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1.	Introduction	
 What were the heuristics that guided Einstein to his completed general theory of relativity 
of 1915? There can be no simple answer. The completion of the theory came only after eight 
years of exhausting labor. In them, Einstein, at the height of his creative powers, grappled with 
problems so profound that they nearly defeated him. Nonetheless, Einstein himself provided an 
appealing and simple narrative of his discovery. He was guided, he assured us, by a few simple 
but powerful physical principles and thought experiments. These same heuristics then became 
the basis of Einstein’s later account of the logical foundations of general relativity. 
 In narrowing his focus to these few heuristics, Einstein purged his account of nearly all 
the complications and false steps that later historical work has revealed. It obscures the fact that 
there is a great distance between the lofty generalities of Einstein’s principles and the messy 
details of the final theory. These principles could not by themselves have led Einstein to the final 
theory. Worse, as will be recounted in Section 2 below, most of the heuristics of this narrative 
turn out not to be vindicated by Einstein’s final theory and may even fail to be sustainable as 
independent ideas. They provided at best an unreliable guide and a dubious logical foundation 
for the theory. 
 So we must ask again, what were the heuristics that guided Einstein? Something more 
must have helped Einstein arrive at his final success. My contention in this paper is that beneath 
this first tier of heuristics lies a second tier of heuristics. They do not lend themselves to arresting 
statements of a grand vision. Rather they are the practical lessons that a theorist like Einstein 
learns as he returns day after day to the mundane work of theory building. Whatever else may 
happen, Einstein’s new theory must conserve energy and mesh with Newton’s old theory of 
                                                
1 I thank Michel Janssen for helpful discussion in general and especially relating to Section 13; 
and Dennis Lehmkuhl and Tilman Sauer for comments and corrections on an earlier draft. 
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gravity. Getting all these details to work is not easy. A theorist can readily be led into blind 
alleys. The theorist must learn the tricks that avoid the traps. Once they are learned, it is all too 
easy to omit them from the celebratory recollections. However it is the accretion of these lesser 
heuristics that proves as important to the final discovery. Without them, the final result could not 
be achieved. 
 This paper traces the fortunes of just one of Einstein’s first-tier heuristics, the principle of 
equivalence. It did guide Einstein’s thinking. However the principle was defeasible. We shall see 
that it was diluted in 1912 and all but discarded in 1913 when a second tier heuristic, the 
requirement of conservation of energy and momentum, led to gravitational field equations that 
contradicted it. This second tier heuristic was beyond challenge. It persisted and powerfully 
circumscribed Einstein’s continuing analysis up to the completion of his theory in 1915. 
 In the following, Sections 2 to 6 describe the origin of the principle in Einstein’s earliest 
reflections on gravitation and acceleration and traces how it guided Einstein to a novel theory of 
static gravitational fields in 1912. Sections 7 to 11 recall how Einstein found that the resulting 
theory conflicted with a second tier heuristic, the conservation of momentum. Reluctantly, 
Einstein was compelled to modify the theory’s single field equation to one that compromised his 
principle of equivalence. The principle could now only hold, as he put it, for infinitely small 
fields. 
 The following year, as recounted in Section 12, Einstein and his mathematician friend 
Marcel Grossmann devised the “Entwurf” theory. It differed from general relativity only in 
employing gravitational field equations of limited covariance. Conservation of momentum had, 
in 1912, forced a quite specific field equation on Einstein. He now turned that experience to his 
advantage. Einstein went to pains to explain in elementary terms that the conservation 
requirement provides a general method for arriving at unique field equations. He then used it 
with the conservation of energy and momentum to identify the gravitational field equations of 
“Entwurf” theory. What Einstein did not then acknowledge clearly, as Section 13 recalls, was 
that his original principle of equivalence now failed completely with this choice of field 
equations. Whatever the merits of this first tier heuristic, its role in theory formation was quite 
displaced by the second tier heuristic of the conservation of energy and momentum. 
 This second tier heuristic enjoyed a brief moment of prominence when it was highlighted 
in Einstein and Grossmann’s (1913) “Entwurf” paper as the foundation of the method used to 
derive the theory’s gravitational field equations. Section 14 recounts how the heuristic became 
less visible but continued to exercise a controlling role in Einstein’s subsequent theorizing. It 
governed Einstein’s analysis of the limited covariance of the “Entwurf” theory and persists in 
modern accounts of general relativity in providing the fastest route to Einstein’s celebrated 
gravitational field equations of 1915. 
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 Section 15 and the concluding Section 16 review the tension between the conception and 
application of the heuristics of the two tiers. Einstein’s recounting accords the first tier heuristic, 
the principle of equivalence, primary foundational importance. Yet it was defeasible in his actual 
theorizing when it conflicted with a second tier heuristic, the conservation of energy and 
momentum. Section 15 also reviews briefly a related episode of heuristics in tension that was 
explored in some detail by Janssen and Renn (2007). It concerns Einstein’s November 1915 
return to generally covariant field equations. Two appendices contain background calculations. 

2.	Einstein’s	Principles	
 Einstein completed his general theory of relativity in November 1915. The triumph came 
to an exhausted and exhilarated Einstein after eight years of labor on the problem of relativity 
and gravitation. It was a distinctive achievement, quite unlike so many other discoveries in 
physics. In these other cases, novel empirical results were key. The final theory lay hidden in 
them in encoded form. Success came when someone figured out how to read the code. The 
nineteenth century accumulated a wealth of empirical results on electricity and magnetism. They 
were summarized in the Maxwell-Lorentz electrodynamics that the young Einstein studied so 
eagerly. Encoded in them he found the Lorentz transformation and with it the special theory of 
relativity of 1905.2 In the same year, Einstein found his revolutionary light quantum hypothesis. 
It was encoded, he realized, in the recently-measured thermodynamic properties of heat 
radiation.3 
 The discovery of general relativity was quite unlike these. There was some empirical 
guidance. Perhaps the most significant empirical result guiding Einstein was an old one. It was a 
commonplace since the work of Galileo and Newton in the seventeenth century that all bodies 
fall under gravity with the same acceleration, independently of their masses. Aside from this 
result, on his own account, the heuristics that guided Einstein were more ethereal and 
philosophical in character. At their center was what Einstein labeled “an epistemological defect” 
in prior theories of both classical mechanics and special relativity.4 These theories were 
defective in positing inertial frames of reference since their disposition was fixed absolutely 
without relation to the contents of space and time. The associated, preferred inertial motions 
were absolute in a sense Einstein (1923, p. 61) found objectionable: “independent in its physical 
properties, having a physical effect, but not itself influenced by physical conditions.” To 
                                                
2 See Norton (2004) for an account of Einstein’s investigations. 
3 See Norton (2006) for an account of this encoding. 
4 “ein erkenntnistheoretischer Mangel” Einstein (1916, p. 771). 
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eliminate this defect, Einstein proposed that the principle of relativity had to be extended from 
the relativity of inertial motion of his 1905 special theory of relativity to include accelerated 
motion as well. 
 The need for this extension was grounded further in an idea that Einstein attributed5 to 
Ernst Mach: that the inertia of bodies is due to an interaction with the other masses of the 
universe. This, he labeled “Mach’s principle.” According to it, the distribution of matter in space 
determines completely the disposition of the inertial frames of reference. Finally there was what 
Einstein called6 the “happiest thought of [his] life,” the principle of equivalence. It asserted the 
equivalence of uniform acceleration in gravitation free space and a homogeneous gravitational 
field. This principle, Einstein was already able to boast at the outset in (Einstein, 1907, p. 454), 
“extends the principle of relativity to uniformly accelerated translational motion of the reference 
system.” It was, he felt, a promising first step. 
 These heuristics are widely celebrated. They are almost as well-known as the iconic 
photographs of Einstein, the disheveled genius and iconoclast. Their popularity is driven by their 
vividness and simplicity. They lend themselves to memorable thought experiments. The 
principle of equivalence is routinely expressed through the parable of an observer trapped in a 
box or an elevator. The box is accelerated in gravitation free space; or, in later variants, the box 
is in free fall in a gravitational field. Mach’s principle is routinely related as an answer to 
Newton’s own bucket thought experiment. Newton had proposed in his Principia that the 
concavity in the surface of the water in a rotating bucket arises from acceleration with respect to 
absolute space. Mach’s principle asserts that, instead, the concavity arose from the water’s 
acceleration with respect to all the other masses of the universe. 
 These heuristics promise an easy pathway to understanding a theory that, reputedly, is so 
abstruse that few can properly understand it.7 Everyone who has driven in a car understands 
viscerally how acceleration produces inertial forces. These, we are told on Einstein’s authority, 
are just the same thing as gravitational forces; and they arise precisely because you are 
accelerating in relation to all the other masses of the universe. Appreciate that and an 
understanding the general relativity of all motion is almost within your grasp. It seems so easy. 
 Einstein’s autobiographical statements leave no doubt of the importance of these 
heuristics in Einstein’s process of discovery. However there is a troubling aspect to them. They 
                                                
