
Abelian Groups

A group is Abelian if xy = yx for all group elements x and y.

The basis theorem

An Abelian group is the direct product of cyclic p−groups. This direct product de-

composition is unique, up to a reordering of the factors.

Proof: Let n = pn1

1 · · · pnk

k be the order of the Abelian group G, with pi’s distinct primes.

By Sylow’s theorem it follows that G has exacly one Sylow p−subgroup for each of the k

distinct primes pi. Consequently G is the direct product of its Sylow p−subgroups. [We

call the Sylow p−subgroups the p − primary parts of G.] It remains to show that an

Abelian p−group (corresponding to a p−primary part of G) is the direct product of cyclic

groups.

We prove this by induction on the power m of the order pm of the p−group. Assume

that the result is true for m. Let P be an Abelian group of order pm+1 and Q a subgroup

of P of order pm (such Q exists by Sylow’s theorem). By induction Q =< a1 > × < a2 >

× · · ·× < ar > with

| < ai > | = pki , k1 ≥ k2 ≥ · · · ≥ kr,
r∑

i=1

ki = m.

Let a ∈ P − Q. Then ap ∈ Q and therefore ap = as1

1 as2

2 · · ·asr
r . Taking b = aat1

1 at2
2 · · ·atr

r

for suitable ti, we obtain b ∈ P −Q, and bp = ad1

1 ad2

2 · · ·adr
r , where for each i either di = 0

or (di, p) = 1. [Take a deep breath and convince ourself that such b exists.]

1



If all the di are 0, then bp = 1 and, by a cardinality argument, P =< a1 > × < a2 >

× · · ·× < ar > × < b > .

If not, let j be the first index for which dj 6= 0; hence | < b > | = pkj+1. We show that

P =< a1 > × · · ·× < aj−1 > × < b > × < aj+1 > × · · ·× < ar > . To prove this it

suffices to show that

< b > ∩(< a1 > × · · ·× < aj−1 > × < aj+1 > × · · ·× < ar >) = 1,

or that

bp
kj

/∈< a1 > × · · ·× < aj−1 > × < aj+1 > × · · ·× < ar >,

since every nontrivial subgroup of < b > contains bp
kj

. However, from the choice of b

we see that bp
kj

contains in its decomposition a
djp

kj−1

j which is different from 1 because

(dj, p) = 1. It follows that

bp
kj

/∈< a1 > × · · ·× < aj−1 > × < aj+1 > × · · ·× < ar >,

and this shows that P is the direct product of cyclic groups.

To see that this direct product decomposition is unique, it suffices to show that it is

unique for each of the p−primary parts. Indeed, if pm1 is the highest order of an element

in P, then any direct product decomposition necessarily contains a cyclic group of order

pm1 as a direct factor. The factor group of P to this cyclic subgroup is of lesser order

than P, and the uniqueness of its factors follows by induction. This ends the proof.

A consequence of the above result is that if (x1, . . . , xs) are the generators of the cyclic

direct factors of the Abelian group G, then any element x ∈ G can be written uniquely

as x = xj1
1 · · ·xjs

s , for positive integers ji. We say that (x1, . . . , xs) is a basis for G. The

orders of the basis elements xi are the invariants of G.
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For an Abelian p−group P of order pm with invariants pm1 ≥ · · · ≥ pmk we call the vector

(m1, . . . , mk) of positive integers m1 ≥ · · · ≥ mk, which satisfy
∑

mi = m, the type of P.

The type of P is a partition of m. Examining the extremes, a group of type m is cyclic of

order pm, while a group of type (1, 1, . . . , 1) is a direct product of m cyclic groups each

of order p. We call the latter group elementary Abelian.

Graphically represent the type of P by k rows of dots, the first of which contains m1

dots, the second m2 dots, and so on; we call this graph the Ferrer diagram of P. Flip the

Ferrer diagram in its main diagonal. What results is another Ferrer diagram with si dots

in row i. We call the vector (s1, s2, . . .) the signature of P. [For example, if the type is

(4, 2, 1), then the signature is (3, 2, 1, 1).] It is occasionally helpful to see the type and

signature as vectors of infinite lengths with all but the first finitely many entries being

zero.

In view of the Basis Theorem proved above, it is clear that there is a bijection between

the nonisomorphic Abelian p-groups of order pm and the partitions of m.

There are, therefore, as many Abelian p−groups of order pm as there are partitions of

m. A determination in ”closed form” of the number of such partitions was made by Hardy

and Ramanujan by a process called the ”circle method”. On the other hand, recurrences

for such partitions can easily be found.

!!!Include Delsarte’s result here
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Composition series

A subnormal series of a group G is a sequence of subgroups G = G0 ≥ G1 ≥ · · · ≥ Gn

such that Gi+1 is normal in Gi, for 0 ≤ i < n. The factors of the series are the quotient

groups Gi/Gi+1. By the length of a series we understand the number of strict inclusions

that occur in the series (or, equivalently, the number of nonidentity factors).

If each of the groups that occur in a subnormal series are normal in G we call the

series normal.

A one term refinement of a subnormal series G = G0 ≥ G1 ≥ · · · ≥ Gn is a

subnormal series G = G0 ≥ G1 ≥ · · · ≥ Gi ≥ H ≥ Gi+1 ≥ · · · ≥ Gn or a subnormal series

G = G0 ≥ G1 ≥ · · · ≥ Gn ≥ H; the subgroup H is the inserted term. A refinement

of a subnormal series is a subnormal series obtained by succesively performing a finite

number of one term refinements. Note that a refinement may contain more terms than

the original series without having greater length. This happens if the groups that are

inserted are repetitions of groups already in the series.

