mW (20 dBm) (~100m)
 - Class 2: 2.5 mW (4 dBm) (~10m)
 - Class 3: 1 mW (0 dBm) (~1m)
- Mixture of devices can exist in a piconet
- Range of devices is subject to their class
- Mandatory power control is implemented
 - Steps of 2 dB to 8 dB
 - Only the power required for adequate RSS is to be used
 - Based on feedback (closed loop) using link management protocol control commands

Clock Synchronization

- Each Bluetooth device has a free running clock called the native clock or CLKN
 - A Master device uses its CLKN for timing
 - A Slave device determines an offset from its own CLKN to synchronize to the Master
 - The Master also uses an offset to determine the slave's clock to establish an initial connection with a slave

Telcom 2700 2

Discovering Bluetooth Devices

- A device wishes to discover what Bluetooth devices exist in its vicinity and what services they offer
- Performs an "inquiry" procedure
 - It transmits a series of inquiry packets on different frequencies and awaits a response
 - Devices scanning for inquiries use a sliding window to detect such inquiries
 - If an inquiry is detected by a scanning device it responds with a "frequency hop synchronization" (FHS) packet that enables completion of a successful connection
 - FHS contains ID and clock info
 - If collision occurs on inquiry device implement random backoff and retries
 - Connection is established
 - Device that initiates connection is *master* in resulting piconet

Paging a device

- Paging is similar to "inquiry" except that the slave address is known
 - Slave clock/frequency hopping pattern is known
 - The page packet is transmitted at the expected frequency of the slave
- The Master sends a page train with a duration of 10 ms covering 16 frequency hops, repeat if necessary
- The Slave listens for its own device access code (DAC) for the duration of a scan window
- The Slave sends a "slave response" when its own DAC is heard
- The Master sends a "master response"
- The Slave responds to the master with its own DAC using the Master's clock included in FHS packet

Telcom 2700 22

Bluetooth connection states Standby Connecting Page Active Low power modes Sniff Hold Park Telcom 2700

Connection States (2)

- Standby (default)
 - Waiting to join a piconet
- Inquire
 - Discover device within range or find out unknown destination address
- Page
 - Establish actual connection using device access code (DAC)
- Connected
 - Actively on a piconet (master or slave)
- Park/Hold/Sniff (Low-power connected states)
 - Hold mode stops traffic for a specified period of time
 - Sniff mode reduces traffic to periodic sniff slots
 - Park mode gives up its active member address and ceases to be a member of the piconet
- Active
 - Unit participates on channel master schedule transmisisons

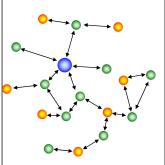
Telcom 2700

Service Discovery

24

- After "inquiry" or "paging" an ACL or SCO is set up
- SCO is used for telephony or audio connection
- If ACL connection, the Master sets up an L2CAP connection with the slave
 - L2CAP is logical link control layer
 - Responsible for segmenting and reassembling data packets
 - L2CAP allows several protocols to be multiplexed over it using a Protocol and Service Multiplexer (PSM) number – emulates serial port
- The master's service discovery client can use SDP to obtain the services that slave devices within the piconet can offer
- The Master can then decide what slave devices to communicate with and what services to employ

Service Discovery


- After "inquiry" or "paging" an ACL or SCO is set up
- SCO is used for telephony or audio
- If ACL connection, the Master sets up an L2CAP connection with the slave
 - L2CAP is logical link control layer
 - Responsible for segmenting and reassembling data packets
 - L2CAP allows several protocols to be multiplexed over it using a Protocol and Service Multiplexor (PSM) number – emulates serial port
- The master's service discovery client can use SDP to obtain the services that slave devices within the piconet can offer
- The Master can then decide what slave devices to communicate with and what services to employ

Telcom 2700 26

Link Manager

- The Link manager manages the following operations
 - Attaching slaves to the piconet
 - Allocates an active member address to a slave
 - Breaks connections to slaves
 - Establishes SCO or ACL links
 - Changes the connection state of devices (like sniff, park or hold)
- Uses the Link Management Protocol (LMP) to connect between devices