5 There is some question over whether Einstein’s attribution to Mach was correct. See Norton 
(1995). 
6 Einstein (1920a, p. 265). 
7 An anonymous preface to Lorentz (1920, p. 5) Begins “Whether it is true or not that more than 
twelve persons in all the world are able to understand Einstein’s Theory, …” 
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depend heavily on judgments of how physical theories have to be, independent of experience. 
Such efforts are rarely successful. Time and again today’s experience or more careful thought 
has overturned yesterday’s theoretical imperatives. So it is with Einstein’s heuristics. Many do 
not survive scrutiny.8 
 There is no deeper principle of nature that requires us to eschew something that has (in 
Einstein’s words) “a physical effect, but [is] not itself influenced by physical conditions.” 
Whether inertial frames of reference are as special relativity dictates is a matter to be decided 
empirically and not by a priori stipulation. Contrary to Einstein’s earlier hopes, the Machian 
principle turned out not to be implemented in the final general theory of relativity and he 
eventually abandoned the principle. The generalization of the principle of relativity to 
accelerated motion was implemented by Einstein as a demand that his new theory be expressible 
in arbitrarily chosen spacetime coordinate systems. Kretschmann quite correctly objected in 1917 
that this requirement was all but vacuous. It was more a challenge to the ingenuity of theorists in 
the way they wrote their equations. Finally Einstein’s original formulation of the principle of 
equivalence almost immediately disappeared from the literature. In its place came a proliferation 
of variant forms (“weak,” “strong,” “Einstein”) that differed from Einstein’s in both fundamental 
conception and content. 
 Troubled as these heuristics are, there is no doubt of their importance in Einstein’s mind 
while he worked on the problem of relativity and gravitation. If they were his only guides, then it 
would be somewhat more than extraordinary that his deliberations should produce such a 
remarkable result, the general theory of relativity. There were, as we shall now see, many more 
guides. They were buried in details that did not lend themselves to popular exposition. 
 The attempt in this paper to understand how Einstein succeeded nonetheless proceeds in 
the spirit of Janssen (2014), who addresses the same question. In his concluding Section 6, 
entitled “Post Mortem: How Einstein’s Physics Kept his Philosophy in Check,” Janssen 
attributes Einstein’s success to three factors: 

First, Einstein did not just want to eliminate absolute motion, he also wanted to 
reconcile some fundamental insights about gravity with the results of special 
relativity and integrate them in a new broader framework. Second, when these 
efforts led him to the introduction of the metric field, he carefully modeled its 
theory on the successful theory of the electromagnetic field of Maxwell and Lorentz. 
Third, whenever his philosophical agenda clashed with sound physical principles, 
Einstein jettisoned parts of the former instead of compromising the latter. 

                                                
8 For a synoptic survey of the problems in Einstein’s heuristics, see Norton (1993). 
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The analysis of this paper illustrates the third of these factors. Einstein’s principle of equivalence 
belongs in what Janssen calls the “philosophical agenda.” It is here a defeasible, first tier 
heuristic. Conservation of energy and momentum is one of Janssen’s “sound physical principles.” 
It belongs in the second tier of heuristics that cannot be compromised. 

3.	Einstein’s	1907	Heuristic	
 The project began in 1907 when Einstein was commissioned to write a review article on 
the “principle of relativity,” this being the term that delineates what we would now call the 
special theory of relativity. The resulting review article, Einstein (1907), showed how existing 
branches of physics could accommodate or be accommodated to Einstein’s new theory of space 
and time. Only one area of physics proved troublesome: gravitation. In Section V, Einstein 
embarked on a speculative new approach to gravity that might at the same time afford an 
extension of the principle of relativity to accelerated motion. 
 The heuristic device that guided Einstein was labeled merely as an “assumption” 
(Annahme). In what we must presume was the space of Newtonian mechanics, he considered a 

reference system Σ1 uniformly accelerated in a fixed direction; and a second inertial reference 

system Σ2 in which there is a homogeneous gravitational field. He supposed further that the 

acceleration of Σ1 matched the acceleration of fall of free bodies in Σ2, so that the motions of 

free bodies would be the same in both systems. Einstein’s assumption was that this sameness was 
to be generalized to all physical processes. We must presume a tacit extension to relativistic 
contexts. He wrote (p. 454): 

We have therefore in the present state of our experience no basis for the assumption 

that the systems Σ1 and Σ2 differ from one another in any respect. Hence we want to 

assume in the following the complete physical equivalence of a gravitational field 
and the corresponding acceleration of the reference system. 
 This assumption extends the principle of relativity to the case of uniformly 
accelerated translational motion of the reference system…. 

 Modern readers will immediately recognize this as Einstein’s first statement of the 
principle of equivalence. They may however be puzzled by the restriction of equivalence to the 
special case of a homogeneous gravitation field and uniform acceleration. Standard modern 
statements of the principle of equivalence are more general. They commonly assert that a 
gravitational field can always be transformed away, at least locally, by adopting an appropriate 
acceleration of the reference system. 
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 That this more general version of the principle was not Einstein’s has been recounted in 
Norton (1985). We need not rehearse here Einstein’s objections to the generalized principle. The 
important point is to recognize that the principle was, for Einstein in 1907, not yet a permanent 
axiom of some well-articulated theory. That may still come. In 1907, the primary interest of the 
assumption for Einstein was as a heuristic guide in the generation of a new theory of gravity, 
whose general outlines were only dimly visible to Einstein in 1907. Einstein stated clearly his 
heuristic purpose in the continuation of the passage quoted above 

… The heuristic value of the assumption lies in the fact that a homogeneous 
gravitational field may be replaced by a uniformly accelerated reference system. 
The latter case is accessible to theoretical treatment to a certain degree. 

 There was then, in Einstein’s view, an urgent need for such a heuristic. For Einstein had 
tried an obvious accommodation of gravity to special relativity, that is, the construction of simple, 
Lorentz covariant theories of gravity. Einstein (1933, pp. 286-87) recalled the problem he 
discovered: 

These investigations, however, led to a result which raised my strong suspicions. 
According to classical mechanics, the vertical acceleration of a body in the vertical 
gravitational field is independent of the horizontal component of its velocity. Hence 
in such a gravitational field the vertical acceleration of a mechanical system or of its 
center of gravity works out independently of its internal kinetic energy. But in the 
theory I advanced, the acceleration of a falling body was not independent of its 
horizontal velocity or the internal energy of the system. 
 This did not fit in with the old experimental fact that all bodies have the same 
acceleration in a gravitational field… 

In short, Einstein had failed to find a relativized theory of gravity in which bodies fall vertically 
with equal acceleration, independently of their horizontal motion.9 How could Einstein proceed? 
The assumption of 1907—the principle of equivalence—provided a way. It delivered to Einstein 
a single instance of a gravitational field with just the independence property needed. To proceed, 
all Einstein needed to do was to catalog the properties of this one special case of a relativized 
gravitational field and then judiciously generalize them to recover a full theory. 

4.	Einstein	1907-1912	Theory	of	Static	Gravitational	Fields	
 This project of generalization became the substance of those parts of the ensuing five 
years that Einstein devoted to gravitation. The 1907 review article already contained some now 

                                                
9 For an attempted reconstruction of Einstein’s explorations, see Norton (1992, §3). 
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familiar results. The speed of light and the ticking of clocks would be slowed in a homogeneous 
gravitational field. This speed played the role of a gravitational potential. These results, now 
generalized to the inhomogeneous static gravitational field of the sun, yielded a prediction of a 
slight red shift in light emitted by the sun. Einstein returned to work on the theory in 1911, when 
he realized that another effect in it was open to observational test. According to the theory 
(Einstein, 1911), a beam of light is bent by a gravitational field. The bending should be detectible 
in a displacement of apparent star positions in the sky in the vicinity of the sun. 
 While this 1911 analysis is widely know through its inclusion in the ubiquitous Dover 
reprint The Principle of Relativity, the fullest expression of the project of generalization came in 
a lesser-known pair of papers the following year (Einstein 1912a, 1912b). These papers 
contained a full theory of certain static gravitational fields. The theory provided equations of 
motion for bodies in free fall, a field equation for the variable speed of light and versions of 
electrodynamics and thermodynamics, suitably modified to accommodate the novelty of a 
variable speed of light. 