A subnormal series G = G0 ≥ G1 ≥ · · · ≥ Gn = 1 is a composition series if each factor

Gi/Gi+1 is a simple group.

Two subnormal series are equivalent if there is a bijective correspondence between the

nonidentity factors of the two series such that the corresponding factors are isomorphic

groups. [In particular, equivalent series must necessarily have the same length.]

Lemma (Zassenhaus)
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If A1 � A and B1 � B are subgroups of a group G, then

(a) A1(A ∩ B1) is normal in A1(A ∩ B)

(b) B1(A1 ∩ B) is normal in B1(A ∩ B)

(c) A1(A∩B)
A1(A∩B1)

∼=
B1(A∩B)
B1(A1∩B)

.

Proof: Observe that B1 � B implies that A∩B1 = (A∩B)∩B1 is normal in A∩B.

Similarly (A1 ∩B) � (A∩B). It follows that D = (A1 ∩B)(A∩B1) is a normal subgroup

of A ∩ B.

Define f : A1(A∩B) → (A∩B)/D as follows. For a ∈ A1 and c ∈ A∩B let f(ac) = cD.

The function f is a well-defined surjective homomorphism. [Indeed, f((a1c1)(a2c2)) =

f(a1a3c1c2) = c1c2D = (c1D)(c2D) = f(a1c1)f(a2c2), where ai ∈ A1, ci ∈ A ∩ B, and

c1a2c
−1
1 = a3 since A1 � A.] The kernel of f is kerf = A1(A ∩ B1). This shows that

A1(A ∩ B1) is normal in A1(A ∩ B) and, by the First Isomorphism Theorem, A1(A∩B)
A1(A∩B1)

∼=

A∩B
D

.

An entirely parallel argument yields B1(A∩B)
B1(A1∩B)

∼= A∩B
D

. The isomorphism written in (c)

now follows. This concludes the proof.

And now, a fundamental Theorem of Schreier.

Theorem (Schreier)

Any two subnormal series of a group have subnormal refinements that are equivalent.

Proof: Take two subnormal series G = G0 ≥ G1 ≥ · · · ≥ Gn and G = H0 ≥ H1 ≥

· · · ≥ Hm. Append each with 1, that is, define Gn+1 = Hm+1 = 1. Consider the groups
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Gi = Gi+1(Gi ∩ H0) ≥ · · · ≥ Gi+1(Gi ∩ Hj) ≥ · · · ≥ Gi+1(Gi ∩ Hm+1) = Gi+1, for

each 0 ≤ i ≤ n. The Zassenhaus Lemma applied to Gi+1 � Gi and Hj+1 � Hj shows that

Gi+1(Gi ∩ Hj+1) is normal in Gi+1(Gi ∩ Hj), for each 0 ≤ j ≤ m. Inserting the above

groups between Gi and Gi+1, and denoting Gi+1(Gi ∩ Hj) by Gij, yields a subnormal

refinement of G = G0 ≥ G1 ≥ · · · ≥ Gn. Specifically,

G = G00 ≥ · · · ≥ G0m ≥ G10 ≥ · · · ≥ G1m ≥ · · · ≥ Gn0 ≥ · · · ≥ Gnm, where Gi0 = Gi.

A parallel argument yields a refinement of G = H0 ≥ H1 ≥ · · · ≥ Hm, specifically,

G = H00 ≥ · · · ≥ Hn0 ≥ H01 ≥ · · · ≥ Hn1 ≥ · · · ≥ H0m ≥ · · · ≥ Hnm, where

Hij = Hj+1(Gi ∩Hj) and H0j = Hj. Both refinements have (n+1)(m+1) not necessarily

distinct terms. For each (i, j), the Zassenhaus Lemma applied to Gi+1 �Gi and Hj+1�Hj

yields the isomorphism:

Gij

Gi,j+1
=

Gi+1(Gi∩Hj)

Gi+1(Gi∩Hj+1)
∼=

Hj+1(Gi∩Hj)

Hj+1(Gi+1∩Hj)
=

Hij

Hi+1,j
.

This provides the bijective correspondence on factors, proving the equivalence of the two

subnormal series.

Note: An analogous result can be obtained for normal series in a similar manner.

Let us examine Schreier’s Theorem in the case of composition series. Since the factors

of a composition series are simple groups, it follows that any refinement of a composi-

tion series is equivalent to that series. Schreier’s Theorem, therefore, implies that two

composition series are necessarily equivalent. This result is stated below.

Theorem (Jordan-Hölder)
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Any two composition series of a group are equivalent.

The Jordan-Hölder Theorem tells us that a group G determines a unique list of simple

groups as the factors of any of its composition series. We call the nonidentity factors of

any composition series the composition factors of the group. These simple groups provide

valuable information about G, though they clearly do not determine G up to isomorphism.

[Indeed, the symmetric group S3 and the Abelian group Z3×Z2 are nonisomorphic groups

having the same factors of respective composition series.]

Characteristic Subgroups

A subgroup H of a group G is characteristic in G if H is left invariant by all the auto-

morphisms of G. We write HcG to indicate that H is characteristic in G. A characteristic

subgroup is certainly normal, since conjugations form a subgroup of the automorphism

group.

It is easy and not unpleasant to verify the following properties of characteristic sub-

groups:

∗ HcK and KcG ⇒ HcG

∗ HcK and K � G ⇒ H � G

∗ HcG and KcG ⇒ (HK)cG and (H ∩ K)cG.