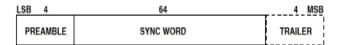
Comments

- A device can be part of several piconets simultaneously (scatternet)
 - This implies that the device should maintain multiple sets of clocks and timers and switch between them
 - The throughput of the device is substantially reduced compared to what it might have if connected to a single piconet
- Audio part of Bluetooth specifies different codecs
 - Supports A-law and μ -law for PCM
 - Also supports DPCM
- RFCOMM (Radio Frequency Virtual Communications Port Emulation)
 - Similar to RS-232 serial connections
- No handoffs between piconets for mobile users

Telcom 2700 29

Bluetooth Packet Fields

- Access code used for timing synchronization, offset compensation, paging, and inquiry
- Header used to identify packet type, packet numbering, slave address, error checking info and control info
- Payload contains user voice, data or both and payload header, if present

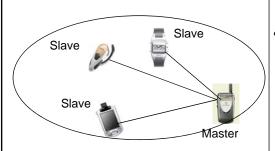

Baseband Frame Format

General packet format

Access code

- Payload
 - Voice field: fixed length, 240 bits
 - Data field: Payload header, body, CRC
 Header: single-slot vs. multi-slot packets>

Telcom 2700 31


Packet Header Fields

- AM_ADDR contains "active mode" address of one of the slaves
- Type identifies type of packet
- Flow 1-bit flow control
- $\bullet \quad ARQN-1-bit\ acknowledgment$
- SEQN 1-bit sequential numbering schemes
- Header error control (HEC) 8-bit error detection code

Security

- Due to low radio range security threat must be in very close range
- Link Management Protocol layer of Bluetooth provides security and encryption services
 - Security in piconet involves identifying device itself, not who is using device
- •Three security mode in Bluetooth
 - •Level 1: No security
 - •Level 2: Service-level security is established after connection is made
 - •Level 3: Link-level security is performed before a connection is made

Telcom 2700

Authentication

- Authentication involves verifying that a device should be allowed to join piconet
 - Bluetooth uses a challengeresponse strategy to confirm that other device knows a shared identical secret key
 - Secret key entered as PIN by hand
 - Version 1.1 improves authentication process by first confirming roles of master and slave before generating response number

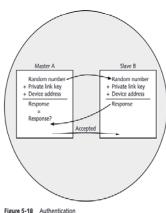


Figure 5-18 Authentication

Telcom 2700

35

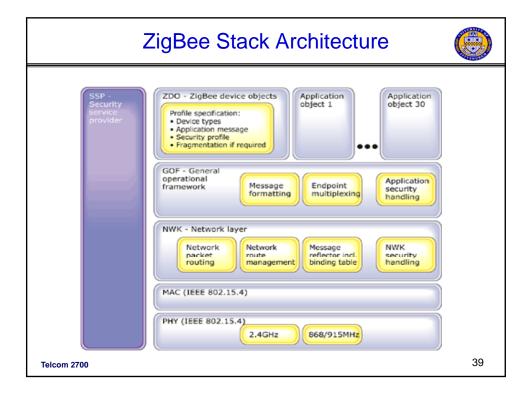
Encryption

- Encoding communications ensures that transmissions cannot be intercepted and decoded
- Three encryption modes
 - Encryption Mode 1—Nothing is encrypted
 - Encryption Mode 2—Traffic from master to one slave is encrypted, but traffic from master to multiple slaves is not
 - Encryption Mode 3—All traffic is encrypted
 - Uses variable bit key (64 is default value)