 The starting point of the paper is a transformation from the familiar reference system Σ of 

Einstein’s 1905 special theory of relativity, represented by coordinates of space and time (ξ, η, ζ, 

τ), to a unidirectionally, uniformly accelerated frame of reference K, represented by the 
coordinates of space and time (x, y, z, t). Einstein’s analysis is cumbersome. He does not develop 
the full transformation equations, although (as we are about to see), they are quite simple. In a 
labored development proceeding over many pages, he recovers only an approximation of the 
general transformation equations for small t. Einstein’s generalizations proceed from them. 
 Here I will not recapitulate these details. They would provide no special illumination for 
the issues to be raised. Instead I will summarize them using a more perspicacious formalism that 
Einstein himself shortly recognized. In a last minute correction to the proofs of Einstein (1912b, 
p. 458), Einstein found his equations of motion is recovered most simply from an action 
principle. The following year Einstein and Grossmann (1913, p.7) revealed that this action 
principle is the equation of geodesic motion in a spacetime whose structure is no longer 
Minkowskian. 
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5.	The	Gravitational	Field	of	Uniform	Acceleration	

 The equations relating the unaccelerated and uniformly accelerated frame Σ and K were 

given later in many places, including Einstein and Rosen (1935, p. 74):10 

τ = (c0/a + x) sinh(at)     (ξ + c0/a) = (x + c0/a) cosh(at)     η = y     ζ = z              (1) 

The acceleration is uniform translational acceleration in the ξ, x direction; a is a constant 

acceleration parameter and c0 a constant. While the original coordinates of Σ cover the whole of 

the spacetime, those of K cover only a wedge delimited by null surfaces τ = (ξ + c0/a) and 

τ = -(ξ + c0/a). The x coordinate can only take values greater than -c0/a, for the coordinates are 

singular at x = -c0/a, where all the hypersurfaces of constant t intersect.11 When t is small, the 

hyperbolic functions in (1) are well-approximated as sinh(at) ≈ at and cosh(at) ≈ 1 + a2t2/2. 
Then the exact transformation equations (1) are well-approximated by the small t expressions 
Einstein derived in Einstein (1912, p. 359):  

τ = (c0 + ax) t     ξ = x + (c0 + ax)at2/2     η = y     ζ = z                              (2) 

 Under the transformation (1), using the perspectives Einstein would develop the 
following year, the Minkowskian expression for the invariant line element 12 

ds2 = dτ2 - dξ2 - dη2 – dζ2                                                     (3) 
becomes 

ds2 = (c0 + ax)2dt2 - dx2 - dy2 - dz2                                                (4) 

While the transition from expression (3) to (4) has merely redistributed the coordinates assigned 
to events, Einstein used the principle of equivalence to conclude that a homogeneous 
gravitational field now manifests in the new frame of reference K(x, y, z, t). We can read directly 

                                                
10 The notation is adapted to Einstein’s (1912a) usage. The Einstein and Rosen version was the 
slightly simpler case in which c0=0. 
11 In 1912, since he worked only with a small t approximation (2), Einstein may not have 
realized that the coordinates (x, y, z, t) he introduced have a singularity at x = -c0/a. Einstein and 

Rosen (1935) later suggest that one can conceive the “field-producing mass” as located at this 
singularity, although they seek to eliminate the singularity. In (1912a, p. 356, footnote), however, 
Einstein wrote: “The masses that produce this field should be conceived as at infinity.” 
12 The notation is adapted to Einstein’s (1912a) usage. The Einstein and Rosen version was the 
slightly simpler case in which c0=0. 
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from the line element (4) the same properties that Einstein inferred for this field, but with greater 
effort on his part. 
 Einstein defined the speed of light c in terms of the new coordinates as 

c2 = (dx/dt)2 + (dy/dt)2 + (dz/dt)2                                            (5) 
where (x(t), y(t), z(t)) is the trajectory of a light pulse. We read immediately from (4) that this 
speed of light c varies linearly with x in the direction of the gravitational field 13 

c(x, y, z) = c0 + ax                                                               (6) 

Hence it can represent the gravitational potential. 
 We also read from (4) that the hypersurfaces of constant t are ordinary Euclidean spaces 
and that their coordinates (x, y, z) are Cartesian coordinates with the familiar metrical 
significance. The same is no longer true of the time coordinate t. It can no longer be measured 
directly by clocks. Rather times elapsed on a clock at rest in the frame must be rescaled by a 
position dependent factor (c0 + ax) if the corresponding time coordinate t differences are sought. 

 The equations of motion of bodies in free fall in this homogenous field are recovered by 

seeking the geodesics of the spacetime, that is, those trajectories for which ∫ ds is extremal. A 

short and standard calculation of the Euler-Lagrange equations yields 

 

d
dt

!x / (c0 + ax)
1− q2 / (c0 + ax)

2

⎛

⎝
⎜

⎞

⎠
⎟ =

−a
1− q2 / (c0 + ax)

2
 

 

d
dt

!y / (c0 + ax)
1− q2 / (c0 + ax)

2

⎛

⎝
⎜

⎞

⎠
⎟ =

d
dt

!z / (c0 + ax)
1− q2 / (c0 + ax)

2

⎛

⎝
⎜

⎞

⎠
⎟ = 0                           (7) 

where  q
2= !x2 + !y2 + !z2  and the overhead dot denotes differentiation with respect to t,  !x = dx / dt , 

etc. 

6.	Einstein	Generalizes	Naturally	
 With these results in hand for the special case of a homogeneous gravitational field, 
Einstein could now proceed with his project of generalization. The generalizations he introduced 
were obvious and natural.14 
                                                
13 The other case of c(x, y, z) = -(c0 + ax) is not mentioned by Einstein. 
14 This project may seem familiar since it is the first instance of what becomes the gauge 
argument routinely used to introduction interacting fields in particle physics. One starts with a 
flat connection, the case of no interaction. It is re-coordinatized (or its gauge changed) so that the 
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 First, the line element (4) is replaced by the more general 
ds2 = c2(x, y, z)dt2 - dx2 - dy2 - dz2                                                (8) 

where c can now vary more generally as a function of the spatial coordinates. This variable speed 
of light c still serves as the single gravitational potential and the spatial hypersurfaces of constant 
time coordinate t remain Euclidean. This new structure represents a more general case of time 
independent gravitational fields. Einstein recognized explicitly (1912a, p.356), however, that it 
was not the most general case. He noted that the field produced by a rotation of the reference 
frame would yield a non-Euclidean geometry. For the Lorentz contraction would act 
differentially on rods oriented parallel or transverse to the direction of rotation. That meant that 
the ratio of the circumference of a suitably placed circle to its diameter would no longer be the 

Euclidean value of π, when both are measured by rods at rest in the rotating reference frame.  
 In the generalization, the gravitational field strength is the negative gradient of the speed 
of light, (-∂c/∂x, -∂c/∂y, -∂c/∂z). The equations of motion of a body in free fall in a homogeneous 
gravitational field (7) are naturally generalized to  

 

d
dt

!x / c
1− q2 / c2

⎛

⎝
⎜

⎞

⎠
⎟ =

−∂c / ∂x
1− q2 / c2  

 

d
dt

!y / c
1− q2 / c2

⎛

⎝
⎜

⎞

⎠
⎟ =

−∂c / ∂y
1− q2 / c2           

d
dt

!z / c
1− q2 / c2

⎛

⎝
⎜

⎞

⎠
⎟ =

−∂c / ∂z
1− q2 / c2             

(9) 

 
These equations coincide with the geodesics of the line element (8). They can also be recovered 
directly by solving the Euler-Lagrange equations using this more general line element (8). 
 Finally, Einstein sought a more general equation governing the speed of light c. The 
linear dependence of c on x in (6) is easily seen to be a solution of the Laplace equation for c:  

Δc = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
c = 0

                                             
(10) 

In turn, it is naturally generalized to: 

Δc = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
c = kcσ                                              (11) 

for k a constant and σ the matter density. This field equation is the obvious analog of Poisson’s 

equation for the Newtonian gravitational potential ϕ  

                                                                                                                                                       
new description mimics an interaction, while none is actually present. The new description is 
generalized to return equations governing a non-trivial interaction. 
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Δϕ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
ϕ = 4πkρ                                       (12) 

for mass density ρ (in the form given in Einstein and Grossmann, 1913, p. 11). 
 The principal difference in form between (11) and (12) is that the first has a source term 

kcσ that is linear in the potential c, whereas the source term of the second, 4πkρ, has no 

corresponding term in ϕ. This difference reflects a difference in gauge freedoms in the two 

quantities c and ϕ. The speed of light c is undetermined up to a multiplicative factor M, 
reflecting our freedom to choose measuring units for distances and times. Thus, if c is a solution 

of (11) for some σ, then so is c’ = cM. The Newtonian potential ϕ, however, is undetermined up 

to an additive factor A. Thus, if ϕ is a solution of (12) for some ρ, then so is ϕ’ = ϕ + A. 

 This difference in gauge freedoms in the two cases may now seem innocuous. It will 
shortly prove to be a cause of considerable trouble. 