A group G is characteristically simple if G and 1 are its only characteristic subgroups.

A minimal normal subgroup of G is a minimal member of the set of nonidentity normal

subgroups of G, partially ordered by inclusion. [The second property listed above tells
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us, in particular, that minimal normal subgroups are characteristically simple.]

∗ If 1 6= G is a characteristically simple group, then G is the direct product of isomor-

phic simple groups.

Proof: Let H be a minimal normal subgroup of G. Consider the set of subgroups

S = {f(H) : f ∈ Aut(G)}; denote the elements of the set S by H = H1, H2, . . . , Hn.

The subgroups Hi are normal in G, and Hi ∩ Hj = 1 for all i 6= j. [Indeed, they all are

minimal normal subgroups of G since

f(H)x = xf(H)x−1 = f(y)f(H)f(y−1) = f(yHy−1) = f(H),

which shows that Aut(G) acts on the normal subroups of G. The subgroup Hi ∩ Hj is

normal in G and a proper subgroup of the minimal subgroup Hi, thus equal to 1.] We

conclude that < S >= H1 × · · ·×Hn. Since H ≤< S > and < S > is characteristic in G,

by the assumed characteristic simplicity of G we have G =< S > (= H1 × · · · × Hn).

We can now see that H must be simple; for if 1 6= K � H, then H ≤ NG(K) and also

Hi ≤ NG(K), since G = H1 × · · · × Hn and thus elements of Hi commute with elements

of H (and thus of K) for all i = 2, . . . , n. This concludes the proof.

Specializing the result to Abelian groups, we immediately conclude that a character-

istically simple Abelian group is elementary Abelian.

Commutators

The commutator of x and y is the group element xyx−1y−1, which we denote by [x, y].

For X, Y ≤ G define
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[X, Y ] =< [x, y] : x ∈ X, y ∈ Y > .

Furthermore, for z ∈ Z ≤ G write [x, y, z] for [[x, y], z] and [X, Y, Z] for [[X, Y ], Z].

∗ If a, b, c ∈ G and X, Y ≤ G, then

(1) [a, b] = 1 if and only if ab = ba.

(2) [X, Y ] = 1 if and only if xy = yx for all x ∈ X and y ∈ Y.

(3) If f is a group homomorphism, then f([a, b]) = [f(a), f(b)] and f([X, Y ]) =

[f(X), f(Y )].

(4) [ba, c] = [a, c]b[b, c] and [b, ac] = [b, a][b, c]a. (5) X ≤ NG(Y ) if and only if [X, Y ] ≤

Y.

(6) [X, Y ] = [Y, X] � G.

Statements (1), (2), and (3) are immediate. Assertion (4) involves streightforward

verification. To see (5), let X ≤ NG(Y ); then xyx−1 ∈ Y, and therefore xyx−1y−1 ∈ Y.

Conversely, assume that [X, Y ] ≤ Y ; then xyx−1y−1 ∈ Y, and therefore xyx−1 ∈ Y,

showing that X ≤ NG(Y ).

As to (6), notice that [a, b]−1 = (aba−1b−1)−1 = bab−1a−1 = [b, a], telling us that [X, Y ] =

[Y, X]. To prove normality of [X, Y ] in < X, Y > it suffices to show that [x, y]z ∈ [X, Y ]

for z ∈ X ∪Y. Furthermore, since [x, y]−1 = [y, x] it suffices to restrict z ∈ X. If so, by the

first equation in (4) we have [x, y]z = [zx, y][z, y]−1 ∈ [X, Y ], and the proof is complete.

The commutator (or derived) subgroup of G is G(1) = [G, G]. Recursively define

G(n+1) = [G(n), G(n)], for n ≥ 1. Let also G(0) = G.

∗ If G is a group and H ≤ G, then
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(1) H (n) = G(n)

(2) If f is a surjective homomorphism, then f(G(n)) = (f(G))(n)

(3) G(n) is characteristic in G

(4) G(1) ≤ H if and only if H � G and G/H is Abelian

Solvable groups

A group is solvable if it possesses a subnormal series G0 ≥ G1 ≥ · · · ≥ Gm = 1 whose

factors are Abelian.

∗ A group G is solvable if and only if G(n) = 1 for some integer n.

If G(n) = 1, then G = G(0) ≥ G(1) ≥ · · · ≥ G(n) = 1 is a subnormal series (a normal series,

in fact) with Abelian factors. [The factors are indeed Abelian, by (4) of the previous

result.] Conversely, assume that G = G0 ≥ G1 ≥ · · · ≥ Gm = 1 is a subnormal series with

Gi/Gi+1 Abelian. Then, by (4) above, G(1) ≤ G1, G(2) = [G(1), G(1)] ≤ [G1, G1] ≤ G2 and,

proceeding inductively, G(i) ≤ Gi, for all 1 ≤ i ≤ m. It follows that G(m) ≤ Gm = 1.

Let G be solvable with G(n) = 1. Then G(i+1) < G(i), with strict inclusion for i < n;

[else G(n) can never be 1]. In particular G(1) < G.

∗ A group is solvable if and only if all its composition factors are of prime order.

Indeed, if G is solvable with G = G0 ≥ G1 ≥ · · · ≥ Gm a subnormal series, then the

composition factors of the Abelian groups Gi/Gi+1 are necessarily (Abelian) of prime

order. By taking the preimages of all these intermediate groups we obtain a composition

series of G with factors of prime order. The converse is trivial, since groups of prime order
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are Abelian.

