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Brownian computation, as presently characterized in the literature, is thermodynamically 

irreversible, the analog of an uncontrolled expansion of a one-molecule gas. I propose a 

modification to the protocol that brings the process as close to thermodynamic reversibility as the 

overcoming of thermal fluctuations allows.  
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1.   Introduction 

Brownian computation was introduced in papers by Bennett
1-2

 and Bennett and Landauer
3
  

as a way of demonstrating that logically reversible mathematical operations can be 

computed by physical processes that are thermodynamically reversible, or nearly so. In a 

recent paper
4
, I have argued that the computational processes they describe are not 

thermodynamically reversible and that their misidentification rested on a misapplication 

of thermal and statistical physics. 

A question left open by my critique was whether there is some way to repair the 

computational protocol used in a Brownian computer so that its operation becomes 

thermodynamically reversible; or at least as close to thermodynamic reversibility for a 

single step process as the “no-go” result of Ref. 5 (Part II) allows. My purpose in this 

note is to describe such a repair. 

It must be emphasized here that the repair is my proposal and that it conflicts with an 

assumption used in the Bennett and Landauer analysis. The proposed repair leads to a 

Brownian computer that will compute extremely slowly. Bennett (Ref. 2, pp. 905-906, 

922-23; Ref. 1, pp. 531-32) has urged that if the Brownian computer’s operation becomes 

too slow, a thermodynamically dissipative driving force must be introduced to drive it to 

completion. In the case of logically irreversible computation, the resulting dissipation is 

identified with the dissipation required by Landauer’s Principle. My view is that 
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processes approaching thermodynamically reversibility should be allowed arbitrarily long 

times for completion, as long as those times are finite. 

2.   A Brownian Computer with Energetically Suppressed Intermediate States 

The repair is an adjustment to the “undriven Brownian computer with trap,” described in 

Ref. 4 (Section 3.4). In this protocol, the computer starts in a stage λ=0 to λ=1, and 

diffuses by a generalized Brownian motion to fill stages λ=0 to λ=n. It is then trapped 

probabilistically when it falls into a final stage λ=n to λ=n+1 of low energy. The total 

thermodynamic entropy creation is given as 

∆Stot = k ln n + k ln (1 + OP)                                                       (1) 

where OP = P/(1-P) are the odds of successful trapping with probability P. 

Thermodynamically, the process is analogous to an n-fold, irreversible, isothermal 

expansion of a one-molecule gas, followed by the energy trapping. This irreversible 

expansion provides the largest contribution to the entropy creation of (1), the term k ln n. 

This expansion term can be made arbitrarily small by adjusting the energy of the 

intermediate stages in the configuration space. The final stage λ=n to λ=n+1 is favored 

probabilistically by decreasing its energy to –Etrap. Using this same mechanism, the 

intermediate stages can be disfavored probabilistically by increasing their energy to Eint.
*
 

As the occupation of these stages becomes less probable, the expansion into them 

contributes less to thermodynamic entropy creation. A sufficiently large value for Eint can 

so reduce the occupation probability that the k ln n expansion term is replaced with one 

that is arbitrarily small. 

There is a time penalty to be paid. A Brownian computer, initialized in stage λ=0 to 

λ=1, will have to surmount an energy mountain of height Eint before completing the 

computation, when it falls into the final stage energy trap. It will only be able to do that 

when a random fluctuation in its energy is large enough to let it climb the energy 

mountain. If the meandering of Brownian motion carries it back to the initial stage, there 

must be more fluctuations that allow it to climb the mountain again. Since an energy 

mountain of great height will be needed to suppress the expansion term, these 

fluctuations will be very infrequent. 

The adjustments to the formulae governing the undriven Brownian computer with 

trap are as follows. The probability P that the computer is in the trap state is 

P =
exp(Etrap / kT )

1+ (n −1)exp(−Eint / kT )+ exp(Etrap / kT )
≈

exp(Etrap / kT )

1+ exp(Etrap / kT )
                   (2) 

where the second approximation holds when Eint is made sufficiently large. The 

corresponding formula for the odds ratio is 

OP =
P

1− P
=

exp(Etrap / kT )

1+ (n −1)exp(−Eint / kT )
≈ exp(Etrap / kT )                            (3) 

 
* This increase is equivalent to merely decreasing the energies of both initial and final stages by Eint. It is easier 

to imagine how such a decrease might be implemented in a Brownian computer. 
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The partition integrals for the initial stage and all stages combined are 

Z(1) = M.V        Z(n+1) = M.V.(1 + (n-1)exp(-Eint/kT) + exp(Etrap/kT) )                (4) 

where, as before, M is the contribution of the momentum degrees of freedom and V the 

configuration space volume of each stage. 