7.	A	Hidden	Peril	
 The generalizations of the last section are small and modest. They would be, it seems, 
just a small and secure step towards the most general theory. However as Einstein would shortly 
discover, these generalizations were far from innocent. The danger lay precisely in their apparent 
modesty, so that one would not readily think to challenge them. 
 Buried in the generalizations were two, specific problems. The first was the idea that 
space would remain Euclidean in the case of more general static gravitational fields. This proves 
almost never to be the case. Take one of the simplest cases: the Schwarzschild spacetime, the 
exterior gravitational field of a rotationally symmetric, uncharged, non-rotating body of mass m. 
Its line element is 

ds2 = 1− 2Gm
r

⎛
⎝⎜

⎞
⎠⎟ dt

2

− dr2

1− 2Gm
r

⎛
⎝⎜

⎞
⎠⎟
− r2 (dθ 2 + sin2θdφ 2 )                        (13) 

The constant G is the Newtonian universal constant of gravitation and (r, θ, φ) are spherical 
coordinates of space. The failure of Euclidean geometry for the spatial hypersurfaces of constant 
t arises through the division of dr2 by the factor (1-2Gm/r). For, without it, the spatial line 

element is the Euclidean dr2 + r2 (dθ2 +  sin2θ dφ2). 
 The trouble with Einstein’s 1912 assumption of spatial flatness is that it is incompatible 
with his final field equations of November 1915. As John Stachel (1989) first pointed out, as 
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long as Einstein expected fields like (8) to satisfy his field equations, he is precluding the source 
free field equations of the vanishing of the Ricci tensor, Rµν = 0.15 When Einstein adopted the 

mathematical framework of general relativity in his joint work with Grossmann (1913), 
notoriously, Einstein considered and rejected generally covariant gravitational field equations 
employing the Ricci tensor. This misstep marked the beginning of years of painful drifting, while 
Einstein sought to reconcile himself with a misshapen theory. Those years brought Einstein’s 
formulation of his “hole argument.” It sought to establish that generally covariant gravitational 
field equations would not be physically interesting. The assumption of spatial flatness supported 
his earlier prediction of only a “half deflection” in a beam of starlight grazing the sun. Einstein 
(1915b) found this error only at the last moment in November 1915, when his celebrated 
computation of Mercury’s anomalous motion depended on the failure of Euclidean geometry in 
the vicinity of the sun. 
 This one mistaken assumption was not the sole source of these years of misery for 
Einstein. However it was their starting point. I need only here reaffirm the profound and 
extended misery this assumption visited upon Einstein. For this episode has been the subject of 
very extensive historical investigations elsewhere, to which the reader is now directed. See 
Stachel (1989), Norton (1984), and for a synoptic work by Michel Janssen, John D. Norton, 
Jürgen Renn, Tilman Sauer and John Stachel that significantly develops these earlier papers, see 
Renn (2007). 

8.	A	Second	Hidden	Peril	Identified	
 While this last peril lingered on unnoticed for several years, there was a second peril that 
Einstein identified almost immediately. Einstein’s first paper of 1912 (Einstein 1912a) had been 
submitted to Annalen der Physik on February 26, 2012. Before its printing was finalized, 
Einstein found to his dismay that the natural and obvious field equations (10) and (11) could not 
be exactly correct. He managed to append a footnote (p. 360) to them that alerted readers to the 
problem: 

In a work to follow shortly, it will be shown that the equations [(10)] and [(11)] still 
cannot be exactly correct. They will be used provisionally in this work. 

The work promised, Einstein (1912b), was submitted on March 23, 2012, to the journal, just 
under a month after the first paper was submitted. It dealt first with routine matters required by 
                                                
15 The precise result is shown below in Appendix A. If the metric tensor is restricted to the form 
(36), then the vanishing of the Ricci tensor permits the g00 = c2(x, y, z) to vary at most linearly 

with the coordinates x, y and z as in (42). 
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the new theory of gravity. Einstein showed how the theory required small adjustments to 
electrodynamics and thermodynamics. Section 4 of the paper then revealed the concern with the 
field equation. 
 Einstein considered a distribution of matter, momentarily at rest, where the gravitational 
potential c produced by the matter approaches a constant potential at spatial infinity. The 
different parts of the matter distribution act gravitationally on one another. Gravitational collapse 
is prevented by attaching the masses to a rigid, massless frame. It follows from the equations of 

motion (9) that the force density fi acting on a matter distribution σ momentarily at rest is 

fi = −σ ∂c
∂xi

                                                                                                                                   (14) 

where i = 1, 2, 3 so that x1, x2, x3 is x, y, z. The total force acting on the frame at this initial 

instant is computed by integrating this force density over all space. If we substitute for the matter 

density σ using the field equation (11), we recover 

fi dV = − σ ∂c
∂xi

∫∫ dV = − Δc
c∫

∂c
∂xi

dV ≠ 0                                                                          (15) 

where the integral extends over all of three-space. This integral does not, in general, vanish, 
Einstein noted. Thus there is a net force acting on the mass-frame system that seeks to set it into 
motion. 
 This, Einstein observed, violates the “principle of equality of action and reaction.” 
Alternatively, we might observe that it violates both energy and momentum conservation, since 
the mass-frame system spontaneously acquires both. Einstein could not disguise his alarm. He 
wrote (p. 453): 

We have recovered a very questionable result. It is quite enough to arouse doubt 
over the admissibility of the entire theory developed here. This result certainly 
indicates a lacuna that lies deeply in the foundation of both our investigations. For it 
can hardly work out that another equation other than equation [(10)] can be brought 
into consideration from the expression (c0 + ax) found for c for a uniformly 

accelerated system. This [equation] in turn entails equation [(11)] necessarily. 

9.	Seeking	an	Escape	
 Einstein’s remarks foreshadow that he will have to give up his pair of field equations (10) 
and (11). However he was not prepared to take this step without resistance. He sought first to 
preserve them by modifying other parts of his theory. 
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 The first approach was to consider the fact that the massless frame holding the masses is 
stressed as it prevents the gravitational collapse of the masses it carries. Earlier work in special 
relativity had shown that stressed bodies can have unexpected energetic properties. For example, 
if a stressed body is set in motion, there will be an energy associated with the stress that only 
appears when the body is in motion.16 Might there be a gravitational mass associated with the 
stresses in the frame that somehow preserves the equality of action and reaction? Einstein 
explored the possibility by considering a mirrored box that contained radiation; and another box 
containing an ideal gas. In both cases, the walls of the boxes would become stressed in virtue of 
the pressures exerted on them by the radiation and the gas. However, Einstein concluded, one 
could not attribute a gravitational mass to the stressed walls. The gravitational mass of the entire 
system must be determined solely by its total energy. For only then is the equality of inertial and 
gravitational mass retained. This equality would be violated if an additional gravitational mass 
were attributed to the stresses in the box walls.17 
 In the second approach, Einstein considered modifying the theory’s expressions for the 
momentum of a moving mass and for the gravitational gravitation force by multiplying each by 

some power in c, the first by cα and the second by cβ. Einstein briefly recounts his explorations 
that showed that these modifications precluded a serviceable dynamics. 

10.	Modifying	the	Gravitational	Field	Equation	
 Einstein now bowed to the inevitable. The equality of action and reaction could only be 
preserved, he concluded (p.455), if his field equations 

 
(10) and (11) were modified. We can 

understand the modification Einstein introduced by reflecting on how ordinary Newtonian 
gravitation theory and Coulomb electrostatics avoid the problem. 

 The force density fi on a charge distribution ρ due to the Coulomb potential ϕ is given by  

                                                
16 For a survey of these results, see Norton (1992, §9). 
17 Einstein soon returned to the possibility of associating a gravitational mass with stresses in 
Einstein and Grossmann (1913, §I.7) through the use of the trace T of the stress-energy tensor as 
the source density in a scalar field equation. Implementing this choice in Nordström’s Lorentz 
covariant gravitation theory led Einstein to a version of the theory that was only conformally flat. 

It was, as reported in Einstein and Fokker (1914), governed by a field equation R = κ T where R 

is the curvature scalar and κ a constant. For further details, see Norton (1992). Giulini (2008) has 
reconstructed Einstein’s argument against Nordström’s Lorentz covariant scalar theory of gravity 
and finds it flawed. 
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fi = −ρ ∂ϕ
∂xi

                                                                                                                                   (16) 

The potential is governed by Poisson’s equation 

Δϕ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
ϕ = ∂2ϕ

∂xi
2

i=1

3

∑ = −kρ                                    (17) 

Proceeding as before, we express the force density fi solely in terms of the potential ϕ by 

substituting Poisson’s equation (17) into  (16): 

fi = −ρ ∂ϕ
∂xi

= 1
k

∂2ϕ
∂xm

2
m=1

3

∑⎛⎝⎜
⎞
⎠⎟
∂ϕ
∂xi

= 1
k

∂
∂xm

∂ϕ
∂xm

∂ϕ
∂xi

− 1
2δ im

∂ϕ
∂xn

∂ϕ
∂xnn=1

3

∑⎛⎝⎜
⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟m=1

3

∑ = 1
k

∂tim
∂xmm=1

3

∑             (18) 

What will prove the most important step in this computation is the third equality. It is merely the 

computation of an identity in ϕ: 

∂2ϕ
∂xm

2
m=1

3

∑⎛⎝⎜
⎞
⎠⎟
∂ϕ
∂xi

= ∂
∂xm

∂ϕ
∂xm

∂ϕ
∂xi

− 1
2δ im

∂ϕ
∂xn

∂ϕ
∂xnn=1

3

∑⎛⎝⎜
⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟m=1

3

∑
                                                 

(19) 

The last term in the scope of the divergence operator is the Maxwell stress tensor for the 
Coulomb field, which is defined as  

tim = ∂ϕ
∂xm

∂ϕ
∂xi

− 1
2δ im

∂ϕ
∂xn

∂ϕ
∂xnn=1

3

∑⎛⎝⎜
⎞
⎠⎟                                                                                    

(20) 

 Equation (18) shows that the force density fi equals the divergence of the stress tensor tim. 