∗ Subgroups and homomorphic images of solvable groups are solvable.

Let G be solvable with G(n) = 1. If H ≤ G, then H (n) ≤ G(n) = 1, proving that H is

solvable. We also know that f(G)(n) = f(G(n)) = f(1) = 1, for any homomorphism f.

∗ If H � G and H and G/H are solvable, then G is solvable.

Solvability of G/H implies the existence of a subnormal series whose preimage in G

remains a subnormal series with Abelian factors that ends in H. Extend this series with

the commutator subgroups H (i) of H, which ends in 1. What results is a subnormal series

of G with Abelian factors, proving the solvability of G.

∗ Solvable minimal normal subgroups are elementary Abelian.

If M is such a subgroup of a group G, then M (1) = 1, since by solvability of M the

subgroup M (1) is a strict characteristic subgroup of M , and thus normal in G. The fact

that M (1) = 1 implies that M is Abelian. As an Abelian minimal normal subgroup, M is

the direct product of isomorphic (simple) groups of prime order. Thus M is elementary

Abelian.

Nilpotent groups

Define L0(G) = G, and recursively Li+1(G) = [Li(G), G], for i ≥ 0. A group G is

said to be nilpotent if Ln(G) = 1 for some n. The class of a nilpotent group is m, where

m = min{i : Li(G) = 1}.

Observe that G(i) ≤ Li(G) for all i, and therefore G(n) = 1 if Ln(G) = 1. This tells us
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that

∗ Nilpotent groups are solvable.

The center of a group G is Z(G) = {x ∈ G : [x, y] = 1, for all y ∈ G}. It is easy to

see that Z(G) is characteristic in G.

∗ The subgroups Ln(G) have the following properties:

(1) Ln(G) is characteristic in G, for all n

(2) Ln+1(G) ≤ Ln(G)

(3) Ln(G)/Ln+1(G) ≤ Z(G/Ln+1(G))

Part (1) follows from (3) in the commutator section and induction on n. Part (1) above

and part (5) in the commutator section imply (2). Part (3) follows from (1) and (3) in

the commutator section.

Let Z0(G) = 1 and recursively define Zi+1(G) to be the preimage in G of Z(G/Zi(G)),

for i ≥ 0. Evidently Zn(G) is characteristic in G, since HcG and (K/H)c(G/H) imply

KcG.

∗ A group G is nilpotent if and only if G = Zn(G), for some n. If G is nilpotent, then

the class of G is m = min{n : G = Zn(G)}.

Assume that G is nilpotent of class m. Using induction we show that Lm−i(G) = Zi(G).

For i = 0 this means Lm(G) = Z0(G), both being 1 (by assumption and definition,

respectively). Assume that Lm+1−i(G) ≤ Zi−1(G). Then [Lm−i(G), G] = Lm+1−i(G) ≤

Zi−1(G), which tells us that [Lm−i(G)/Zi−1(G), G/Zi−1(G)] = 1̄, where 1̄ = Zi−1(G). We
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conclude that Lm−i(G)/Zi−1(G) ≤ Z(G/Zi−1(G)) = Zi(G)/Zi−1(G), which shows that

Lm−i(G) ≤ Zi(G). This proves that Lm−i(G) ≤ Zi(G), for all i. In particular, Zm(G) =

L0(G) = G. It allows us to conclude also that min{n : G = L(G)} is less than or equal

to the class of G.

Conversely, assume that Zk(G) = G, for some k. Inductively we show that Li(G) ≤

Zk−i(G), for all i. The inclusion is true for i = 0. Assume that Li−1(G) ≤ Zk−i+1(G).

We have Li(G) = [Li−1(G), G] ≤ [Zk−i+1(G), G] ≤ Zk−i(G), by (5) in the commutator

section. In particular, Lk(G) ≤ Z0(G) = 1. This shows that the class of G is less than or

equal to min{n : G = Zn(G)}. End of proof.

By examining the series Zj(G), the following statement follows immediately from the

previous result:

∗ A group 1 6=G is nilpotent of class m if and only if G/Z(G) is nilpotent of class m-1.

Let us quickly examine the state of nilpotency for p−groups.

∗ All p-groups are nilpotent.

Let P be a p−group. Observe first that the center Z(P ) 6= 1. Indeed, let P act on itself

by conjugation. The MPL tells us that in this case S = P, S0 = Z(P ) and, since 1 ∈ S0,

we conclude that p divides |S0| = |Z(P )|. It follows that the series Zi(P ) is a strictly

increasing sequence of subgroups which must terminate in G. This ends the proof.

∗ Subgroups and homomorphic images of nilpotent groups of class m are nilpotent of class

at most m.

If H ≤ G, then evidently Li(H) ≤ Li(G), for all i; it follows that Lm(G) = 1 implies
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Lm(H) = 1. As to homomorphic images, part (3) in the commutator section and induction

yield f(Lj(G)) = Lj(f(G)), for all j. Thus Lm(G) = 1 implies Lm(f(G)) = f(Lm(G)) =

f(1) = 1, for any homomorphism f.

∗ If G is nilpotent and H is a subgroup of G, then H is a proper subgroup of its normalizer

in G.

We prove this by induction on the nilpotence class of G. Assume that the result is

true for all groups of nilpotence class m − 1 or less. Let G have nilpotence class m, and

H be a proper subgroup of G with NG(H) = H < G. Since 1 6= Z(G), Ḡ = G/Z(G) is

nilpotent of class at most m−1. Evidently Z(G) normalizes (in fact it centralizes) H and

therefore Z(G) ≤ NG(H) = H. By the inductive assumption H̄ < NḠ(H̄) = NG(H). It

follows that H < NG(H), a contradiction.

