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What Price Spacetime Substantivalism?
The Hole Story

by JOHN EARMAN and JOHN NORTON

Introduction

Local Spacetime Theories

What is Spacetime Substantivalism? Denial of Leibniz Equivalence
The Verificationist Dilemma

The Indeterminism Dilemma

N HWN

Spacetime substantivalism leads to a radical form of indeterminism within a very
broad class of spacetime theories which include our best spacetime theory, general
relativity. Extending an argument from Einstein, we show that spacetime sub-
stantivalists are committed to very many more distinct physical states than
these theories’ equations can determine, even with the most extensive boundary
conditions.

1 INTRODUCTION

Since the time of Newton, those who hold a substantivalist view of space
and time have had to address the following dilemma. They must either

(a) allow that there are distinct states of affairs which no possible obser-
vation could distinguish or
(b) give up their substantivalism.

Thus Leibniz asked Clarke how the world would differ if God had placed
the bodies of our world in space in some other way, only changing for
example East into West. There would be no discernible difference. Our
belief that there was a difference would be based on the ‘chimerical sup-
position of the reality of space itself’ (Alexander [1956], p. 26). In the
modern context, an analogous dilemma arises for spacetime substantivalists.
But with the demise of the verifiability criterion of meaning, it is no longer
unfashionable for them to escape the dilemma by simply allowing (a).
Substantivalists were led to this dilemma through their insistence that
unobservable spatial and temporal properties of matter (e.g. ‘is at position
x’) are not reducible to observable relational properties of matter (e.g.
coincidence, betweenness). Relationists seize upon what they regard as a
superfluous inflation of their ontology and force substantivalists to commit
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themselves to the distinctness of observationally indistinguishable states of
affairs.

In the context of modern spacetime theories, this overcommitment leads
substantivalists to a new dilemma. Either they must reject substantivalism
or they must accept a very radical form of indeterminism. The examination
of how this dilemma arises is the subject of this paper.

The class of spacetime theories concerned is a very wide and important
one. In brief the theories posit a differential spacetime manifold upon which
fields are defined. The behaviour of the fields is determined exclusively by
partial differential field equations. The class includes Newtonian spacetime
theories with all, one or none of gravitation and electrodynamics; and special
and general relativity, with and without electrodynamics. What is most
significant is that all versions of our best theory of space and time, general
relativity, belong to the class. Thus substantivalists must face the indeter-
minism dilemma if they believe our best theory of space and time.

In developing the dilemma, we shall see that the equations of these
theories are simply not sufficiently strong to determine uniquely all the
spatio-temporal properties to which the substantivalist is committed. The
type of indeterminism involved will be a very radical one indeed. Given
some neighbourhood of spacetime we shall see that these theories cannot
uniquely determine the fields within the neighbourhood from even the most
exhaustive prescription of the fields outside of it. This is true no matter
how small the neighbourhood. We have christened this behaviour ‘radical
local indeterminism’. We believe that this radical form of indeterminism is
a very heavy price to pay for a doctrine that adds no new predictive power
to our spacetime theories.

The indeterminism dilemma arises from a very general form of gauge
freedom in the spacetime theories discussed. This gauge freedom manifests
itself in the general covariance of the theories’ equations. General covari-
ance can be understood in the usual passive sense as the form invariance
of these equations under arbitrary spacetime coordinate transformation.
Viewed passively, the choice of a gauge is merely a restriction on the
spacetime coordinate systems which can be used. This obscures the con-
nection between determinism and the gauge freedom. However the dual
active interpretation of general covariance makes the connection much
clearer. It is expressed as a gauge freedom in the theory’s models.

That this freedom could lead to radical local indeterminism was dis-
covered by Einstein late in 1913 in the form of the so-called ‘hole
argument’.? He did not see how to deal with the resulting dilemma until

! See Stachel [1985] for a treatment of general covariance in this active sense. Stachel also
maintains a distinction between absolute and dynamic objects and focuses on the concerns
of Einstein’s ‘hole argument’.