This fact, we can see, preserves the equality of action and reaction in systems of the type 

Einstein considered. Take a finite system of charges attached to a rigid frame in a field ϕ whose 
spatial derivatives ∂c/∂xi approach zero as we approach spatial infinity. Using a standard 

computation routinely employed in field theories, Gauss’ theorem allows us to compute the i-th 
component of the net force on system of charges Fi through 

Fi =
∂tik
∂xkk=1

3

∑V∫ dv = tiknk
k=1

3

∑A∫ da                                          (21) 

The first volume integral extends over a volume of space V sufficiently large for it to contain all 

the charges and such that the first derivatives of the field ∂ϕ/∂xi are brought arbitrarily close to 

zero on its surface A. The second surface integral extends over the surface A only. The quantity 

ni is a unit, vector normal to the surface. Since the first derivatives of ϕ can be brought arbitrarily 

close zero by making V suitably large, the stress tensor tik can be made arbitrarily small and so 
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also18 the net force Fi. This force vanishes if we now take the limit as the volume of integration 

V exhausts all space. Thus the system of charges and rigid frame experiences no net force. The 
equality of action and reaction is preserved. 
 Einstein’s gravitational field equation (11) seems so close in form to the Poisson equation 
for Newtonian gravity (12) and for Coulomb electrostatics (17) that we can easily imagine that 
some similar computation is possible that would preserve the equality of action and reaction. 
Einstein’s (11) differs only in the addition of field potential term c in the field equation’s source 

term kcσ. Yet that additional term is enough to overturn the whole calculation. To see why, we 
merely need to repeat the electrostatic calculation of (18) in Einstein’s gravitation theory. 
Substituting the field equation (11) into the expression (14) for the force on a static mass 
distribution, we recover:  

fi = −σ ∂c
∂xi

= − 1
kc

∂2c
∂xm

2
m=1

3

∑⎛⎝⎜
⎞
⎠⎟
∂c
∂xi

= ∂
∂xmm=1

3

∑ − 1
kc

∂c
∂xm

∂c
∂xi

− 1
2δ im

∂c
∂xn

∂c
∂xnn=1

3

∑⎛⎝⎜
⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
− 1
2kc2

∂c
∂xm

∂c
∂xmm=1

3

∑⎛⎝⎜
⎞
⎠⎟
∂c
∂xi

             (22) 

where the last equality is an identity. The calculation can almost proceed as before. The force 
density fi is equal to a divergence, the divergence of a term quadratic in the derivatives of c, and 

a second term. The quantity within the scope of the divergence operator 
 

∂
∂xmm=1

3

∑ i( )  can be 

provisionally identified as the gravitational field stress tensor: 19 

tim = − 1
kc

∂c
∂xm

∂c
∂xi

− 1
2δ im

∂c
∂xn

∂c
∂xnn=1

3

∑⎛⎝⎜
⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
                                          (23) 

We are very close to the goal of writing the force density fi as a divergence:  

fi = −σ ∂c
∂xi

= ∂tim
∂xmm=1

3

∑                                                           (24) 

However the second superfluous term of the expression in (22) remains 

− 1
2kc2

∂c
∂xm

∂c
∂xmm=1

3

∑⎛⎝⎜
⎞
⎠⎟
∂c
∂xi

 

                                                
18 A tacit presumption is that tik approaches zero faster than the area A grows infinite. 
19 Einstein’s expression for this stress tensor in (1912b, p. 456) omits the leading minus sign. I 
believe this is a typographical error in Einstein’s paper. 
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It precludes us writing the force density as a divergence. Its presence leads to the non-vanishing 
force Einstein reported in equation (15) above. 
 A short calculation shows that this second, troublesome term can be eliminated if it is 
absorbed into the gravitational field equation (11). This absorption yields the modified 
gravitational field equation of the second theory of 1912:  

Δc = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
c = k cσ + 1

2kc
∂c
∂xm

∂c
∂xmm=1

3

∑⎛
⎝⎜

⎞
⎠⎟                            

(25) 

This modified field equation solves the dynamical problem. Using it, the force density fi can be 

written as the divergence of a tensor, tim of (23). An argument analogous to that of the 

electrostatic case shows the equality of action and reaction is preserved. A bonus, possibly 
unexpected, is that Einstein could show that the additional term in the modified field equation 

1
2kc

∂c
∂xm

∂c
∂xmm=1

3

∑  

is equal to the energy density of the gravitational field. Einstein now had the appealing result that 

ordinary matter density σ and the gravitational field energy contribute equally, in arithmetic 
summation, as the source of the gravitational field:  

Δc = k(ordinary matter density + energy density of the gravitational field)        (26) 
With this modification, Einstein’s theorizing now moved to non-linear field equations, which 
would be an enduring feature of his development of general relativity and his subsequent unified 
field theory. 
 Einstein identified the peril to his theory quite rapidly, sometime between the writing of 
the first paper (Einstein 1912a) and the second (Einstein 1912b). How did he find it so quickly? 
Its presence is obvious once one tries the calculation of equation (22) above. Why would 
Einstein try such a calculation? A striking juxtaposition may answer this last question. The first 
two sections of Einstein (1912b) tackle a mundane exercise required by the new theory. Einstein 
asks how electrodynamics must be modified to remain compatible with the new theory of gravity. 
Einstein shows that all that is required is the addition of factors of c in several places. He then 
proceeds to check that the resulting modified theory retains the conservation of energy and the 
conservation of momentum. The first computation involves recovering an expression for the 
electromagnetic field energy density. The second computation leads Einstein to write a modified 
expression for the Maxwell stress tensor and to show that the modified expression allows 
retention of the conservation of momentum. The corresponding computation for the gravitational 
stress tensor of his new theory is the failure that Einstein proceeds to report and that leads to the 
need for a modification of his gravitational field equation from (11) to (25). 
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11.	Conflicting	Heuristics	
 This modification was not just an ad hoc expedient. As we shall see shortly, it embodies a 
procedure that Einstein could and would use again. It proved to be an invaluable heuristic. The 
difficulty for Einstein, however, was that this heuristic contradicted the primary heuristic that 
had played a dominant role in Einstein’s thinking on gravity since 1907: the principle of 
equivalence. 
 To see the conflict, take what Einstein (1912b, p. 456) correctly gave as an equivalent 
form of the modified field equation (25): 

Δ c( ) = k
2 cσ                                                         (27) 

For the source free (σ=0) case of a unidirectional field such as might be produced by 
unidirectional acceleration, in analogy with (6), we recover  

c = c0 + ax                                                          (28) 

The difficulty is that uniform acceleration in special relativity produces (6) and not (28). That is, 
the gravitational field of the principle of equivalence, produced by uniform acceleration, is not a 
gravitational field admitted by the modified field equation (25)/(27). 
 One might wonder if there is some scope for modifying the transformation equations (1) 
used to produce the field represented by (6). Using later ideas, we can see that this is not possible, 
unless Einstein is prepared to make much more sweeping changes to this theory. If we assume 
that the spacetime geometry is given by the line element (8), then the function c(x, y, z) in (8) can 
vary at most linearly with the spatial coordinates x, y and z. This linearity is shown in Appendix 
A by the analysis leading to equation (42). 
 Einstein (1912b, pp. 455-56) reported his reluctance to adopt the modified field equation: 

Therefore I decided with difficulty to take this step, since with it the foundation of 
the unconditional principle of equivalence is lost. It appears that the latter can only 
be retained for infinitely small fields. 

Presumably the restriction is to infinitely small intervals of space in the direction of the x 
coordinate. For then the non-linear dependency of c on x in (28) can be approximated in the 
infinitely small interval by the linear dependency of (6). 
 All was not lost entirely, Einstein continued. For his derivation of the equations of motion 
(9) and the modification to the equations of electrodynamics from the principle required only that 
his transformation equations (2) can be applied to infinitely small spaces. He suggested that the 
transformation equation (2) be replaced by the more general equations:  

τ = ct ξ = x + 1
2 c

∂c
∂x
t 2 η = y ζ = z                                 (29) 
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where c is an arbitrary function of x. 
 While the outcome was clearly painful for Einstein, there is an unmistakable conclusion 
concerning Einstein’s heuristics. Einstein’s first tier and most visible heuristic of the principle of 
equivalence conflicted with the less visible, second tier heuristic of momentum conservation. 
The second tier heuristic wins. It is, in the end, a more powerful guide that cannot be overruled. 