Before we state and prove the next result, we observe that if A and B are groups, then

Z(A × B) = Z(A) × Z(B). [This is not hard to verify. Clearly Z(A) ≤ Z(A × B), and

analogously for B, thus Z(A) × Z(B) ≤ Z(A × B). If ab ∈ Z(A × B) and α ∈ A, then

1 = [α, ab] = αabα−1b−1a−1 = [α, a], which shows that a ∈ Z(A); similarly b ∈ Z(B).

Thus Z(A × B) ≤ Z(A) × Z(B).]

It is now easy to see that if A and B are nilpotent groups, then so is A × B. Indeed,

since (Zi(A)) and (Zi(B)) are strictly increasing series in A and B, respectively, then

(Zi(A × B)) = (Zi(A) × Zi(B)) is a strictly increasing series in A × B.

∗ A group is nilpotent if and only if it is the direct product of its Sylow subgroups.

If G is the direct product of its Sylow subgroups, and since each p−group is nilpotent, it
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follows that G is nilpotent. Conversely, let G be nilpotent and P be a Sylow p−subgroup

of G. By the definition of the direct product, it suffices to show that P � G. If not, then

M = NG(P ) < G and M < NG(M), by a previous result. But Sylow’s theorem tells us

that P is the unique Sylow p−subgroup in NG(P ), and therefore P is characteristic in

NG(P ) = M, which is in turn normal in NG(M); it follows that P is normal in NG(M).

We conclude that NG(M) ≤ M = NG(P ), a contradiction. This ends the proof. !!!Define

Fitting sgr here. Define Frattini sgr, show it is the sgr of nongenerators, show it is

nilpotent using Frattinis argument. Examine Frattini for p-grps. Prove Burnside’s basis

thm. !!!Include Hall’s anzahl theorems here

Semidirect products

Let G be a group. If G has a normal subgroup N and a subgroup H such that G = NH

and N ∩ H = 1, we call G the semidirect product of N by H. Subgroup H is called a

complement of N in G.

Here are a few basic properties of the semidirect product that are easy to verify:

∗ Let G be the semidirect product of N by H.

(1) If H is also normal in G, then G = N × H.

(2) H ∼= G/N, and |G| = |N ||H|.

(3) Any element x of G can be written uniquely as x = nh, for n ∈ N and h ∈ H.

(We call x = nh the canonical expression of x, and n and h the canonical components

of x.)

(4) If x1 = n1h1 and x2 = n2h2 are canonical expressions for x1 and x2, then x1x2 =

15



(n1h1n2h
−1
1 )(h1h2) is the canonical expression of x1x2.

(5) Each h ∈ H induces an automorphism n → hnh−1 of N by conjugation. The map

α : H → Aut(N) that sends h to n → hnh−1 is a group homomorphism. If x1 = n1h1 and

x2 = n2h2 are canonical expressions, then x1x2 = (n1α(h1)(n2))(h1h2) is the canonical

expression of x1x2.

(6) G = N × H if and only if α is the trivial homomorphism that maps H into the

identity automorphism of N.

(7) If α is nontrivial, then G is non-Abelian.

Indeed, (1) is immediate, and (2) follows from the first isomorphism theorem. As to

(3), x = n1h1 = n2h2 implies n−1
2 n1 = h2h

−1
1 ∈ H ∩ N = 1. Part (4) is readily verified

using normality of N. Part (5) is a retelling of (4) when viewing H as conjugations on N.

Lastly, (6) and (7) are very easy to see.

We thus conclude that the semidirect product G is determined by N and H and the

conjugations induced by elements of H on N.

Motivated by part (5) above, let N and H be groups, and α : H → Aut(N) be a

homomorphism. We view elements of H as automorphisms of N, by identifying h with

α(h); such an identification is helpful even when the representation α is not injective.

Let S be the set product N × H. Define a binary operation on S by

(n1, h1)(n2, h2) = (n1α(h1)(n2), h1h2) n1, n2 ∈ N ; h1, h2 ∈ H.

We call S the external semidirect product of N by H with respect to α. Whenever a need

for explicitness arises, we denote this semidirect product by S(N, H, α). Observe that
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when α is the trivial homomorphism (that is, when α(A) = 1) the semidirect product is

just the direct product of N and H.

∗ The semidirect product S has the following properties:

(1) S is a group.

(2) The maps iN : n → (n, 1) and iH : h → (1, h) are injective homomorphisms.

(3) The subgroup iN (N) is normal in S, and S is the semidirect product of iN(N) by

iH(H).

(4) (n, 1)(1,h) = (α(h)(n), 1) for all n ∈ N and h ∈ H.

Associativity is streightforwardly verified. The identity is (1, 1). The inverse of (n, h)

is (α(h−1)(n−1), h−1). This proves (1). Part (2) is immediate. To check part (3) ob-

serve that (n, 1)(m,h) = (m, h)(n, 1)(m, h)−1 has a 1 in the second component and is

therefore in iN (N). That iN(N) ∩ iH(H) = (1, 1) is immediate, while iN(N)iH(H) = S

follows from considerations of cardinality. As to (4), (n, 1)(1,h) = (1, h)(n, 1)(1, h)−1 =

(α(h)(n), h)(1, h−1) = (α(h)(n), 1), which shows that conjugation on iN (N) induced by

iH(H) in the group S corresponds to the action of H as a group of automorphisms of N

given by α : H → Aut(N).