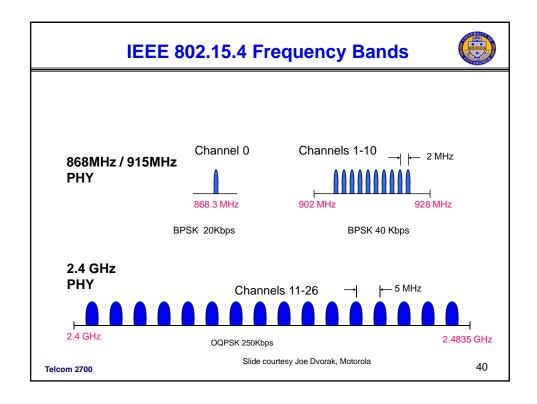
Telcom 2700

State of Bluetooth

- Bluetooth shipped in over a 1 Billion devices
- Bluetooth challenges
 - Reduce Cost ~\$5 a port vs cable
 - Conflicts with other devices in radio spectrum
 - Limited security
- Most of the focus in the standards group is on other 802.15 tasks
- IEEE 802.15.4 for low power, low data rate, cheap, WPANs (Zigbee)
- IEEE 802.15.5 Mesh Networking WPANs
- IEEE 802.15.3 for high data rate WPANs (WiMedia) 802.15.3a focus is Ultra WideBand (UWB) WPANs


Telcom 2700

802.15.4 Standard


- •Focus on low data rates/low power/moderate range/low complexity devices for WPAN sensor networks
 - Took over Zigbee interest group work
 - Data rates of 250 kb/s, 40 kb/s and 20 kb/s.
 - Distances 10-50 meters
 - Star or Peer-to-Peer operation.
 - Support for low latency devices.
 - Full handshake protocol for transfer reliability.
 - Very Low power consumption
 multi-year battery based lifetime
 - Frequency Bands of Operation
 - •16 channels in the 2.4GHz ISM* band
 - •10 channels in the 915MHz ISM band
 - •1 channel in the European 868MHz band.
 - -Early applications: home/factory monitoring, medical monitoring

Telcom 2700 38

ZigBee[™] Alliance

PHY Packet Fields • Preamble (32 bits) – synchronization • Start of Packet Delimiter (8 bits) • PHY Header (8 bits) – PSDU length • PSDU (0 to 1016 bits) – Data field Preamble Start of PHY Header Packet Delimiter Physical P

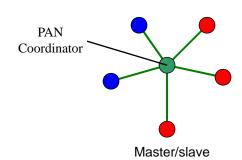
Courtesy Joe Dvorak, Motorola

Telcom 2700

41

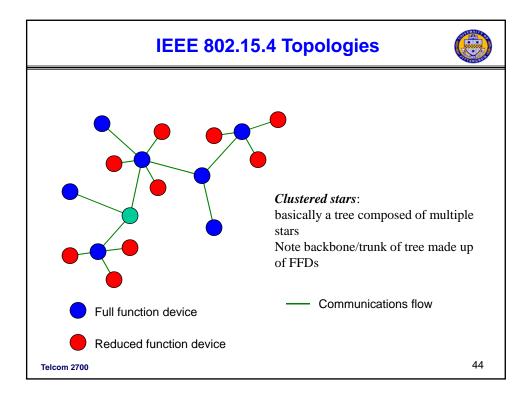
IEEE 802.15.4 PHY Packet Structure

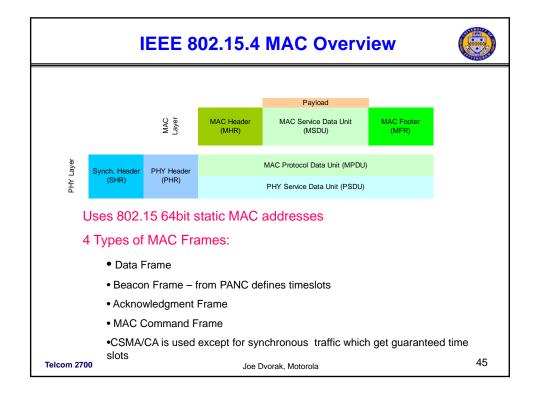
IEEE 802.15.4 Device Classes



- Three Device Classes
 - Full function device (FFD)
 - Any topology
 - Can maintain connection to multiple devices
 - · Talks to any other device
 - PAN Coordinator (PANC)
 - FFD responsible for starting and maintaining networks
 - First FFD powered on in a area becomes PANC
- Reduced function device (RFD)
 - Limited to star topology
 - Talks only to a network coordinator
 - Can not be a relay for other RFD or FFD
 - Very simple implementation expect to transmit
 0.1%-2% of the time → long battery life