We can compute the total thermodynamic entropy change ∆Stot of the computer and 

its thermal environment from the free energy change ∆Fcomp of the computer alone 

using
†
 

∆Stot = -∆Fcomp/T                                                            (5) 

From the expression F = -kT ln Z for free energy, we compute the change of free energy 

of the computer between the initial state, represented by Z(1), and the final state, 

represented by Z(n+1), as 

∆Stot = −∆Fcomp/T =  k ln [1 + (n-1)exp(-Eint/kT)] + k ln (1+OP)              (6) 

The earlier expansion term k ln n has been replaced by  

k ln [1 + (n-1)exp(-Eint/kT)]                                                    (7) 

When Eint is made sufficiently large, we have 

∆Stot ≈   k ln (1) + k ln (1+OP) =  k ln (1+OP)                                   (8) 

The expansion term has been reduced to insignificance, but not zero. That is the best we 

can do. The height of the energy mountain, Eint, must always be finite, else the 

computation cannot proceed. But a sufficiently large height for Eint can bring the 

expansion term (7) as close to zero as we like. 

The total entropy (8) is the minimum entropy creation necessary to bring any single 

step thermodynamic process to completion, if thermal fluctuations are to be overcome, as 

is shown by the “no-go” result reported in Ref. 5 (Part II).
‡
 It is as close to 

thermodynamic reversibility as the no-go result allows. 

3.   Logically Irreversible Computation 

The case dealt with so far is a Brownian computer implementing a logically reversible 

operation, so that the associated physical device is restricted to a one-dimensional 

channel in its configuration space. If a Brownian computer implements logically 

irreversible operations, such as erasure, that channel takes on a backward branched 

structure, as described in Ref. 4 (Section 6). We can extend the analysis of the last section 

to a device that implements a logically irreversible operation by considering a computer 

that erases—resets to 0—an N state binary memory device, as illustrated in Ref. 4 (Fig. 

10). We will elevate the energies of the intermediate stages between the initial and final 

 
† For a derivation, see Ref. 5 (Section 6). 
‡ The corresponding equation of Ref. 5 (Section 9.2) asserts ∆Stot = k ln OP. The difference between this and 

Eq. (8) here is superficial. It arises from a slight difference in the definition of the entropy change computed. In 

this note, the entropy change is computed between the initial stage of the Brownian computer and an end state 

in which the computer is only probabilistically in the final trap stage. The formula of Ref. 5 assumes an extra 

step in which the system is subsequently isolated in its final stage, so that it is not just probabilistically, but 

assuredly in that final stage. 
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by an amount Eint. The effect once again is to suppress the expansion term corresponding 

to (7), but at the cost of a substantial slowing of the computation. 

The associated entropy creation follows from slight adjustments to the formulae of 

the last section. The initial state partition integral will be 

Z(init) = M.V                                                             (9) 

as before. The final state partition integral will now be 

Z(fin) = M.V. (2N + n.( 2N+1-2) exp(-Eint/kT) +  exp(Etrap/kT) )              (10)  

This is the partition integral that extends over the full tree accessible in configuration 

space. The first term, 2N, reflects that the initial state of the full tree occupies 2N separate 

volumes V of configuration space, one for each of the 2N possible configurations of the 

memory device to be reset. The second term is drawn from the discussion of Ref. 4 

(Section 6.2) and corresponds to the total volume of configuration space in all the 

intermediate stages of the tree, assuming that erasure of each bit requires n steps. The 

intermediate stages have their energy elevated in order to reduce the probability of 

occupation and the associated increase in thermodynamic entropy. The third term is 

associated with the end state energy trap. 

As before, the contribution of the second expansion term of (10) can be made 

arbitrarily small by increasing the energy Eint sufficiently. Proceeding as above, what 

results is creation of thermodynamic entropy of 

∆Stot ≈   k ln (2N) + k ln (1+OP) = Nk ln 2 + k ln (1+OP)                       (11) 

The first term, Nk ln 2, is an entropy creation of k ln 2 for each of the N bits erased. This 

is the same quantity of entropy associated with erasure by Landauer’s principle. 