Group G is an extension of a group X by a group Y if there exists H �G with H ∼= X

and G/H ∼= Y. The extension is said to split if H has a complement K in G; in this case

we say that G splits over H, or that G is a split extension of H by K.

The next result shows that the split extensions of H by K are precisely the semidirect

products with K acting on H by conjugation.
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∗ Let H and K be subgroups of G. Then G ∼= S(H, K, α), with α(k)(h) = khk−1 if and

only if G is a split extension of H by K.

If G ∼= S(H, K, α) by (3) of the previous result iH(H)�S(H, K, α), iK(K) is a complement

of iH(H) in S(H, K, α) and, by the second isomorphism theorem, S(H, K, α)/iH(H) ∼=

iK(K). This shows that G ∼= S(H, K, α) is a split extension of H by K. (We did not use

the fact that α is conjugation for this implication.)

Assume now that G is a split extension of H by K. Consider S(H, K, α) with α(k) =

khk−1. Observe that S(H, K, α) ∼= G, by mapping (h, k) to hk. The map f((h, k)) =

hk is an injective homomorphism, since f((h1, k1)(h2, k2)) = f((h1k1h2k
−1
1 , k1k2)) =

h1k1h2k
−1
1 k1k2 = (h1k1)(h2k2) = f((h1, k1)f((h2, k2)), and hk = 1 implies h, k ∈ H ∩K =

1. This ends the proof. !!!A little more on semidirects, like N by cyclic H. Do all G of

order 16 or less as semis

A nice result on split extensions appears below. It tells us that the question of split

extensions of an Abelian normal p−subgroup of a group G is settled within a Sylow

p−subgroup of G.

Theorem (Gaschütz)

Let V ≤ P be subgroups of G with V Abelian normal in G and P a Sylow p−subgroup

of G. Then G splits over V if and only if P splits over V.

Proof: (following Ashbacher, minus misprints)

If H is a complement of V in G, then P = P ∩ G = P ∩ (V H) = V (P ∩ H), and

V ∩ (P ∩ H) ≤ V ∩ H = 1 which shows that P ∩ H is a complement of V in P.
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Conversely, suppose Q is a complement to V in P. Denote by Ḡ the factor group

G/V. Let X be a set of coset representatives of V in G. Denote by xa the element of X

representing coset a of Ḡ. We have

xaxb = xabγ(a, b), for all a, b ∈ Ḡ, and some γ(a, b) ∈ V. (1)

[Our goal is to select X in such a way that in (1) we have γ(a, b) = 1, for all a, b ∈ Ḡ.]

Using associativity in G and Ḡ we have

xabcγ(a, bc)γ(b, c) = xaxbcγ(b, c) = xa(xbxc) = (xaxb)xc = xabγ(a, b)xc = xabxcγ(a, b)x−1
c =

xabcγ(ab, c)γ(a, b)x−1
c .

[The above equations are best read by starting in the middle and moving toward the

ends.] Muliplying the equations through by x−1
abc we obtain

γ(ab, c)γ(a, b)x−1
c = γ(a, bc)γ(b, c), for all a, b, c ∈ Ḡ. (2)

Since V ≤ P, a coset of P in G is union of cosets of V in G. We can therefore select

X = QY, where Y is a set of coset representatives of P in G. [Notice that elements of Q are

coset representatives of V in P ; indeed, q1V = q2V implies q−1
2 q1 ∈ V ∩Q = 1, and V Q = P

insures that all of P is covered. It is thence clear that Q ∼= Q/V = Q̄ = P̄ = P/V .] For

q ∈ Q we write q̄ = qV ∈ Q̄. Then for q ∈ Q and a ∈ Ḡ we have xq̄a = qxa ∈ QY, and

therefore we conclude that

xq = q, and γ(q̄, a) = 1, for all q ∈ Q and a ∈ Ḡ. (3)

By (2) and (3) we have

γ(q̄b, c) = γ(b, c), for all b, c ∈ Ḡ and q ∈ Q. (4)

For c ∈ Ḡ, define β(c) =
∏

y∈Y γ(ȳ, c). Observe that

β(c) =
∏

y∈Y γ(ȳb, c) for all b, c ∈ Ḡ. (5)
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[Indeed, the fact that {ȳ : y ∈ Y } is a set of coset representatives of P̄ in Ḡ immediately

implies that {ȳb : y ∈ Y } is also a set of coset representatives of P̄ in Ḡ, for any b ∈ Ḡ.

Therefore, elements γ(ȳ, c) with y ∈ Y , are the same as γ(ȳb, c) with y ∈ Y , up to a

possible reordering; this explains (5).]

Using (2) and commutativity in V we obtain

(
∏

y∈Y

γ(ȳb, c))(
∏

y∈Y

γ(ȳ, b))x−1
c = (

∏

y∈Y

γ(ȳ, bc))(
∏

y∈Y

γ(b, c)).

Appealing to (5) this yields

β(c)β(b)x−1
c = β(bc)γ(b, c)m, for all b, c ∈ Ḡ (6)

where m = |G : P |. Since P is a Sylow p−subgroup of G, (m, p) = 1; therefore m is

invertible modulo |V |. Whence we can define α(c) = β(c)−m−1

, for c ∈ Ḡ. Taking the

(−m−1)th power of (6) we obtain

α(c)α(b)x−1
c = α(bc)γ(b, c)−1, for all b, c ∈ Ḡ. (7)

Define ya = xaα(a), for all a ∈ Ḡ, and let H = {ya : a ∈ Ḡ}. We show that H is a

complement of V in G. It suffices to show that ybyc = ybc, for all b, c ∈ Ḡ. But

ybyc = xbα(b)xcα(c) = xbxcα(b)x−1
c α(c) = xbcγ(b, c)α(b)x−1

c α(c) =

ybcα(bc)−1γ(b, c)α(b)x−1
c α(c) = ybc.