Telcom 2700 42

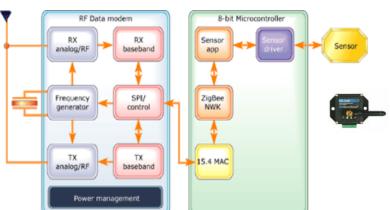

IEEE 802.15.4 Topologies



Full function device

Reduced function device

IEEE 802.15.4 MAC


- Periodic data
 - Application defined rate (e.g. sensors)
- Intermittent data
 - Application/external stimulus defined rate (e.g. light switch)
- · Repetitive low latency data
 - Allocation of time slots (e.g. mouse)

- Three modes:
 - 1. Unsecured
 - Access control list mode devices only communicated with stored list of addresses
 - 3. Secured mode
 - Symmetric key for authentication and encryption with 4,6,8,12, 14 octets length key options
 - Frame/message integrity (checksum like security feature)
 - Sequential freshness frames numbered

Telcom 2700 46

Typical ZigBee-Enabled Device Design

Typical design consist of RF IC and 8-bit microprocessor with peripherals connected to an application sensor or actuators

Wireless Technology Comparison Chart

Standard	Bandwidth	Power Consumption		Stronghold	Applications
Wi-Fi	Up to 54Mbps	400+mA TX, standby 20mA	100+KB	High data rate	Internet browsing, PC networking, file transfers
Bluetooth	1Mbps	40mA TX, standby 0.2mA	~100+KB	Interoperability, cable replacement	Wireless USB, handset, headset
ZigBee	250kbps	30mA TX, standby 3-6 μA deep sleep 0.2 μA	34KB /14KB	Long battery life, low cost	Remote control, battery-operated products, sensors

 802.15.4 Energy consumption typically support 2 packets per sec for > 1 year on AA battery

Telcom 2700 48

802.15.4

- IETF effort on IEEE 802.15.4 sensor networks
- 6LowWPAN Transmission of IPV6 Packets over 802.15.4 networks
 - IETF RFC 4994
 - Compresses IPV6 header, TCP, ICMP, UDP to fit 802.15.4 frame format
 - Uses link local IPV6 addresses for local communication PAN ID maps to IPV6 prefix
 - Fragmentation of IP packets to fit 802.15.4 127 byte MTU
 - Supports link-layer mesh routing under IP topology
 - Allows IP routing over a mesh of 802.15.4 nodes
- Pros/Cons
 - IP is the standard internetworking protocol
 - IPV6 is still not widely deployed
 - Energy effects?

802.15.3 WPANS

- High Data Rate WPANs Applications
- WiMedia Alliance
 - Multimedia
 - Streaming audio and video
 - Interactive audio and video
 - Data
 - PDAs, PCs, printers
 - Projectors
 - USB wireless transfer
 - Digital imaging
 - Still image and video
 - Camera to kiosk

50

Source: Texas Instruments

Telcom 2700

Telcom 2700

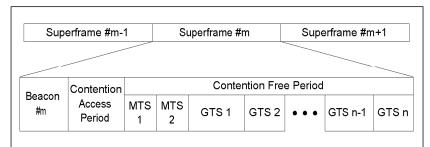
High Speed WPANs 802.15.3 (WPAN) technology for transmitting data Quickly Cost-effectively With low power consumption 1000 802.15.3 480Mbps @ 2m 200Mbps @ 4m Short Distance Data Rate (Mbps) Fast download 110Mbps @ 10m 100 802.15.3 .11n promises >100Mbps @ 100m High-definition Quality of service, 802.11a/b/g/n 10 **Data Networking** Bluetooth