2 See for example Einstein and Grossmann [1913], pp. 2601, and a clearer version in Einstein
[1914], pp. 1066—7. Stachel was the first to see clearly that Einstein’s active reading of general
covariance made the ‘hole argument’ non-trivial. Stachel [1980].
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late in 1915. Our purpose here is not to present an historically faithful
version of Einstein’s argument, which has been discussed elsewhere (see
Norton [1987]). We intend our argument to stand by itself, although we
wish to make its ancestry known.

2 LOCAL SPACETIME THEORIES

We begin by describing the general form of spacetime theories in which we
shall derive the indeterminism dilemma. These theories posit differentiable
manifolds on which geometric objects are defined at every point. A model
of one of these theories will always be an n+1 tuple { M,04,..., 0,>. M
is a differentiable manifold with all the usual intrinsic structure and Oy, ...,
O, are n geometric objects, defined everywhere on M, for some positive
integer n.

Each model will satisfy a set of field equations, which are just the van-
ishing of a subset of the objects defined. That is for some positive integer
k less than or equal to n, the field equations are

Ok=0,ok+1=0,...,0n=°

We require that each of the objects in the field equations be tensors.

Since we allow that some of the objects can be constructed from others
already defined, this prescription is sufficiently general to include versions
of just about every classical field theory of interest to us. For example
special relativistic electromagnetics has models of the form

<M’ 8abs Da) Fab) ja) Dagbc) Rf)cd) D[anc]’ DaFac_jc>

g.p is @ metric tensor of Lorentz signature, D, a derivative operator, F,, the
Maxwell field tensor, j* the charge flux and R*, 4 the curvature tensor of the
metric g,,. For this version of the theory, the field equations are the van-
ishing of O; to Og. The vanishing of O; adapts the derivative operator to
the metric and the vanishing of Og forces g,, to be flat. The final two
equations are Maxwell’s equations.

We shall call a spacetime theory a ‘local spacetime theory’ if it has the
above form and satisfies the completeness condition:

Completeness condition If a spacetime theory has models of the form
{(M,0O;,...,0,)> which satisfy field equations

Ok=0,0k+1=o,...,0n=o

then every n+ 1 tuple of this form which satisfies the field equations is a
model of the theory.

We consider only local spacetime theories

The dilemmas developed below arise in local spacetime theories. The
premier instance of such a theory is our current best theory of space and
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time, general relativity. All known formulations of general relativity are local
spacetime theories or formulations which reduce to one.! Thus a spacetime
substantivalist who believes general relativity cannot avoid the dilemmas.

Virtually every other classical spacetime field theory can be formulated
as a local spacetime theory. We prefer wherever possible to formulate them
as such. So we take special relativity to have models { M,g,;,,R%..q > where
g.p can be any of many possible Minkowski metrics definable on M, which
satisfy the field equations R® 4 = 0. Thus the completeness condition is
satisfied.

This is by no means a universal practice, especially in older work. Alter-
nately, one could insist that special relativity deals with just one Minkowski
spacetime, which is a pair ( N,n,;, ), where n,;, is a particular Minkowski
metric defined on N, an R* manifold. What is worrisome about this alternate
portrayal of special relativity is that it starts out by making unnecessary
global assumptions. We must stipulate in the laws of the theory itself what
the global manifold topology is to be and incorporate in these laws one of
the many Minkowski metrics definable on the manifold.

The success of general relativity has promoted the formulation of
spacetime theories as local spacetime theories. Such formulations make com-
parison between general relativity and these other theories much easier.>

We also believe that there are good but not compelling reasons to for-
mulate spacetime theories as local spacetime theories. Cosmology has
always been a far riskier enterprise than local physics. Since the time of
Aristotle, we have found that the weakest part of a physical theory is the
global cosmological assumptions it makes. We have learned to our cost that
it is better to do local physics first and build one’s cosmology from it, rather
than the other way round. In rendering theories as a local spacetime theory,
we abide by this heuristic. We determine all the fields on the manifold by
local field equations, not global stipulation, and we allow the possibility of
global topologies other than the usual standby of R".