12.	A	Method	Reused:	The	Derivation	of	the	“Entwurf”	Field	Equations	
 The procedure Einstein used in 1912 to correct his gravitational field equation was not 
something merely to be used once. It could reused in different contexts. That is, for Einstein, it 
was a method. We know this because he goes to some pains to tell us. The word “method” is his, 
as we shall see below. 
 In their “Entwurf” paper of 1913, Einstein and his collaborator, his mathematician friend 
Marcel Grossmann, published an almost complete version of the general theory of relativity  
(Einstein and Grossmann, 1913). What was missing were the now celebrated Einstein 
gravitational field equations.20 In their place, Einstein offered field equations of limited 
covariance. In his physical part of their joint paper, Einstein addressed the problem of identifying 
these equations. Following a now familiar approach, he posited that these gravitational field 
equations would have the form  

Γµν = k Tµν                                                        (30) 

where Tµν is the stress-energy tensor for ordinary matter and k is a constant. The gravitation 

tensor, Γµν, is a quantity constructed from the metric tensor gµν and its first and second 

coordinate derivatives. Unlike his later theory, this tensor was permitted only limited covariance. 
In the case of a spacetime whose metric differed only in small quantities from that of a 
Minkowski spacetime, Einstein specified (pp. 13-15) that the gravitation tensor would have the 
form (in more modern notation):  

Γµν = ∂
∂xα

gαβ ∂g
µν

∂xβ
⎛
⎝⎜

⎞
⎠⎟
+

further terms that vanish in the
formationof thefirst approximation

                      (31) 

How could these further terms be found?  
 Einstein saw that his situation was quite similar to that of 1912. One could conceive his 
first gravitational field equation (11) merely as an approximation to the correct equation, merely 

                                                
20 The story of their rejection of generally covariant field equations has been told in abundance 
elsewhere. See Stachel (1989), Norton (1984) and Renn (2007). 
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lacking the higher order terms introduced in the second gravitational field equation (25). Einstein 
had found these higher order terms by requiring that substitution of the force density equation 
(16) into the field equation must produce an identity from which the conservation of momentum 
could be recovered. Without mentioning the embarrassing retraction of 1912, Einstein now 
sought to employ the same method in his new “Entwurf” theory. He was concerned to convey 
clearly to the reader the method that would be used. To do so, he recapitulated the analysis given 
above in Section 10 for the familiar case of electrostatics.21 I quote him at length (p. 14): 

[To typesetter, long quote starts here.] 

 The momentum energy law will serve us in the discovery of these terms. 
So that the method used is clearly delineated, I now want to apply it to a generally 
known example. 

 In electrostatics, − ∂ϕ
∂xν

ρ  is the vth component of the momentum per unit 

volume imparted to matter, in case ϕ  signifies the electrostatic potential, ρ the 

electric [charge] density. A differential equation is sought for ϕ  of such a kind 
that the momentum law is always satisfied. It is well-known that the equation 

∂2ϕ
∂xν

2
ν
∑ = ρ  

solves the exercise. That the momentum law is satisfied follows from the identity 

∂
∂xµµ

∑ ∂ϕ
∂xν

∂ϕ
∂xµ

⎛

⎝⎜
⎞

⎠⎟
− ∂
∂xν

1
2

∂ϕ
∂xµ

⎛

⎝⎜
⎞

⎠⎟

2

µ
∑

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂ϕ
∂xν

∂2ϕ
∂xµ

2
µ
∑ = − ∂ϕ

∂xν
⋅ ρ

⎛
⎝⎜

⎞
⎠⎟

 

 Therefore if the momentum law is satisfied, for each ν an identical 

equation of the following construction must exist: on the right hand side is − ∂ϕ
∂xν

 

multiplied by the left hand side of the differential equation. On the left hand side 
of the identity is a sum of differential quotients. 

 If the differential equation for ϕ were not yet known, then the problem of 
its discovery may be reduced to that of the discovery of this identical equation. 
What is essential for us now is the knowledge that this identity may be derived if 
one of the terms appearing in it is known. [Einstein’s emphasis] One has nothing 

                                                
21 A curious omission is that Einstein never states the key point explicitly: that conservation of 
momentum is assured by the existence of the Maxwell stress tensor. Perhaps he assumed it 
would be obvious to the reader? 
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more to do than to apply repeatedly the rule for differentiation of a product in the 
form 

∂
∂xν

(uv) = ∂u
∂xν

v + ∂v
∂xν

u  

and 

u ∂v
∂xν

= ∂
∂xν

(uv)− ∂u
∂xν

v  

and finally to place terms that are differential quotients on the left hand side and 
the remaining [terms] on the right hand side.  If one proceeds, f[or] e[xample] 
from the first term of the above identity, one obtains the sequence 

∂
∂xµµ

∑ ∂ϕ
∂xν

∂ϕ
∂xµ

⎛

⎝⎜
⎞

⎠⎟
= ∂ϕ

∂xνµ
∑ ⋅ ∂

2ϕ
∂xµ
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∂ϕ
∂xνµ

∑ ⋅ ∂2ϕ
∂xν ∂xµ

 

                               = ∂ϕ
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⋅ ∂2ϕ
∂xµ

2
µ
∑ + ∂

∂xν
1
2

∂ϕ
∂xµ

⎛

⎝⎜
⎞

⎠⎟

2

µ
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

from which the above identity follows through rearrangement. 
[To typesetter, long quote end here.] 

Einstein now proceeded to use this method to derive the gravitational field equations of his 
“Entwurf” theory. The derivation was essentially just the derivation of the second gravitational 
field equation of 1912, but now promoted to the more complicated context of the “Entwurf” 
theory. In place of the single gravitational potential c was the multi-component metric tensor gµν. 

In place of momentum conservation and the Maxwell stress tensor was the requirement of 
conservation of energy-momentum and the stress-energy tensor of the gravitational field. 

 The resulting gravitation tensor Γµν is given in the Appendix below as equation (43). The 
promoted computations are considerably more complicated than those of the 1912 theory. 
Grossmann’s (1913, pp. 37-38) part contains the derivation of the essential identity, which 
covers two journal pages. The details of these formulae are unilluminating for our present 
interests and I will spare the reader parading them. 

13.	Conflicting	Heuristics	Again	
 While the promotion of the method of 1912 had now provided Einstein with a unique set 
of gravitational field equations for his new “Entwurf” theory, the conflict of heuristics present in 
1912 remained and in a more damaging form. The principle of equivalence had assured Einstein 
that uniform acceleration produces a homogeneous gravitational field. We saw above that 
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Einstein’s modified field equation of 1912 no longer identified this acceleration field in its 
totality as a gravitational field. The best Einstein could say was that infinitely small parts of the 
field were identified individually as a gravitational field. In the “Entwurf” theory, this last 
slender thread to the principle was broken. For the only static spacetimes with the line element 
(8) allowed by the source free “Entwurf” gravitational field equations were those with c = 
constant. (See Appendix B. Equation (46).) That is merely the spacetime of special relativity, 
Minkowski spacetime. 
 The immediate problem was that Einstein could not present the “Entwurf” theory as 
realizing the idea implicit in the principle of equivalence. For in this new theory, uniform 
acceleration did not produce a gravitational field that was recognized by the theory’s 
gravitational field equations. Hence, as noted already in Norton (1985, §4.3), during the time of 
the “Entwurf” theory, Einstein tended to avoid detailed discussion of the principle of equivalence. 
 In his part of Einstein and Grossmann (1913), the principle (“Äquivalenz-Hypothese”) is 
introduced (p.3) with the restriction to homogeneous gravitational fields of infinitely small 
extension. It is recalled subsequently (§1) only as the basis of the 1912 theory, which is 
summarized briefly. In his later Einstein (1913, pp. 1254-55), the principle is presented as a 
vividly developed thought experiment concerning physicists who awaken from a drugged sleep 
in a closed, accelerating box. Einstein does not, however, develop the specific results such as the 
line element (4) above. Soon after, Einstein and Grossmann (1914, p. 216) reaffirm 

The whole theory proceeds from the conviction that all physical processes in 
a gravitational field play out in exactly the same way as the corresponding 
processes play out without a gravitational field, in case one relates them to 
an appropriately accelerated (three dimensional) coordinate system. 
(“Äquivalenzhypothese”) 

It is notable that Einstein and Grossman leave open just what form the “appropriate” acceleration 
can take. They fail to specify the uniform acceleration and homogeneous gravitational fields of 
Einstein’s earlier formulations and those of his writings after 1915. In November 1914, Einstein 
(1914) published a definitive review article on the latest form of his theory. The principle of 
equivalence is now absent in name from the introductory discussion. Instead, Einstein reflects on 
rotational motion and urges (p. 1032) that the centrifugal field appearing in a rotating frame of 
reference should be conceived as a gravitational field.22  