Range (m)

Requirements

- Data rate and Range:
 22 Mbps ~100m, 55-100Mbps ~50m, 480 Mbps ~2-3m
- QoS capable
- Security
- Quick join/unjoin
- Basic security/authentication
- Low power, cost, size, complexity
- · Piconet, not network connectivity
- Connect up to 256 devices in a Piconet

Telcom 2700 52


Qualities of the 802.15.3 MAC

- PAN Coordinator (PNC) Device (DEV) topology
 - PNC assigns time for connections
 - Commands go to and come from the PNC.
- · Communication is peer-to-peer
- Quality of Service
 - TDMA architecture with guaranteed time slots (GTSs)
- Security and Authentication
 - No Security Mode
 - Security Mode uses AES with 128 bit key
 - Security Key for encryption key distribution
 - Authentication Key for Challenge/Response auth.

Basic structure is the superframe

3 parts to the superframe

- Beacon
- Contention Access Period (CAP)
- Contention Free Period (CFP)
 - CFP has GTSs and MTSs

Telcom 2700

54

Access methods

- Beacon
 - TDMA, only sent by the PNC
- CAP (Contention Access Period)
 - CSMA/CA, types of data and commands can be restricted by PNC
 - PNC can replace the CAP with management time slots (MTSs) using slotted-aloha access.
- CFP (Contention Free Period)
 - TDMA, assigned by the PNC
 - GTSs are unidirectional

PNC selection/handover

- Alternate coordinators (ACs) broadcast capabilities
- Based on criteria, "best" AC is chosen and becomes the PNC
- PNC begins to issue beacon
- PNC hands over task if more "capable" AC joins the piconet
 - Exception only if security policy is verified

Telcom 2700

56

Features

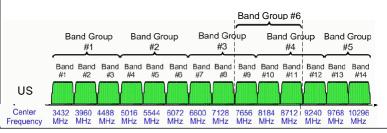
- Commands supported:
 - PNC selection and handover
 - Association and disassociation
 - Information request commands
 - Repeater service
 - Power management commands
 - Device information
 - Retransmission
 - Request and modify GTS allocations

- MAC Support
 - Peer Discovery
 - Multi-rate support
 - Repeater service
 - Dynamic channel selection
 - Power management
 - Transmit power control

Telcom 2700

Physical Layer Characteristics

- · 2.4 GHz band
 - Unlicensed operation
 - 15 MHz RF bandwidth
 - 3 or 4 non-overlapping channels
 - Similar to 802.11 for coexistence
- 5 data rates
 - 11-55 Mbps with multi-bit symbols and coding
 - Use Trellis Coded Modulation (TCM) for coding


Modulation	Coding	Data rate	Sensitivity
QPSK	8 state TCM	11 Mb/s	-82 dBm
DQPSk	None	22 Mb/s	-75 dBm
16-QAM	8 state TCM	33 Mb/s	-74 dBm
32-QAM	8 state TCM	44 Mb/s	-71 dBm
64-QAM	8 state TCM	55 Mb/s	-68 dBm

Telcom 2700 58

Physical Layer Characteristics

- 802.15.3 also for US Spectrum 3.1-10.6 GHz band with ultra wideband radios (UWB)
 - FCC requires minimum 500 MHz use for UWB
 - Spectrum divided into fourteen 528 MHz bands
 - Data rate 100-480 Mbps with OFDM
 - OFDM with 128 subcarriers in a band similar to 802.11a/g
 - Current radios use a group three frequencies as a mulit-band channel that is Multi-Band OFDM is used

WPANs

- WPANS
- Growing number applications and type/range of devices
- IEEE 802.15 standardization of several different scenarios/applications
- 802.15.1 Bluetooth
- 802.15.4 sensors (Zigbee, 6loWPAN)
- 802.15.3 higher data rate WPANs including UWB
- Cost, power, support for application development current issues

Telcom 2700

60