What represents spacetime?

What structure in spacetime theories represents spacetime? That is, of what
does the spacetime substantivalist hold a substantivalist view? We view the
manifolds M of the models as representing spacetime.

This view follows naturally from the local formulation of spacetime
theories. We take all the geometric structure, such as the metric and deriva-
tive operator, as fields determined by partial differential equations. Thus
we look upon the bare manifold—the ‘container’ of these fields—as space-

! A variational formulation of general relativity does not have tensor field equations, as
required by local spacetime theories. However such field equations are readily derived from
its basic action principle.

2 For formulations as local spacetime theories of many versions of Newtonian and special
relativistic spacetime theories, see Friedman [1983].
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time. A repeated problem in the literature on spacetime substantivalism is
a failure to specify clearly the structure to which substantival properties are
ascribed. A welcome exception is Friedman [1983], chapter VI, where the
manifold is identified as spacetime and it is argued that we should hold a
realist view of it.

The advent of general relativity has made most compelling the identi-
fication of the bare manifold with spacetime. For in that theory geometric
structures, such as the metric tensor, are clearly physical fields in space-
time.! The metric tensor now incorporates the gravitational field and thus,
like other physical fields, carries energy and momentum, whose density is
represented by the gravitational field stress-energy pseudo-tensor. The
pseudo-tensorial nature of this quantity has made its status problematic.
But it can still be seen that energy and momentum are carried by the metric
in a way that forces its classification as part of the contents of spacetime.
Consider, for example, a gravitational wave propagating through space. In
principle its energy could be collected and converted into other types of
energy, such as heat or light energy or even massive particles. If we do not
classify such energy bearing structures as the wave as contained within
spacetime, then we do not see how we can consistently divide between
container and contained. We might consider dividing the metric into an
unperturbed background and a perturbing wave in the hope that the latter
alone can be classified as contained in spacetime. This move fails since there
is no non-arbitrary way of effecting this division of the metric. Finally,
classifying the metric as part of the container spacetime leads to trivial-
isation of the substantivalist view in unified field theories of the type
developed by Einstein, in which all matter is represented by a generalised
metric tensor. For there would no longer be anything contained in space-
time, so that the substantivalist view would in essence just assert the inde-
pendent existence of the entire universe.

In an alternate view usually associated with Newtonian or special rela-
tivistic theories, one represents spacetime by the manifold with some
additional geometric structure, which we shall call its absolute structure.
This view arises most naturally in the older non-local formulations of
spacetime theories, in which case the absolute structure is typically posited
globally ab initio rather than being defined locally through field equations.
Thus if one gives the above global formulation of special relativity, one
would probably call spacetime the pair { N,n,, ». Or if one had to identify
a structure in a Newtonian spacetime which corresponded to the thing
about which Newton held his substantivalist view, then that would be the
tuple { N,h*,D,,dt, >, where h* is the degenerate metric, D, the derivative
operator and dt, the absolute time one form (all defined in the usual
manner).

! One of us has argued that a primary outcome for Einstein of the principle of equivalence
was the recognition that the Minkowski metric g,, of special relativity was a physical field
defined in spacetime, rather than a part of the background of spacetime. Norton [1985].
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Our present argument does not address this representation of spacetime
since it is commonly associated with non-local spacetime theories already
beyond our compass. We note in passing that the hybrid view—using this
representation of spacetime within local spacetime theories—still leads to
dilemmas of the type discussed below, but they are harder to set up. (See
note 2 on p. 522.)