                                                
22 At this time, as Janssen (1999) recounts in some detail, through a calculation error, Einstein 
had convinced himself that this centrifugal field is a solution of the “Entwurf” gravitational field 
equations. 
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 After November 1915, when Einstein had finally secured a generally covariant theory, he 
could once again conceive of the field of uniform acceleration as gravitational. The principle of 
equivalence was restored in its original form to its original prominence in Einstein’s accounts of 
his theory. It appears in the introductory discussion (§2) of his new review article (Einstein 
1916); and in Ch.XX of Einstein’s (1920b) popular book on relativity, whose preface is dated 
December 1916. 
 The hiatus in discussion of the principle of equivalence coincides with the time of the 
“Entwurf” theory. Thus is it natural to suppose that Einstein knew that the original principle 
failed completely in his theory. Unfortunately Einstein never explicitly acknowledged the failure. 
What complicates the problem is that some of Einstein’s narratives (cited above) still include it. 
What deepens the problem is that Einstein repeatedly employed a spacetime with a line element 
(8) to represent the gravitational field outside a spherically symmetric body, such as was 
assumed for the sun. The difficulty is that this field must conform with the source free 
gravitation field equations and, as shown in Appendix B, these equations admit nothing but a flat 
Minkowski spacetime for a spacetime with this line element. 
 While Einstein’s silence makes it impossible for us to be certain, I think it most plausible 
that Einstein knew of the problem but found it expedient to remain silent about it. For once a 
successful theory has been achieved, what could be gained by announcing incompatibilities 
between the theory and the specifics of the ideas that led to it? If uniform acceleration does not 
produce a gravitational field in the theory, then other accelerations might; and Einstein 
mistakenly believed this to be the case for rotation. As to the applicability of the line element (8) 
to the spacetime surrounding the sun, it is notable that Einstein’s derivations all employ 
approximations.23 Thus the negative result of Appendix B below could be avoided if the line 
element of these spacetimes had the form (8) only approximately, that is, to the order of the 
approximation of his calculations. I find it most plausible that this was Einstein’s view. 
 There is evidence that Einstein knew that static gravitational fields, such as that of the sun, 
admitted deviations from spatial flatness that were non-zero in the second order of smallness. 
The most direct evidence comes in a draft manuscript of calculations co-authored by Einstein 
and his friend Michele Besso, mostly in mid 1913. (Klein et al., 1995, Doc. 14) They compute 

                                                
23 See for example Einstein (1913, §8) and Einstein (1914, §17). In a letter of March 19, 1915 
(Schulman et al., 1998, Doc. 63.), Einstein sought to reassure Erwin Freundlich that the 
spacetime surrounding the sun has the metric associated with (8)/ (36). Einstein presented a short 
proof that demonstrates the result only in low order approximation. 
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the gravitational field of the sun to second order in the “Entwurf “ theory and, on a page in 
Einstein’s hand, non-zero second order deviations are recovered.24 
 What is regrettable is that Einstein does not directly affirm these deviations in his 
publications from the time.  Einstein and Grossmann (1913, p. 7) presents the line element (8) (in 
the equivalent form of the tensor (36)) as applying to static gravitational fields “of the previously 
considered type.” This presumably refers to those of the earlier 1912 theory. If Einstein intended 
the remark not to apply to the present “Entwurf” theory as well, only the most perspicacious of 
readers could have realized it. 
 In November 1915, after Einstein had returned to generally covariant gravitational field 
equations, the error was discovered in the context of Einstein’s successful explanation of the 
anomalous motion of Mercury. He then remarked (Einstein 1915b, p. 834) on the surprising25 
appearance of non-constant components like g11, g22 and g33 in the metric field of the sun: “the 

[non-constancies of the] components g11 to g33 differ from zero already in magnitudes of the 

first order. [my emphasis]” This emphasized phrase might not be needed, unless Einstein already 
had expected such deviations only to be of higher order.  

14.	The	Method	Lives	On	
 After the “Entwurf” paper, the essential ideas behind the method of generating field 
equations did not disappear, but merely receded. They were absorbed into Einstein’s analyses 
and, while no longer explicitly delineated, continued to exercise a controlling influence on his 
theorizing. 
 The gravitational field equations of the “Entwurf” theory were not generally covariant. 
The pressing problem for Einstein in 1913 and 1914 was to determine the extent of his new 
theory’s covariance. The ideas behind the method of 1912 and 1913 now became the vehicle for 
determining this extent. To this end, Einstein and Grossman (1914, p. 217) wrote the “Entwurf” 
field equations (in modernized notation) as:  

∂
∂xα

−ggαβgσµ
∂gµν

∂xβ
⎛
⎝⎜

⎞
⎠⎟
=κ −g Tσ

ν + tσ
ν( )                                      (32) 

                                                
24 See Equations 40 and 42 in (Klein et al., 1995, p. 370) and the associated editorial discussion 
on p. 349. 
25 The word surprise is Einstein’s from a letter to Michele Besso of December 10, 1915: “You 
will be surprised by the appearance of the g11 … g33.” (Schulmann et al, 1998, Doc. 162, p. 218). 
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where tσν is an expression quadratic in first derivatives of the metric tensor and identified as the 

stress-energy tensor of the gravitational field. The conservation of energy and momentum was 
written as 

∂
∂xν

−g Tσ
ν + tσ

ν( )( ) = 0                                                 (33) 

Following the earlier method, we should expect that substituting (32) into (33) yields an identity 
in the metric tensor gµν. The resulting identity in gµν is  

Bσ = ∂2

∂xν ∂xα
−ggαβgσµ

∂gµν

∂xβ
⎛
⎝⎜

⎞
⎠⎟
= 0                                        (34) 

This identity took on a new significance. It could only be expected to hold in coordinate systems 
in which the original equations (32) and (33) held. Einstein and Grossmann could now use the 
identity as the condition that picks out just those coordinate systems in which the “Entwurf” 
theory held. 
 This “adapted coordinate condition,” as they called it, became a central feature of the 
development of the “Entwurf” theory. Einstein and Grossmann (1914) and Einstein (1914) 
developed a variational formalism for the “Entwurf” theory. A major goal of the formalism was 
to demonstrate that this adapted coordinate condition did characterize precisely the extent of 
covariance of the theory and that it was the maximum covariance permitted by Einstein’s 
original interpretation of the hole argument. 
 When Einstein returned to general covariance and formulated the now familiar generally 
covariant gravitational equations, the ideas behind this repurposed method and the variational 
formalism persisted. The major difference was that the identity replacing (34) no longer picked 
out just those few coordinate systems in which the theory held. For under general covariance, the 
final theory held in all coordinate systems. Thus the replacement identity must hold in all 
coordinate systems. It was recognized later to be none other that the contracted Bianchi identity:  

Rµν − 1
2 g

µνR( );ν = 0                                                        (35) 

where Rµν is the Ricci tensor. 
 Einstein’s original method of 1912 and 1913 now survives as the most familiar means of 
arriving at the gravitational field equations of general relativity. It proceeds by arguing, as did 
Einstein (1923, pp. 92-93), that the gravitational field equations have the form 

Gµν = κ Tµν 
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The generally covariant gravitation tensor Gµν is formed from the metric tensor and its first and 

second derivatives; and is linear in the second derivatives. It follows that Gµν must be a linear 

combination of Rµν and gµνR. If conservation of energy momentum 

Tµν;ν = 0 

is to be maintained, this linear combination must have a vanishing covariant divergence. We read 
from (35) that the gravitation tensor is what is now called the Einstein tensor: 

Gµν = Rµν − 1
2 g

µνR  

15.	Einstein’s	Two	Tier	Heuristics	
 To return to our starting point, how are we to think of the heuristics that guided Einstein 
to his general theory of relativity? His starting point in 1907 was the principle of equivalence. 
There can be no doubt that Einstein held firmly to the idea that this principle was the foundation 
from which he proceeded, even as the principle delivered results in contradiction with his 
evolving theory. Here is how Einstein recalled the situation in a letter of September 12, 1950, to 
Laue. At issue was the fact that the Riemann curvature tensor vanishes in the rotating coordinate 
system adapted to a rotating disk in Minkowski spacetime. Einstein replied26 

It is true that in that case the Riklmvanish, so that one could say: “there is no 

gravitational field present.” However, what characterizes the existence of a 

gravitational field from the empirical standpoint is the non-vanishing of the Γikl 

[coefficents of the affine connection], not the non-vanishing of the Riklm. If one 

does not think intuitively in such a way, one cannot grasp why something like 
curvature should have anything at all to do with gravitation. In any case, no 
reasonable person would have hit upon such a thing. The key for understanding of 
the equality of inertial and gravitational mass is missing. 

In retrospect, we can see the most important idea that the principle of equivalence delivered to 
Einstein. It was, as is argued in Norton (1985, §12), that the Minkowski spacetime of special 
relativity was not to be conceived as a gravitation free spacetime. Rather gravitation was already 
present in it as a special case. That gave Einstein the crucial clue that a gravitation theory could 
be constructed, not by adding a gravitational field to that spacetime, but generalizing the 
structures already present in Minkowski spacetime. 