The last sign of equality follows from (7) and commutativity in V. This ends the proof.

The special case V = P in Gaschütz’s theorem allows us to conclute that Any Abelian

normal Sylow p-subgroup of G has a complement in G. Equivalently, a group splits over

any of its Abelian normal Sylow p−subgroups. This will prove helpful in the proof of the

Schur-Zassenhaus theorem given below.
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The Frattini argument

If N � G, and P is a Sylow subgroup of N, then G = NG(P )N.

Indeed, since N � G we have P x ≤ N, for all x ∈ G. For x ∈ G, by Sylow’s Theorem

nP xn−1 = P, for some n ∈ N. Thus nxP (nx)−1 = P, which shows that nx ∈ NG(P ). It

follows that (nx)−1 = x−1n−1 ∈ NG(P ), or x−1 ∈ NG(P )n; this proves that G = NG(P )N.

A subgroup H of a group G is called a Hall subgroup if |H| and |G : H| are relatively

prime (or coprime, for short).

Theorem (Schur-Zassenhaus)

Any normal Hall subgroup has a complement.

Proof: Let N be a Hall subgroup of group G. Denote |G : N | by n. If G has a

subgroup K of order n, then K is a complement of N in G, since necessarily N ∩ K = 1

(by the coprimality of |N | and n) and NK = G (since |G| = |N ||K| = |NK|). It suffices,

therefore, to prove that G contains a subgroup of order n. In what follows we shall assume

by induction that the statement of the Theorem is true in all groups of order less than

|G|.

Let P be a Sylow subgroup of N. By the Frattini argument, we have G = NG(P )N.

Observe that NN(P ) = NG(P ) ∩ N is normal in NG(P ), and G/N = NG(P )N/N ∼=

NG(P )/(NG(P ) ∩ N) ∼= NG(P )/NN(P ) by the second isomorphism theorem. Therefore

|NG(P ) : NN(P )| = n, and since |NN(P )| divides |N |, it follows that NN(P ) is a normal

Hall subgroup of NG(P ). If NG(P ) < G, then by induction NG(P ), and hence G, has a

subgroup of order n. We may, therefore, assume that NG(P ) = G or, equivalently, that
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P � G.

Suppose that P /N. By the correspondence theorem we have N/P �G/P, and |G/P :

N/P | = |G : N | = n. Since |N/P | divides |N | and |G/P | < |G|, by induction G/P has a

subgroup of order n. This subgroup must be of the form L/P where P / L ≤ G. Observe

that |L| = n|P | < n|N | = |G| which implies L < G. Since |P | and |L/P | are coprime, by

induction we know that L, and hence G, has a subgroup of order n.

Assume now that N = P. Being a p−group and a Hall subgroup N is necessarily a

Sylow subgroup of G. Suppose, furthermore, that N in non-Abelian. Let Z = Z(N); then

1 < Z / N, since N is a p−group. Note that since Z is characteristic in N, and N � G,

it follows that Z / G. By the correspondence theorem G/Z has a normal subgroup N/Z

of index n. Thus by induction, G/Z has a subgroup of order n of the form L/Z where

Z / L ≤ G. But |L| = n|Z| < n|N | = |G|, which informs us that L < G. Here |Z| and

|L/Z| are coprime, and therefore L, and hence G, has a subgroup of order n.

Lastly, assume that N = P, and N is Abelian. Gaschütz’s theorem insures a comple-

ment to N in G in this case. This ends the proof.

Here is another gem.

Theorem (Philip Hall)

If G is a solvable group of order mn, with m and n coprime, then

(i) G has a subgroup of order m.

(ii) Any two subgroups of order m are conjugate in G.

(iii) Any subgroup of G whose order divides m is contained in a subgroup of order m.
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[The Theorem states, in other words, that solvable groups contain Hall subgroups of

all orders, that any two Hall subgroups of the same order are conjugate, and that any

subgroup whose order divides the order of a Hall subgroup is necessarily included in such

a Hall subgroup. Since Sylow subgroups are Hall subgroups we view Hall’s Theorem as

an extension of Sylow’s Theorem to solvable groups.]

Proof: Assume by induction that the Theorem is true for any group of order less than

|G|. Let N be a minimal normal subgroup of G. We know that N is an elementary Abelian

p−group, for some prime p that divides |G| = mn. Since m and n are coprime, p divides

exactly one of m or n.

1. If p divides m, then |G/N | = (m/|N |)n is a product of coprime integers m/|N | and

n. By induction, therefore, G/N has a subgroup H/N of order m/|N |; it follows that

subgroup H is a subgroup of order m in G.

Observe that since p divides m (but not n), the normal subgroup N is contained in

every Sylow p−subgroup of G and is, therefore, contained in every subgroup of order m

in G. Thus, if H1 and H2 are two subgroups of order m in G, then H1/N and H2/N are,

by induction, conjugate subgroups of G/N. This immediately implies that H1 and H2 are

conjugate in G. [Specifically, if H2/N = (H1/N)gN , then H2 = Hg
1 .]