The Gauge Theorem
The indeterminism dilemma depends on the following theorem:

Gauge Theorem (General covariance):' If { M,0;,...,0,) is a model of a
local spacetime theory and h is a diffeomorphism from M onto M, then
the carried along tuple ( M,h*O;, ..., h*0, > is also a model of the
theory.

Proof We need to establish that the vanishing of the field equations
O,=0,0;=0,...,0,=0

is preserved under diffeomorphism. This follows immediately from the
description of the action of the carry along h* in coordinate terms. For
any object O; with components (O;)™ in some coordinate system {x™} we
have

(0)™ = (h*O)™

where the superscript m’ indicates components in the carried along coor-
dinate system {x™} = {h*x™}. Recall that O, is a tensor. Therefore
(0)™ = o and thus (h*O;)™ = o as well. Therefore h*O; vanishes. This
argument holds for i = k,k+1,...,n, which establishes that the field
equations hold for the carried along tuple.

Notice that the proof depends on the objects being tensors, which have the
property of vanishing just in case their components vanish in any coordinate
system. This is why we restricted the field equations of local spacetime
theories to tensorial equations.

We shall say that the original model and the carried along model are
diffeomorphic. Note that the relation of being diffeomorphic divides the
set of tuples into equivalence classes.

To see the connection between this gauge theorem and general covariance
in its usual passive reading, recall that there is a natural one-one corre-
spondence between diffeomorphisms on M and coordinate transforma-
tions of a particular coordinate system {x™} of M. Let the diffeomor-
phism h map the point p of M to hp. Then the corresponding coordinate

! This result is not new, although it is commonly known through its passive form. Wald writes
‘the diffeomorphisms comprise the gauge freedom of any theory formulated in terms of
tensor fields on a spacetime manifold’. Wald [1984], p. 438.
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transformation assigns the new coordinates {x™} to p, where the values of
{x™} at p are equal to the coordinates of hp in the original coordinate system
{x"‘}.

Using this correspondence one can translate theorems from the active to
the passive language—that is from theorems dealing with diffeomorphisms
to theorem dealing with coordinate transformations—and vice versa. The
gauge theorem follows immediately from the vanishing of the carry along
under arbitrary diffeomorphism of vanishing tensors. This result corre-
sponds to the passive result that the components of these zero tensors
remain zero under arbitrary coordinate transformation, which is just the
generally covariant transformation law for the components of a zero tensor.

3 WHAT IS SPACETIME SUBSTANTIVALISM?:
DENIAL OF LEIBNIZ EQUIVALENCE

In broad outline, the spacetime substantivalist holds that spacetime can
exist independently of any of the things in it. In this form, the thesis is
disastrous, because it is automatically denied by every spacetime theory
with which we deal. They all postulate that there are always fields at every
point in spacetime. That is, they agree that there cannot be unoccupied
spacetime events, contrary to the standard position taken by substantivalists
against relationists.

We can imagine many less problematic ways of reformulating the sub-
stantivalist thesis. We might consider the thesis that spacetime is not reduc-
ible to other structures; or the thesis that we must unavoidably quantify
over spacetime events in our spacetime theories. Perhaps we might consider
a strict realist reading of the models of spacetime theories. Each model no
longer represents a physically possible world. Rather each model is a physi-
cally possible world, one of them being our world. That is the M of one
model of a true spacetime theory is the spacetime of our world.

Fortunately we do not need to settle this reformulation problem. What-
ever reformulation a substantivalist may adopt, they must all agree con-
cerning an acid test of substantivalism, drawn from Leibniz. If everything
in the world were reflected East to West (or better, translated 3 feet East),
retaining all the relations between bodies, would we have a different world?
The substantivalist must answer yes since all the bodies of the world are
now in different spatial locations, even though the relations between them
are unchanged.