                                                
26 As quoted in Norton (1985, §11). 
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 The difficulty was that the principle of equivalence gave Einstein more than this vital 
clue. It also delivered gravitational fields to Einstein that contradicted his evolving theories of 
1912 and 1913. If the principle of equivalence was inviolable, Einstein would have had to 
abandon these theories. He did not; the principle proved dispensable.  Rather he first reduced the 
principle of equivalence in 1912 to a weak version that obtained only in the infinitely small and 
then in 1913 and 1914 to a vaguer guide with an imprecisely circumscribed expression. The 
principle may have taken pride of place in his overarching conceptions, but it enjoyed no such 
prominence in the practicalities of his theorizing. 
 Instead Einstein could proceed with quite definite theories because a second tier of 
heuristics were still guiding him. In the account above, one has been singled out as having 
special importance.27 It is the idea that the gravitational field equations must conform with 
energy and momentum conservation. Unlike the principle of equivalence, that demand was 
inviolable. It provided a method that guided Einstein to quite specific field equations in 1912 and 
in 1913 and persists in modern presentations of general relativity. 
 Is this example of a two-tiered structure of heuristics in Einstein’s work exceptional? A 
second, related example has been explored in some detail by Michel Janssen and Jürgen Renn 
(2007). In November 1915, Einstein (1915a) reported to the Prussian Academy that he had 
abandoned his “Entwurf” theory. He presented in its place a new theory of near general 
covariance that would shortly be extended to full general covariance. Einstein made clear that, 
once he had lost faith in his earlier theory, considerations of covariance were his primary guide: 
(p. 778) 

Thus I came back[28] to the demand of a more general covariance of the field 
equations, from which I had departed three years ago, when I worked together with 
my friend Grossmann, only with a heavy heart. 

His reflections devolved into a poetic tribute to the mathematical methods associated with 
general covariance (p. 779) 

Hardly anyone who has truly understood it can resist the charm of this theory; it 
signifies a real triumph of the method of the general differential calculus, founded 
by Gauss, Riemann, Christoffel, Ricci and Levi-Civita.  

Janssen and Renn, however, have pointed out that the theory then presented by Einstein could be 
produced by making a small adjustment to the variational formulation of the “Entwurf” theory. A 
derivative of the metric tensor would be replaced by a Christoffel symbol, otherwise leaving the 
                                                
27 Another essential requirement was that his new gravitation theory revert to Newtonian 
gravitation theory in the case of weak, static gravitational fields. 
28 “So gelangte ich … zurück…” 
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formalism unchanged. The cogency of the ensuing theory was assured by the results of the 
earlier formulation. In particular, the modified theory would be assured to conform with the 
conservation of energy and momentum. 
 There is no reason to doubt that Einstein conveyed accurately his perception of the 
overriding importance of covariance considerations. That would be a natural way for him to 
recall his recognition that the modified theory was the same as one of near general covariance, 
recoverable from the Riemann tensor. However it obscures how powerfully his further demands 
constrained his choices. 
 We see in this example a similar double tiered structure of heuristics. Covariance 
considerations loomed large in Einstein’s thinking as the first tier. However they were quite 
dispensable. Einstein had abandoned them in 1913 with the formulation of the “Entwurf” theory, 
whose covariance properties were then unclear. Considerations such as the energy momentum 
conservation and the Newtonian limit, however, were inviolable and formed the second tier that 
continued to guide and circumscribe his theorizing. In November 1915, Einstein could return to 
more general covariance precisely because he had in hand a formalism that preserved the 
demands of this second tier. 

16.	Conclusion	
 It is tempting to say that Einstein did not really need the principle of equivalence to guide 
him to general relativity. The crucial clue that Minkowski spacetime is already gravitational 
could have been gleaned from a widely known fact, itself brought to prominence by Einstein’s 
work. It is the remarkable equality of inertial and gravitational mass in Newtonian theory. This 
equality leads to the result that trajectories of bodies in free fall are independent of their mass. 
They are, in retrospect, tracing out for us the geometry of a curved spacetime associated with 
gravity. Might that have been enough to guide Einstein or another theorist to general relativity? 
 Of course, when our concern is the discovery of a theory as exceptional in relation to 
what went before as general relativity, it is foolhardy to try to imagine how things could have 
been otherwise. I will not persist. We saw above that Einstein insisted that without the principle 
of equivalence “no reasonable person” could have found general relativity. However, just as I 
cannot really know how it would have been if things were otherwise, is not the same true for 
Einstein? 
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Appendix	A.	Computing	Spacetime	Curvature	in	Einstein’s	1912	

Theory	
Einstein’s 1912 theory of static gravitational fields attributed properties to space and time 
equivalent to spacetimes of his later general theory of relativity with a spacetime metric:  

gµν =

−1
−1

−1
c2 (x, y, z)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

     gµν =

−1
−1

−1
1/ c2 (x, y, z)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

                        (36) 

where the spacetime coordinates are (x, y, z, t) = (x1, x2, x3, x4) and Greek indices µ, ν take 
values 1, 2, 3 and 4. In (36), c is a function of x, y and z, but not t. Following the notational 
conventions of Einstein (1923, p. 79), we write the coefficients of the connection as  

Γµν
α = 1

2 g
σα ∂gµα

∂xν
+ ∂gνα
∂xµ −

∂gµν
∂xα

⎛
⎝⎜

⎞
⎠⎟

                                            (37) 

where summation over repeated indices is implied. Substituting (36) in (37), the only non-zero 
terms are  

Γ44
i = c ∂c

∂xi
    Γ i4

4 = Γ4 i
4 = 1

c
∂c
∂xi

                                              (38) 

where a Latin index i = 1, 2, 3, is used to identify the spatial coordinates (x, y, z) = (x1, x2, x3). 
The Ricci tensor, as given by Einstein (1923, p. 85), is 

Rµν = −
∂Γµν

α

∂xα
+
∂Γµα

α

∂xν
+ Γµβ

α Γνα
β − Γµν

α Γαβ
β                                          (39) 

Using the values of (38), after some calculations, the Ricci tensor reduces to29  

R44 = −cΔc = −c ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
c   

Rik =
1
c

∂2c
∂xi ∂xk

 , so that R11 =
1
c
∂2c
∂x2

, R12 =
1
c

∂2c
∂x∂y

, etc 

Ri4 = R4 i = 0                                                                                         (40) 

Finally, the Riemann curvature scalar is  

                                                
29 These formulae are accurate to all orders. They differ from Stachel’s (1989, p. 67) formulae, 
which are computed only, in Stachel’s expression, in “linearized approximation.” 
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R = gµνRµν =
1
c2
R44 − R11 − R22 − R33 = − 2

c
Δc                                         (41) 

Einstein’s source free gravitational field equations of 1915, Rµν = 0, lead to highly restricted 

results. The spatial part, Rik = 0, alone is sufficient to ensure that c depends at most linearly on 

the spatial coordinates x, y and z. That is 
c(x, y, z) = A + Bx + Cy + Dz                                                       (42) 

where A, B, C and D are constants. Equation (42) also applies to the special case of flat 
spacetime, when the Riemann curvature tensor vanishes. For in that case, its first contraction 
must also vanish, Rµν = 0. 

 Had Einstein set his source density in his field equation (11), Δc = kcσ, equal to the trace 

of the stress-energy tensor of ordinary matter, that is, σ = T, then it follows from (41) that the 
field equation (11) would be equivalent to 

-R = (2/c)Δc = 2kσ = 2kT 

Appendix	B.	Computing	the	Gravitation	Tensor	of	the	Einstein-

Grossmann	Theory	for	a	Static	Gravitational	Field	
 The gravitation tensor of limited covariance of Einstein and Grossmann (1913, p. 15) is 
given in more modern notation as:  

Γµν = 1
−g

∂
∂xα

−ggαβ ∂g
µν

∂xβ
⎛
⎝⎜

⎞
⎠⎟
− gαβgτσ

∂gµτ

∂xα
∂gνρ

∂xβ

+ 1
2 g

αµgβν ∂gτρ
∂xα

∂gτρ

∂xβ
− 1

4 g
µνgαβ

∂gτρ
∂xα

∂gτρ

∂xβ

                            (43) 

Evaluating this tensor for the static spacetimes (36), as conceived in the Einstein and Grossmann 
theory, we find the only non-zero derivatives of the metric tensor are:  

∂g44
∂xi

= 2c ∂c
∂xi

∂g44

∂xi
= − 2

c3
∂c
∂xi

                                             (44) 

where i = 1, 2, 3. After some straightforward computations, we recover 

Γ44 = 2
c3

∂2c
∂(xi )2i=1

3

∑ − 1
c4

∂c
∂xi

⎛
⎝⎜

⎞
⎠⎟i=1
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∑
2

Γ ii = − 2
c2

∂c
∂xi

⎛
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⎞
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Γ ik
(i≠k ) = − 2

c2
∂c
∂xi

∂c
∂xk

Γ i4 = Γ4 i = 0                                           (45) 
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where all summations are explicit. No summations are implied. For the source free case, the 

gravitational field equations of the theory are Γµν = 0. The component equation Γ44 = 0 
corresponds to the source free form of the second field equation (25) of Einstein’s second theory 
of 1912. The remaining component equations, however, have terms in the first derivatives ∂c/∂xi 

only. The three equations  Γii = 0, for i = 1, 2, 3. Are sufficient to force ∂c/∂xi = 0 for i = 1, 2, 3. 
That is, we must have 

c(x, y, z) = constant                                                            (46) 
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