Let K be a subgroup of G whose order k = |K| divides m. Then KN/N is a subgroup of

G/N whose order divides both k (since |KN/N | = |K/(N ∩K)|) and |G/N | = (m/|N |)n.

It follows that the order of KN/N divides m/|N | and KN/N is by induction included is

a subgroup H/N of order m/|N | of G/N. It follows that KN ≤ H, and hence K ≤ H.

Clearly H has order (m/|N |)|N | = m.
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2. Suppose now that p divides n. Since |G/N | = m(n/|N |) by induction G/N has a

subgroup K/N of order m. Note that |K| = m|N | is a product of coprime integers m and

|N |.

Case 2(a). Assume that m|N | < |G|. Thus K < G. By induction K, and hence G, has

a subgroup of order m.

Let H1 and H2 be subgroups of order m in G. Note that |HiN/N | = |Hi/(Hi ∩

N)| = |Hi| = m, and by induction H1N/N and H2H/N are conjugate in G/N. Therefore

H2N = (H1N)g for some g ∈ G. It follows that Hg
1 and H2 are subgroups of H2N and,

since |H2N | = m|N | < |G|, by induction they are conjugate in H2N. We now see that H1

and H2 are conjugate in G.

Let M be a subgroup of G whose order divides m. Since |MN/N | = |M/(M ∩ N)| =

|M |, by induction there exists a subgroup H/N of order m such that MN/N ≤ H/N ;

observe that H has order m|N | < |G|. It follows that MN ≤ H, thus M ≤ H, and by

induction M is included in a subgroup of order m of H, and hence of G.

Case 2(b) Assume that m|N | = |G|. It follows that N is an elementary Abelian minimal

normal Sylow p−subgroup of G. We write n = |N | = pr, and |G| = mpr, with m and

p coprime. Let K/N be a minimal normal subgroup of G/N. We know that K/N is

elementary Abelian of order qs, for some prime q 6= p. Thus |K| = prqs, and K � G. Let

S be a Sylow q−subgroup of K.

Since K �G, the Frattini argument gives G = KNG(S). Clearly NK(S) = NG(S)∩K.

Therefore,

G/K = (KNG(S))/K ∼= NG(S)/(K ∩ NG(S)) = NG(S)/NK(S).
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Notice that K = NS, and since S ≤ NK(S) ≤ K, we also have K = NNK(S). This gives

|K| = |NNK(S)| = |N ||NK(S)|/|N ∩ NK(S)| and therefore

|NG(S)| = |G||NK(S)|
|K|

= |G|
|N |

|N ∩ NK(S)| = m|N ∩ NK(S)|.

Assume that N ∩ NK(S) = 1.

It follows from the above that NG(S) is a subgroup of order m of G.

Let H be a subgroup of order m in G. We show that H is conjugate to NG(S). Since

|KH| = |G| = mpr and |K| = prqs it follows that H ∩K is a Sylow q−subgroup of K. By

Sylow’s Theorem we have H ∩ K = Sg for some g ∈ G. Whence NG(H ∩ K) = NG(S)g,

and |NG(H ∩ K)| = |NG(S)g| = m. But H ≤ NG(H ∩ K), since (H ∩ K) � H, which

shows that H = NG(H ∩ K). We conclude that H and NG(S) are conjugate.

Let T be a subgroup of G whose order divides m. Let R = (NT ) ∩ NG(S). Then

|R| = |NT ||NG(S)|
|NTNG(S)|

= pr|T |m
prm

= |T |. It follows that R and T are conjugate in NT, since

|NT | = |T |pr with |T | and pr coprime. Thus T = Rg for some g ∈ G. Since R ≤ NG(S),

T ≤ NG(S)g.

Assume that N ∩ NK(S)| 6= 1.

Let x ∈ N ∩ NK(S). Since N is Abelian and x ∈ N, [x, N ] = 1. Furthermore

(xsx−1)s−1 ∈ S since x ∈ NK(S), but also x(sx−1s−1) ∈ N since x ∈ N and N is

normal in G. Thus xsx−1s−1 ∈ S ∩ N = 1. We conclude that [x, S] = 1, and therefore

that [x, NS] = [x, K] = 1. Therefore x ∈ Z(K), which shows that N ∩ NK(S) ≤ Z(K).

But Z(K) is characteristic in K, and K �G, thus Z(K)�G. By minimality of N we have

N ≤ Z(K). It follows that both S and N are in NK(S), and hence K = NS = NK(S),

thus S�K. As a normal Sylow q−subgroup of K, S is characteristic in K and thus normal
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in G.

Consider G/S. Since |G/S| = (m/qs)pr is a product of coprime integers m/qs and ps,

by induction G/S has a subgroup H/S of order m/qs; it follows that subgroup H is a

subgroup of order m in G.

Observe that since qs divides m (but not pr), the normal subgroup S is contained in

every Sylow q−subgroup of G and, therefore, in every subgroup of order m in G. Thus, if

H1 and H2 are two subgroups of order m in G, then H1/S and H2/S are, by induction,

conjugate subgroups of G/S. This immediately implies that preimages H1 and H2 are

conjugate in G.

Let W be a subgroup of G whose order divides m. Then WS/S is a subgroup of G/S

whose order divides both |W | and |G/S| = (m/qs)pr. It follows that the order of WS/S

divides m/qs and WS/S is by induction included is a subgroup H/S of order m/qs of

G/S. Consequently WS ≤ H, and hence W ≤ H. Clearly H has order (m/qs)qs = m.

This completes the proof.

!!!Prove Frob conj for solvable grps. Discuss general case.
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