The necessary agreement of substantivalists on this test is all we shall
need to arrive at the dilemmas below. But first we must translate the test
into the context of local spacetime theories. The diffeomorphism is the
counterpart of Leibniz’ replacement of all bodies in space in such a way that
their relative relations are preserved. For example, represent two bodies in
a local spacetime theory by two spatially small regions of high energy
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density in the obvious way. Then all their relative properties, such as
the spacetime interval separating them and their relative velocities upon
collison, remain unchanged under arbitrary diffeomorphism.

In sum, substantivalists, whatever their precise flavour, will deny:

Leibniz equivalence Diffeomorphic models represent the same physical
situation.

This denial already places substantivalists at odds with standard modern
texts in general relativity, in which this equivalence is accepted unques-
tioningly in the specific case of manifolds with metrics.! We are now in a
position to establish the two dilemmas for spacetime substantivalists.?

4 THE VERIFICATIONIST DILEMMA

This dilemma amounts to little more than a restatement of the sub-
stantivalists’ denial of Leibniz equivalence. To complete the dilemma we
need only note that spatio-temporal positions by themselves are not observ-
able. Observables are a subset of the relations between the structures defined
on the spacetime manifold. Thus we cannot observe that body b is centred
at position x. What we do observe are such things as the coincidence of
body b with the x mark on a ruler, which is itself another physical system.
Thus observables are unchanged under diffeomorphism. Therefore diffeo-
morphic models are observationally indistinguishable.

Substantivalists must either deny Leibniz equivalence or deny their
substantivalism. That is, they must either

(a) accept that there are distinct states of affairs which are observationally
indistinguishable, or
(b) deny their substantivalism.

§ THE INDETERMINISM DILEMMA
To arrive at this dilemma, we need a simple corollary of the gauge theorem:
Hole corollary Let T be a model of some local spacetime theory with

! Hawking and Ellis [1973], p. 56; Sachs and Wu [1977], p. 27. This acceptance enables
modern treatments of local spacetime theories to avoid radical local indeterminism. Older
treatments of classical mechanics and special relativity were not formulated as local spacetime
theories. This type of indeterminism was not a problem since they dealt with a single
manifold plus absolute structure as the fixed spacetime canvas in which the gauge freedom
cannot arise.

2 Manifold-plus-absolute-structure substantivalists will typically face dilemmas of similar
origin. M-p-a-s substantivalists are subject to the Leibniz acid test just in case their absolute
structure has symmetries, which is overwhelmingly the case. They must deny that two
models represent the same physical situation if they are diffeomorphic under a symmetry
transformation. This naturally generalises to the denial of Leibniz equivalence (and the
dilemmas below). The generalisation is difficult to avoid. Translational symmetries, for
example, can be composed out of hole diffeomorphisms. Thus the affected m-p-a-s sub-
stantivalists must deny Leibniz equivalence at least for hole diffeomorphisms, which already
is sufficient to yield the dilemmas through the hole corollary of Section 5.
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manifold M and H (for hole) any neighbourhood of M. Then there exist
arbitrarily many distinct models of the theory on M which differ from
one another only within H.

Proof Let h be a ‘hole diffeomorphism’, i.e., one which differs from the
identity diffeomorphism within H, but smoothly becomes the identity
on the boundary and outside H. Then from the gauge theorem, the carry
along of T under h satisfies the requirement. Since there are arbitrarily
many hole diffeomorphisms for H, there are arbitrarily many such carry
along models satisfying the requirement.

The name of this corollary stems from Einstein’s original discovery of it in
a specialised form. He considered a matter free hole in a source mass
distribution and showed that the gauge freedom of any generally covariant
gravitational field equation in general relativity allowed multiple metric
fields within the hole.

It now follows immediately that the substantivalists’ denial of Leibniz
equivalence leads to a very radical form of indeterminism in all local space-
time theories, since for a substantivalist the diffeomorphic models of the
hole corollary must represent different physical situations.