Elsewhere, I have argued that none of the demonstrations offered for Landauer’s 

principle have succeeded.
§
 Does this last computation finally provide a successful 

demonstration of Landauer’s principle? It does not. All it shows is that a particular 

procedure for erasure happens to create k ln 2 of thermodynamic entropy for each bit 

erased. What it does not show is that a procedure for erasure has to create this much 

entropy. The outcome (11) is quite compatible with Brownian computation merely being 

a thermodynamically uneconomical means of erasure, that is, one that creates 

thermodynamic entropy unnecessarily. 

It becomes quite evident that this Brownian procedure creates entropy unnecessarily 

when we identify precisely how that unnecessary creation comes about. The two terms in 

equation (11) correspond to two entropy-creating processes. The second term, k ln 

(1+OP), corresponds to the thermodynamic entropy that must be created to overcome 

thermal fluctuations and bring the process to completion with odds OP. The first term 

arises from an uncontrolled expansion of the system from its confined initial state to fill 

the accessible phase space. This uncontrolled expansion is the standard illustration of an 

entropy creating, thermodynamically irreversible process. The creation of Nk ln 2 of 

 
§ See Ref. 5 (Section 3.5) for a synopsis. 
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thermodynamic entropy is directly attributable to the protocol’s inclusion of this 

thermodynamically irreversible step. 

While this particular protocol for erasure happens to have this thermodynamically 

irreversible step, there is no demonstration that all possible variants of the Brownian 

protocol must do so; or that all possible erasure protocols, Brownian or not, must do so. 

No necessity for the term is shown. Thus no demonstration of Landauer’s principle is 

provided. 

Thus, efforts to use the result (11) as a demonstration of Landauer’s principle would 

fall into a familiar category of failed attempts. It is “erasure by unnecessarily dissipative 

thermalization,” described in Ref. 5 (Section 3.5) An example of this category arises with 

memory devices consisting of chambers in each of which a partition traps a single 

molecule on one side. The erasure begins by removing the partitions, so that each one-

molecule gas expands irreversibly to fill the chamber. This ill-chosen step creates k ln 2 

of thermodynamic entropy unnecessarily and is the source of the k ln 2 of entropy that the 

demonstration attaches to erasure of each bit. 

4.   A Less Dissipative Erasure Protocol 

Might there be a variant of the Brownian protocol that erases with less dissipation? The 

source of the dissipation above is an uncontrolled expansion into the backward branching 

structure in phase space associated with the erasure process. A promising variant would 

manipulate the energies of the component states in a way that makes this backward 

directed expansion probabilistically disfavored; or it might even mechanically block it 

completely. The added steps that achieve this would not be driven by the diffusive forces 

that power Brownian computation. They would be implemented by some, new 

irreversible process, selected so that it does not create more dissipation than it avoids in 

blocking the back-tracking. 

The erasure protocol described in Ref. 4 (Section 6) has a single Turing machine head 

that proceeds along the N memory cells, erasing then serially. A different, parallel 

architecture is better suited to our present purposes. In it, each of the N memory cells has 

its own Turing machine head and the heads are mechanically linked so that they proceed 

through the steps of the erasure program in concert, as one multi-component head. The 

first time this multi-component head reaches the complete state, it would trigger a 

thermodynamically irreversible process that would block any backtracking and thus block 

the entropy creation associated with it. To achieve this, it need only prevent the multi-

component head moving back one step. The irreversible process that does this would 

create thermodynamic entropy. From Ref. 5, Eqn. 23, the minimum amount created is k 

ln O, where O is the odds of completion. Whatever the amount, the key fact is that it is a 

constant amount, independent of the number of cells N erased. That contradicts 

Landauer’s Principle, for the principle requires that the minimum entropy creation 

increases linearly with the number N of cells erased. For sufficiently large N, the entropy 

cost of erasure per cell could be made arbitrarily small. 
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Can such a variant protocol succeed? To be sure, we would need to fill in all the 

details of the device and this is likely to be a major undertaking. To maintain Landauer’s 

Principle, however, is to maintain that this protocol and every other variant must fail to 

diminish the dissipation associated with erasure.  
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