Consider first various forms of Laplacian determinism. Suppose that the
spacetime models in question admit global time slices.! In the Newtonian
setting such a slice is a hyperplane of absolute simultaneity, while in the
relativistic setting it is a spacelike hypersurface without edges. The Lapla-
cian would then like to prove that the laws of physics guarantee that the
state on a time slice S uniquely fixes the state to the future of S; or failing
that, the state on a finite sandwich lying between two slices S and S’ fixes
the state to the future of the sandwich; or failing that, the state on S and to
the past of S fixes the state to the future of S.

If spacetime is substantival, no such proof can be forthcoming within
local spacetime theories. For by the hole corollary with The Hole placed
in the future of S, if { M,0,,0,,...) is a model of our theory, then there
is another model { M,0",,0’,,...) which is identical with the first up to
and including the instant corresponding to S (i.e., for any p in M which
lies to the past of S, O;(p) = O’i(p)) but which diverges from the first to the
future of S.

It is worth noting that, contrary to the common wisdom, Laplacian
determinism typically does not obtain a clean form in Newtonian theories.
See Earman [1986]. Intuitively, Laplacian determinism breaks down
because there is no upper bound on the velocity of causal propagation,
with the result that influences can ‘sneak in’ from spatial infinity without
announcing themselves on the chosen slice S.

In the face of such space invaders one might hope to achieve a non-trivial
form of determinism by shifting from a pure initial value problem to a

! Otherwise, the global version of Laplacian determinism does not apply.
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boundary-initial value problem. That is, the state is specified on S itself
and also the walls of a tube which cuts through all the time slices in the
future of S. The hope is that these boundary conditions will determine a
unique interior for the tube amongst the models of the theory. But assuming
substantivalism, the hole corollary dashes these hopes. Just place The Hole
within the tube.

By now the reader has no doubt seen that the hole corollary forces
substantivalists to conclude that #no non-trivial form of determinism can
obtain in local spacetime theories. The state within any neighbourhood of
the manifold can never be determined by the state exterior to it, no matter
how small the neighbourhood and how extensive the exterior specification.

Of course this radical local indeterminism can be escaped easily by just
accepting Leibniz equivalence. Then the diffeomorphic models of the hole
corollary represent the same physical situation and the indeterminism dis-
cussed becomes an underdetermination of mathematical description with
no corresponding underdetermination of the physical situation. But accept-
ing Leibniz equivalence entails denying substantivalism.

We emphasise that our argument does not stem from a conviction that
determinism is or ought to be true. There are many ways in which deter-
minism can and may in fact fail: space invaders in the Newtonian setting;
the non-existence of a Cauchy surface' in the general relativistic setting;
the existence of irreducibly stochastic elements in the quantum domain,
etc. Rather our point is this. If a metaphysics, which forces all our theories
to be deterministic, is unacceptable, then equally a metaphysics, which
automatically decides in favour of indeterminism, is also unacceptable.
Determinism may fail, but if it fails it should fail for a reason of physics,
not because of a commitment to substantival properties which can be
eradicated without affecting the empirical consequences of the theory.

In sum we have shown that substantivalists must either deny Leibniz
equivalence or deny their substantivalism. That is, they must either

(a) accept radical local indeterminism in local spacetime theories or
(b) deny their substantivalism.

Perhaps it is acceptable to save substantivalism in the verificationist
dilemma by accepting option (a). But we feel that the price one has to pay
in accepting the option (a) in the indeterminism dilemma is far too heavy a
price to pay for saving a doctrine that adds nothing empirically to spacetime
theories.?

Dept. of History and Philisophy of Science, University of Pittsburgh

! See Hawking and Ellis [19773] for a definition of this concept.

2 We have not concluded here that spacetime is relational, since the literature contains so
many conflicting usages of the term ‘relationism’. Of course the conclusion is established if
relationism is just the negation of substantivalism. But this presupposes far too crude a
dichotomy—substantivalism versus relationism—from which discussion of these matters
has suffered too long. Relationism is not established if it implies that all motion is the relative
motion of bodies, as Leibniz apparently held.
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